Washington University School of Medicine

Digital Commons@Becker

2020-Current year OA Pubs Open Access Publications

5-29-2021

Hypergraph models of biological networks to identify genes
critical to pathogenic viral response

Song Feng
Pacific Northwest National Laboratory

Larissa B Thackray
Washington University School of Medicine in St. Louis

Qing Tan
Washington University School of Medicine in St. Louis

Michael S Diamond
Washington University School of Medicine in St. Louis

et al

Follow this and additional works at: https://digitalcommons.wustl.edu/oa_4

b Part of the Medicine and Health Sciences Commons

Please let us know how this document benefits you.

Recommended Citation

Feng, Song; Thackray, Larissa B; Tan, Qing; Diamond, Michael S; and et al, "Hypergraph models of
biological networks to identify genes critical to pathogenic viral response." BMC bioinformatics. 22, 1. 287
(2021).

https://digitalcommons.wustl.edu/oa_4/228

This Open Access Publication is brought to you for free and open access by the Open Access Publications at
Digital Commons@Becker. It has been accepted for inclusion in 2020-Current year OA Pubs by an authorized
administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.


https://digitalcommons.wustl.edu/
https://digitalcommons.wustl.edu/oa_4
https://digitalcommons.wustl.edu/open_access_publications
https://network.bepress.com/hgg/discipline/648?utm_source=digitalcommons.wustl.edu%2Foa_4%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/648?utm_source=digitalcommons.wustl.edu%2Foa_4%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:vanam@wustl.edu
mailto:vanam@wustl.edu

Feng et al. BMC Bioinformatics (2021) 22:287 HP H
https:/doLorg/10.1186/512859-021-04197-2 BMC Bioinformatics

METHODOLOGY ARTICLE Open Access

: : ®
Hypergraph models of biological networks ==
to identify genes critical to pathogenic viral
response

Song Feng', Emily Heath?, Brett Jefferson?®, Cliff Joslyn**, Henry Kvinge®, Hugh D. Mitchell', Brenda Praggastis®,
Amie J. Eisfeld®, Amy C. Sims®, Larissa B. Thackray’, Shufang Fan’, Kevin B. Walters®, Peter J. Halfmann®,

Danielle Westhoff-Smith®, Qing Tan’, Vineet D. Menachery®?, Timothy P. Sheahan® Adam S. Cockrell'®,

Jacob F. Kocher® Kelly G. Stratton', Natalie C. Heller®, Lisa M. Bramer!, Michael S. Diamond”'""', Ralph S. Baric®,
Katrina M. Waters"'3, Yoshihiro Kawaoka>'*!>'¢, Jason E. McDermott"'” and Emilie Purvine®

efnc)i\riree.?:)zcr)\r/]icrigp(jﬁnl‘gov Abstract

;ﬁ?ﬁ”g;ﬁﬁfﬂﬁ?ﬁ%g? Background: Representing biological networks as graphs is a powerful approach to
National Laboratory, Seattle, reveal underlying patterns, signatures, and critical components from high-throughput
WA, USA biomolecular data. However, graphs do not natively capture the multi-way relation-
IFSU;'V':‘L‘;?:‘;KE;'ggc’d”gfttr‘f’e” ships present among genes and proteins in biological systems. Hypergraphs are

article generalizations of graphs that naturally model multi-way relationships and have shown

promise in modeling systems such as protein complexes and metabolic reactions. In
this paper we seek to understand how hypergraphs can more faithfully identify, and
potentially predict, important genes based on complex relationships inferred from
genomic expression data sets.

Results: We compiled a novel data set of transcriptional host response to pathogenic
viral infections and formulated relationships between genes as a hypergraph where
hyperedges represent significantly perturbed genes, and vertices represent individual
biological samples with specific experimental conditions. We find that hypergraph
betweenness centrality is a superior method for identification of genes important to
viral response when compared with graph centrality.

Conclusions: Our results demonstrate the utility of using hypergraphs to represent
complex biological systems and highlight central important responses in common to a
variety of highly pathogenic viruses.

Keywords: Systems biology, Hypergraph, Viral infection, Biological networks, SARS,
MERS, Influenza, West Nile Virus, Host response, Viral pathogenesis

Background

Identifying molecular signatures critical to a biological process requires an accurate
model of both the process and the biological system in which it occurs. Thus it is essen-
tial that such a model be able to represent its target with complexity commensurate with

©The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third

party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http//creativecommons.org/publi
cdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.


http://orcid.org/0000-0003-2069-5594
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04197-2&domain=pdf

Feng et al. BMC Bioinformatics (2021) 22:287 Page 2 of 21

that of the system itself, rather than presenting only a simplified view. Commonly, bio-
logical systems and processes present as complex networks of interacting entities, for
example within and between genes, pathways, and complexes. Graphs are frequently
used to model these interactions, but since graphs can only capture interactions between
pairs of entities, they fall short in many cases and are not able to model the full complex-
ity present in biological systems and processes.

In this paper we investigate the role that hypergraph models, as mathematical gener-
alizations of graph models, can play in providing the necessary complexity to capture
multi-way interactions in biological systems inferred from genomic expression data. We
introduce a hypergraph model of this data using data thresholding, and assert that the
complexity provided by our proposed hypergraphs more closely represents the systems
being studied. In order to validate this assertion we introduce new average hypergraph
centrality metrics and provide a comparison between the use of graph and hypergraph
centrality metrics to identify genes that are critical in host responses to viral infection.
Our findings show that the genes identified using our hypergraph model and centrality
metrics align better with genes previously known to correlate with viral response than
do genes identified using similar metrics applied to graphs or using average fold change
for each gene across all experimental conditions.

Network science for high-throughput data analysis

Modern biology has been transformed by the rapid growth of technologies to measure
the abundance of large numbers of biological entities over many samples simultaneously.
Such high-throughput methods like transcriptomics, proteomics, metabolomics, and
lipidomics allow researchers to gain unparalleled scientific insight into the mechanisms
underlying biological systems. A wide range of biological questions have been addressed
using such systems biology approaches including questions related to cancer, microbi-
omes, and infectious disease. Analysis methods for high-throughput measurements are
also varied, ranging from simple statistical tests for differential abundance (between con-
trol and experimental conditions, for example), to dimensionality reduction, to machine
learning, all with the aim of extracting more relevant information from the high-dimen-
sional and often noisy measurements.

A powerful approach for modeling systems using high-throughput data is network
biology. Here biological systems are modeled as graphs, with molecular entities (genes,
proteins, metabolites) represented as vertices, and relationships between molecules
represented as edges connecting them. Relationships between molecules are generally
determined from existing knowledge of protein-protein interactions, regulatory inter-
actions, metabolic networks, or can be inferred from high-throughput systems biology
data. We and others have used networks inferred from correlation or mutual informa-
tion between abundance profiles of genes and proteins to identify critical entities [1-3],
integrate different data types [4—7], and represent and predict temporal dynamics in the
system [8-10].

Hypergraphs for complex network models
While graph-based methods have been quite successful in the biological domain, their
ability to model complex relationships amongst entities is necessarily limited. Graphs
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inherently model relationships (edges) between pairs of entities (vertices). But biologi-
cal systems are replete with relationships among many entities, for example in protein
complexes, transcription factor and microRNA regulation networks, lipid and metabo-
lite enzyme-substrate interactions, metabolic networks, pathways, and protein func-
tion annotations. Relationships may be interactions, for example, metabolites working
together in a metabolic process, or they may represent some commonality among the
entities, like genes being differentially expressed in the same conditions, or regulated
by the same transcription factor. In a graph model all of these multi-way relationships
would be represented as groups of pairs of subunits, which would not fully capture how
groups of components interact or have similar behavior.

Sometimes sets of related components are already understood, and sometimes they
need to be discovered in experimental data, like high-throughput ‘omics. In either event,
a higher order mathematical model is needed. The mathematical object that natively
represents multi-way interactions amongst entities is called a “hypergraph” In contrast
to a graph, in a hypergraph the relationships amongst entities (still called vertices) are
connected generally by “hyperedges’, where each hyperedge is an arbitrary subset of ver-
tices. Thus every graph is a hypergraph in which each hyperedge happens to have exactly
two vertices. A challenge for scientists is to recognize the presence of hypergraph struc-
ture in their data, and to judge the relative value of representing them natively as hyper-
graphs or reducing them to graph structures.

Hypergraph models allow for higher fidelity representation of data that may contain
multi-way relationships, albeit at the price of a higher complexity model. An example
using a small subset of transcriptomic expression data is shown in Fig. 1. In the upper
left is an expression matrix with log,-fold change values for five genes (rows) across four
experimental conditions (columns). The lower left shows a hypergraph representation of
the data, with each gene modeled as a hyperedge surrounding those conditions (vertices)
for which the log,-fold change is greater than 2. Those cells in the expression matrix are
shown in bold, distinguishing those conditions that are included in that gene’s hyper-
edge. The upper right of Fig. 1 shows a matrix produced from one possible graph-based
approach to representing these data. Here each pair of genes is related if there is at least

| C1 C2 C3 Cag |AARS AASDHPPT ABCB6 ABHD1o ABHD11
AARS | 279 165 0.88 2.13 AARS | Y Y Y Y
AASDHPPT | 0.17 2.4 176 2.04 AASDHPPT | Y Y Ve Y
ABCB6 | 0.68 2.02 0.94 2.04 ABCB6 | Y A e V¢
ABHD10o |3.21 188 3.60 2.04 ABHDio | Y Y Y Y
ABHD11 | 2.21 0.78 1.68 2.22 ABHD11 | Ye e Y2 N

ABHD1O

<

i R

- (eC4 pesne OV‘C2 \

RS L AAEUBTTF—— ‘é’

i ) /
8o ABhipy,

Fig. 1 Transcriptomics example comparing graphs and hypergraphs. (Upper left) log,-fold change values for

5 genes across 4 conditions. (Lower left) Visualization of a corresponding hypergraph. (Upper right) Adjacency
matrix for expression data. (Lower right) Underlying graph
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one condition for which both genes have log,-fold change greater than 2. This would
then be interpreted as an “adjacency matrix” of a graph, which is shown in the lower
right. It can be seen that this graph representation necessarily loses a great deal of infor-
mation, boiling down the rich interaction structure that we know to be present to a fully
connected graph on all five genes. For example, the hypergraph shows that two pairs
of genes—AARS and ABHD11, AASDHPPT and ABCB6—are much more related than
other pairs. This fact is not apparent in the graph model.

Although graphs and graph theory dominate network science applications and meth-
ods [11], hypergraphs are well-known objects in mathematics and computer science.
They have a history of use in a range of applications [12—14], and are seeing increasingly
wide adoption [4, 15-18]. In the biological literature we have seen hypergraphs used
to model gene and protein interaction networks, pathways, and metabolic networks as
derived from a variety of data types. In many of these cases the authors derive hyper-
graphs from an underlying graph, rather than directly from data. For example, Chitra
built a hypergraph model based on an existing graph model of gene interaction networks
[19]. They adapt the PageRank algorithm to hypergraphs in order to study disease-gene
prioritization, and find that for monogenic diseases hypergraph PageRank noticeably
outperforms graph PageRank. Tran studies protein function prediction building a graph
from a similarity matrix derived from gene expression data [20] and then applying soft
clustering to this graph to produce a hypergraph. Function prediction using this hyper-
graph is then shown to be superior to predictions based on graphs. Protein-protein
interaction networks are studied by Klamt et al. using graph algorithms to find sets of
independent elements or tightly connected elements [13]. In those three papers the
authors infer a hypergraph from a graph structure rather than directly from data.

Ramadan et al. use hypergraphs to model the yeast proteome, where proteins are ver-
tices and complexes are hyperedges [21], and apply an algorithm that finds tightly con-
nected vertices to identify the core proteome. Finally, Zhou and Nakhleh study the claim
that metabolic networks are hierarchical and small-world [22]. While this claim comes
from a graph model of the networks, Zhou and Nakleh instead model the metabolic
networks of E. coli as a hypergraph and show that the claimed hierarchy and scaling
properties are not supported. This result in particular conveys a critical message: when
biological interactions are simplified into pairwise relationships and modeled using a
graph, they can exhibit very different structure than when their true complexity is mod-
eled using a hypergraph. Because of this structural variance, conclusions drawn based on
the graph could provide misleading results. Although the data we consider are different,
our method is similar to these last two papers in that we build hypergraphs directly from
biological data rather than inferring a hypergraph from a standard graph model of the
data. We have not observed researchers building hypergraphs directly from ‘omics data,

as we will in this paper.

Modeling host response in viral pathogenesis

Viral infection causes a response in the host cells in which the expression of a variety of
cell systems are up- or down-regulated. The pathogenesis of the infection is reflected in
the signature of host responses elicited by each virus. Host response to viral infection has
been extensively studied for decades, yet the root mechanisms of why some infections
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are severe and some are not remain poorly understood. However, high-throughput
molecular approaches offer a way to discover novel host response genes, proteins, and
pathways that contribute to the systems-level development of pathogenesis. A major
advantage of such a systems biology approach to pathobiology is the ability to identify
novel, key elements of a biological process, such as which regulators are involved in criti-
cal processes. High-throughput profiling methods (e.g. transcriptomics) provide power-
ful tools for examining how entire systems respond to different perturbations such as
acute disease. Network reconstruction provides the opportunity to utilize all available
data and is a critically important tool for representing complex sets of interactions [23].

In this paper we develop and explore a new hypergraph model (see “Hypergraph rep-
resentations and centrality metrics” section) of host response using transcriptomics data
from viral infection by five highly pathogenic viruses in a number of biological systems
(see “Data acquisition and processing” section). We found that gene rankings computed
using an average hypergraph centrality were highly enriched for known immune and
infection-related genes. While rankings derived from graphs constructed using other
traditional computational biology techniques applied to the same infection data also
resulted in rankings enriched for critical genes, we demonstrate that our hypergraph-
based metrics yield superior enrichment results. These results highlight the usefulness of
our hypergraph model for exploring mechanisms of virus pathobiology.

Results

By analyzing the curated omnibus transcriptomic data set described in “Data acquisition
and processing” section from cells infected with five different viruses and their mutants
using both graph and hypergraph approaches, we illustrate the advantages of applying
our hypergraph approach to uncover the underlying molecular signatures and mecha-
nisms common across host response to viral infection broadly.

Hypergraph and graph structure

We create hypergraphs from transcriptomics log,-fold change data calculated from gene
expression levels of infected experiments relative to time-matched uninfected mock
experiments

Formally defined in “Hypergraph representations and centrality metrics” section, in
our hypergraphs hyperedges represent genes and vertices represent conditions. The ver-
tex representing condition X is contained in the hyperedge representing gene G if gene
G is significantly perturbed, either up- or down-regulated, for condition X. The entire
hypergraph represents n = 179 experimental conditions (vertices) and m = 7,782 genes
(edges). A small subset of highly connected hyperedges (that is, genes with a large core
of common conditions), is shown in Fig. 2.

Distributions of fundamental hypergraph statistics can illuminate some of the com-
plex interaction structure present in the data. Figure 3a shows that the distribution of
the sizes of the hyperedges (that is, the number of conditions a gene is significantly per-
turbed in) is roughly power-law, sometimes referred to as “heavy tailed” This means that
there are many genes (1,247 of them) significantly perturbed in only one condition and
relatively few genes significantly perturbed in many conditions, with a maximum num-
ber of conditions for a single gene on the order of 100. The six largest hyperedges, with
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Fig. 2 Small connected subset of the condition/gene hypergraph. Hyperedges are genes, and black circles
indicate groups of vertices (conditions), with larger circles indicating larger groups

sizes greater than 100 in increasing order, correspond to the genes ISG15, IL6, ATF3,
RSAD2, USP18, and IFIT1. All of these genes are part of the interferon response, a criti-
cal pathway in response to viral infections [24, 25].

On the other hand the vertex degree distribution is the number of edges a particular
vertex is contained in (that is, the number of genes significantly perturbed for each con-
dition (vertex)). This is shown as a histogram in Fig. 3b, and it has a very different shape
than the edge size distribution. There are relatively few conditions with small numbers
(less than 200) or large numbers (more than 500) of significantly perturbed genes. The
most common number of significantly perturbed genes for a condition is between 400
and 500. This peak is likely an artifact of how we choose when a vertex is contained
within an edge. The degree of a condition vertex is the number of genes that are sig-
nificantly perturbed for that condition. By our procedure these are genes with z-score
higher than 2 and p-value less than 0.05. If we only used the z-score threshold, and our
fold change data are normally distributed for each condition, then we would expect that
5% of the genes would have z-score greater than 2. There are 9,760 genes in our data
and 5% of that would be 488 genes, which is roughly where the peak is. The skewness
and additional modes of the distribution of degrees are likely due to the addition of the
p-value condition.

Finally, Fig. 3c shows another power-law distribution, this time of the size of pairwise
edge intersections, or in other words, the number of conditions that pairs of genes are
both significantly perturbed within. We see that there are many pairs of genes that have
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Fig. 3 Distributions of simple hypergraph statistics of our hypergraph. a Edge size distribution. Each edge
represents a gene, the size of the edge is the number of conditions in which the gene is significantly
perturbed. b Vertex degree histogram. Each vertex represents a condition, the degree of a vertex is the
number of genes significantly perturbed in that condition. ¢ Pairwise edge intersection size distribution. Each
edge represents a gene. The intersection between two edges indicates the set of conditions that both genes
are significantly perturbed in

few conditions in common and only a few pairs of genes that have many conditions in
common, again with a maximum on the order of 100. The pair of genes with largest
intersection is not surprisingly the two largest edges, IFIT1 and USP18, with 103 condi-
tions in common. Interestingly, IFIT1 and USP18 are both well-established interferon
response genes, with IFIT1 strongly promoting interferon activity, and USP18 serving to
dampen the response [26].

In order to compare our hypergraph approach to more common graph approaches
we employed the CLR graph methodology that we have used previously to enrich for
important genes in a network [1, 2, 27]. The CLR algorithm was run on the matrix of
transcriptomics log,-fold change values using parameters spline = 3 and bins = 10 (as
used in the original CLR manuscript [28]) and the resulting matrix was filtered for all
mutual information values > 2. With this approach, any two genes with mutual informa-
tion above the threshold have similar expression profiles and form a graph edge.

In comparing the CLR graph to our hypergraph we find distinct differences, indicating
that the structures are capturing different relationships about sometimes different sets
of genes. First, the set of genes present in the hypergraph is a subset of the genes present
in the CLR graph, meaning that any gene that is shown to be significantly perturbed in
at least one condition (i.e., present in the hypergraph) has mutual information > 2 with
at least one other gene (i.e., present in the CLR graph), but not necessarily vice versa.
Comparing the edges present in the CLR graph to the hyperedge intersections present
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in the hypergraph, of the nearly 3.7 million edges in the CLR graph, 2.4 million of them
are between genes that are in the hypergraph. Roughly 1.1 million of these are present as
hyperedge intersections in the hypergraph while 1.3 million do not have a correspond-
ing hyperedge intersection. The remaining 1.3 million edges have one or both endpoints
in the set of genes that are not present in the hypergraph. Moreover, there are a total
of nearly 6 million nonempty pairwise hyperedge intersections (gene interactions) in
the hypergraph, indicating that the hypergraph is expressing additional structure and
relationships among genes that the CLR graph does not capture. Finally, for each gene
hyperedge we compute the number of other gene hyperedges that it intersects. These
values are only loosely correlated with the CLR graph vertex degrees (number of other
genes with mutual information > 2), with Pearson correlation 0.25. This indicates that
not only are there additional connections in the hypergraph, as observed above, there is
not a linear relationship between the number of CLR graph connections for a gene and
the hypergraph connections for a gene. In other words, one cannot infer the hypergraph
from the CLR graph, as it represents fundamentally different higher order relationships
specifically over the set of genes with significant perturbation.

Gene importance rankings

Previous studies using graph approaches with similar viral data have demonstrated that
network measures like betweenness centrality could be used to identify critical genes [1].
In the present work we hypothesize that extensions of these common graph metrics to a
hypergraph, as defined in “Hypergraph representations and centrality metrics” section,
can be leveraged to improve upon this prior work. In particular, we hypothesize that, as
has been shown in the graph setting, high s-centrality is correlated with the gene being
more important in host response to pathogenic viruses.

We calculate average s-betweenness centrality, BCs(g), and average harmonic s-close-
ness centrality, HCC(g), for all genes (hyperedges) in the hypergraph for 1 < s < 50.
These average centralities change as s increases only for gene hyperedges that overlap in
s vertices with at least one other gene hyperedge. In our hypergraph, for s = 50 less than
1% of hyperedges remain connected to at least one other hyperedge with that overlap
size, resulting in very little change in the centrality values. Both of these average s-cen-
trality computations provide a numerical value for each gene that can be used to rank
the genes from most important (high centrality) to least (low centrality).

To serve as a simpler, but still hypergraph-based, comparison we created another
ranked list using hyperedge size for each gene, i.e., the number of conditions the gene
was significantly perturbed in. Larger edge sizes indicate more conditions in which the
gene was significantly perturbed and therefore the gene is potentially more important to
host response.

To compare our hypergraph centrality ranking approach to the CLR graph approach
we use the NetworkX graph analytics Python package [29] to calculate vertex degree,
betweenness centrality, and harmonic closeness centrality of the CLR association graphs.

To provide a simple baseline for comparison a final ranked list was computed directly
from the log,-fold change table without using any graph structure. For each gene we
computed its average absolute value of log,-fold change and ranked the genes from
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highest to lowest average. Higher values mean the gene is more likely to be highly per-
turbed from the mock-infected samples in many conditions.

In the Additional file 1 we provide all gene rankings for average s-betweenness central-
ity and average harmonic s-closeness centrality, hyperedge size, CLR graph betweenness,
CLR graph closeness, CLR graph degree, and average fold change.

Comparison of rankings

To ascertain whether our hypergraph rankings are more highly enriched for genes
known to be important in host response to viral infection, we gathered three distinct sets
of genes: 1) all genes associated with the Gene Ontology (GO) term “immune response”
(GO:0006955), downloaded from amigo.geneontology.org, referred to as ‘IR” hereafter,
2) interferon-stimulated genes gathered from interferome.org (http://www.interferome.
org/interferome/search/searchGene.jspx), referred to as ISG; and 3) a set of human pro-
teins known to be targets of pathogens acquired from Dyer, et al. [30], referred to as ‘PT"
Although this is a limited set in terms of number of targets, it represents a set collected
from a wide number of pathogens, both viral and bacterial, and is a conservative set for
assessing the performance of our method and making comparisons between different
approaches and parameters. In Table 1 we show the size of each gene set (along the diag-
onal) and the sizes of each pairwise intersection of gene sets (off the diagonal). Since our
data encompasses a wide variety of virus types and infection systems, general immune-
related sets were deemed suitable for our purpose.

In order to measure the performance of our rankings, we applied gene set enrichment
analysis (GSEA) [31] to each of our gene rankings (average hypergraph s-centralities,
hyperedge size, CLR centralities, CLR vertex degree, and mean fold-change) using the
three immune-related sets as target gene sets. The GSEA score of a ranked list, com-
puted for a specific gene set, quantifies how concentrated the gene set is at the extremal
values of the list. A high GSEA score means the gene set is concentrated at the top of
the list while a low (highly negative) score indicates that the gene set is concentrated
towards the bottom of the list. A score closer to zero means that the gene set is more
uniformly distributed throughout the ranked list. The significance, or p-value, of an
observed enrichment score, ES, is assessed by comparing it with a set of ESy randomized
scores.

Figure 4 shows GSEA scores for all rankings and for all three target gene sets. We note
the following conclusions:

Table 1 (Diagonal, bold) Size of each gene set; (off-diagonal, non-bold) size of the pairwise
intersections of the gene sets

IR ISG PT
R 1,202 250 297
ISG 250 1,071 152

PT 297 152 9206
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Fig. 4 Enrichment scores of gene sets using average s-betweenness and s-harmonic closeness metrics. All
results are significant with p < 0.05

+ Both average s-centrality metrics for most s values, as well as hyperedge size, showed
much higher enrichment than lists derived from CLR graphs and average fold
change.

+ But average s-betweenness enrichment was universally higher than average harmonic
s-closeness enrichment, suggesting that these two measurements are capturing fun-
damentally different behavior within hypergraphs, and that average s-betweenness
appears to be more effective at capturing genes that are important in host responses
to viral infection.

+ Both centrality enrichment results (betweeness and closeness) improve signifi-
cantly when larger s values are taken into account, indicating that when higher
order interactions are considered, they become more powerful in identifying
important genes. Although the maximum intersection between two hyperedges
is 103, Fig. 4 indicates that by s =20 our best performing measure, average
s-betweenness centrality, plateaus with only minimal increase in enrichment score

as s increases further.

As noted in “Hypergraph representations and centrality metrics” section we also con-
structed hypergraphs using z-score thresholds of 3, 4, and 5 and computed GSEA
scores for their average s-betweeness and average harmonic s-closeness rankings.
Versions of Fig. 4 for z = 3, 4, and 5 are included in the Additional file (see Additional
files 2—4: Fig. S1-Fig. S3). The choice of z-score values did not change the conclusion
that GSEA scores increase with s values, or that rankings derived from the hyper-
graph have higher GSEA scores than those derived from the CLR graph. However,
with smaller hypergraphs (from large z thresholds), the p-values of GSEA increase
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(see Additional files 5-8 Fig. S4—Fig. S7). Therefore, z = 2 is an adequate z-score
threshold to balance high GSEA score with low p-value of the score, under a permu-
tation test.

A summary visualization of our results is shown in Fig. 5 taking the rankings for
both average s-betweenness and harmonic s-closeness for the highest level of s = 50
as the representative hypergraph centrality rankings. We compare those with the five
other rankings and again see that average s-betweenness centrality outperforms all
other measures. While average harmonic s-closeness centrality outperforms all graph
measures it is outperformed by the simple hyperedge size ranking. The p-values,
nearly all significantly less than 0.05, are shown in the same plot at the end of the
bars. These results demonstrate that average s-betweenness, but not necessarily aver-
age harmonic s-closeness, considers the complexity of the hypergraph and provides
superior performance over graph metrics with regards to identifying biologically
important genes. This aligns with prior work in which betweenness centrality com-
puted for vertices in a graph identifies important genes in a network [1, 2, 27, 32].

In order to compute the average s-centrality measures we first separately computed
s-centralities BC(e) and HCC;(e) for each gene edge s. We also computed enrichment
scores for these ranked lists. However, we do not include these in our overall compari-
son because while some s-values produced rankings that were more enriched than oth-
ers we did not see any trend in performance that would lead us to choose an optimal
single s value (e.g., enrichment scores are not unimodal as a function of s). This led us
to consider the average s-centralities, in order to take advantage of all intersection levels
simultaneously. In future work it may be worth reexamining single s values, or removing
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single s values from the average, to understand the relative importance of each s to the

averaging.

Discussion

We draw attention to two primary observations of interest in our results. First is the
observation that s-betweenness centrality consistently outperforms s-closeness central-
ity. At first glance this seems surprising since betweenness and closeness calculated on
the CLR graph have comparable performance. While the explanation for this result is
the subject of ongoing investigation, we observe that these two types of centrality are
measuring significantly different properties. For both graphs and hypergraphs high har-
monic closeness centrality indicates that on average a gene is close to many other genes,
while high betweenness centrality means that a gene is on many short paths between
other genes. Sometimes these two notions coincide, as seems to be the case in the CLR
graph, but there are cases in which they do not. For example, a gene that may be more on
the periphery, i.e., not on many (short) paths, could still be very close to a central core.
Being on few short paths this gene would have very low betweenness. However, since it
is close to a central core it could have high closeness score.

This seems to be the case in the hypergraphs we are studying. Since there are many
conditions that have a lot of significantly perturbed genes (see Fig. 3b) there is likely a
large central core in the hypergraph that increases the closeness scores for peripheral
genes, and perhaps all genes. Indeed we have observed that for small values of s the
s-closeness values do not correlate with edge size, however for large s values the s-close-
ness scores do tend to correlate with edge size. This likely means that for low s values the
closeness is somehow washed out by this central core and any variability we see is not
significant. In contrast, for s-betweenness we see a correlation between edge size and
betweenness at all s values. However, even though s-betweenness is correlated to edge
size for all s values its enrichment score is still much larger than that for edge size and so
seems to be capturing something more significant about hypergraph structure.

This difference between closeness and betweenness may also be related to the nature
of the large gene expression data set used in our study. Since both mouse and human-
based gene expression data were included in the hypergraph some genes may serve as
bridges between different regions of the hypergraph (e.g. predominantly human regions
vs predominantly mouse regions). Genes that are truly important in host response to
viral infection would be important across species and more effectively brought to light
by the betweenness measure that tends to highlight elements occupying bridge-like
positions in the hypergraph. Thus, betweenness centrality may be most useful for identi-
fying critical elements when heterogeneous data sets are analyzed.

Our second observation is that our average s-betweenness centrality significantly out-
performs established graph centrality techniques. This is entirely in keeping with our
expectation, as the purpose of hypergraphs is to capture the complex, multi-way inter-
actions present in a system that are beyond the ability of graphs to model. Thus where
betweenness centrality has been used in prior studies to identify important biological
features the application of hypergraph s-betweenness may promote discovery of addi-
tional features of interest. While the finding that hypergraph betweenness represents a
new tool for identifying critical hypergraph elements is an exciting contribution of this
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study, it also presents an additional immediate benefit: genes highly ranked by hyper-
graph betweenness that do not appear in any of our target gene sets represent poten-
tially novel discoveries of genes central to viral infection. One good example of this
is the ZZZ3 gene, which appears in position 4 out of 7,782 in the average hypergraph
betweenness ranking, but does not appear in any of the IR, ISG or PT gene sets. ZZZ3 is
part of the histone reader ATAC complex, which scans the state of histone modification
and contributes to gene activation/repression mechanisms [33]. No known connection
between virus infection and ZZZ3 exists, but it may serve a critical role in regulating
gene expression in response to general infection.

Similarly, EPHX1, GDF15, and DUSP1 were not included in the three gene sets and
ranked 29, 30 and 33, respectively. These genes are identified as an epoxide detoxifica-
tion component, a stress responsive cytokine and a stress-responsive phosphatase,
respectively. These roles may be related to virus-induced stress in host cells, but the spe-
cific mechanisms involved are yet to be elucidated. More exploration of these and other
highly ranked genes is the subject of future work for us.

Conclusion

The work we present in this paper is similar to much of the work surveyed in our litera-
ture review in that we show the value of hypergraphs over traditional graph analysis of
biological data. However, our work differs from these prior studies in a number of ways.
First, our hypergraphs are built natively from transcriptomics data rather than based on
existing graph models of systems. Although still capturing some multi-way complexities,
hypergraphs inferred from graphs may include some induced interactions not actually
present in the system that is being modeled. Creating hypergraphs natively from the data
avoids this imputation. Other papers we surveyed do create hypergraphs natively from
other types of data, but rather than applying centrality measures instead study more
structural features like highly connected vertices.

Previous work [1, 2, 27, 32] had demonstrated that graph metrics can be used to iden-
tify important genes in association graphs, and so we set out to determine if hyper-
graphs provided an improvement over graphs. To assess performance of (hyper)graphs
derived from our large viral infection gene expression data set, we identified three gene
sets related to virus/pathogen infection and performed an enrichment analysis of our
ranked lists compared to these gene sets. While the sets were partially overlapping they
represented relatively distinct aspects of viral infection in general. Our results show that
average s-betweenness, but not necessarily average harmonic s-closeness, was a useful
metric that is able to identify key genes in a comprehensive gene expression data set.
While average harmonic s-closeness does outperform both CLR centrality measures,
CLR degree, and average fold change, it does not exceed the performance of a simple
ranking according to hyperedge size, which does not require the full hypergraph struc-
ture to calculate. On the other hand, ranking based on average s-betweenness outper-
formed all other metrics.

The hypergraphs we created used samples from a wide range of viruses, strains, cell
types, and time since infection. In future work we plan to apply this measure to compare
critical genes in viral response across differing sample features. For example, we will split
our hypergraph based on pathogenicity (high vs. low), cell type or host, and time since
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infection (early vs. late). Comparing the critical genes across these different hypergraphs
may allow us to discover previously unknown indicators of viral infection for early detec-
tion or severity determination. Other future work we plan to pursue includes consid-
ering other hypergraph constructions, other data types, and hypergraph algorithms to
identify highly connected vertices. We plan to combine transcriptomics with proteomics
and other ‘omics measurements to understand whether hybrid hypergraphs yield better

results or if the inclusion of more data washes out the complexities.

Methods

Data acquisition and processing

Microarray datasets collected from 2014 to 2017 and available from the Gene Expres-
sion Omnibus (GEO) were gathered and compiled as described below. GEO accession
IDs: GSE80059, GSE86533, GSE69027, GSE76600, GSE80697, GSE69945, GSE68945,
GSE72008, GSE65575, GSE79458, GSE86528, GSE100496, GSE81909, GSEB86530,
GSE100504, GSE106523, GSE86529, GSE100509, GSE108594, GSE77193, GSE77160,
GSE78888, GSE33267, GSE37827, GSE48142, GSE33266, GSE49262. While details of
experimental systems and conditions can be gathered from individual accessions from
GEO, we list the infection conditions here:

Ebola Virus (Wild type and two mutants) in human hepatocyte cells.

Influenza Virus H7N9 (Wild type and two mutants) in human lung epithelial
cells, HIN1 (wild type) in human lung epithelial cells, HIN1
(wild type) in mouse lung, H5N1 (wild type and one mutant) in
mouse lung, H7N9 (wild type and two mutants) in mouse lung.

MERS-coronavirus (Wild type and four mutants) in human lung epithelial cells,
(wild type only) in ex vivo human epithelial cells, in ex vivo
human lung fibroblasts, and ex vivo human lung microvascular
endothelial cells.

SARS-coronavirus  (Wild type and four mutants) in human lung epithelial cells and
mouse lung.

West Nile Virus (Wild type and one mutant) in mouse cerebral cortex, mouse
cerebellum and mouse lymph node.

Raw microarray data was processed for background correction, quantile normalization
and summarization using the limma package for R (available on Bioconductor) to derive
a single normalized intensity value per probe. We utilized a conservative approach and
decided to only remove samples (arrays) that showed obvious evidence for failed hybrid-
ization or damaged arrays. These types of occurrences are easily detected by inspecting
PCA plots and expression heatmaps. Specifically, we looked at PCA plots and expression
heatmaps of the 500 most variable genes according to the coefficient of variation. This
manual approach resulted in preserving as much data as possible.

The data in this form, as it is available from the above GEO repositories, was used for
further compendium construction. Differential expression analysis with linear models in
limma [34] was used to identify fold changes and p-values for significance of changes, as
well as adjusted p-values to account for multiple testing. Since datasets were collected
using multiple microarray platforms, merging gene identifiers using probe IDs was not
possible, so genes were matched at the gene symbol level instead. Individual genes are
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often represented by multiple probes, so only the most significantly changed probe
among those representing a single gene was retained in each dataset. This provided a
way to match data rows across experiments, and resulted in a compendium matrix of

genes common to all datasets with 9,760 rows, with each row representing a single gene.

Hypergraph representations and centrality metrics

Formally, a hypergraph is a structure (V,E), with V = {v; 1’.’21 a set of vertices, and
E = {e;}"; a family of hyperedges with each e; C V. Hyperedges can come in differ-
ent sizes, |e;|, possibly ranging from the singleton {v} € V (distinct from the element
v € V) to the entire vertex set V. A hyperedge e = {v1, v} where |e| = 2 is the same as
a graph edge and so it follows that all graphs are hypergraphs, specifically identified as
being “2-uniform”. Where clear from context we may use the terms edge and hyperedge
interchangeably.

We construct a hypergraph from transcriptomics data using a threshold approach,
much like the example in Fig. 1. Again, vertices v; will represent individual biological
or experimental “conditions” (e.g., mouse lung cells treated with a strain of Influenza
virus and sampled at 8 h) and hyperedges e; represent genes. Thus for us, a hyperedge
e; is a gene i that includes a collection of conditions j as its vertices v;. For each condi-
tion, we transform the log,-fold change values (relative to uninfected mock) for all of
the genes into absolute value z-scores. Then, the vertex representing condition X is
contained in the hyperedge representing gene G if the absolute value z-score for G
in X is greater than or equal to 2 and the adjusted p-value for that log,-fold change
measurement is less than 0.05. Since transcriptomics log,-fold change values tend to
be normally distributed for each condition across all genes a z-score transformation is
a reasonable way to get all conditions onto the same scale before applying a threshold.
The specific thresholds on z-score and p-value were chosen as commonly used in the
field, and in exploring other z-score thresholds we have verified limited sensitivity to
them. We note that using a higher z-score threshold results in smaller hypergraph,
generated from the genes that change more dramatically.

In this way, hyperedges correspond to genes, and indicate the groups of condi-
tions in which that gene is both highly perturbed (either up or down) from the mock
infected control condition, and for which that perturbation is statistically significant.
We say that the gene is “significantly perturbed” in the condition. Unlike hypergraph
models of pathways or metabolic reactions, hypergraphs constructed from high-
throughput data do not necessarily represent actual biological interactions but rather
capture relationships based on similar behavior among entities.

It is important to point out that this method to construct a hypergraph using
thresholds on absolute value of z-score and p-value is a specific case of a flexible
framework we propose for how hyperedges can be formed from ‘omics data. Applying
other thresholds will result in different hypergraph models of the same data, to poten-
tially answer different questions. For example, in order to understand the relation-
ship and behavioral similarity among up-regulated genes one might consider a gene
hyperedge to contain those conditions for which the gene has high raw (as opposed
to absolute value) z-score or log,-fold change, as in the Fig. 1 example. One could also
form edges from conditions for which a gene has a highly negative z-score or fold
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change, to explore the structure of down-regulated genes. We chose a threshold on
the absolute value of z-score in this paper as an attempt to understand genes which
are perturbed at all in response to viral infection.

We recognize that this formulation is fundamentally different from a typical graph
approach to systems biology data. One such example of a graph approach is context
likelihood of relatedness (CLR) in which genes that show similar expression pat-
terns across all conditions, as measured by mutual information, are linked together
[28]. Our approach to constructing hypergraphs from the data can be seen as hav-
ing greater sensitivity and flexibility since it allows similarity between genes to be
assessed across any number of conditions (as quantified by the size of the overlap
of their hyperedges) rather than requiring assessment across all conditions, as in the
mutual information calculation used to define CLR edges. In “Gene importance rank-
ings” section we provide a comparison between our hypergraph and the CLR graph
formed from the data.

Another difference between our hypergraph formulation and typical graph
approaches is that in graph approaches vertices represent genes and edges indicate
some relationship between genes such as interaction or expression correlation. Our
motivation for swapping the roles of vertices and edges is for the sake of clarity in our
description of hypergraph centrality measures below. Moreover, as a technical matter,
each hypergraph H determines another one, called its “dual” H*, formed exactly by
swapping the roles of vertices and edges [35]. Therefore, the dual to our hypergraph
formulation has the more traditional form with genes as vertices, but the description
of hypergraph centrality in this setting would be less intuitive.

As in graphs, the way in which hyperedges connect vertices in complex patterns is
central to the study of hypergraphs. While many hypergraph topological measures are
available, either as generalizations of graph measures to account for multi-way interac-
tions or as native hypergraph-only measures, our focus in this paper is applying gener-
alizations of graph centrality measures to hypergraphs built from transcriptomics data
to identify important genes. In order to define these hypergraph centrality measures
we must first introduce the notions of a hypergraph walk and distance [36]. Given two
hyperedgese,f € E, an s -walk between e and fis a sequence of hyperedges eg, e1, . . ., ek
such that eg = e, ey =f, and s < |e; Ne;j4+1| for all 0 < i < k — 1. An s-walk with k + 1
edges has length k. In other words, an s-walk is any sequence of edges, not necessarily of
minimal length, such that pairwise intersections between neighboring edges have size at
least s. Note that a graph walk is a 1-walk. We note that one could define a hypergraph
s-walk to be between vertices rather than hyperedges, as is typically done in a graph. But
as above, for the sake of clarity in defining centrality measures we use this edge-based
definition.

Continuing to follow Aksoy et al. [36], for a fixed s > 0, we define the s -distance
ds(e,f) between two edges e,f € E as the shortest length of the possibly many s-walks
between them. If there is no s-walk between two edges then the s-distance is infinite.
Aksoy et al. also define a number of network science methods generalized from graphs
to hypergraphs, including vertex degree, diameter, and clustering coefficients. This work
will use their generalization of betweenness centrality and harmonic closeness centrality
to hypergraphs using the stratification parameter s.



Feng et al. BMC Bioinformatics (2021) 22:287 Page 17 of 21

+ The s-betweenness centrality of an edge e is

BCs(e) := Z

S
fietgeE R

aé (e)

where afg is the total number of shortest s-walks from edge fto edge g and Gji’ (e)is

the number of those shortest s-walks that contain edge e.
+ The harmonic s -closeness centrality of an edge e is the reciprocal of the harmonic

mean of all distances from e:

1 1
HCCi(e) == —— >
|Es| lfeEs ds(e,f)

e

where E; = {e € E : |e|] > s}. We may refer to this as s-closeness in this paper,
although elsewhere in the literature this term refers to a slightly different concept
where the harmonic mean is replaced with the arithmetic mean.
Intuitively, harmonic s-closeness centrality captures the extent to which a given
hyperedge is close in s-distance to other hyperedges. In order to have high harmonic
s-closeness a hyperedge must have small s-distance to all (or most) other hyperedges.
s-Betweenness, on the other hand, identifies bottlenecks in a hypergraph. A hyper-
edge with high s-betweenness has many shortest s-walks pass through it. In compari-
son, the original formulation of betweenness and harmonic closeness centrality in the
setting of graphs has the s-distance and number of s-paths replaced simply by graph
distance and shortest path.

In order to take into account multiple s values simultaneously in our analysis we
developed the average s -betweenness centrality and average harmonic s -closeness
centrality, averaging the centrality values defined in [36] across a range of s values.
Our average s-centralities are defined as

L 1 s 7 1 s
BC;(e) = . ZBCi(e), HCCy(e) = . ZHCCi(e).
i=1 i=1

Computing average s-centralities for each hyperedge provides a ranked list of hyper-
edges from most central (high value) to least central. All hypergraph construction, met-
ric calculations, and visualizations were performed using the Python hypergraph library
HyperNetX (https://github.com/pnnl/HyperNetX).

Some conventional approaches to infer graph structures from high-throughput data
use correlated gene expression patterns to build connections. In this context, a gene
with high degree (i.e. a hub) has similar expression behavior to many other genes,
implicating it as a potential master regulator of gene expression. A gene with high
betweenness (i.e. a bottleneck) on the other hand, bridges two regions of the graph
indicating that it spans two different behavioral profiles. Genes in this position are
potentially involved in causing a transition from one response pattern to another.
Thus hubs and bottlenecks may represent master gene expression regulators of two
different varieties. Previous work by our group and others has shown that graph


https://github.com/pnnl/HyperNetX

Feng et al. BMC Bioinformatics (2021) 22:287 Page 18 of 21

vertices in hub and bottleneck positions are significantly enriched for genes critical
to the process under study [2, 27, 37, 38]. Given these prior results and biological rel-
evance of centrality in the setting of graphs, we hypothesized that hypergraph average
s-betweenness (and potentially average s-harmonic closeness) will have similar bio-
logical relevance. We are the first group to apply hypergraph centralities to genomic
data, after we first introduced them in [36].
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