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137 ancient human genomes from across
the Eurasian steppes
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For thousands of years the Eurasian steppes have been a centre of human migrations and cultural change. Here we
sequence the genomes of 137 ancient humans (about 1x average coverage), covering a period of 4,000 years, to understand
the population history of the Eurasian steppes after the Bronze Age migrations. We find that the genetics of the Scythian
groups that dominated the Eurasian steppes throughout the Iron Age were highly structured, with diverse origins
comprising Late Bronze Age herders, European farmers and southern Siberian hunter-gatherers. Later, Scythians
admixed with the eastern steppe nomads who formed the Xiongnu confederations, and moved westward in about the
second or third century BcC, forming the Hun traditions in the fourth-fifth century AD, and carrying with them plague
that was basal to the Justinian plague. These nomads were further admixed with East Asian groups during several short-
term khanates in the Medieval period. These historical events transformed the Eurasian steppes from being inhabited
by Indo-European speakers of largely West Eurasian ancestry to the mostly Turkic-speaking groups of the present day,
who are primarily of East Asian ancestry.

The Eurasian steppes stretch about 8,000 km from Hungary and
Romania in the west to Mongolia and northeastern China in the east.
These regions have, in the past four to five millennia, been domi-
nated first by Iranian- and later by Turkic- and Mongolic-speaking
nomadic groups with herding and warrior economies. To understand

the population genetic processes associated with the linguistic and
cultural changes of the steppes after the Bronze Age migrations!3,
we sequenced 137 ancient genomes—to about 1 x average depth (see
Supplementary Tables 1, 2)—from Europe to Mongolia and the Altai

to Tian Shan mountains; these genomes covered approximately 4,000
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Fig. 1 | Cultural and geographical presentation of the ancient samples.
a, Geographical distribution of samples. Symbols correspond to samples
of a specific age: circle, Bronze Age; square, Iron Age; diamond, Hun
period; triangle upwards, Turk period; triangle downwards, Medieval
period. b, Each symbol has been sorted according to geographical region

years (about 2500 Bc-aD 1500) (Fig. 1). A list of the population labels
used throughout this Article can be found in Supplementary Table 3.
Furthermore, we genotyped 502 individuals of 16 self-reported eth-
nicities from across Central Asia, Altai, Siberia and the Caucasus
(Supplementary Table 4 and Supplementary Information section 5).
In the process, we tested differential ancient DNA preservation in
organic contrasted mineral substrate (Supplementary Information
section 6), and generated 83 new accelerator mass spectrometry dates
(Supplementary Information section 11).

The genomic origins of the Scythian confederations
Between about 800 and 200 Bc, the Eurasian steppes became dominated
by the Iranian-speaking Scythians. This confederation was divided into
geographically distinct groups, but was united by similarities in cul-
tural expression*. However, the origins and population structure of the
Scythians remain contested, as can be summarized in three competing
models: (1) the Scythians deriving from a single source originating in
the northern Caucasus or steppe region®~; (2) an origin in southern
Siberia or east-central Asia, moving westwards®?; and finally (3) the
Scythians being a product of multiple transitions taking place locally,
involving social and cultural borrowing in combination with gradual,
small-scale human movements'%-"3.

Using principal component analysis (PCA) and ADMIXTURE analyses
(Fig. 2 and Extended Data Fig. 1), we observe a clear separation between
two groups of Iron Age Scythians: the Hungarian Scythians and the Inner
Asian Sakas. Furthermore, we find fine-scaled structure within the Inner
Asian Sakas that separates (1) the populations associated with the ‘“Tagar’
culture of southern Siberia, (2) the ‘Central Sakas’ of the central steppe—
most of whom have been described as belonging to the Tasmola culture
(Supplementary Information section 3)—and (3) the “Tian Shan Sakas’
of the Tian Shan mountain range (see map in Fig. 1). These differences
reflect the confederal nature of the Scythian organization.
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highlighted on the map in a, and given in the grey boxes in b. C, Caucasus;
CS, central steppe; ES, eastern steppe; HP, Hungarian plains; PS, Pontic
steppe; STE, Siberia, Tungus and eastern steppe (STE is not marked on the
map in a, but includes steppe and non-steppe areas).

Recent genetic models suggested the presence of Yamnaya and/or
Afanasievo ancestry in Scythians'!, which we assessed here using a new
set of outgroups that enabled us to distinguish between Early and Late
Bronze Age steppe ancestry (Supplementary Information section 3.6).
We find that the Late Bronze Age herders are a better genetic source
for the West Eurasian ancestry in Scythians than are Early Bronze Age
Yamnaya or Afanasievo, the key difference being their European farmer
ancestry (Supplementary Table 5). Using ADMIXTURE models'* we
also illustrate the shared ancestry between Neolithic farmers (from
Anatolia or Europe), Late Bronze Age herders and Iron Age steppe
nomads that is not shared with Yamnaya herders (Extended Data
Fig. 2 and Supplementary Fig. 163). These findings are consistent with
archaeological models.

Using D-statistics (Supplementary Information section 3.7), we
then characterized the sources of admixture into the various Scythian
groups relative to the Late Bronze Age steppe herders. We find that
Hungarian Scythians had relatively increased European farmer ances-
try (Extended Data Fig. 3) and show no signs of gene flow from Inner
Asian groups. Conversely, Inner Asian Sakas show relatively increased
southern Siberian hunter-gatherer ancestry with the strongest gene
flow observed into the Central Sakas. This East Asian admixture is also
reflected in the negative admixture f; values, indicating that Late Bronze
Age pastoralists and southern Siberian hunter-gatherers are excellent
proxies for the admixing populations (Extended Data Fig. 4). We con-
firm the differences between these Iron Age steppe groups through
D-statistics (Supplementary Information section 3.7). The increase in
Neolithic Iranian ancestry in the Tian Shan Sakas is significant when
compared to Central Sakas; the Tagar display increased eastern hunter-
gatherer (EHG) ancestry compared to all other Scythians. Lastly, the
high genetic differentiation between western and eastern Scythians is
emphasized by observing higher fixation index (Fsr) values between
Hungarian Scythians and all Inner Asian Sakas (Fsr ranges from 0.24

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved
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Fig. 2 | Principal component analyses. The principal components 1
and 2 were plotted for the ancient data analysed with the present-day
data (no projection bias) using 502 individuals at 242,406 autosomal
SNP positions. Dimension 1 explains 3% of the variance and represents a
gradient stretching from Europe to East Asia. Dimension 2 explains 0.6%

to 0.3) than observed among the different Inner Asian Sakas groups
(Fst ranges from 0.15 to 0.2) (Supplementary Table 6).

The qpAdm modelling® of this ancient genomic dataset is consistent
with these findings. The Central Sakas can be modelled as a simple
two-way mixture of Late Bronze Age pastoralists and southern Siberian
hunter-gatherers, with almost equal proportions of Bronze Age herder
(56%) and southern Siberian hunter-gatherer ancestry (44%). The
southern Siberian Tagar show unequal ancestry contributions from
Bronze Age herders (83.5%) and southern Siberian hunter-gatherers
(7.5%), as well as an additional contribution of Mal'ta (MA1 individual)-
like ancestry (9%), indicating differences in the sources of hunter-gatherer
admixture across the Sakas. The Saka population of the Tian Shan
mountains displays a high proportion of Late Bronze Age steppe
herder ancestry (70%) followed by southern Siberian hunter-gatherer
ancestry (25%), and also an additional 5% ancestry coming from a
source related to a Neolithic population from Iran. Taken together,
our data do not support the recent mtDNA-based claim of extensive
gene flow between the different Scythian groups'!, but instead indicate
admixture between populations of Late Bronze Age herder descent and
various local groups, consistent with the multiple origins model
(model 3 described above).

Our data show that the culturally similar Scythians represented
genetically structured groups within the Eurasian steppes. In particular,
the Siberian Tagar, Central Sakas and the Tian Shan Sakas were
Scythian groups that arose through admixture between Late Bronze
Age pastoral groups and Inner Asian hunter-gatherers, in contrast to
the Hungarian Scythians who received gene flow from farming groups
within Europe. The additional gene flow from a source related to the
Neolithic Iranians detected in the Tian Shan Sakas suggests that south-
ern steppe nomads also interacted with the civilization of the Bactria-
Margiana archaeological complex of present-day eastern Turkmenistan.

The Xiongnu and the Hunnic expansions

Turkic language elements arguably first emerged among the Xiongnu
nomads'?, a confederation of several nomadic tribes who occupied the
eastern steppe from the third century Bc. They are believed to be of East
Asian ancestry'®"’, although ancient Y-chromosomal data have indi-
cated a possibly heterogeneous population admixed with central steppe
nomads'®. Huns (thirdfifth century Ap) have previously been argued
to derive directly from the Xiongnu', although others have claimed
that there is no evidence connecting the two groups?. It is commonly
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with EHGs. BA, Bronze Age; EMBA, Early-to-Middle Bronze Age; SHG,
Scandinavian hunter-gatherers.

believed that the Huns spread westward, disseminating Turkic lan-
guages throughout Central Asia at the cost of Iranian languages.
It is known that the expansion of the Xiongnu nomads affected the
movements of other cultural groups from the south-eastern side of the
Tian Shan Mountains, such as the Wusun and Kangju, whose genetic
ancestries have so far remained unknown. It has tentatively been sug-
gested on the basis of the archaeological record that they belonged to
the Iranian-speaking branch of the Indo-European language family?!.

Principal component analyses and D-statistics suggest that the
Xiongnu individuals belong to two distinct groups, one being of East
Asian origin and the other presenting considerable admixture lev-
els with West Eurasian sources (Fig. 2 and Extended Data Figs. 1, 5;
in Fig. 2 these are labelled Xiongnu’ and ‘western Xiongnu), respec-
tively). We find that Central Sakas are accepted as a source for these
‘western-admixed’ Xiongnu in a single-wave model. Consistent with
this finding, no East Asian gene flow is detected compared to Central
Sakas as these form a clade with respect to the East Asian Xiongnu in a
D-statistic, and cluster closely together in the PCA (Fig. 2).

We used D-statistics (Supplementary Information section 3.7) to
investigate the genetic relationship between Iron Age nomads, the East
Asian Xiongnu and the early Huns of the Tian Shan. We find that the
Huns have increased shared drift with West Eurasians compared to
the Xiongnu (Extended Data Fig. 6). We tested for patterns of shared
drift between the Xiongnu and the Wusun, the preceding Sakas and
the slightly later Huns (second century Ap). We find that both the ear-
lier Sakas and the later Huns have more East Asian ancestry than the
Wausun. This is also apparent from model-based clustering and PCA
(Extended Data Fig. 7). Similar results are seen with the contemporane-
ous and later Kangju groups that—as did the Wusun—re-emerged into
the central steppe from south-east of the Tian Shan mountains. In addi-
tion, both groups require a Neolithic Iranian-related source for model-
ling ancestral proportions in the qpAdm framework (Supplementary
Table 7), together with Late Bronze Age pastoralists and the southern
Siberian hunter-gatherers. We therefore suspect that the Wusun and
Kangju groups are descendants of Bronze Age pastoralists that inter-
acted with the civilization of the Bactria-Margiana archaeological com-
plex in southern Uzbekistan and eastern Turkmenistan, yet remained
much less admixed with East Asians than did the Iron Age steppe Sakas.

Overall, our data show that the Xiongnu confederation was genet-
ically heterogeneous, and that the Huns emerged following minor
male-driven East Asian gene flow into the preceding Sakas that they
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ancestry in the central steppe nomads coupled to a decrease in ancestry
associated with EHGs, starting at a high level in Yamnaya and finishing

invaded (see Supplementary Information section 3.6 for sex-biased
admixture rates). As such our results support the contention that the
disappearance of the Inner Asian Scythians and Sakas around two
thousand years ago was a cultural transition that coincided with the
westward migration of the Xiongnu. This Xiongnu invasion also led to
the displacement of isolated remnant groups—related to Late Bronze
Age pastoralists—that had remained on the south-eastern side of the
Tian Shan mountains.

Repeated conquests and waves of East Asian impact

In the sixth century Ap, the Hunnic Empire had been broken up and
dispersed as the Turkic Khaganate assumed the military and political
domination of the steppes®>?*. Khaganates were steppe nomad politi-
cal organizations that varied in size and became dominant during this
period; they can be contrasted to the previous stateless organizations
of the Tron Age?*. The Turkic Khaganate was eventually replaced by a
number of short-lived steppe cultures?. These included the Kipchak
and the Tungusic Kimak populations, which spread southwards
towards the Tian Shan mountains and westward towards the Ural
mountains to form the Kimak Khaganate of the central steppe during
the eighth to eleventh centuries AD?. During the eleventh century, the
Kimak Khaganate was overthrown by local Kipchak groups, who in
turn allied themselves with the Cuman of West Eurasia. Eventually the
short-lived khaganates were overtaken by the Mongol Empire, which
emerged through the unification of East Mongolian and Transbaikalian
tribes and which expanded considerably during the rule of Genghis
Khan in the thirteenth century ap?®?’ (Supplementary Information
section 1).

We find evidence that elite soldiers associated with the Turkic
Khaganate are genetically closer to East Asians than are the preceding
Huns of the Tian Shan mountains (Supplementary Information sec-
tion 3.7). We also find that one Turkic Khaganate-period nomad was
a genetic outlier with pronounced European ancestries, indicating the
presence of ongoing contact with Europe. Only one sample here repre-
sents Kimak nomads, and it does not show elevated East Asian ancestry
(Supplementary Information section 3.7). During the Kipchak period
in the eleventh century ap, the domination of the central steppe was
allegedly assumed by another group originating from the geographical
area of Tuva. We present genomic data from two individuals from this
period, one of whom shows increased East Asian ancestry, whereas the
other has pronounced European ancestry (samples DA23 and DA179,
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at a low level in present-day Kazakh and Kyrgyz individuals. The set of
outgroups used is: Mbuti, Ust Ishim, Clovis, Kostenkil4 and Scandinavian
hunter-gatherers.

respectively, in Supplementary Information section 4). These individ-
uals date to the Cuman-Kipchak alliance, which incorporated both
the western and eastern steppe. For the period in which the region
became incorporated into the Karakhanid Khanate—which encom-
passed present-day regions of Uzbekistan, Tajikistan, Kazakhstan and
Kyrgyzstan—D-statistics identify a small influx of East Asian ancestry
compared to the earlier Turk period. Consistent with this, nomads
in the Karakhanid period are shifted towards East Asians compared
to earlier Turks in the PCA plot (Fig. 2 and Extended Data Fig. 8).
Additionally, we analysed ten culturally unaffiliated Medieval-period
nomads, most of whom showed pronounced East Asian ancestry, albeit
in very different proportions (Extended Data Fig. 8). We also find the
presence of an individual of West Eurasian descent buried together
with members of Jochi Khan’s Golden Horde army from the Ulytau
mountains (see Supplementary Information section 4: DA28 is East
Asian and DA29 is European). This could suggest assimilation of dis-
tinct groups into the Medieval Golden Horde, but this individual may
also represent a slave or a servant of West Eurasian descent attached to
the service of the Golden Horde members.

These results suggest that Turkic cultural customs were imposed by
an East Asian minority elite onto central steppe nomad populations,
resulting in a small detectable increase in East Asian ancestry. However,
we also find that steppe nomad ancestry in this period was extremely
heterogeneous, with several individuals being genetically distributed
at the extremes of the first principal component (Fig. 2) separating
Eastern and Western descent. On the basis of this notable heterogeneity,
we suggest that during the Medieval period steppe populations were
exposed to gradual admixture from the east, while interacting with
incoming West Eurasians. The strong variation is a direct window into
ongoing admixture processes and the multi-ethnic cultural organiza-
tion of this period.

Origins and spread of the Justinian plague

A few decades after the period of Hunnic-driven mobility across the
Eurasian steppes, large areas of Europe were depopulated owing to the
Justinian plague pandemic?®. Although the first reports of the pan-
demic point to an outbreak in Egypt from where it is thought to have
spread into Europe?, the primordial origins of the Justinian plague
remain unknown. The most basal strains of present-day plague (0.PE7
clade) have been found in Qinghai, south-east of the Tian Shan moun-
tains®, and the clade basal to the Justinian plague (0.ANT1) was found
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in Xinjiang in China, thus pointing to a possible Inner Asian origin of
the Justinian plague.

We find that two individuals, DA101 and DA147 (see Supplementary
Information section 7), show detectable levels of Yersinia pestis DNA,
compatible with the characterization of the full genome sequence
at 8.7x and 0.24 x coverage. The first individual (DA101) is a Hun
from the Tian Shan mountains and dates to approximately ap 180,
and the second individual (DA147) is from the Alan culture from
North Ossetia and is estimated archaeologically to date to the sixth-
ninth century Ap. The genome of the Y. pestis strain DA101, which we
name 0.ANTS5, branches off from the main plague lineage just basal
to the Justinian plague strain 0.ANT4, identified from an individ-
ual in Aschheim (Germany) and dated to about Ap 530% (Extended
Data Fig. 9). As expected, the Tian Shan strain contained the ymt
gene reported to be missing in the more-ancestral Bronze Age plague
strains®!. The strain also displayed the loss of function mutations in
pde2, pde3, rcsA and ureD that are required for flea transmission in
the traditional ‘blocked flea’ model®? (Extended Data Fig. 9). This,
coupled with a fully functional plasminogen activator gene, indicates
that the ‘Hunnic’ plague strain had full bubonic capability and flea
transmissibility.

The fact that we find a higher number of strain-specific variants
in the Aschheim strain is consistent with the difference in sampling
time (approximately AD 180 versus approximately Ap 530) and the
potentially multiple replication cycles associated with pandemics®.
This is supported by the substitution rate on the branch leading to the
Aschheim strain being higher. Mutation rates in pathogens have been
hypothesized to be affected by epidemics, not only because of natural
selection but also owing to an increase in replication rate*’. Therefore,
our observation of an accelerated mutation rate is consistent with this
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hypothesis and supports the idea that the Ascheim strain was respon-
sible for a major outbreak—the Justinian plague.

Given that the most basal strains of present-day plague (0.PE7 clade)
originate in Qinghai®*® and the clade basal to the Justinian plague
(0.ANT1) is from Xinjiang (China), two areas close to the Tian Shan
mountains, we find provisional support for the hypothesis that the pan-
demic was brought to Europe towards the end of the Hunnic period
through the Silk Road along the southern fringes of the steppes.

Discussion

The overall population history that formed the genetic composition
of present-day steppe populations is illustrated in Fig. 3, in which we
model the entire known ancient and present-day diversity of Inner Asia
using the key ancestral groups. We also identify sex-specific admixture
proportions in the Iron Age (Extended Data Fig. 10 and Supplementary
Information section 3.6). In Fig. 4, we present the main migratory pat-
terns. Our findings fit well with current insights from the historical
linguistics of this region (Supplementary Information section 2). The
steppes were probably largely Iranian-speaking in the first and second
millennia Bc. This is supported by the split of the Indo-Iranian linguis-
tic branch into Iranian and Indian®’, the distribution of the Iranian lan-
guages, and the preservation of Old Iranian loanwords in Tocharian®*,
The wide distribution of the Turkic languages from Northwest China,
Mongolia and Siberia in the east to Turkey and Bulgaria in the west
implies large-scale migrations out of the homeland in Mongolia since
about 2,000 years ago®. The diversification within the Turkic languages
suggests that several waves of migration occurred®® and, on the basis of
the effect of local languages, gradual assimilation to local populations
had previously been assumed®’. The East Asian migration starting with
the Xiongnu accords well with the hypothesis that early Turkic was the
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major language of Xiongnu groups®®. Further migrations of East Asians
westwards find a good linguistic correlate in the influence of Mongolian
on Turkic and Iranian in the last millennium?. As such, the genomic
history of the Eurasian steppes is the story of a gradual transition from
Bronze Age pastoralists of West Eurasian ancestry towards mounted
warriors of increased East Asian ancestry—a process that continued
well into historical times.

Data availability

Sequence data were deposited in the European Nucleotide Archive (ENA) under
accession number PRJEB20658 (ERP022829). Single nucleotide polymorphism
data for present-day populations are available, after ethical validation, from
the European Genome-Phenome Archive (EGA, https://www.ebi.ac.uk/ega/)
under accession number EGAS00001002926. Plague reads were deposited in the
European Nucleotide Archive (ENA) under accession number PRJEB25891.
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Extended Data Fig. 1 | Analyses of Iron Age clusters. a, PCA of Iron
Age nomads and ancestral sources, explaining the diversity between
them using 74 individuals at 242,406 autosomal single nucleotide
polymorphism (SNP) positions. b, PCA of Iron Age nomads alone using
29 individuals at 242,406 autosomal SNP positions. ¢, PCA of Xiongnu,
‘Western’ Xiongnu, Tian Shan Huns, Nomads Hun Period, and Tian
Shan Sakas, using 39 individuals at 242,406 autosomal SNP positions.

d, Model-based clustering at K = 7 illustrating differences in ancestral
proportions. Labelled individuals: A, Andronovo; B, Neolithic European
(Europe_EN, in a); C, Baikal hunter-gatherers; D, Neolithic Iranian

(Iran_N, in a). Here we illustrate the admixture analyses with K = 7 as it
approximately identifies the major component of relevance (Anatolian/
European farmer component, Caucasian ancestry, EHG-related ancestry
and East Asian ancestry). The asterisk indicates an individual flagged as a
genetic outlier. d, e, Results for model-based clustering analysis at K =7.
Here we illustrate the admixture analyses with K = 7 as it approximately
identifies the major component of relevance (Anatolian/European farmer
component, Caucasian ancestry, EHG-related ancestry and East Asian
ancestry). Panel d is focused on the Iron Age, while e is focused on the
transition to the Hun period.
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standard errors). The reported numbers are the D-statistics and the
3 standard errors were plotted as error bars. The number of individuals per
population can be found in Supplementary Tables 3, 4.
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higher than 3 the standard errors). The reported numbers are the D-
statistics and the 3 standard errors were plotted as error bars. The number
of individuals per population can be found in Supplementary Tables 3, 4.
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Extended Data Fig. 6 | Illustration of West Eurasian ancestry in early standard errors). The reported numbers are the D-statistics and the
Tian Shan Huns. We represent all D(Test, Mbuti; Tian Shan Huns, 3 standard errors were plotted as error bars. The number of individuals per
Xiongnu) that deviate significantly from 0 (that is, higher than 3x the population can be found in Supplementary Tables 3, 4.
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49 individuals analysed at 242,406 autosomal SNP positions. b, Results for  Siberian individual associated with the Andronovo culture.
model-based clustering analysis at K = 7. Here we illustrate the admixture
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Extended Data Fig. 9 | Maximum likelihood phylogenetic Age samples (0.PREI and 0.PRE2) and a Black Death sample (1.PRE1).

reconstruction of Y. pestis. This tree reveals the basal position of the Tian ~ Numbers on nodes indicate bootstrap support (not all of which are shown,
Shan sample (0.ANT5, DA101, AD 186) compared to the Justinian plague for clarity) and certain branches have been collapsed for clarity. Branch
sample (0.ANT4, A120, AD 536). These two samples are shown in orange lengths are substitutions per site.

italics. Other ancient plague samples included in the tree are Bronze
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and female contributions.
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Study design
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Sample size We did not rely on statistical methods to predetermine sample sizes. Sample sizes in ancient population genetic studies are limited by the
number of samples yielding endogenous DNA proportions amenable to whole genome sequencing.

Data exclusions  We selected 137 samples for whole-genome sequencing, out of all screened samples, based on their endogenous content and low
contamination estimates. These criteria are described in detail in Supplementary Section 3.1. Furthermore, closely related individuals were
excluded from analyses requiring population allele frequencies.

Replication We did not attempt to specifically replicate experimental findings. But we note that samples from the same population carry similar genetic
signatures. Moreover, genome-wide data allows for the analysis of multiple realisations of the sample history, by studying hundreds of

thousands of SNP sites.

Randomization  No experimental groups or effect sizes were measured in this study, thus we did not implement any random group assignment.

Blinding No blinding techniques were implemented, as exprimental group assignment is not relevant for popluation genetic history studies of this kind.
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Population characteristics No experimental procedures were carried out on human participants. We genotyped 502 individuals from 16 self-reported
ethnicities from Altai, Central Asia, Siberia and the Caucasus. Sampling procedures are detailed in Supplementary Section 5.
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