
J Comput Neurosci (2016) 41:1–14

DOI 10.1007/s10827-016-0608-6
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Abstract The language of graph theory, or network sci-

ence, has proven to be an exceptional tool for addressing

myriad problems in neuroscience. Yet, the use of networks

is predicated on a critical simplifying assumption: that the

quintessential unit of interest in a brain is a dyad – two nodes

(neurons or brain regions) connected by an edge. While

rarely mentioned, this fundamental assumption inherently

limits the types of neural structure and function that graphs

can be used to model. Here, we describe a generalization

of graphs that overcomes these limitations, thereby offer-

ing a broad range of new possibilities in terms of modeling

and measuring neural phenomena. Specifically, we explore

the use of simplicial complexes: a structure developed in

the field of mathematics known as algebraic topology, of

increasing applicability to real data due to a rapidly growing

computational toolset. We review the underlying mathemat-

ical formalism as well as the budding literature applying

simplicial complexes to neural data, from electrophysiolog-

ical recordings in animal models to hemodynamic fluctua-

tions in humans. Based on the exceptional flexibility of the
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tools and recent ground-breaking insights into neural func-

tion, we posit that this framework has the potential to eclipse

graph theory in unraveling the fundamental mysteries of

cognition.
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The recent development of novel imaging techniques and

the acquisition of massive collections of neural data make

finding new approaches to understanding neural structure

a vital undertaking. Network science is rapidly becom-

ing an ubiquitous tool for understanding the structure of

complex neural systems. Encoding relationships between

objects of interest using graphs (Figs. 1a–b, 4a) enables the

use of a bevy of well-developed tools for structural charac-

terization as well as inference of dynamic behavior. Over

the last decade, network models have demonstrated broad

utility in uncovering fundamental architectural principles

(Bassett and Bullmore 2006; Bullmore and Bassett 2011)

and their implications for cognition (Medaglia et al. 2015)

and disease (Stam 2014). Their use has led to the devel-

opment of novel diagnostic biomarkers (Stam 2014) and

conceptual cognitive frameworks (Sporns 2014) that illus-

trate a paradigm shift in systems, cognitive, and clinical

neuroscience: namely, that brain function and alteration are

inherently networked phenomena.

All graph-based models consist of a choice of vertices,

which represent the objects of study, and a collection of

edges, which encode the existence of a relationship between

pairs of objects (Figs. 1a–b, 4a). However, in many real sys-

tems, such dyadic relationships fail to accurately capture

the rich nature of the system’s organization; indeed, even

when the underlying structure of a system is known to be
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Fig. 1 Extensions of network models provide insights into neural

data. a Network models are increasingly common for the study of

whole-brain activity. b Neuron-level networks have been a driving

force in the adoption of network techniques in neuroscience. c Two

potential activity traces for a trio of neural units. (top) Activity for

a “pacemaker”-like circuit, whose elements are pairwise active in all

combinations but never as a triple. (bottom) Activity for units driven

by a common strong stimulus, thus are simultaneously coactive. d A

network representation of the coactivity patterns for either population

in (c). Networks are capable of encoding only dyadic relationships, so

do not capture the difference between these two populations. e A sim-

plicial complex model is capable of encoding higher order interactions,

thus distinguishing between the top and bottom panels in (c). f A sim-

ilarity measure for elements in a large neural population is encoded as

a matrix, thought of as the adjacency matrix for a complete, weighted

network, and binarized using some threshold to simplify quantitative

analysis of the system. In the absence of complete understanding of

a system, it is difficult or impossible to make a principled choice of

threshold value. g A filtration of networks is obtained by thresholding

at every possible entry and arranging the resulting family of networks

along an axis at their threshold values. This structure discards no infor-

mation from the original weighted network. g Graphs of the number

of connected components as a function of threshold value for two

networks reveals differences in their structure: (top) homogeneous net-

work versus (bottom) a modular network. (dotted lines) Thresholding

near these values would suggest inaccurately that these two networks

have similar structure

dyadic, its function is often understood to be polyadic. In

large-scale neuroimaging, for example, cognitive functions

appear to be performed by a distributed set of brain regions

(Gazzaniga 2009) and their interactions (Medaglia et al.

2015). At a smaller scale, the spatiotemporal patterns of

interactions between a few neurons is thought to underlie

basic information coding (Szatmary and Izhikevich 2010)

and explain alterations in neural architecture that accom-

pany development (Feldt et al. 2011).

Drawing on techniques from the field of algebraic topol-

ogy, we describe a mathematically well-studied generaliza-

tion of graphs called simplicial complexes as an alternative,

often preferred method for encoding non-dyadic relation-

ships (Fig. 4). Different types of complexes can be used

to encode co-firing of neurons (Curto and Itskov 2008),

co-activation of brain areas (Crossley et al. 2013), and struc-

tural and functional connections between neurons or brain

regions (Bullmore and Sporns 2009) (Fig. 5). After choos-

ing the complex of interest, quantitative and theoretical tools

can be used to describe, compare, and explain the statistical

properties of their structure in a manner analogous to graph

statistics or network diagnostics.

We then turn our attention to a method of using addi-

tional data, such as temporal processes or frequency of

observations, to decompose a simplicial complex into con-

stituent pieces, called a filtration of the complex (Fig. 1f–h).

Filtrations reveal more detailed structure in the complex,

and provide tools for understanding how that structure arises

(Fig. 7). They can also be used as an alternative to thresh-

olding a weighted complex, providing a principled approach

to binarizing which retains all of the data in the original

weighted complex.

In what follows, we avoid introducing technical details

beyond those absolutely necessary, as they can be found

elsewhere (Ghrist 2014; Nanda and Sazdanović 2014;

Kozlov 2007), though we include boxed mathematical def-

initions of the basic terms to provide context for the inter-

ested reader. These ideas are also actively being applied in

the theory of neural coding, and for details we highly recom-

mend the recent survey (Curto 2016). Finally, although the

field is progressing rapidly, we provide a brief discussion of

the current state of computational methods in the Appendix.

1 Motivating examples

We begin with a pair of simple thought experiments, each of

which motivates one of the tools this article surveys.
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1.1 Complexes for relationship

First, imagine a simple neural system consisting of three

brain regions (or neurons) with unknown connectivity. One

possible activity profile for such a population includes some

sort of sequential information processing loop or “pace-

maker” like circuit, where the regions activate in a rotating

order (Fig. 1c, top). A second is for all three of the regions to

be active simultaneously when engaged in certain computa-

tions, and otherwise quiescent or uncorrelated (Fig. 1c, bot-

tom). In either case, an observer would find the activity of

all three possible pairs of regions to be strongly correlated.

Because a network can only describe dyadic relationships

between population elements, any binary coactivity network

constructed from such observations would necessarily be

identical for both (Fig. 1d). However, a more versatile lan-

guage could distinguish the two by explicitly encoding the

triple coactivity pattern in the second example (Fig. 1e).

One possible solution lies in the language of hyper-

graphs, which can record any possible collection of rela-

tions. However, this degree of generality leads to a com-

binatorial explosion in systems of modest size. In contrast,

the framework of simplicial complexes (Fig. 4b–d) gives

a compact and computable encoding of relations between

arbitrarily large subgroups of the population of interest

while retaining access to a host of quantitative tools for

detecting and analyzing the structure of the systems they

encode. In particular, the homology1 of a simplicial complex

is a collection of topological features called cycles that one

can extract from the complex (Fig. 6b). These cycles gen-

eralize the standard graph-theoretic notions of components

and circuits, providing a mesoscale or global view of the

structure of the system. Together, these methods provide a

quantitative architecture through which to address modern

questions about complex and emergent behavior in neural

systems.

1.2 Filtrations for thresholding

Second, consider a much larger neural system, consisting

of several hundred units, whose activity is summarized as

a correlation or coherence matrix (Fig. 1f, top). It is com-

mon practice to binarize such a matrix by thresholding it at

some value, taking entries above that value to be “signifi-

cant” connections, and to study the resulting, much sparser

network (Fig. 1f, bottom). Selecting this significance level

is problematic, particularly when the underlying system has

a combination of small-scale features, some of which are

noise artifacts, and some of which are critically important.

1Names of topological objects have a seemingly pathological tendency

to conflict with terms in biology, so long have the two subjects been

separated. Mathematical homology has no a priori relationship to the

usual biological notion of homology.

One method for working around this difficulty is to take

several thresholds and study the results separately. How-

ever, this approach still discards most of the information

contained in the edge weights, much of which can be of

inherent value in understanding the system. We propose

instead the use of filtrations, which record the results of

every possible binarization of the network,2 along with the

associated threshold values (Fig. 1g). Filtrations not only

retain all of the information in the original weighted net-

works, but unfold that information into a more accessible

form, allowing one to lift any measure of structure in net-

works (or simplicial complexes) to “second order” measures

as functions of edge weight (Fig. 1h). Such functions carry

information, for example, in their rate of change, where sud-

den phase transitions in network structure as one varies the

threshold can indicate the presence of modules or rich clubs

in networks (Fig. 1h). The area under such curves was used

in (Giusti et al. 2015) to detect geometric structure in the

activity of hippocampal neural populations (Fig. 3). Fur-

ther, even more delicate information can be extracted from

the filtration by tracking the persistence of cycles as the

threshold varies (Fig. 7c).

2 A growing literature

Before we proceed to an explicit discussion of the tools

described above, we pause to provide a broad overview of

how they have already been applied to address questions in

neuroscience. The existing literature can be roughly divided

into two branches:

Describing neural coding and network properties

Because of their inherently non-pairwise nature, coactiva-

tion patterns of neurons or brain regions can be naturally

encoded as simplicial complexes. Such techniques were first

introduced in the context of hippocampal place cells in

(Curto and Itskov 2008), where such an encoding was used

to describe how one can reconstruct the shape of an animal’s

environment from neural activity. Using the simple observa-

tion that place fields corresponding to nearby locations will

overlap, the authors conclude that neurons corresponding

to those fields will tend to be co-active (Fig. 5b). Using the

aptly (but coincidentally) named “Nerve Theorem” from alge-

braic topology, one can work backward from observed coac-

tivity patterns to recover the intersection pattern of the recep-

tive fields, describing a topological map of the animal’s

environment (Fig. 6c). Further, in order to recover the geom-

etry of the environment, one can in principle introduce infor-

mation regarding receptive field size (Curto and Itskov 2008).

2Or some suitably dense subset of the binarizations, in the case of very

large systems.
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However, it seems plausible that place cells intrinsically

record only these intersection patterns and rely on down-

stream mechanisms for interpretation of such geometry.

This hypothesis was tested in the elegant experiment of

(Dabaghian et al. 2014), in which place cell activity was

recorded before and after deformation of segments of the

legs of a U-shaped track. A geometric map would have been

badly damaged by such a change in the environment, while

a topological map would remain consistent, and indeed the

activity is shown to be consistent across the trials. Further

theoretical and computational work has explored how such

topological maps might form (Dabaghian et al. 2012) and

shown that theta oscillations improve such learning mech-

anisms (Arai et al. 2014), as well as demonstrating how

one might use this understanding to decode maps of the

environment from observed cell activity (Chen et al. 2014).

Even in the absence of an expected underlying collection

of spatial receptive fields like those found in place cells,

these tools can be employed to explore how network mod-

ules interact. In (Ellis and Klein 2014), the authors study

the frequency of observation of coactivity patterns in fMRI

recordings to extract fundamental computational units. Even

when those regions which are coactive will change dynam-

ically over time, cohesive functional units will appear more

often than those that happen coincidentally, though a priori

it is impossible to set a threshold for significance of such

observations. Using a filtration, it becomes possible to make

reasonable inferences regarding the underlying organiza-

tion. The same approach was used in (Pirino et al. 2014),

to differentiate in vivo cortical cell cultures into functional

sub-networks under various system conditions. Finally, an

extension of these ideas that includes a notion of direct-

edness of information flow has been used to investigate

the relationship between simulated structural and functional

neural networks (Dlotko et al. 2016).

Characterizing brain architecture or state One of the

earliest applications of algebraic topology to neural data

was to the study of activity in the macaque primary visual

cortex (Singh et al. 2008), where differences in the cycles

computed from activity patterns were used to distinguish

recordings of spontaneous activity from those obtained

during exposure to natural images.

Cycles provide robust measures of mesoscale structures

in simplicial complexes, and can be used to detect many dif-

ferent facets of interest in the underlying neural system. For

example, in (Chung et al. 2009), the authors compute cycles

that encode regions of thin cortex to differentiate human

ASD subjects from controls; in (Brown and Gedeon 2012),

cycles built from physical structure in afferent neuron ter-

minals in crickets are used to understand their organization

(Brown and Gedeon 2012) and in Bendich et al. (2014), the

authors use two different types of cycles derived from the

geometry of brain artery trees to infer age and gender in

human subjects.

A common theme in neuroscience is the use of correla-

tion of neuronal population activity as a measure of strength

of the interaction among elements of the population. Such

measures can be used as weightings to construct weighted

simplicial complexes, to which one can apply a threshold

analogously to thresholding in graphs. Using the language

of filtrations, one can compute persistence of cycles, record-

ing how cycles change as the thresholding parameter varies.

Such measurements provide a much finer discrimination

of structure than cycles at individual thresholds. The sim-

plest case tracks how the connected components of the

complex evolve; it has been used in (Lee et al. 2011) to clas-

sify pediatric ADHD, ASD and control subjects; in (Khalid

et al. 2014) to differentiate mouse models of depression

from controls; in (Choi et al. 2014) to differentiate epilep-

tic rat models from controls; and in (Kim et al. 2014) to

study morphological correlations in adults with hearing loss

(Fig. 2). Studying more complex persistent cycles com-

puted from fMRI recordings distinguishes subjects under

psilocybin condition from controls (Petri et al. 2014), and

a similar approach has been applied to the study of func-

tional brain networks during learning (Stolz 2014). More

recently, these techniques have been adapted to detect struc-

ture, such as that possessed by a network of hippocampal

place cells, in the information encoded by a neural popu-

lation through observations of its activity without reference

to external correlates such as animal behavior (Giusti et al.

2015) (Fig. 3).

The small, budding field of topological neuroscience

already offers an array of powerful new quantitative

approaches for addressing the unique challenges inherent in

understanding neural systems, with initial, substantial con-

tributions. In recent years, there have been a number of inno-

vative collaborations between mathematicians interested in

applying topological methods and researchers in a variety of

biological disciplines. While it is beyond the scope of this

paper to enumerate these new research directions, to pro-

vide some notion of the breadth of such collaborations we

include the following brief list: the discovery of new genetic

markers for breast cancer survival (Nicolau et al. 2011),

measurement of structure and stability of biomolecules

(Gameiro et al. 2013; Xia et al. 2015), new frameworks for

understanding viral evolution (Chan et al. 2013), character-

ization of dynamics in gene regulatory networks (Boczko

et al. 2005), quantification of contagion spread in social net-

works (Taylor et al. 2015), characterization of structure in

networks of coupled oscillators (Stolz 2014), the study of

phylogenic trees (Miller et al. 2015), and the classification

of dicotyledonous leaves (Katifori and Magnasco 2012).

This wide-spread interest in developing new research direc-

tions is an untapped resource for empirical neuroscientists,
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Fig. 2 Filtered brain networks constructed from interregional corre-

lations of density from MRI detect differences in hearing and deaf

populations. Density correlation networks obtained from (a) hearing,

(b) prelingual deaf, and (c) postlingual deaf adults. Differences in

the evolution of network components across groups as the threshold

parameter varies provides insight into differences in structure. It is

unclear how one would select a particular threshold which readily

reveals these differences without a priori knowledge of their presence.

Figure reproduced with permission from (Kim et al. 2014)

which promises to facilitate both direct applications of exist-

ing techniques and the collaborative construction of novel

tools specific to their needs.

We devote the remainder of this paper to a careful expo-

sition of these topological techniques, highlighting specific

ways they may be (or have already been) used to address

questions of interest to neuroscientists.

3 Mathematical framework: simplicial complexes

We begin with a short tutorial on simplicial complexes, and

illustrate the similarities and differences with graphs.

Recall that a graph consists of a set of vertices and a

specified collection of pairs of vertices, called edges. A sim-

plicial complex, similarly, consists of a set of vertices, and

s
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Fig. 3 Betti numbers detect the existence of geometric organizing

principles in neural population activity from rat hippocampus. a Mean

cross correlation of N=88 rat CA1 pyramidal cells activity during spa-

tial navigation. b Betti numbers as a function of graph edge density

(# edges / possible # edges) for the clique complex of the pairwise

correlation network in (a). c Comparison of data Betti numbers (thick

lines) to model random networks with (top) geometric weights given

by decreasing distance between random points in Euclidean space and

(bottom) with no intrinsic structure obtained by shuffling the entries

of the correlation matrix. d Integrals of the curves from panel B show

that the data (thick bars) lie in the geometric regime (g) and that

the unstructured network model (s) is fundamentally different (p <

0.001). Similar geometric organization was observed in non-spatial

behaviors such as REM sleep. Figure reproduced with permission from

(Giusti et al. 2015)
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a collection of simplices — finite sets of vertices. Edges

are examples of very small simplices, making every graph a

particularly simple simplicial complex. In general, one must

satisfy the simplex condition, which requires that any subset

of a simplex is also a simplex.

Just as one can represent a graph as a collection of points

and line segments between them, one can represent the sim-

plices in a simplicial complex as a collection of solid regions

spanning vertices (Fig. 4d). Under this geometric interpre-

tation, a single vertex is a zero-dimensional point, while

an edge (two vertices) defines a one-dimensional line seg-

ment; three vertices span a two-dimensional triangle, and so

on. Terminology for simplices is derived from this geomet-

ric representation: a simplex on (n + 1) vertices is called

an n-simplex and is viewed as spanning an n-dimensional

region. Further, as the requisite subsets of a simplex rep-

resent regions in the geometric boundary of the simplex

(Fig. 4c), these subsets of a simplex are called its faces.

Because any given simplex is required to “contain all of

its faces”, it suffices to specify only the maximal simplices,

those which do not appear as faces of another simplex

(Fig. 4c). This dramatically reduces the amount of data nec-

essary to specify a simplicial complex, which helps make

both conceptual work and computations feasible.

In real-world systems, simplicial complexes possess

richly structured patterns that can be detected and charac-

terized using recently developed computational tools from

algebraic topology (Carlsson 2009; Lum et al. 2013), just

as graph theoretic tools can be used to study networks.

Importantly, these tools reveal much deeper properties of

the relationships between vertices than graphs, and many

are constructed not only to see structure in individual sim-

plicial complexes, but also to help one understand how

two or more simplicial complexes compare or relate to one

another. These capabilities naturally enable the study of

complex dynamic structure in neural systems, and formalize

statistical inference via comparisons to null models.

4 How do we encode neural data?

To demonstrate the broad utility of this framework, we turn

to describing a selection of the many types of simplicial

complexes that can be constructed from data: the clique

complex, the concurrence complex (Ellis and Klein 2014;

Curto and Itskov 2008; Dowker 1952), its Dowker dual

(Dowker 1952), and the independence complex (Kozlov

2007), as summarized in Table 1. In each case, we describe

the relative utility in representing different types of neural

data – from spike trains measured from individual neurons

to BOLD activations measured from large-scale brain areas.

Clique complex One straightforward method for con-

structing simplicial complexes begins with a graph where

vertices represent neural units and edges represent structural

or functional connectivity between those units (Fig. 4a–

b). Given such a graph, one simply replaces every clique

(all-to-all connected subgraph) by a simplex on the ver-

tices participating in the clique (Fig. 5a). This procedure

produces a clique complex, which encodes the same infor-

mation as the underlying graph, but additionally completes

the skeletal network to its fullest possible simplicial struc-

ture. The utility of this additional structure was recently

demonstrated in the analysis of neural activity measured

in rat hippocampal pyramidal cells during both spatial and

non-spatial behavior (including REM sleep) (Giusti et al.

2015) (Fig. 3). In contrast to analyses using standard graph-

theoretic tools, the pattern of simplices revealed the pres-

ence of geometric structure in only the information encoded

a b c                          dmaximal

simplex
0-simplex

1-simplex

2-simplex

3-simplex
boundary

faces

Fig. 4 Simplicial complexes generalize network models. a A graph

encodes elements of a neural system as vertices and dyadic rela-

tions between them as edges. b–c Simplicial complex terminology.

A simplicial complex is made up of vertices and simplices, which

are defined in terms of collections of vertices. b A n-simplex can be

thought of as the convex hull of (n + 1) vertices. c The boundary of

a simplex consists of all possible subsets of its constituent vertices,

called its faces, which are themselves required to be simplices in

the complex. A simplex which is not in the boundary of any other

simplex is called maximal. d A simplicial complex encodes polyadic

relations through its simplices. Here, in addition to the dyadic relations

specified by the edges, the complex specifies one four-vertex rela-

tion and three three-vertex relations. The omission of larger simplices

where all dyadic relations are present, such as the three bottom-left

vertices or the four top-left vertices, encodes structure that cannot be

specified using network models
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Table 1 Comparison of

sample types of simplicial

complexes for encoding neural

data

Simplicial Complex Type Utility

Graph General framework for encoding dyadic relations

Clique Complex Canonical polyadic extension of existing network models

Concurrence Complex/Dual Relationships between two variables of interest

e.g., time and activity, or activity in two separate regions

Independence Complex Structure where non-membership satisfies the simplex property

e.g., communities in a network

in neural population activity correlations that – surprisingly

– could be identified and characterized independently from

the animal’s position. This application demonstrates that

simplicial complexes are sensitive to organizational princi-

ples that are hidden to graph statistics, and can be used to

infer parsimonious rules for information encoding in neural

systems.

Clique complexes precisely encode the topological fea-

tures present in a graph. However, other types of simplicial

complexes can be used to represent information that cannot

be so encoded in a graph.

Concurrence complex Using cofiring, coactivity, or con-

nectivity as before, let us consider relationships between

two different sets of variables. For example, we can con-

sider (i) neurons and (ii) times, where the relationship is

given by a neuron firing in a given time (Fig. 5b) (Curto and

Itskov 2008); a similar framing exists for (i) brain regions

and (ii) times, where the relationship is given by a brain

region being active at a given time (Ellis and Klein 2014).

Alternatively, we can consider (i) brain regions in the motor

system and (ii) brain regions in the visual system, where

the relationship is given by a motor region displaying simi-

lar BOLD activity to a visual region (Fig. 5c) (Bassett et al.

2015). In each case, we can record the patterns of relation-

ships between the two sets of variables as a binary matrix,

where the rows represent elements in one of the variables

(e.g., neurons) and the columns the other (e.g., times), with

non-zero entries corresponding to the row-elements in each

column sharing a relation (e.g., firing together at a single

time). The concurrence complex is formed by taking the

rows of such a matrix as vertices and the columns to rep-

resent maximal simplices consisting of those vertices with

non-zero entries (Dowker 1952). A particularly interesting

feature of this complex is that it remains naive to coactivity

patterns that do not appear, and this naivety plays an impor-

tant role in its representational ability; for example, such

a complex can be used to decode the geometry of an ani-

mal’s environment from observed hippocampal cell activity

(Curto and Itskov 2008).

a

time

B
O

L
D

 s
ig

n
a

l

matrix complex

network

parcellation

time matrix complex fields motor

visual

n
e

u
ro

n
s

m
o

to
r

v
is

u
a

l

b

c

Fig. 5 Simplicial complexes encode diverse neural data modalities. a

Correlation or coherence matrices between regional BOLD time series

can be encoded as a type of simplicial complex called a clique complex,

formed by taking every complete (all-to-all) subgraph in a binarized

functional connectivity matrix to be a simplex. b Coactivity patterns

in neural recordings can be encoded as a type of simplicial complex

called a concurrence complex. Here, we study a binary matrix in which

each row corresponds to a neuron and each column corresponds to a

collection of neurons that is observed to be coactive at the same time

(yellow boxes) – i.e., a simplex. c Thresholded coherence between

the activity patterns of motor regions and visual regions in human

fMRI data during performance of a motor-visual task (Bassett et al.

2013). (top) We can construct a concurrence complex whose vertices

are motor regions and whose simplices are families of motor regions

whose activity is strongly coherent with a given visual region. (bottom)

We can also construct a dual complex whose vertices are families of

motor regions. The relationship between these two complexes carries

a great deal of information about the system (Dowker 1952)
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Moving to simplicial complex models provides a dramat-

ically more flexible framework for specifying data encod-

ing than simply generalizing graph techniques. Here we

describe two related simplicial complex constructions from

neural data which cannot be represented using network

models.

Dowker dual Beginning with observations of coactivity,

connection or cofiring as before, one can choose to represent

neural units as simplices whose constituent vertices repre-

sent patterns of coactivity in which the unit participates.

Expressing such a structure as a network would necessitate

every neural unit participating in precisely two activity pat-

terns, an unrealistic requirement, but this is straightforward

in the simplicial complex formalism. Mathematically speak-

ing, one can think of the matrix encoding this complex as the

transpose of the matrix encoding the concurrence complex;

such “dual” complexes are deeply related to one another, as

first observed in (Dowker 1952). Critically, this formulation

refocuses attention (and the output of various vertex-based

statistical measures) from individual neural units to patterns

of coactivity.

Independence complex It is sometimes the case that an

observed structure does not satisfy the simplicial complex

requirement that subsets of simplices are also simplices,

but its complement does. One example of interest is the

collection of communities in a network (Fortunato 2010;

Porter et al. 2009): communities are subgraphs of a network

whose vertices are more densely connected to one another

than expected in an appropriate null model. The collection

of vertices in the community is not necessarily a simplex,

because removing densely connected vertices can cause a

community to dissolve. Thus, community structure is well-

represented as a hypergraph (Bassett et al. 2014), though

such structures are often less natural and harder to work with

than simplicial complexes. However, in this setting, one can

take a simplex to be all vertices not in a given community.

Such a simplicial complex is again essentially a concurrence

complex: simply negate the binary matrix whose rows are

elements of the network and columns correspond to commu-

nity membership. Such a complex is called an independence

complex (Kozlov 2007), and can be used to study prop-

erties of a system’s community structure such as dynamic

flexibility (Bassett et al. 2011, 2013).

Together, these different types of complexes can be used

to encode a wide variety of relationships (or lack thereof)

among neural units or coactivity properties in a simple

matrix that can be subsequently interrogated mathemati-

cally. This is by no means an exhaustive list of complexes of

potential interest to the neuroscience community; for further

examples, we recommend (Ghrist 2014; Kozlov 2007).

5 How do we measure the structure of simplicial

complexes?

Just as with network models, once we have effectively

encoded neural data in a simplicial complex, it is necessary

to find useful quantitative measurements of the resulting

structure to draw conclusions about the neural system of

interest. Because simplicial complexes generalize graphs,

many familiar graph statistics can be extended in interesting

ways to simplicial complexes. However, algebraic topol-

ogy also offers a host of novel and very powerful tools that

are native to the class of simplicial complexes, and can-

not be naturally derived from well known graph theoretical

constructs.

Graph theoretical extensions First, let us consider how

we can generalize familiar graph statistics to the world

of simplicial complexes. The simplest local measure of

structure – the degree of a vertex – naturally becomes a

vector-measurement whose entries are the number of max-

imal simplices of each size in which the vertex participates

(Fig. 6a). Although a direct extension of the degree, this

vector is perhaps more intuitively thought of as a generaliza-

tion of the clustering coefficient of the vertex: in this setting

we can distinguish empty triangles, which represent three

dyadic relations but no triple-relations, from 2-simplices

which represent clusters of three vertices (and similarly for

larger simplices).

Just as we can generalize the degree, we can also gener-

alize the degree distribution. Here, the simplex distribution

or f-vector is the global count of simplices by size, which

provides a global picture of how tightly connected the ver-

tices are; the maximal simplex distribution collects the same

data for maximal faces (Fig. 6a). While these two measure-

ments are related, their difference occurs in the complex

patterns of overlap between simplices and so together they

contain a great deal of structural information about the sim-

plicial complex. Other local and global statistics such as

efficiency and path length can be generalized by considering

paths through simplices of some fixed size, which provides

a notion of robust connectivity between vertices of the sys-

tem (Dlotko et al. 2016); alternately, a path through general

simplices can be assigned a strength coefficient depend-

ing on the size of the maximal simplices through which it

passes.

Algebraic-topological methods Such generalizations of

graph-theoretic measures are possible, and likely of sig-

nificant interest to the neuroscience community, however

they are not the fundamental statistics originally developed

to characterize simplicial complexes. In their original con-

text, simplicial complexes were used to study shapes, using

algebraic topology to measure global structure. Thus, this
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Fig. 6 Quantifying the structure of a simplicial complex. a General-

izations of the degree sequence for a simplicial complex. Each vertex

has a degree vector giving the number of maximal simplices of each

degree to which it is incident. The f-vector gives a list of how many

simplices of each degree are in the complex, and the maximal sim-

plex distribution records only the number of maximal simplices of

each dimension. b Closed cycles of dimension 1 and 2 in the com-

plex from panel (a). (left) There are two inequivalent 1-cycles (cyan)

up to deformation through 2-simplices, and (right) a single 2-cycle

(cyan) enclosing a 3-d volume. The Betti number vector β gives an

enumeration of the number of n-cycles in the complex, here with

n = 0, 1 and 2; the single 0-cycle corresponds to the single connected

component of the complex. c Schematic representation of the recon-

struction of the presence of an obstacle in an environment using a

concurrence complex constructed from place cell cofiring (Curto and

Itskov 2008). By choosing an appropriate cofiring threshold, based on

approximate radii of place cell receptive fields, there is a single 1-cycle

(cyan), up to deformation through higher simplices, indicating a large

gap in the receptive field coverage where the obstacle appears

framework also provides new and powerful ways to measure

biological systems.

The most commonly used of these measurements is the

(simplicial) homology of the complex, which is actually a

sequence of measurements. The nth homology of a simpli-

cial complex is the collection of (closed) n-cycles, which are

structures formed out of n-simplices (Fig. 6b), up to a notion

of equivalence. While the technical details are subtle, an

n-cycle can be understood informally to be a collection of

n-simplices that are arranged so that they have an empty

geometric boundary (Fig 6b). For example, a path between

a pair of distinct vertices in a graph is a collection of 1-

simplices, the constituent edges, whose boundary is the pair

of endpoints of the path; thus it is not a 1-cycle. However, a

circuit in the graph is a collection of 1-simplices which lie

end-to-end in a closed loop and thus has empty boundary;

therefore, circuits in graphs are examples of 1-cycles. Sim-

ilarly, an icosahedron is a collection of twenty 2-simplices

which form a single closed 2-cycle.

We consider two n-cycles to be equivalent if they form

the boundary of a collection of (n + 1)-simplices. The sim-

plest example is that the boundary of any (n + 1)-simplex,

while necessarily a cycle, is equivalent to the trivial n-cycle

consisting of no simplices at all because it is “filled in” by

the (n + 1)-simplex (Fig. 4c). Further, the endpoints of any

path in a graph are equivalent 0-cycles in the graph (they

are precisely the boundary of the collection of edges which

make up the path) and so the inequivalent 0-cycles of a

graph (its 0th homology) are precisely its components.

Cycles are an example of global structure arising from

local structure; simplices arrayed across multiple vertices

must coalesce in a particular fashion to encircle a “hole”

not filled in by other simplices, and it is often the case that such

a structure marks feature of interest in the system (Fig. 6c).

In many settings, a powerful summary statistic is simply a

count of the number of inequivalent cycles of each dimension

appearing in the complex. These counts are called Betti

numbers, and we collect them as a vector β (Fig. 6b).

In the context of neural data, the presence of multiple

homology cycles indicates potentially interesting structure

whose interpretation depends on the meaning of the ver-

tices and simplices in the complex. For example, the open

triangle in the complex of Fig. 5b is a 1-cycle represent-

ing pairwise coactivity of all of the constituent neurons but

a lack of triple coactivity; thus, the reconstructed receptive

field model includes no corresponding triple intersection,

indicating a hole or obstacle in the environment. In the con-

text of regional coactivity in fMRI, such a 1-cycle might

correspond to observation of a distributed computation that

does not involve a central hub. Cycles of higher dimen-

sion are more intricate constructions, and their presence

or absence can be used to detect a variety of other more

complex, higher-order features.

6 Filtrations: a tool to assess hierarchical

and temporal structure

In previous sections we have seen how we can construct

simplicial complexes from neural data and interrogate the
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structure in these complexes using both extensions of com-

mon graph theoretical notions and completely novel tools

drawn from algebraic topology. We close the mathemati-

cal portion of this exposition by discussing a computational

process that is common in algebraic topology and that

directly addresses two critical needs in the neuroscience

community: (i) the assessment of hierarchical structure in

relational data via a principled thresholding approach, and

(ii) the assessment of temporal properties of stimulation,

neurodegenerative disease, and information transmission.

Filtrations to assess hierarchical structure in weighted

networks One of the most common features of network

data is a notion of strength or weight of connections between

nodes. In some situations, like measurements of correla-

tion or coherence of activity, the resulting network has

edges between every pair of nodes and it is common to

threshold the network to obtain some sparser, unweighted

network whose edges correspond to “significant” connec-

tions (Achard et al. 2006). However it is difficult to make

a principled choice of threshold (Ginestet et al. 2011;

Bassett et al. 2012; Garrison et al. 2015; Drakesmith et al.

2015; Sala et al. 2014; Langer et al. 2013), and the resulting

network discards a great deal of information. Even in the

case of sparse weighted networks, many metrics of structure

are defined only for the underlying unweighted network, so

in order to apply the metric, the weights are discarded and

this information is again lost (Rubinov and Bassett 2011).

Here, we describe a technique that is commonly applied in

the study of weighted simplicial complexes which does not

discard any information.

Generalizing weighted graphs, a weighted simplicial

complex is obtained from a standard simplicial complex by

assigning to each simplex (including vertices) a numeric

weight. If we think of each simplex as recording some

relationship between its vertices, then the assigned weight

records the “strength” of that relationship. Recall that we

require that every face of a simplex also appears in a simpli-

cial complex; that is, every subgroup of a related population

is also related. Analogously, we require that the strength of

the relation in each subgroup be at least as large as that in the

whole population, so the weight assigned to each simplex

must be no larger than that assigned to any of its faces.

Given a weighted simplicial complex, a filtration of

complexes can be constructed by consecutively applying

each of the weights as thresholds in turn, constructing

an unweighted simplicial complex whose simplices are

precisely those whose weight exceeds the threshold, and

labeling each such complex by the weight at which it was

binarized. The resulting sequence of complexes retains all

of the information in the original weighted complex, but one

can apply metrics that are undefined or difficult to compute

for weighted complexes to the entire collection, thinking

of the resulting values as a function parameterized by the

weights of the original complex (Fig. 7d). However, it is also

the case that these unweighted complexes are related to one

another, and more sophisticated measurements of structure,

like homology, can exploit these relations to extract much

finer detail of the evolution of the complexes as the thresh-

old varies (Fig. 7c). We note that the omni-thresholding

approach utilized in constructing a filtration is a common

theme among other recently developed methods for network

characterization, including cost integration (Ginestet et al.

2011) and functional data analysis (Bassett et al. 2012; Ellis

and Klein 2014).

The formalism described above provides a principled

framework to translate a weighted graph or simplicial com-

plex into a family of unweighted graphs or complexes that

retain all information in the weighting by virtue of their rela-

tionships to one another. However, filtrations are much more

generally useful: for example, they can be used to assess the

dynamics of neural processes.

Filtrations to assess temporal dynamics of neural

processes in health and disease Many of the challenges

faced by cutting edge experimental techniques in the field

of neuroscience are driven by the underlying difficulties

implicit in assessing temporal changes in complex patterns

of relationships. For example, with new optogenetics capa-

bilities, we can stimulate single neurons or specific groups

of neurons to control their function (Grosenick et al. 2015).

Similarly, advanced neurotechnologies including micros-

timulation, transcranial magnetic stimulation, and neuro-

feedback enable effective control over larger swaths of

cortex (Krug et al. 2015; Sulzer et al. 2013). With the advent

of these technologies, it becomes imperative to develop

computational tools to quantitatively characterize and assess

the impact of stimulation on system function, and more

broadly, to understand how the structure of a simplicial

complex affects the transmission of information.

To meet this need, one can construct a different type of

filtration, such as that introduced in (Taylor et al. 2015) in
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Fig. 7 Filtrations of a weighted simplicial complex measure dynamic

network properties. a A neural system can be stimulated in precise

locations using electrical, magnetic or optogenetic methods and the

resulting activity recorded. b A filtration of simplicial complexes is

built by recording as maximal faces all patterns of coactivity observed

up to a given time. A filtration can be constructed from any weighted

simplicial complex by thresholding at every possible weight to produce

a sequence of standard simplicial complexes, each sitting inside the

next.. c A persistence diagram recording the appearance (“birth”) and

disappearance or merging (“death”) of homology cycles throughout

the filtration in panel (b). Cycles on the top edge of the diagram are

those that do not die. Tracking equivalent cycles through the filtration

provides information about the evolution of structure as the filtration

parameter changes. d Betti curves are the Betti numbers for each com-

plex in the filtration of panel (b) represented as functions of time.

Such curves can be constructed for any numerical measurement of

the individual unweighted simplicial complexes in the filtration and

provide a more complete description of structure than the individual

measurements taken separately

the context of graphs: construct a sequence of simplicial

complexes with a time parameter, labeling each simplex as

“on” or “off” at each time, and require that once simplices

“turn on” they remain so indefinitely. If the function has the

further requirement that in order for a simplex to be active,

all of its faces must be as well, then a filtration is obtained by

taking all active simplices at each time. Such functions are

quite natural to apply to the study of the pattern of neurons

or neural units that are activated following stimulation.

Interestingly, this type of filtration is also a natural way in

which to probe and reason about models of neurodegenera-

tive disease such as the recently posited diffusion model of

fronto-temporal dementia (Raj et al. 2012; Zhou et al. 2012).

Here, critical network epicenters form points of vulnerabil-

ity that are effected early in the disease, and from which

toxic protein species travel via a process of transneuronal

spread. Indeed, these filtrations were first introduced in the

context of contagion models (Taylor et al. 2015), where

a simplex becomes active once sufficiently many nearby

simplices are active.

Measuring the structure of filtrations Assuming we have

encoded our data in an appropriate filtration, guided by

our scientific hypothesis of interest, we might next wish

to quantitatively characterize and measure the structure in

those filtrations. It is important to note that any given mea-

sure of the structure of a simplicial complex can be applied

to each complex in a filtration in turn, producing a function

from the set of weights appearing in the complex to the set

of values the measure can take (Fig. 7d). This function is

a new measure of the structure of the complex which does

not rely on thresholds and can highlight interesting details

that would not be apparent at any fixed threshold (or small

range of thresholds), as well as being more robust to pertur-

bations in the weights than measurements of any individual

complex in the filtration.

Of particular interest in this setting are those quantita-

tive measures whose evolution can be explicitly understood

in terms of the relationships between successive complexes

in the filtration, as then we can exploit this framework

to gain a more refined picture of the structure present in

the weighted simplicial complex. Central among these in

terms of current breadth of application and computability is

persistent homology, which extends the homology of each

individual complex in the filtration by tracking how cycles

change as simplices are added when their weight exceeds

the threshold: new cycles can form, and due to the notion

of equivalence, cycles can also merge change shape, and

potentially finally be filled in by larger simplices. Therefore,

the sequence of complexes in the filtration is transformed

by homology into an inter-related family of evolving cycles.

Inside this sequence, cycles have well-defined birth and

death weights, between which very complex interactions are

possible. This information is often encoded in persistence

diagrams for each degree n (Fig. 7c), scatter plots of birth

and death weights for each cycle which give a schematic
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overview of how the cycles are born and die. Understand-

ing these persistence lifetimes of individual cycles in the

system and their statistics can provide critical information

about how the system is arranged.

7 Conclusion

We are at a uniquely opportune moment, in which a wealth

of tools and computational methods are poised for prin-

cipled development directed toward specific critical neu-

roscience challenges. With the feverish rise of data being

collected from neural systems across species and spatial

scales, mathematicians and experimental scientists must

necessarily engage in deeper conversation about how mean-

ing can be drawn from minutia. Such conversations will

inevitably turn to the common understanding that it is not

necessarily the individual objects of study themselves, but

their relations to one another, that provide the real structure

of human and animal thought. Though originally developed

for entirely different purposes, the algebraic topology of

simplicial complexes provides a quantitative methodology

uniquely suited to address these needs.
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Appendix

Computational aspects

The primary computational challenge in the methods here

surveyed is computing the homology of a simplicial com-

plex (or a filtration thereof). This is a significant challenge,

from the view of computational complexity. The follow-

ing facts are well-known (Dumas et al. 2003): the standard

algorithm for computing homology involves computing the

Smith normal form of a matrix (the boundary operator). In

general, the time-complexity is doubly-exponential in the

size of the matrix; it reduces to cubic complexity for simple

(binary) coefficients and quadratic complexity for a sparse

matrix. Worse still, the size of the relevant matrix is the

total number of simplices, which grows exponentially with

the dimension. This makes both space complexity (memory)

and time complexity (runtime) an issue. For example, com-

puting the persistent homology from correlation data of 100

neurons leads to a simplicial complex with approximately

107 4-simplices, while the same computation for a popula-

tion of 200 neurons involves two orders of magnitude more.

However, there are a number of ways to exploit the

structure inherent in simplicial complexes to mitigate this

combinatorial growth in complexity. One effective approach

is to use preprocessing to collapse the size of the complex

– sometimes dramatically – without changing the homol-

ogy. This is the basis of various reduction algorithms: see,

e.g., (Kaczynski et al. 2004; Mischaikow and Nanda 2013).

Another approach is to use the fact that homology can be

computed locally and then aggregated, allowing for dis-

tributed computation over multiple processors and memory

cores (Bauer et al. 2014). Finally, computing approximate

homology further reduces complexity in difficult cases

while still providing useful statistical information (Sheehy

2013).

A comprehensive survey on the state-of-the-art in homol-

ogy software with benchmarks as of late 2015 appears in

(Otter et al. 2015). Because algorithmic computations of

topological quantities is a relatively recent innovation and

because the field is now being driven by accelerating inter-

est in the broader scientific community, it is our expectation

that new ideas and better software implementations will dra-

matically improve our ability to perform these computations

over the next few years. Further, as is commonly the case,

computations on “organic” data outperform the worst-case

expectations for the algorithms; in practice, the difficulty of

homology computation in a particular dimension tends to

grow linearly in the number of simplices in that dimension.

Thus, we are optimistic that the computational tools nec-

essary to apply these ideas to neural data will be available

to meet the needs of the neuroscience community as they

arise.
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