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Hypergraph factorization for multi-tissue 
gene expression imputation

Ramon Viñas)  )1, Chaitanya K. Joshi1, Dobrik Georgiev)  )1, Phillip Lin)  )2, 

Bianca Dumitrascu)  )3 , Eric R. Gamazon)  )4  & Pietro Liò)  )1 

Integrating gene expression across tissues and cell types is crucial for 

understanding the coordinated biological mechanisms that drive disease 

and characterize homoeostasis. However, traditional multi-tissue 

integration methods either cannot handle uncollected tissues or rely 

on genotype information, which is often unavailable and subject to 

privacy concerns. Here we present HYFA (hypergraph factorization), a 

parameter-eocient graph representation learning approach for joint 

imputation of multi-tissue and cell-type gene expression. HYFA is genotype 

agnostic, supports a variable number of collected tissues per individual, 

and imposes strong inductive biases to leverage the shared regulatory 

architecture of tissues and genes. In performance comparison on Genotype3

Tissue Expression project data, HYFA achieves superior performance over 

existing methods, especially when multiple reference tissues are available. 

The HYFA-imputed dataset can be used to identify replicable regulatory 

genetic variations (expression quantitative trait loci), with substantial gains 

over the original incomplete dataset. HYFA can accelerate the efective and 

scalable integration of tissue and cell-type transcriptome biorepositories.

Sequencing technologies have enabled profiling of the transcriptome 

at tissue and single-cell resolutions, with great potential to unveil intra- 

and multi-tissue molecular phenomena such as cell signalling and 

disease mechanisms. Due to the invasiveness of the sampling process, 

gene expression is usually measured independently in easy-to-acquire 

tissues, leading to an incomplete picture of an individual’s physi-

ological state and necessitating effective multi-tissue integration  

methodologies.

A question of fundamental biological importance is to what extent 

the transcriptomes of difficult-to-acquire tissues and cell types can be 

inferred from those of accessible ones1,2. Due to their ease of collection, 

accessible tissues such as whole blood could have great utility for diag-

nosis and monitoring of pathophysiological conditions through metab-

olites, signalling molecules and other biomarkers, including possible 

transcriptome-level associations3. Moreover, all human somatic cells 

share the same genetic information, which may regulate expression 

in a context-dependent and temporal manner, partially explaining 

tissue- and cell-type-specific gene expression variation. Computational 

models that exploit these patterns could therefore be used to impute 

the transcriptomes of uncollected cell types and tissues, with potential 

to elucidate the biological mechanisms regulating a diverse range of 

developmental and physiological processes.

Multi-tissue imputation is a central problem in transcriptom-

ics with broad implications for fundamental biological research and 

translational science. The methodological problem can powerfully 

influence downstream applications, including performing differential 

expression analysis, identifying regulatory mechanisms, determining 

co-expression networks and enabling drug target discovery. In practice, 

in experimental follow-up or clinical application, the task includes the 

special case of determining a good proxy or easily assayed system for 

causal tissues and cell types. Multi-tissue integration methods can 

also be applied to harmonize large collections of RNA-seq datasets 
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expression into low-dimensional metagene representations14,15 for 

every collected tissue. Each metagene summarizes abstract properties 

of groups of genes, for example sets of genes that tend to be expressed 

together16, that are relevant for the imputation task. In a second step, 

HYFA employs a custom message-passing neural network17 that oper-

ates on a 3-uniform hypergraph, yielding factorized individual, tissue 

and metagene representations. Finally, HYFA infers latent metagene 

values for the target tissue4a hyperedge-level prediction task4and 

maps these representations back to the original gene expression 

space. Through higher-order hyperedges (for example, a 4-uniform 

hypergraph), HYFA can also incorporate cell-type information and 

infer finer-grained cell-type-specific gene expression (Methods). Alto-

gether, HYFA offers features to reuse knowledge across tissues and 

genes, capture nonlinear cross-tissue patterns of gene expression, 

learn rich representations of biological entities and account for vari-

able numbers of reference tissues.

Characterization of cross-tissue relationships
Characterizing cross-tissue relationships at the transcriptome level can 

help elucidate coordinated gene regulation and expression, a funda-

mental phenomenon with direct implications for health homoeosta-

sis, disease mechanisms and comorbidities18320. We trained HYFA on 

bulk gene expression from the GTEx project (GTEx-v8; Methods)2 and 

assessed the cross-tissue gene expression predictability4measured 

using the Pearson correlation between the observed and the predicted 

gene expression across individuals4and quality of tissue embeddings 

(Fig. 2). Application of Uniform Manifold Approximation and Projection 

(UMAP)21 on the learnt tissue representations revealed strong clustering 

of biologically related tissues (Fig. 2a), including the gastrointestinal 

system (for example, oesophageal, stomach, colonic and intestinal 

tissues), the female reproductive tissues (that is, uterus, vagina and 

ovary) and the central nervous system (that is, the 13 brain tissues). For 

every pair of reference and target tissues in GTEx, we then computed the 

Pearson correlation coefficient ρ between the predicted and actual gene 

expression, averaged the scores across individuals and used a cutoff 

of ρ)>)0.5 to depict the top pairwise associations (Fig. 2b and Extended 

Data Fig. 1). We observed connections between most GTEx tissues and 

whole blood, which suggests that blood-derived gene expression is 

highly informative on (patho)physiological processes in other tissues22. 

Notably, brain tissues and the pituitary gland were strongly associated 

with several tissues (ρ)>)0.5), including gastrointestinal tissues (that 

is oesophagus, stomach and colon), the adrenal gland and skeletal 

muscle, which may account for known disease comorbidities.

Imputation of gene expression from whole-blood 
transcriptome
Knowledge about tissue-specific patterns of gene expression can 

increase our understanding of disease biology, facilitate the develop-

ment of diagnostic tools and improve patient subtyping1,23, but most 

tissues are inaccessible or difficult to acquire. To address this chal-

lenge, we studied to what extent HYFA can recover tissue-specific gene 

expression from whole-blood transcriptomic measurements (Fig. 3). 

For each test individual with measured whole-blood gene expression, 

we predicted tissue-specific gene expression in the remaining collected 

tissues of the individual. We evaluated performance using the Pearson 

correlation between the inferred gene expression and the ground-truth 

samples. We observed strong prediction performance for oesophageal 

tissues (muscularis, ρ)=)0.49; gastro, ρ)=)0.46; mucosa, ρ)=)0.36), heart 

tissues (left ventricle, ρ)=)0.48; atrial, ρ)=)0.46) and lung (ρ)=)0.47), while 

Epstein Barr virus-transformed lymphocytes (ρ)=)0.06), an accessible 

and renewable resource for functional genomics, was a notable outlier. 

We noted that the per-gene prediction scores followed smooth, uni-

modal distributions (Extended Data Fig. 2). The blood-imputed gene 

expression also predicted disease-relevant genes in the hard-to-access 

central nervous system (Extended Data Fig. 3). These include APP, PSEN1 

from diverse institutions, consortia and studies44each potentially 

affected by technical artifacts4and to characterize gene expression 

co-regulation across tissues. Reconstruction of unmeasured gene 

expression across a broad collection of tissues and cell types from avail-

able reference transcriptome panels may expand our understanding of 

the molecular origins of complex traits and of their context specificity.

Several methods have traditionally been employed to impute 

uncollected gene expression. Leveraging a surrogate tissue has been 

widely used in studies of biomarker discovery, diagnostics and expres-

sion quantitative trait loci (eQTLs), and in the development of model 

systems539. Nonetheless, gene expression is known to be tissue and 

cell-type specific, limiting the utility of a proxy tissue. Other related 

studies impute tissue-specific gene expression from genetic informa-

tion10. Wang et al.11 propose a mixed-effects model to infer uncollected 

data in multiple tissues from eQTLs. Sul et al.12 introduce a model 

termed Meta-Tissue, which aggregates information from multiple 

tissues to increase the statistical power of eQTL detection. However, 

these approaches do not model the complex nonlinear relationships 

between measured and unmeasured gene expression traits among 

tissues and cell types, and individual-level genetic information (for 

example, at eQTLs) is subject to privacy concerns and often unavailable.

Computationally, multi-tissue transcriptome imputation is chal-

lenging because the data dimensionality scales rapidly with the number 

of genes and tissues, often leading to overparameterized models. TEE-

BoT1 addresses this issue by employing principal component analysis4

a non-parametric dimensionality reduction method4to project the 

data into a low-dimensional manifold, followed by linear regression 

to predict target gene expression from the principal components. 

However, this technique does not account for nonlinear effects and can 

only handle a single reference tissue, that is, whole blood. Approaches 

such as standard multilayer perceptrons (MLPs) can exploit nonlinear 

patterns, but are massively overparameterized and computationally 

infeasible.

To address these challenges, we present HYFA (hypergraph factori-

zation), a parameter-efficient graph representation learning approach 

for joint multi-tissue and cell-type gene expression imputation. HYFA 

represents multi-tissue gene expression in a hypergraph of individu-

als, metagenes and tissues, and learns factorized representations 

via a specialized message-passing neural network operating on the 

hypergraph. In contrast to existing methods, HYFA supports a vari-

able number of reference tissues, increasing the statistical power over 

single-tissue approaches, and incorporates inductive biases to exploit 

the shared regulatory architecture of tissues and genes. In performance 

comparison, HYFA attains improved performance over TEEBoT and 

standard imputation methods across a broad range of tissues from 

the Genotype-Tissue Expression (GTEx) project (v8) (ref. 2). Through 

transfer learning on a paired single-nucleus RNA-seq dataset (GTEx-v9) 

(ref. 13), we further demonstrate the ability of HYFA to resolve cell-type 

signatures4average gene expression across cells for a given cell type, 

tissue and individual4from bulk gene expression. Thus, HYFA may 

provide a unifying transcriptomic methodology for multi-tissue 

imputation and cell-type deconvolution. In post-imputation analysis, 

application of eQTL mapping on the fully imputed GTEx data yields a 

substantial increase in number of detected replicable eQTLs. HYFA is 

publicly available at https://github.com/rvinas/HYFA.

Results
HYFA (hypergraph factorization)
We developed HYFA, a framework for inferring the transcriptomes 

of unmeasured tissues and cell types from bulk expression collected 

in a variable number of reference tissues (Fig. 1 and Methods). HYFA 

receives as input gene expression measurements collected from 

a set of reference tissues, as well as demographic information, and 

outputs gene expression values in a tissue of interest (for example 

uncollected). The first step of the workflow is to project the input gene 

http://www.nature.com/natmachintell
https://github.com/rvinas/HYFA
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and PSEN2, that is, the causal genes for autosomal dominant forms 

of early-onset Alzheimer’s disease24, and Alzheimer’s disease genetic 

risk factors such as APOE25. We compared our method with TEEBoT1 

(without expression single-nucleotide polymorphism information), 

which first projects the high-dimensional blood expression data into 

a low-dimensional space through principal component analysis (30 

components; 75380% explained variance) and then performs linear 

regression to predict the gene expression of the target tissue. Overall, 

TEEBoT and HYFA attained comparable scores when a single tissue (that 

is whole blood) was used as reference and both methods outperformed 

standard imputation approaches (mean imputation, blood surrogate 

and k-nearest neighbours; Fig. 3c).

Multiple reference tissues improve performance
We hypothesized that using multiple tissues as reference would 

improve downstream imputation performance. To evaluate this, 

we selected individuals with measured gene expression both at the 

target tissue and four reference accessible tissues (whole blood, 

skin sun exposed, skin not sun exposed and adipose subcutaneous) 

and employed HYFA to impute target expression values (Fig. 3 and 

Extended Data Fig. 4). We discarded under-represented target tissues 

with fewer than 25 test individuals. Relative to using whole blood in 

isolation, using all accessible tissues as reference resulted in improved 

performance for 32 out of 38 target tissues (Extended Data Fig. 4). This 

particularly boosted imputation performance for oesophageal tis-

sues (muscularis, �ρ)=)0.068; gastro, �ρ)=)0.061; mucosa, �ρ)=)0.048), 

colonic tissues (transverse, �ρ)=)0.065; sigmoid, �ρ)=)0.056) and artery 

tibial (�ρ)=)0.079). In contrast, performance for the pituitary gland 

(�ρ)=)20.011), lung (�ρ)=)20.003) and stomach (�ρ)=)20.002) remained 

stable or dropped slightly. Moreover, the performance gap between 

HYFA and TEEBoT (trained on the set of complete multi-tissue samples) 

widened relative to the single-tissue scenario (Fig. 3 and Extended Data 

Fig. 5)4HYFA obtained better performance in all target tissues, with 

statistically significant improvements in 26 out of 38 tissues (two-sided 

Mann3Whitney3Wilcoxon P)<)0.05). We attribute the improved scores 

to HYFA’s ability to process a variable number of reference tissues, reuse 

knowledge across tissues and capture nonlinear patterns.

Inference of cell-type signatures
We next investigated the potential of HYFA to predict cell-type-specific 

signatures4average gene expression across cells from a given cell type4

in a given tissue of interest. We first selected GTEx donors with collected 

bulk (v8) and single-nucleus RNA-seq profiles (v9, Methods). Next, we 

trained HYFA to infer cell-type signatures from the multi-tissue bulk 
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Fig. 3 | Performance comparison across gene expression imputation 

methods. a,b, Per-tissue comparison between HYFA and TEEBoT when using 

whole blood (a) and all accessible tissues (whole blood, skin sun exposed, skin 

not sun exposed and adipose subcutaneous) (b) as reference. HYFA achieved 

superior Pearson correlation in 25 out of 48 target tissues when a single tissue was 

used as reference (a) and all target tissues when multiple reference tissues were 

considered (b). For under-represented target tissues (fewer than 25 individuals 

with source and target tissues in the test set), we considered all the validation 

and test individuals (translucent bars). We employed two-sided Mann3Whitney3

Wilcoxon tests to compute P values (*1)×)1022)<)P)f)5)×)1022, **1)×)1023)<)P)f)1)×)1022, 

***1)×)1024)<)P)f)1)×)1023, ****P)f)1)×)1024). The top axis indicates the total number n 

of independent individuals for every target tissue. c,d, Prediction performance 

from whole-blood gene expression (n)=)2,424 samples from 167 GTEx donors) 

(c) and accessible tissues as reference (n)=)675 samples from 167 test GTEx 

donors) (d). Mean imputation replaces missing values with the feature averages. 

Blood surrogate utilizes gene expression in whole blood as a proxy for the 

target tissue. k-nearest neighbours (kNN) imputes missing features with the 

average of measured values across the k-nearest observations (k)=)20). TEEBoT 

projects reference gene expression into a low-dimensional space with principal 

component analysis (30 components), followed by linear regression to predict 

target values. HYFA (all) employs information from all collected tissues of the 

individual. Boxes show quartiles, centrelines correspond to the median and 

whiskers depict the distribution range (1.5 times the interquartile range).  

Outliers outside the whiskers are shown as distinct points.
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Fig. 4 | Prediction of cell-type signatures. HYFA imputes individual- and 
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we used the observed library size l
(k,q)

i

 and number of cells n
(k,q)

i

 (Methods).  

SMC, smooth muscle cell.
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expression profiles. We evaluated performance using the observed  

(Fig. 4) and inferred library sizes (Supplementary Section K). To attenuate 

the small-data-size problem, we applied transfer learning on the model 

trained for the multi-tissue imputation task (Methods). We observed 

strong prediction performance (Pearson correlation ρ between log 

ground truth and log predicted signatures) for vascular endothelial cells 

(heart, ρ)=)0.84; breast, ρ)=)0.88; oesophagus muscularis, ρ)=)0.68) and 

fibroblasts (heart, ρ)=)0.84; breast, ρ)=)0.89; oesophagus muscularis, 

ρ)=)0.70). Strikingly, HYFA recovered the cell-type profiles of tissues 

that were never observed in the training set with high correlation (Fig. 4 

and Supplementary Section K)4for example, skeletal muscle (vascular 

endothelial cells, ρ)=)0.79; fibroblasts, ρ)=)0.77; pericytes/smooth mus-

cle cells, ρ)=)0.68), demonstrating the benefits of the factorized tissue 

representations. Overall, our results highlight the potential of HYFA 

to impute unknown cell-type signatures even for tissues that were not 

considered in the original single-cell study. Additionally, our analyses 

point to promising downstream applications as single-cell RNA-seq 

datasets become larger in number of individuals (Supplementary Sec-

tion N), including deconvolution and cell-type-specific eQTL mapping.

Multi-tissue imputation improves eQTL detection
The GTEx project has enabled the identification of numerous genetic 

associations with gene expression across a broad collection of tissues2, 

also known as eQTLs26. However, eQTL datasets are characterized by 

small sample sizes, especially for difficult-to-acquire tissues and cell 

types, reducing the statistical power to detect eQTLs27. To address this 

problem, we employed HYFA to impute the transcript levels of every 

uncollected tissue for each individual in GTEx, yielding a complete 

gene expression dataset of 834 individuals and 49 tissues. We then 

performed eQTL mapping (Methods) on the original and imputed 

datasets and observed a substantial gain in the number of unique genes 

with detected eQTLs, the so-called eGenes (Fig. 5). Notably, this metric 

increased for tissues with low sample size (Spearman ρ)=)20.83)4which 

are most likely to benefit from borrowing information across tissues 

with shared regulatory architecture. Kidney cortex displayed the larg-

est gain in number of eGenes (from 215 to 12,557), while there was no 

increase observed for whole blood.

To assess the quality of the identified eQTLs from HYFA impu-

tation, we conducted systematic replication analyses of (1) the 

whole-blood eQTL3eGene pairs, using the eQTLGen blood transcrip-

tome dataset in more than 30,000 individuals28, and (2) the frontal 

cortex eQTL3eGene pairs, using the PsychENCODE prefrontal cortex 

transcriptome dataset in 1,866 individuals29. For each tissue, we quanti-

fied the replication rate for eQTL3eGene pairs using the π1 statistic30. 

Notably, we found a highly significant enrichment for low replication 

P values among the HYFA-derived eQTL3eGene pairs (Fig. 5), demon-

strating strong reproducibility of the results. The replication rate π1 was 

0.80 for whole blood and 0.96 for frontal cortex. We also evaluated the 

extent to which the HYFA imputation could capture regulatory variants 

that directly modulate gene expression using experimentally validated 

causal variants from the Massively Parallel Reporter Assay dataset31. 

Notably, among the causal regulatory variants from this experimental 

assay, we found a highly significant enrichment for low P values among 

the HYFA-identified eQTLs in blood and in frontal cortex (Fig. 5). Thus, 

HYFA imputation enabled identification of biologically meaningful, 

replicable eQTL hits in the respective tissues. Our results generate a 

large catalogue of new tissue-specific eQTLs (Data availability), with 

potential to enhance our understanding of how regulatory variation 

mediates variation in complex traits, including disease susceptibility.

Brain–gut axis
The brain3gut axis is a bidirectional communication system of signal-

ling pathways linking the central and enteric nervous systems. We inves-

tigated whether the transcriptomes of tissues from the gastrointestinal 

system are predictive of gene expression in brain tissues (Fig. 2 and  

Supplementary Section G). Overall, the top predicted genes were 

enriched in multiple signalling-related terms (for example cytokine 

receptor activity and interleukin-1 receptor activity), consistent with 

existing knowledge that gut microbes communicate with the central 

nervous system through signalling mechanisms32. Genes in the inter-

section were also notably enriched in the ciliary neurotrophic factor 

receptor activity, which plays an important role in neuron survival33, 

enteric nervous system development34 and body weight control35.

HYFA-learned metagenes capture known biological pathways
A key feature of HYFA is that it reuses knowledge across tissues and 

metagenes, allowing exploitation of shared regulatory patterns. We 

explored whether HYFA’s inductive biases encourage learning of bio-

logically relevant metagenes. To determine the extent to which meta-

gene factors relate to known biological pathways, we applied gene set 

enrichment analysis (GSEA)36 to the gene loadings of HYFA’s encoder 

(Methods). Similarly to ref. 37, for a given query gene set, we calculated 

the maximum running sum of enrichment scores by descending the 

sorted list of gene loadings for every metagene and factor. We then 

computed pathway enrichment P values through a permutation test 

and employed the Benjamini3Hochberg method to correct for multiple 

testing independently for every metagene factor.

In total, we identified 18,683 statistically significant enrichments 

(false discovery rate, FDR)<)0.05) of KEGG biological processes38 (320 

gene sets; Fig. 6) across all HYFA metagenes (n)=)50) and factors (n)=)98). 

Among the enriched terms, 2,109 corresponded to signalling pathways 

and 1,300 to pathways of neurodegeneration. We observed consider-

able overlap between several metagenes in terms of biologically related 

pathways: for example, factor 95 of metagene 11 had the lowest FDR 

for both Alzheimer’s disease (FDR)<)0.001) and amyotrophic lateral 

sclerosis (FDR)<)0.001) pathways. Enrichment analysis of TRRUST39 

transcription factors (TFs) further identified important regulators 

including GATA1 (known to regulate the development of red blood 

cells40), SPI1 (which controls haematopoietic cell fate41), CEBPs (which 

play an important role in the differentiation of a range of cell types and 

the control of tissue-specific gene expression42,43) and STAT1 (a member 

of the STAT protein family that drives the expression of many target 

genes44). We also observed that the learnt HYFA factors recapitulate 

synergistic effects among the enriched TFs (Supplementary Section 

H and Extended Data Fig. 6). For example, GATA1 and SPI1, which were 

simultaneously enriched in 7 factors (FDR)<)0.05), functionally antago-

nize each other through physical interaction45. Similarly, IRF1 induces 

STAT1 activation via phosphorylation44,46 and both TFs were enriched 

in 10 factors (FDR)<)0.05), aligning with our enrichment analyses of 

GO biological process terms (Supplementary Section I and Extended 

Data Figs. 7 and 8). Altogether, our analyses suggest that HYFA-learned 

metagenes and factors are amenable to biological interpretation and 

capture information about known regulators of tissue-specific gene 

expression.

Discussion
Effective multi-tissue omics integration promises a system-wide view of 

human physiology, with potential to shed light on intra- and multi-tissue 

molecular phenomena. Such an approach challenges single-tissue 

and conventional integration techniques4often unable to model a 

variable number of tissues with sufficient statistical strength, neces-

sitating the development of scalable, nonlinear and flexible methods. 

Here we developed HYFA, a parameter-efficient approach for joint 

multi-tissue and cell-type gene expression imputation, which imposes 

strong inductive biases to learn entity-independent relational seman-

tics and demonstrates excellent imputation capabilities.

We performed extensive benchmarks on data from GTEx2  

(v8 and v9), the most comprehensive human transcriptome resource 

available, and evaluated imputation performance over a broad collec-

tion of tissues and cell types. In addition to standard transcriptome 
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imputation approaches, we compared our method with TEEBoT1, a 

linear method that predicts target gene expression from the principal 

components of the reference expression. In the single-tissue reference 

scenario, HYFA and TEEBoT attained comparable imputation perfor-

mance, outperforming standard methods. In the multi-tissue refer-

ence scenario, HYFA consistently outperformed TEEBoT and standard 

approaches in all target tissues, demonstrating HYFA’s capabilities to 

borrow nonlinear information across a variable number of tissues and 

exploit shared molecular patterns.

In addition to imputing tissue-level transcriptomics, we investi-

gated the ability of HYFA to predict cell-type-level gene expression 

from multi-tissue bulk expression measurements. Through transfer 

learning, we trained HYFA to infer cell-type signatures from a cohort of 

single-nucleus RNA-seq13 with matching GTEx-v8 donors. The inferred 
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Fig. 5 | HYFA’s imputed data improves eQTL discovery. a, Number of unique 

genes with detected eQTLs (FDR)<)0.1) on observed (circle) and full (observed 

plus imputed; rhombus) GTEx data. Note logarithmic scale of y axis. The eQTLs 

were mapped using Matrix eQTL55,70 assuming an additive genotype effect 

on gene expression. Matrix eQTL conducts a test for each single nucleotide 

polymorphism (SNP)3gene pair and makes adjustments for multiple 

comparisons by computing the Benjamini3Hochberg FDR71. b, Fold increase in 

number of unique genes with mapped eQTLs (y axis) versus observed sample size 

(x axis). c, Histogram of replication P values among the HYFA-identified cis-eQTLs 

for whole blood (left) and brain prefrontal cortex (right). For replication, we used 

the independent eQTLGen Consortium (n)>)30,000; ref. 28) and PsychENCODE 

(n)=)1,866; ref. 29) eQTL datasets, respectively. d, Quantile3quantile plot showing 

the causal variants' association with gene expression in blood (left) and brain 

frontal cortex (right) in the HYFA-derived dataset using experimentally validated 

causal variant data from application of the Massively Parallel Reporter Assay 

dataset31. All statistical tests were two sided. HYFA’s imputed data substantially 

increase the number of identified associations with high replicability and strong 

enrichment of causal regulatory variants.
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Fig. 6 | Pathway enrichment analysis of metagene factors. a, Manhattan plot 

of the GSEA results on the metagenes (n)=)50) and factors (n)=)98) learned by 

HYFA. The x axis represents metagenes (coloured bins) and each offset within 

the bin corresponds to a different factor. The y axis is the 2log)q value (FDR) from 

the GSEA permutation test, corrected for multiple testing via the Benjamini3

Hochberg procedure. We identified 18,683 statistically significant enrichments 

(FDR)<)0.05) of KEGG biological processes across all metagenes and factors.  

b, Total number of enriched terms for each type of pathway. c, FDR for pathways 

of neurodegeneration. For each pathway and metagene, we selected the factor 

with the lowest FDR and depicted statistically significant values (FDR)<)0.05). 

Circle sizes are proportional to 2log)FDR values. Metagene 11 (factor 95) had 

the lowest FDR for both amyotrophic lateral sclerosis and Alzheimer’s disease. 

d, UMAP of latent values of metagene 11 for all spinal cord (amyotrophic lateral 

sclerosis: orange) and brain cortex (Alzheimer’s disease or dementia: orange) 

GTEx samples. e, Leading-edge subsets of top 15 enriched gene sets for factor 95 

of metagene 11. NES, normalized enrichment score; SET, gene set. f,g, Enrichment 

plots for amyotrophic lateral sclerosis (f) and Alzheimer’s disease gene sets (g).
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cell-type signatures exhibited a strong correlation with the ground 

truth despite the low sample size, indicating that HYFA’s latent rep-

resentations are rich and amenable to knowledge transfer. Strikingly, 

HYFA also recovered cell-type profiles from tissues that were never 

observed at transfer time, pointing to HYFA’s ability to leverage gene 

expression programs underlying cell-type identity47 even in tissues that 

were not considered in the original study13. HYFA may also be used to 

impute the expression of disease-related genes in a tissue of interest 

(Supplementary Section J).

In post-imputation analysis, we studied whether the imputed data 

improve eQTL discovery. We employed HYFA to impute the gene expres-

sion levels of every uncollected tissue in GTEx-v8, yielding a complete 

dataset, and performed eQTL mapping. Compared with the original 

dataset, we observed a substantial gain in number of genes with detected 

eQTLs, with kidney cortex showing the largest gain. The increase was 

highest for tissues with low sample sizes, which are the ones expected 

to benefit the most from knowledge sharing across tissues. Notably, 

HYFA’s detected eQTLs with their target eGenes could be replicated 

using independent, single-tissue transcriptome datasets that focus 

on depth, including the blood eQTLGen28 and the brain frontal cortex 

PsychENCODE29 datasets. Moreover, we found a substantial enrichment 

for experimentally validated causal variants from the Massively Parallel 

Reporter Assay31 dataset. Our results uncover a large number of previ-

ously undetected tissue-specific eQTLs and highlight the ability of HYFA 

to exploit shared regulatory information across tissues.

Finally, HYFA can provide insights on coordinated gene regulation 

and expression mechanisms across tissues. We analysed to what extent 

tissues from the gastrointestinal system are informative about gene 

expression in brain tissues4an important question that may shed light 

on the biology of the brain3gut axis4and identified enriched biologi-

cal processes and molecular functions. Through GSEA36, we observed, 

among the HYFA-learned metagenes, a substantial number of enriched 

pathways, TFs and known regulators of biological processes, opening 

the door to biological interpretations. Future work might also seek to 

impose stronger inductive bias to ensure that metagenes are identifi-

able and robust to batch effects.

We believe that HYFA, as a versatile graph representation learning 

framework, provides a novel methodology for effective integration of 

large-scale multi-tissue biorepositories. The hypergraph factorization 

framework is flexible (it supports k-uniform hypergraphs of arbitrary 

node types) and may find application beyond computational genomics.

Methods
Problem formulation
Suppose we have a transcriptomics dataset of N individuals/donors,  

T tissues and G genes. For each individual i)*){1,)…,)N}, let X
i

∈ ℝ

T×G be  

the gene expression values in T tissues and define the donor’s demo-

graphic information by u
i

∈ ℝ

C, where C is the number of covariates. 

Denote by xÿk)
i

 the kth entry of Xi, corresponding to the expression 

values of donor i measured in tissue k. For a given donor i, let ÿ(i) rep-

resent the collection of tissues with measured expression values. These 

sets might vary across individuals. Let ̃

X

i

∈ (ℝ ∪ {∗})

T×G

 be the measured 

gene expression values, where * denotes unobserved, so that ̃

x

ÿk)

i

= x

ÿk)

i

 

if k ∈ ÿ(i) and ̃

x

ÿk)

i

= ∗  otherwise. Our goal is to infer the uncollected 

values in ̃

X

i

 by modelling the distribution p(X = X

i

|

̃

X =

̃

X

i

,U = u

i

).

Multi-tissue model
An important challenge of modelling multi-tissue gene expression is 

that a different set of tissues might be collected for each individual. 

Moreover, the data dimensionality scales rapidly with the total number 

of tissues and genes. To address these problems, we represent the data 

in a hypergraph and develop a parameter-efficient neural network that 

operates on this hypergraph. Throughout, we make use of the concept 

of metagenes14,15. Each metagene characterizes certain gene expression 

patterns and is defined as a linear combination of multiple genes14,15.

Hypergraph representation
We represent the data in a hypergraph consisting of three types of node: 

donor, tissue and metagene nodes.

Mathematically, we define a hypergraph ൂ䋂 = {ÿ

d

∪ ÿ

m

∪ ÿ

t

, ℰ}, where 

ÿ

d

 is a set of donor nodes, ÿ
m

 is a set of metagene nodes, ÿ
t

 is a set of 

tissue nodes and ℰ is a set of multi-attributed hyperedges. Each hyper-

edge connects an individual i with a metagene j and a tissue k if k ∈ ÿ(i), 

where ÿ(i) are the collected tissues of individual i. The set of all hyper-

edges is defined as ℰ = {(i, j, k, e

ÿk)

ij

)|(i, j, k) ∈ ÿ

d

× ÿ

m

× ÿ

t

, k ∈ ÿ(i)} , where 

e

ÿk)

ij

 are hyperedge attributes that describe characteristics of the inter-

acting nodes, that is features of metagene j in tissue k for individual i.

The hypergraph allows represention of data in a flexible way, gen-

eralizing the bipartite graph representation from ref. 48. On the one 

hand, using a single metagene results in a bipartite graph where each 

edge connects an individual i with a tissue k. In this case, the edge 

attributes eÿk)
i1

 are derived from the gene expression xÿk)
i

 of individual 

i in tissue k. On the other hand, using multiple metagenes leads to a 

hypergraph where each individual i is connected to tissue k through 

multiple hyperedges. For example, it is possible to construct a hyper-

graph where genes and metagenes are related by a one-to-one corre-

spondence, with hyperedge attributes eÿk)
ij

 derived directly from 

expression xÿk)
ij

. The number of metagenes thus controls a spectrum of 

hypergraph representations and, as we shall see, can help alleviate the 

inherent oversquashing problem of graph neural networks.

Message-passing neural network
Given the hypergraph representation of the multi-tissue transcrip-

tomics dataset, we now present a parameter-efficient graph neural 

network to learn donor, metagene and tissue embeddings, and infer 

the expression values of the unmeasured tissues. We start by comput-

ing hyperedge attributes from the multi-tissue expression data. Then, 

we initialize the embeddings of all nodes in the hypergraph, construct 

the message-passing neural network and define an inference model 

that builds on the latent node representations obtained via message 

passing.

Computing hyperedge attributes. We first reduce the dimensionality 

of the measured transcriptomics values. For every individual i and 

measured tissue k, we project the corresponding gene expression 

values xÿk)
i

 into low-dimensional metagene representations eÿk)
ij

:

e

ÿk)

ij

= ReLU (W

j

x

ÿk)

i

) ∀j ∈ 1,& ,M (1)

where M, the number of metagenes, is a user-definable hyperparameter 

and Wj)"j)*)1,)…,)M are learnable parameters. In addition to characteriz-

ing groups of functionally similar genes, employing metagenes reduces 

the number of messages being aggregated for each node, addressing 

the oversquashing problem of graph neural networks (Supplementary 

Section B).

Initial node embeddings. We initialize the node features of the indi-

vidual ÿ
p

, metagene ÿ
m

 and tissue ÿ
t

 partitions with learnable parameters 

and available information. For metagene and tissue nodes, we use 

learnable embeddings as initial node values. The idea is that these 

weights, which will be approximated through gradient descent, should 

summarize relevant properties of each metagene and tissue. We initial-

ize the node features of each individual with the available demographic 

information ui of each individual i (we use age and sex). We encode sex 

as a binary value and age as a float normalized by 100 (for example, age 

30 is encoded as 0.30). Importantly, this formulation allows transfer 

learning between sets of distinct donors.

Message-passing layer. We develop a custom graph neural network 

layer to compute latent donor embeddings by passing messages along 

the hypergraph. At each layer of the graph neural network, we perform 

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 5 | July 2023 | 739–753 749

Article https://doi.org/10.1038/s42256-023-00684-8

message passing to iteratively refine the individual node embeddings. 

We do not update the tissue and metagene embeddings during message 

passing, in a similar vein to knowledge graph embeddings49, because 

their node embeddings already consist of learnable weights that are 

updated through gradient descent. Sending messages to these nodes 

would also introduce a dependence between individual nodes and tis-

sue and metagene features (and, by transitivity, dependences between 

individuals). However, if we foresee that unseen entities will be pre-

sent in testing (for example, new tissue types), our approach can be 

extended by initializing their node features with constant values and 

introducing node-type-specific message-passing equations.

Mathematically, let {hd

1

,& ,h

d

N

}, {h

m

1

,& ,h

m

M

}  and {ht

1

,& ,h

t

T

}  be the 

donor, metagene and tissue node embeddings, respectively. At each 

layer of the graph neural network, we compute refined individual 

embeddings { ̂hd

1

,& ,

̂

h

d

N

} as follows:

̂

h

d

i

= ϕ

h

(h

d

i

,m

i

) , m

i

=

M

3

j=1

3

k∈ÿÿi)

ϕ

a

(h

m

j

,h

t

k

,m

ijk

) ,

m

ijk

= ϕ

e

(h

d

i

,h

m

j

,h

t

k

, e

ÿk)

ij

) ,

(2)

where the functions ×e and ×h are edge and node operations that we model 

as MLPs, and ×a is a function that determines the aggregation behaviour. 

In its simplest form, choosing ϕ
a

(h

m

j

,h

t

k

,m

ijk

) =

1

M|ÿÿi)|

m

ijk

 results in aver-

age aggregation. We analyse the time complexity of the message-passing 

layer in Supplementary Section A. Optionally, we can stack several 

message-passing layers to increase the expressivity of the model.

The architecture is flexible and may be extended as follows.

•	 Incorporation of information about the individual embeddings 

h

d

i

 into the aggregation mechanism ×a.

•	 Incorporation of target tissue embeddings ht

u

, for a given target 

tissue u, into the aggregation mechanism ×a.

•	 Update hyperedge attributes eÿk)
ij

 at every layer.

Aggregation mechanism. In practice, the proposed hypergraph neural 

network suffers from a bottleneck. In the aggregation step, the number 

of messages being aggregated is M|ÿ(i)| for each individual i. In the 

worst case, when all genes are used as metagenes (that is, M)=)G; it is 

estimated that humans have around G)j)25,000 protein-coding genes), 

this leads to serious oversquashing4large amounts of information are 

compressed into fixed-length vectors50. Fortunately, choosing a small 

number of metagenes reduces the dimensionality of the original tran-

scriptomics values, which in turn alleviates the oversquashing and 

scalability problems. We perform an ablation study on the number of 

metagenes and message-passing architectures in Supplementary Sec-

tion B. To further attenuate oversquashing, we propose an 

attention-based aggregation mechanism ×a that weighs metagenes 

according to their relevance in each tissue:

ϕ

a

(h

m

j

,h

t

k

,m

ijk

) = α

jk

m

ijk

, α

jk

=

exp[e(h

m

j

,h

t

k

)]

∑

v

exp[e(h

m

v

,h

t

k

)]

,

e (h

m

j

,h

t

k

) = a

T

LeakyReLU (W [h

m

j

||h

t

k

]) ,

where || is the concatenation operation and a and W are learnable 

parameters. The proposed attention mechanism, which closely follows 

the neighbour aggregation method of graph attention networks51,52, 

computes dynamic weighting coefficients that prioritize messages 

originating from important metagenes. Optionally, we can leverage 

multiple heads53 to learn multiple modes of interaction and increase 

the expressivity of the model.

Hypergraph model. The hypergraph model, which we define as f, 

computes latent individual embeddings ̂

h

d

i

 from incomplete 

multi-tissue expression profiles as ̂h d

i

= f(

̃

X

i

,u

i

).

Downstream imputation tasks
The resulting donor representations ̂h d

i

 summarize information about 

a variable number of tissue types collected for donor i, in addition to 

demographic information. We leverage these embeddings for two 

downstream tasks: inference of gene expression in uncollected tissues 

and prediction of cell-type signatures.

Inference of gene expression in uncollected tissues
Prediction of the transcriptomic measurements ̂xÿk)

i

 of a tissue k (for 

example, uncollected) is achieved by first recovering the latent metagene 

values ̂eÿk)
ij

 for all metagenes j)*)1,)…,)M, a hyperedge-level prediction task, 

and then decoding the gene expression values from the predicted meta-

gene representations ̂eÿk)
ij

 with an appropriate probabilistic model.

Prediction of hyperedge attributes. To predict the latent metagene 

attributes ̂eÿk)
ij

 for all j)*)1,)…,)M, we employ an MLP that operates on the 

factorized metagene hm

j

 and tissue representations ht

k

 as well as the 

latent variables ̂h d

i

 of individual i:

̂

e

ÿk)

ij

= MLP (

̂

h

d

i

,h

m

j

,h

t

k

) ,

where the MLP is shared for all combinations of metagenes, individu-

als and tissues.

Negative-binomial imputation model. For raw count data, we use a 

negative-binomial likelihood. To decode the gene expression values 

for a tissue k of individual i, we define the probabilistic model 

p(x

ÿk)

i

|

̂

h

d

i

,u

i

, k):

p (x

ÿk)

i

|

|

̂

h

d

i

,u

i

, k) =

G

∏

j

p (x

ÿk)

ij

|

|

̂

h

d

i

,u

i

, j, k) ,

p (x

ÿk)

ij

|

|

̂

h

d

i

,u

i

, j, k) = NB (x

ÿk)

ij

;¿

ÿk)

ij

,θ

ÿk)

ij

) ,

where NB is a negative-binomial distribution. The mean ¿ÿk)
ij

 and disper-

sion θÿk)
ij

 parameters of this distribution are computed as follows:

μ

ÿk)

i

= l

ÿk)

i

s

ÿk)

i

, s

ÿk)

i

= softmax (W

s

̂

e

ÿk)

i

+ b

s

) ,

θ

ÿk)

i

= exp (W

θ

̂

e

ÿk)

i

+ b

θ

) ,

̂

e

ÿk)

i

= MLP (

6

6

6

M

j=1

̂

e

ÿk)

ij

) ,

where sÿk)
i

 are mean gene-wise proportions, Ws, W», bs and b» are learn-

able parameters and lÿk)
i

 is the library size, which is modelled with a 

log-normal distribution

log l

ÿk)

i

∼ൂ䈲 (l

ÿk)

i

; ¿

ÿk)

i

,ω

ÿk)

i

) , ¿

ÿk)

i

=W

¿

̂

e

ÿk)

i

+b

¿

, ω

ÿk)

i

=exp (W

ω

̂

e

ÿk)

i

+b

ω

) ,

where W¿, WË, b¿ and bË are learnable parameters. Optionally, we can 

use the observed library size.

Gaussian imputation model. For normalized gene expression data 

(that is, inverse normal transformed data), we use the Gaussian 

likelihood

p (x

ÿk)
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|

|

̂

h

d

i

,u

i
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, j, k) = ൂ䈲 (x
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ij

;¿
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,σ

2

ÿk)
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) ,

where the mean ¿ÿk)
ij

 and s.d. σÿk)
ij

 are computed as follows:

μ
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= W
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= softplus (W
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i

= MLP (

6

6
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e
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Wμ, WÃ, bμ and bÃ are learnable parameters and softplus(x))= 

)log[1)+)exp(x)].

Optimization. We optimize the model to maximize the imputation 

performance on a dynamic subset of observed tissues, that is, tissues 

that are masked out in training, similarly to ref. 54. For each individual 

i, we randomly select a subset ൂ䊁 � ÿ(i)  of pseudo-observed tissues  

and treat the remaining tissues ÿ = ÿ(i) 2 ൂ䊁  as unobserved 

(pseudo-missing). We then compute the individual embeddings ̂

h

d

i

 

using the gene expression of pseudo-observed tissues ൂ䊁 and minimize 

the loss:

ℒ(

̃

X

i

,u

i

, ൂ䊁, ÿ) = 2

1

|ÿ|

3

k∈ÿ

logp (x

ÿk)

i

|

|

̂

h

d

i

,u

i

, k) ,

which corresponds to the average negative log likelihood across 

pseudo-missing tissues. Importantly, the pseudo-mask mechanism 

generates different sets of pseudo-missing tissues for each individual, 

effectively enlarging the number of training examples and regularizing 

our model. We summarize the training algorithm in Supplementary 

Section D.

Inference of gene expression from uncollected tissues. At test time, 

we infer the gene expression values ̂

x

ÿv)

i

 of an uncollected tissue v  

from a given donor i via the mean, that is ̂

x

ÿv)

i

= μ

ÿv)

i

. Alternatively, we 

can draw random samples from the conditional predictive distribution 

p(x

ÿk)

i

|

̂

h

d

i

,u

i

, k).

Prediction of cell-type signatures
We next consider the problem of imputing cell-type signatures in a 

tissue of interest. We define a cell-type signature as the sum of gene 

expression profiles across cells of a given cell type in a certain tissue. 

Formally, let xÿk,q)
i

 be the gene expression signature of cell type q in a 

tissue of interest k of individual i. Our goal is to infer xÿk,q)
i

 from the 

multi-tissue gene expression measurements ̃

X

i

. To achieve this, we first 

compute the hyperedge features of a hypergraph consisting of 

four-node hyperedges and then infer the corresponding signatures 

with a zero-inflated model.

Prediction of hyperedge attributes. We consider a hypergraph where 

each hyperedge groups an individual, a tissue, a metagene and a 

cell-type node. For all metagenes j)*)1,)…,)M, we compute latent  

hyperedge attributes ̂eÿk,q)
ij

 for a cell type q in a tissue of interest k of 

individual i as follows:

̂

e

ÿk,q)

ij

= MLP (

̂

h

d

i

,h

m

j

,h

t

k

,h

c

q

) ,

where hc

q

 are parameters specific to each unique cell type q and the  

MLP is shared for all combinations of metagenes, individuals, tissues 

and cell types.

Zero-inflated model. We employ the following probabilistic model:
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where ZINB is a zero-inflated negative-binomial distribution. The mean 

¿

ÿk,q)

ij

, dispersion θÿk,q)
ij

 and dropout probability πÿk,q)
ij

 parameters are 

computed as
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where Ws, Wθ, WÃ, bs, b» and bÃ are learnable parameters, nÿk,q)
i

 is the 

number of cells in the signature and lÿk,q)
i

 is their average library size. In 

training, we set nÿk,q)
i

 to match the ground-truth number of cells. At test 

time, the number of cells nÿk,q)
i

 is user definable. We model lÿk,q)
i

 with a 

log-normal distribution

log l
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Optionally, we can use the observed library size.

Optimization. Single-cell transcriptomic studies typically measure 

single-cell gene expression for a limited number of individuals, tis-

sues and cell types, so aggregating single-cell profiles per individual, 

tissue and cell type often results in small sample sizes. To address this  

challenge, we apply transfer learning by pretraining f on the multi-tissue 

imputation task and then fine-tuning the parameters of the signature 

inference module on the cell-type signature profiles. Concretely, we 

minimize the loss:

ℒ (x

ÿk,q)

i

,

̃

X

i

,u

i

, k,q) = 2 logp (x

ÿk,q)

i

|

̂

h

d

i

,u

i

, k,q) ,

which corresponds to the negative log likelihood of the observed 

cell-type signatures.

Inference of uncollected gene expression. To infer the signature of 

a cell type q in a certain tissue v of interest, we first compute the latent 

individual embeddings ̂

h

d

i

 from the multi-tissue profiles ̃

X

i

 and  

then compute the mean of the distribution p(xÿk,q)
i

|

̂

h

d

i

,u

i

, k,q)  as 

μ

ÿk,q)

i

(1 2 π

ÿk,q)

i

) . Alternatively, we can draw random samples from  

that distribution.

eQTL mapping
The breadth of tissues in the GTEx-v8 collection enabled us to com-

prehensively evaluate the extent to which eQTL discovery could be 

improved through the HYFA-imputed transcriptome data. We mapped 

eQTLs that act in cis to the target gene (cis-eQTLs), using all single 

nucleotide polymorphisms within ±1)megabase pairs of the transcrip-

tion start site of each gene. For the imputed and the original (incom-

plete) datasets, we considered single nucleotide polymorphisms 

significantly associated with gene expression, at FDR)f)0.10. We applied 

the same GTEx eQTL mapping pipeline, as previously described55, to the 

imputed and original datasets to quantify the gain in eQTL discovery 

from the HYFA-imputed dataset.

Pathway enrichment analysis
Similarly to ref. 37, we employed GSEA36 to relate HYFA’s metagene 

factors to known biological pathways. This is advantageous to 

over-representation analysis, which requires selecting an arbitrary 

cutoff to select enriched genes. GSEA, instead, computes a running 

sum of enrichment scores by descending a sorted gene list36,37.

We applied GSEA to the gene loadings in HYFA’s encoder. Specifi-

cally, let W
j

∈ ℝ

F×G  be the gene loadings for metagene j, where F is  

the number of factors (that is number of hyperedge attributes) and G 

is the number of genes (equation (1)). For every factor in Wj, we 

employed blitzGSEA56 to calculate the running sum of enrichment 

scores by descending the gene list sorted by the factor’s gene  

loadings. The enrichment score for a query gene set is the maximum  

difference between p
hit

(ÿ, i) and p
miss

(ÿ, i) (ref. 37), where p
hit

(ÿ, i) is the  

proportion of genes in ÿ weighted by their gene loadings up to gene 

index i in the sorted list37. We then calculated pathway enrichment  

P values through a permutation test (with n)=)100 trials) by randomly 

shuffling the gene list. We employed the Benjamini3Hochberg method 

to correct for multiple testing.
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GTEx bulk and single-nucleus RNA-seq data processing
The GTEx dataset is a public resource that has generated a broad col-

lection of gene expression data collected from a diverse set of human 

tissues2. We downloaded the data from the GTEx portal (Data availabil-

ity). After the processing step, the GTEx-v8 dataset consisted of 15,197 

samples (49 tissues, 834 donors) and 12,557 genes. The dataset was 

randomly split into 500 training, 167 validation and 167 testing donors. 

Each donor had an average of 18.22 collected tissues. The processing 

steps are described below.

Normalized bulk transcriptomics (GTEx-v8). Following the GTEx 

eQTL discovery pipeline (https://github.com/broadinstitute/

gtex-pipeline/tree/master/qtl), we processed the data as follows.

 1. Discard under-represented tissues (n)=)5), namely bladder, 

cervix (ectocervix, endocervix), fallopian tube and kidney 

(medulla).

 2. Select set of overlapping protein-coding genes across all 

tissues.

 3. Discard donors with only one collected tissue (n)=)4).

 4. Select genes on the basis of expression thresholds of g0.1 

transcripts per kilobase million in g20% of samples and g6 reads 

(unnormalized) in g20% of samples.

 5. Normalize read counts across samples using the trimmed mean 

of M values method57.

 6. Apply inverse normal transformation to the expression values 

for each gene.

Cell-type signatures from a paired snRNA-seq dataset (GTEx-v9). 

We downloaded paired snRNA-seq data for 16 GTEx individuals13 (Data 

availability) collected in eight GTEx tissues, namely skeletal muscle, 

breast, oesophagus (mucosa, muscularis), heart, lung, prostate and skin. 

We split these individuals into training, validation and testing donors 

according to the GTEx-v8 split. We processed the data as follows.

 1. Select set of overlapping genes between bulk RNA-seq 

(GTEx-v9) and paired snRNA-seq dataset13.

 2. Select top 3,000 variable genes using the Scanpy function 

scanpy.pp.highly_variable_genes with favour setting seurat_v3 

(refs. 58,59).

 3. Discard under-represented cell types occurring in fewer than 10 

tissue3individual combinations.

 4. Aggregate (that is sum) read counts by individual, tissue and 

(broad) cell type. This resulted in a dataset of 226 unique signa-

tures, of which 135 belong to matching GTEx-v8 individuals.

Implementation and reproducibility

We report the selected hyperparameters in Supplementary Section 

B. HYFA is implemented in Python60. Our framework and implemen-

tation are flexible (that is, we support k-uniform hypergraphs), may 

be integrated in other bioinformatics pipelines and may be useful for 

other applications in different domains. We used PyTorch61 to imple-

ment the model and Scanpy58 to process the gene expression data. We 

performed hyperparameter optimization with wandb62. We employed 

blitzGSEA56 for pathway enrichment analysis. We also used NumPy63, 

scikit-learn64, pandas65, matplotlib66, seaborn67 and statannotations68. 

Figure 1 was created with BioRender.com.

Reporting summary
Further information on research design is available in the Nature  

Portfolio Reporting Summary linked to this article.

Data availability
The datasets analysed for this study, including bulk RNA-seq2 and 

snRNA-seq13, can be found in the GTEx portal: https://gtexportal.org/. 

We deposited our processed GTEx-v8 data here: https://figshare. 

com/articles/dataset/Processed_GTEx_v8_data/22650763. A detailed 

summary of the GTEx samples and donor information can be found 

at https://gtexportal.org/home/tissueSummaryPage. We down-

loaded MSK SPECTRUM data from https://cellxgene.cziscience.com/

collections/4796c91c-9d8f-4692-be43-347b1727f9d8. We down-

loaded RNAseqDB data from https://github.com/mskcc/RNAseqDB.  

The full catalogue of HYFA-derived eQTLs is downloadable at  

https://doi.org/10.5281/zenodo.6815784.

Code availability
HYFA is publicly available at https://github.com/rvinas/HYFA (ref. 69) 

(https://doi.org/10.5281/zenodo.7863458).
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Extended Data Fig. 1 | Summary of per-gene prediction scores. (a) Network 

of tissues depicting the predictability of target tissues with HYFA using the 

average per-gene Pearson Ã correlation coefficients. Edges from reference to 

target tissues indicate an average per-gene Ã)>)0.4. The dimension of each node 

is proportional to its degree. (b) Distribution of per-gene Pearson correlation 

coefficients in 6 target tissues (source tissue: whole blood). We attribute the 

unimodality of the distributions to the fact that the data was inverse Normal 

transformed (Methods).
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Extended Data Fig. 2 | Whole blood to lung predictions for unseen 

individuals. (a) Average and standard deviation of per-gene expression in lung 

versus prediction performance (Pearson correlation between predicted and 

ground truth expression; whole blood to lung). The per-gene predictions were 

uncorrelated with the averages and variances of the per-gene expression in the 

target tissue (average: Ã)=)0.07, variance: Ã)=)0.06). (b) Best and worst predicted 

lung genes (NUDT16: Ã)=)0.85; GALNT4: Ã)=)2)0.08; n=166).
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Extended Data Fig. 3 | Top predicted Alzheimer’s disease-relevant genes in 

multiple brain regions, with whole blood as reference tissue. (a) Pearson 

correlation coefficient of top 20 predicted genes from the Alzheimer’s disease 

pathway (KEGG), ranked by average correlation. (b, c, d) Average per-gene 

expression (x-axis) versus prediction performance (Pearson correlation 

between predicted and ground truth expression) in (b) cerebellum, (c) cortex, 

and (d) hippocampus. HYFA exhibits strong prediction performance for several 

Alzheimer’s disease-relevant genes including APOE (cortex Ã=0.536, cerebellum: 

Ã=0.502), APP (cortex Ã=0.524), PSEN1 (cerebellum: Ã=0.459), and PSEN2 (cortex: 

Ã=0.590, cerebellum: Ã=0.559, hippocampus: Ã=0.403). In cerebellum, PSEN1 

(Ã=0.459), PSEN2 (Ã=0.559), and APOE (Ã=0.502) attained above expected 

performances (average Ã=0.448). APP (Ã=0.524), PSEN2 (Ã=0.590), and APOE 

(Ã=0.536) surpassed the expected correlation in cortex (average Ã=0.443).

http://www.nature.com/natmachintell


Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00684-8

Extended Data Fig. 4 | Prediction scores for different accessible tissues as 

reference. For each target tissue, we predicted the expression values based 

on accessible tissues (whole blood, skin sun exposed, skin not sun exposed, 

and adipose subcutaneous). We report the Pearson correlation coefficient 

between the predicted values and the actual gene expression values. For any 

given target tissue, we used the same set of individuals to evaluate performance, 

namely individuals in the validation and test sets with collected gene expression 

measurements in all the corresponding tissues. Target tissues represented by less 

than 25 test individuals were discarded. HYFA attains the best performance in 32 

out of 38 tissues when all accessible tissues are simultaneously used as reference. 

Boxes show quartiles, centerlines correspond to the median, and whiskers depict 

the distribution range (1.5 times the interquartile range). Outliers outside of the 

whiskers are shown as distinct points. The top axis indicates the total number of 

samples for every target tissue.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Performance comparison across gene expression 

imputation methods with per-gene metrics (n=12,557 genes). (a, b) Per-tissue 

comparison between HYFA and TEEBoT when using (a) whole-blood and (b) all 

accessible tissues (whole blood, skin sun exposed, skin not sun exposed, and 

adipose subcutaneous) as reference. We discarded target tissues represented 

by less than 25 test individuals. HYFA achieved superior Pearson correlation 

in (a) 25 out of 48 target tissues when a single tissue was used as reference and 

(b) all target tissues when multiple reference tissues were considered. For 

underrepresented target tissues (less than 25 individuals with source and target 

tissues in the test set), we considered all the validation and test individuals 

(translucent bars). (c, d) Prediction performance from (c) whole-blood gene 

expression and (d) accessible tissues as reference. Boxes show quartiles and 

whiskers depict the distribution range (1.5 times the interquartile range). Mean 

imputation replaces missing values with the feature averages. Blood surrogate 

utilises gene expression in whole blood as a proxy for the target tissue. k-Nearest 

Neighbours (kNN) imputes missing features with the average of measured 

values across the k nearest observations (k=20). TEEBoT projects reference gene 

expression into a low- dimensional space with principal component analysis 

(PCA; 30 components), followed by linear regression to predict target values. 

HYFA (all) employs information from all collected tissues. Boxes show quartiles, 

centerlines correspond to the median, and whiskers depict the distribution range 

(1.5 times the interquartile range). Outliers outside of the whiskers are shown as 

distinct points.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Transcription factor (TF) enrichment analysis of 

metagene factors. For every metagene (n=50) and factor (n=98), we performed 

Gene Set Enrichment Analysis using the corresponding gene loadings of HYFA’s 

encoder (Methods) and TF gene sets from the TRRUST database of transcription 

factors (Enrichr library: TRRUST_Transcription_Factors_2019). (a) Top enriched 

TFs, ranked by the total number of metagene factors in which the TFs were 

enriched (FDR)<)0.05). (b) Circos plot of the top 9 enriched TFs (outer layer). The 

angular size is proportional to the number of enrichments. The second layer (bar 

plot) depicts the factor IDs where the TF was enriched, ranging from 0 (lowest 

bar) to 98 (highest bar). The third layer shows the corresponding metagene IDs 

(blue dots) of the enriched metagene factors, increasing monotonically within 

the same factor. The edges in the middle connect TFs whenever they are both 

enriched in the same factor (FDR)<)0.05). (c, d) Distribution of the GATA1 false 

discovery rates in factor 69 (FDR)<)0.05 in 28/50 metagenes) and an arbitrary 

factor (enriched in 0/50 metagenes).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | GO Biological Process enrichment analysis of 

metagene factors. For every metagene (n=50) and factor (n=98), we performed 

Gene Set Enrichment Analysis using the corresponding gene loadings of HYFA’s 

encoder (Methods) and Gene Ontology gene sets (GO Biological Process, version 

of 2021) (Enrichr library: GO_Biological_Process_2021). (a) Top enriched signaling 

GO terms, ranked by the total number of metagene-factors in which the terms 

were enriched (FDR)<)0.05). (b, c) FDR distribution of the Type-I Interferon 

signaling pathway in factor 18 (FDR)<)0.05 in 12/50 metagenes) and an arbitrary 

factor (enriched in 0/50 metagenes).
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Extended Data Fig. 8 | GO Biological Process FDRs for signaling pathways. GO 

Biological Process enrichment analysis of metagene factors. For every pathway 

and factor, we selected the metagene with lowest FDR and depicted statistically 

significant values (FDR)<)0.05). Point sizes are inversely proportional to the FDR 

values. Type I interferons (IFNs), a family of cytokines that activate a variety of 

signaling cascades, were the most enriched. We also detected the simultaneous 

enrichment of interferon IRF1 and STAT1 (a member of the STAT protein family 

that drives the expression of many target genes) in 10 factors (FDR)<)0.05; 

Extended Data Figure 6b), consistent with these results.
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