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Genome-wide association studies of brain
imaging phenotypes in UK Biobank
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Stephen M. Smith?4#*

The genetic architecture of brain structure and function is largely unknown. To investigate this, we carried out genome-
wide association studies of 3,144 functional and structural brain imaging phenotypes from UK Biobank (discovery
dataset 8,428 subjects). Here we show that many of these phenotypes are heritable. We identify 148 clusters of associations
between single nucleotide polymorphisms and imaging phenotypes that replicate at P < 0.05, when we would expect
21 to replicate by chance. Notable significant, interpretable associations include: iron transport and storage genes,
related to magnetic susceptibility of subcortical brain tissue; extracellular matrix and epidermal growth factor genes,
associated with white matter micro-structure and lesions; genes that regulate mid-line axon development, associated
with organization of the pontine crossing tract; and overall 17 genes involved in development, pathway signalling and
plasticity. Our results provide insights into the genetic architecture of the brain that are relevant to neurological and

psychiatric disorders, brain development and ageing.

Brain structure and function vary between individuals and can
be measured non-invasively using magnetic resonance imaging
(MRI). The effects of neurological and psychiatric disorders such as
Alzheimer’s disease, Parkinson’s disease, schizophrenia, bipolar disor-
der and autism can be seen in MRI data!. MRI can therefore provide
intermediate endophenotypes that can be used to assess the genetic
architecture of such disorders.

Structural MRI measures of brain anatomy include tissue and
structure volumes, such as total grey matter volume and hippocampal
volume, while other MRI modalities allow the mapping of different bio-
logical markers such as venous vasculature, microbleeds and aspects of
white matter microstructure. Brain function is typically measured using
task-based functional MRI (fMRI), in which subjects perform tasks or
experience sensory stimuli; task-based fMRI uses imaging sensitive
to local changes in blood oxygenation and flow caused by brain activ-
ity in grey matter. Brain connectivity can be divided into functional
connectivity, where spontaneous temporal synchronizations between
brain regions are measured using fMRI with subjects scanned at rest,
and structural connectivity, measured using diffusion MRI (dMRI),
which images the physical connections between brain regions based
on how water molecules diffuse within white matter tracts. For those
not familiar with the neuroimaging field, we have provided a glossary
in Supplementary Note 1.

A new resource for relating neuroimaging to genetics is UK
Biobank, a rich, long-term prospective epidemiological study of
500,000 volunteers®. Participants were 40-69 years old at recruit-
ment, with one aim being to acquire as rich data as possible before
disease onset. Identification of disease risk factors and early markers
will increase over time with emerging clinical outcomes®. A brain
and body imaging extension will scan 100,000 participants by 2020,
with brain imaging including three structural modalities, resting and
task-based fMRI, and diffusion MRI* (Supplementary Table 1). An
automated image processing pipeline removes artefacts and renders
images comparable across modalities and participants; it also gener-
ates thousands of image-derived phenotypes (IDPs), distinct measures

of brain structure and function®. Example IDPs include the volume
of grey matter in distinct brain regions, and measures of functional
and structural connectivity between specific pairs of brain areas. The
combination of large subject numbers with multimodal imaging data
acquired using homogeneous hardware and software is a unique
feature of UK Biobank.

Another key component of the UK Biobank resource has been the
collection of genome-wide genetic data using a purpose-designed geno-
typing array. A custom quality control, phasing and imputation pipeline
was developed to address the challenges specific to the experimental
design, scale, and diversity of the UK Biobank dataset. The genetic
data were publicly released in July 2017 and consist of about 96 million
genetic variants in almost 500,000 participants®.

Joint analysis of the genetic and brain imaging datasets produced by
UK Biobank presents a unique opportunity for uncovering the genetic
bases of brain structure and function, including genetic factors that
are related to brain development, ageing and disease. In this study, we
carried out genome-wide association studies (GWASs) for 3,144 IDPs,
covering the entire brain and including ‘multimodal’” information on
grey matter volume, area and thickness, white matter connections and
functional connectivity, at 11,734,353 single-nucleotide polymor-
phisms (SNPs) in up to 8,428 individuals with both genetic and brain
imaging data. We used two separate sets of data from UK Biobank to
evaluate replication of significant genetic associations from the discov-
ery phase. We also carried out multi-trait GWAS, SNP heritability anal-
ysis, genetic correlation analysis of IDPs with brain-related traits and
an analysis of enrichment of genomic regions with different functions.
Previous large-scale GWAS imaging studies have focused on narrower
ranges of phenotypes including studies of: grey matter volume in seven
subcortical regions by combining data across more than fifty studies”?;
whole-brain grey matter volumes and thicknesses by combining data
from 59 acquisition sites’; and white matter connectivity in healthy
young adult twins'®. We expect that the homogeneous image acqui-
sition and genetic data assay in UK Biobank will boost the power of
our study.
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Fig. 1 | Estimated heritability of IDPs. Estimated heritability (y-axis) of
all of the IDPs analysed (1 = 8,428 subjects; see Methods for heritability

calculation details). IDPs were split into three broad groups. a, Structural
MRL. b, Diffusion MRI. ¢, Functional MRI. Points are coloured according

The UK Biobank has approval from the North West Multi-centre
Research Ethics Committee (MREC) to obtain and disseminate data
and samples from the participants (http://www.ukbiobank.ac.uk/
ethics/), and these ethical regulations cover the work in this study.
Written informed consent was obtained from all participants.

All results are available on the Oxford Brain Imaging Genetics
(BIG) web browser (http://big.stats.ox.ac.uk/), which allows users to
browse associations by SNP, gene or phenotype. This was built from the
PheWeb code base (https://github.com/statgen/pheweb/) and extended
to allow easier searching of phenotypes. In addition to the brain IDP
GWAS results, the browser also includes GWAS results from more than
2,500 other traits and diseases.

Heritability and genetic correlations of IDPs
Figure 1 shows the estimated SNP heritability (k%) of all IDPs and
whether h? is significantly different from 0 at the nominal 5% signifi-
cance level (Supplementary Table 2, Supplementary Fig. 1). Out of 3,144
IDPs, 1,578 show significant SNP heritability. Of the structural MRI
IDPs, volumetric measures are the most heritable and cortical thick-
nesses the least. Of the diffusion MRI measures, the tractography-based
IDPs show lower heritability than the tract-skeleton-based IDPs. The
resting-state fMRI functional connectivity edges show the lowest levels
of SNP heritability, with just 235 of 1,771 IDPs being significant, which
is consistent with additive heritability estimates from twin studies of
network edges from fMRI and magnetoencephalography in the Human
Connectome Project!'!. However, four of the six resting fMRI features
identified by independent component analysis (ICA; estimated as data-
driven reductions of this full set of fMRI edges) are much more highly
heritable. By contrast, most of the resting-state node amplitude IDPs
show significant evidence of SNP heritability; the task-related fMRI
IDPs do not.

We found lower levels of SNP heritability for subcortical volumes
than previously estimated in twin studies'>"'* (Supplementary Fig. 2).
This is typical of many traits in the literature'® and may result from

to IDP groups. Circles and inverted triangles, respectively, are used to
identify IDPs that do and do not have heritability significantly different
from 0 at the 5% significance level. The mean 95% confidence interval (CI)
error bar size is indicated at the bottom right.

upward bias in twin study estimates due to gene—gene and gene-
environment interactions'®!?, or downward bias of SNP heritability
due to uncaptured rare genetic variation. We also compared the
GWAS results for seven subcortical volumes with those obtained
by the ENIGMA consortium (http://enigma.ini.usc.edu/research/
download-enigma-gwas-results/), via a genetic correlation analysis
(Supplementary Table 3). There was a strong correlation between the
studies, suggesting that there were no major differences in how these
phenotypes were measured. In all cases a perfect genetic correlation of
1 lies within the 95% confidence intervals.

Supplementary Fig. 3 shows the genetic correlations, together with
the raw phenotype correlations, for several groups of analysed IDPs.
There is a range of both strong and weak, positive and negative genetic
correlations between the IDPs.

Significant associations between IDPs and SNPs

In all analyses we estimated genetic effects with respect to the number of
copies of the non-reference allele. Using a minor allele frequency filter
of 1% and a -log; (P value) threshold of 7.5, we found 1,262 signifi-
cant associations between SNPs and the 3,144 IDPs. These associations
spanned all classes of IDPs, except task-related fMRI (Supplementary
Table 4), with the swMRI T2* group showing a relatively large number
of associations. The -log;o(P value) threshold of 7.5 controls for the
number of tests carried out across SNPs and accounts for the correlation
structure between genetic variants. Of these 1,262 associations, 844
and 455 replicated at the 5% significance level using our two smaller
replication datasets (see Methods and Supplementary Table 5). Some
associated genetic loci overlapped across IDPs; we estimate that there
are approximately 427 distinct associated genetic regions (clusters).
One hundred and forty-eight of these clusters have a lead SNP that
replicates at the 5% level in our replication set of 3,456 participants, and
91 below a 5% false discovery rate (FDR) threshold. We would expect
about 21 of the lead SNPs in the 148 clusters to replicate under a null
hypothesis of no association.
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At a threshold of —log;o(P) > 11, which additionally corrects for
all 3,144 GWAS carried out (see Methods), we found 368 significant
associations between genetic regions and distinct IDPs (Supplementary
Table 6, Supplementary Fig. 4). These associations with 78 unique SNPs
can be grouped together into 38 distinct clusters by grouping across
IDPs (Extended Data Table 1). Taking our lead SNP in each of the
38 regions, we found that all 38 had P < 0.05 in our replication set of
3,456 participants, and all 38 were significant at 5% FDR. We found
no appreciable change in these GWAS results when we included a set
of potential body confound measures in addition to the main set of
imaging confound measures (see Methods and Supplementary
Fig. 5). We also carried out a winner’s curse corrected post-hoc power
analysis that agreed well with the results of our replication studies
(Supplementary Note 2).

Supplementary Figs. 6 and 7 provide genome-wide association plots
(also known as Manhattan plots) and QQ-plots for all 3,144 IDPs
and the subset of IDPs listed in Extended Data Table 1, respectively.
Having identified a SNP as being associated with a given IDP, it can be
useful then to explore the association with all other IDPs via a Phe WAS
(phenome-wide association study) plot. Supplementary Fig. 8 shows
the PheWAS plots for all 78 SNPs listed in Supplementary Table 6
with —log;o(P) > 11. The Oxford Brain Imaging Genetics (BIG) web
browser (http://big.stats.ox.ac.uk/) allows researchers to view the
PheWAS for any SNP of interest. We found that 4 of the 78 SNPs were
associated (P < 0.05/3,144; that is, —log;o(P) > 4.79) with all 3 classes
of structural, dMRI and functional measures, and these were all SNPs
in cluster 31 of Extended Data Table 1 (Supplementary Fig. 8, pages
62-65). This genetic locus is associated with the volume of the precu-
neus and cuneus, dMRI measures for the forceps major (a fibre bundle
that connects the left and right cuneus), and two functional connec-
tions (parcellation 100 edges 614 and 619, which connect the precu-
neus to other cognitive networks). Supplementary Fig. 9 illustrates the
sharing of association signal across IDPs at the 615 unique SNPs listed
in Supplementary Table 5. Supplementary Fig. 10 shows the relation-
ship between the number of associations found and the estimated SNP
heritability for each IDP.

Overall, our results clearly replicate the majority of the loci identified
by the ENIGMA consortium in two separate GWASs of seven brain
subcortical volume IDPs in up to 13,171 subjects’, and of hippocampal
volume in 33,536 subjects (although not all reached genome-wide
significance, probably owing to the smaller sample size in our study;
Supplementary Fig. 11). We also replicate an association between
volume of white matter hyperintensities (‘lesions’) and SNPs in TRIM47
(for example, rs3744017, P=1.4 x 107 '2, cluster 37)%,

It can be challenging to interpret precisely the function of SNPs
identified in a GWAS. Most of the SNPs in the 38 loci in Extended
Data Table 1 are either in genes, including 7 missense SNPs and 2 SNPs
in untranslated regions (UTRs), or in high linkage disequilibrium
with SNPs that are themselves in the genes of interest, and many are
significant expression quantitative trait loci (eQTLs) in the GTEx
database'®. In total, we found 17 genetic loci that can be linked to genes
that broadly contribute to brain development, patterning and plasticity
(out of the 38 clusters reported in Extended Data Table 1; for more
details, see Supplementary Note 3). Below we focus on some of the
most compelling examples.

A major source of cross-subject differences seen in T2* data are
microscopic variations in magnetic field, often associated with iron
deposition in ageing and pathology?’. We identified many associ-
ations between T2* in the caudate nucleus, putamen and pallidum
and SNPs in genes (TF, rs4428180, P=2.23 x 10~*% HFE, rs1800562,
P=6.6 x 10720 SLC25A37, rs35469695, P=2.22 x 10~'2) or near
genes (FTH1, rs11230859, P=2.31 x 10~ ') that are known to affect
iron transport and storage, or neurodegeneration with brain iron
accumulation (NBIA)?! (COASY, rs668799, P=1.43 x 10~%7). In
addition, we identified four SNPs that either encode or are eQTLs
of genes involved in transport of nutrients and minerals: SLC44A5
(rs76934732, P=28.51 x 10713), SLC39A8 (also known as ZIPS8;
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Fig. 2 | Manhattan plot and spatial mapping of the associations between
T2* in the putamen and four SNPs. a, The Manhattan plot relates to the
original GWAS for the IDP T2* in the bilateral putamen. The lower grey
line indicates the —log;o(P value) threshold of 7.5 and the upper line the
threshold of 11 (see main text). b, The spatial maps show that the four
SNPs (one per row) most strongly associated with T2* in the putamen
have distinct voxelwise patterns of effect across the whole brain: the effect
of rs4428180 (TF) is found in the dorsal putamen and body of the caudate
nucleus, but also in the right subthalamic nucleus and substantia nigra, red
nucleus, lateral geniculate nucleus of the thalamus and dentate nucleus;
rs144861591 (HFE) in the dorsal striatum, subthalamic nucleus, dentate
nucleus and Crus I/II of the cerebellum; rs10430578 (SLC39A12) in the
whole dorsal striatum and pallidum; and rs668799 (COASY) in the whole
dorsal striatum, subgenual cingulate cortex and entorhinal cortex. The
standard MNI152 T1 image is used as background for the spatial maps
(left is right). All group difference images (colour overlays) are thresholded
at a T2* difference of 0.6 ms. These voxelwise SNP association maps were
calculated from the discovery sample of 8,428 subjects (see main text).

rs13107325, P=1.04 x 10~%2), SLC20A2 (152923405, P=3.31 x 10~7)
and SLC39A12 (also known as ZIP12; rs10764176, P=3.3 x 10~2!). For
more details, see Supplementary Note 3.

Interrogating images at a voxel-wise level can provide further insight
about the detailed spatial localization of SNP associations and can
possibly identify additional associated areas not already well captured
by IDPs (while keeping in mind the statistical dangers of potential
circularity??). For instance, by looking at the difference between the
average T2* image from subjects with no copies versus one copy of
the rs4428180 (TF) non-reference allele, we found effects of this SNP
not just in the putamen and pallidum, but also in additional, smaller
regions of subcortical structures not included as IDPs (Fig. 2). We sim-
ilarly created in Fig. 2 the voxelwise differences associated with three
additional SNPs, from the most significant GWAS associations with
T2%* in the putamen as seen in the Manhattan plot. This approach also
allowed us to observe grey matter volume effects across the entire brain
associated with rs13107325 (SLC39A8; Extended Data Fig. 1), which
has been linked in previous (non-imaging) GWASs to intelligence?,
schizophrenia®, blood pressure? and higher risk of cardiovascular
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Fig. 3 | Manhattan plot, spatial mapping and PheWAS plot relating

to the association between the dMRI ICVF measure and rs67827860
(VCAN). a, The Manhattan plot relates to the original IDP GWAS with the
strongest association (ICVF in the right inferior longitudinal fasciculus
using tractography, associated with rs67827860). The ICVF parameter,
estimated from the NODDI modelling®, aims to quantify predominantly
intra-axonal water in white matter, by estimating where water diffusion is
restricted. Summary details of SNP rs67827860 are given in the top right
box. The lower grey line indicates the —log;o(P value) threshold of 7.5
and the upper line the threshold of 11. b, Spatial mapping of rs67827860
against voxelwise ICVF in white matter (ICVF was averaged across

all 4,957 subjects with zero copies of the non-reference allele, and the
average from all 2,304 subjects that had one copy was subtracted from
that, for display in colour here; the difference was thresholded at 0.005

death?®, These effects could now be observed in a relevant brain region,
the anterior cingulate cortex, which has multifaceted roles including in
fluid intelligence?’, schizophrenia® and modulating autonomic states
of cardiovascular arousal®.

Notably, three SNPs related to our white matter IDPs were in genes
or eQTLs of genes encoding three proteins of the extracellular matrix
(ECM): 152365715 (P=5.38 x 107'2), an eQTL of BCAN, is associated
with one dMRI microstructural measure in the genu of the corpus
callosum; rs3762515 (P=4.27 x 10~13), in the 5 UTR of EFEMP1, with
the volume of white matter lesions; and rs67827860 (P=4.06 x 10~%,
Fig. 3), located in an intron of VCAN, with multiple dMRI measures
of most white matter tracts (199 IDPs in total). Overall, the vast major-
ity of forebrain white matter-related dMRI IDPs were associated with
SNPs related to genes that encode proteins involved in the extracellular
matrix and epidermal growth factor signalling. These proteins have
key roles in synaptic plasticity and myelin repair, and are associated
with multiple sclerosis, stroke, amyotrophic lateral sclerosis and major
depressive disorder (Supplementary Note 3).

© 2018 Springer Nature Li

(unitless fractional measure)). Unlike the examples of (spatially) very
focal effects in T2* and grey matter volume in Fig. 2 and Extended Data
Fig. 1, the effects of this SNP are extremely widespread across most of the
white matter tracts (associated with 45 out of the 199 IDPs in cluster 11,
Supplementary Table 5). ¢, The PheWAS plot for SNP rs67827860 shows
the association (—log;o(P)) on the y-axis for the SNP with each of the 3,144
IDPs. The IDPs are arranged on the x-axis in the three panels: structural
MRI IDPs (top), dMRI IDPs (middle) and fMRI IDPs (bottom). Points are
coloured to delineate subgroups of IDPs. Grey lines show the Bonferroni
multiple testing threshold of 4.79. In addition to the IDP of white matter
hyperintensities volume, there is a notable association with numerous
dMRI IDPs (especially diffusion tensor-derived measures of fractional
anisotropy, mean diffusivity and L1, L2 and L3 eigenvalues of the diffusion
tensor, as well as additional ICVF measures).

Two additional examples further illustrate meaningful correspond-
ences between the locations of our brain IDPs and significantly asso-
ciated genes. First, the volume of the fourth ventricle, which develops
from the central cavity of the neural tube, was found to be signifi-
cantly associated with a SNP in, and eQTL of, ALDHIA2 (rs2642636,
P=5.2 x 107'%). This gene encodes an enzyme that facilitates posterior
organ development and prevents human neural tube defects, includ-
ing spina bifida®®. Second, we found two SNPs associated with dMRI
IDPs of the crossing pontine tract (the part of the pontocerebellar
fibre bundle that arises from the pontine nuclei and decussates across
the brain midline to project to the contralateral cerebellar cortex) in
genes that regulate axon guidance and fasciculation during develop-
ment (SEMA3D, rs2286184, P=5.31 x 10~” and ROBO3, rs4935898
(missense), P=1.76 x 107'%; Fig. 4). The exact location of our IDP in
the crossing fibres of the pons coincides with the function of ROBO3,
which is specifically required for axons to cross the midline in the hind-
brain (pons, medulla oblongata and cerebellum); mutations in ROBO3
result in horizontal gaze palsy, a disorder in which the corticospinal and
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Fig. 4 | Manhattan plot and spatial mapping of the association between
the dMRI tensor mode measure and SNP rs4935898 (ROBO3). a, The
Manhattan plot relates to the original GWAS for the IDP of tensor mode
in the crossing pontine tract associated with rs4935898. b—d, Tensor mode
was averaged across all 6,807 subjects with approximately zero copies of
the non-reference allele, and the average from all 703 subjects that had
approximately one copy was subtracted from that, for display in red/
yellow-blue/light blue here, thresholded at 0.05 (b, d). b, Results are shown
overlaid on the MNI152 T1 structural image; by contrast, background in ¢
and d is the UK Biobank average fractional anisotropy image, which shows
clear tract structure within the brainstem. ¢, Orientation of the fibre tracts
(in red, running left to right). The spatial distribution (not shown) for the
effects of rs2286184 (SEMA3D) on tensor mode is almost identical to that
of rs4935898, being again extremely spatially specific, with no extended
effect elsewhere in the brain. These voxelwise SNP association maps were
calculated from the discovery sample of 8,428 subjects (see main text).

somatosensory axons fail to cross the midline in the medulla®!. Notably,
all three significant associations with the IDP of the crossing pontine
tract were found using the tensor mode of anisotropy (MO), a measure
that is particularly useful in regions of crossing fibres®~.

Multi-phenotype association tests

One alternative strategy for analysing large numbers of IDPs is to use
multi-trait tests that fit joint models of associations to groups of IDPs.
Such approaches can use estimates of genetic correlation to boost
power. In addition, by analysing P traits in one GWAS, these tests can
avoid the need to correct for multiple genome-wide scans. We used a
multi-trait test (see Methods) to analyse 23 groups of IDPs with up to
243 IDPs per group. These IDP groups were chosen to cover the major-
ity of the IDP classes with significant IDP correlations in each grouping
(Supplementary Table 7). Supplementary Fig. 12 shows the Manhattan
plots for these genome-wide scans. Overall, across these 23 groups,
we found 278 SNPs at about 160 loci associated with -log;o(P) >7.5
(Supplementary Table 8). Of these 278 SNPs, 170 survived a correction
for 23 scans with —log;o(P) > 8.86 and 138 of these 170 SNPs had a
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Pvalue < 0.05 in the larger replication set of 3,456 samples. There can
be large differences in P values between the multi-trait tests and the
individual IDP tests (Supplementary Fig. 13), especially when taking
account of the smaller number of tests carried out by the multi-trait
approach (Supplementary Fig. 14). We found 25 loci that showed both
a significant and replicated multi-trait association for an IDP group,
while showing no genome-wide significance in the flanking region
for any individual IDP in the corresponding group (Supplementary
Table 9, Supplementary Note 3).

Three of these loci showed associations with the dMRI tensor mode
of anisotropy measures (rs62073157, P=4.07 x 10~"'; rs35884657,
P=1.04 x 107% rs9939914, P=1.15 x 10~ 1) and all were eQTLs of
microtubule-related genes (MAPT, TUBA1B and TUBB3, respec-
tively). The extended MAPT region has been repeatedly associated
with Alzheimer’s and Parkinson’s diseases, frontotemporal dementia,
and progressive supranuclear palsy (Supplementary Note 3).

Another example of the value of multi-trait testing can be seen in the
association between IDPs of global brain volume measurements and an
SNP located between BANKI and SLC39A8, which was previously iden-
tified in a GWAS of schizophrenia® (rs35518360, P=4.07 x 1012).
This locus is also part of a multimodal cluster from our single-trait
GWAS that includes subcortical and cerebellar grey matter volumes,
pallidum T2* and dMRI in midbrain white matter tracts (cluster 10
in Supplementary Table 6). The multi-trait test thus made it possible
to uncover this additional association between global brain volume
measurement and this locus, which might prove relevant for better
understanding observations of smaller brain volume in (particularly
first episode or drug-naive) patients with schizophrenia®.

Genetic correlation with clinically relevant traits

We measured the genetic correlation between a subset of heritable
IDPs and ten neurodegenerative, psychiatric and personality traits
(see Methods). We found suggestive evidence of genetic correlation for
amyotrophic lateral sclerosis (ALS), schizophrenia and stroke, mainly
with dMRI measures in white matter tracts (Supplementary Fig. 15).
Supplementary Table 10 contains genetic correlation estimates for all
IDP-trait combinations; see Supplementary Note 4 for further details.

Partitioning heritability by functional annotation

We applied a statistical approach that partitions the additive genetic
heritability of a set of common variants for each of the 3,144 IDPs
according to 24 functional annotations of the genome*. Extended
Data Fig. 2 summarizes which functional annotations show enrich-
ment stratified by 23 groups of IDPs (Supplementary Table 11). We
find that regions of the genome annotated as super enhancers and
several histone modifications show enrichment across many of the
structural and diffusion IDP groups. Regions of the genome enriched
for trimethylation of lysine 27 on histone H3 (H3K27me3) (and indi-
cating strong evidence for silenced genes) show depletion of heritabil-
ity across many of the IDP classes (Supplementary Fig. 16). IDP groups
such as T1 subcortical volumes, dMRI fractional anisotropy (FA) and
intracellular volume fraction (ICVF) show the strongest evidence of
enrichment across multiple categories. The resting fMRI connectivity
edge IDPs show no elevated enrichment, consistent with these traits
showing low heritability (Fig. 1). Supplementary Fig. 17 shows this
partitioning analysis for each IDP.

Conclusions

Bringing together researchers with backgrounds in brain imaging and
genetic association was key to this work. We have uncovered a large
number of associations at the nominal level of GWAS significance
(—logo(P) >7.5) and at a more stringent threshold (—log;o(P) >11)
designed to (probably over-conservatively) control for the number of
IDPs tested. Our use of multi-trait tests uncovered further novel loci.
We find associations with all the main IDP groups except the task fMRI
measures (despite these measures containing usable signal, for example
having unique cognitive associations*).

© 2018 Springer Nature Limited. All rights reserved.



We mainly found associations between MRI measures and genes
involved in brain development and plasticity, as well as genes contrib-
uting to the transport of iron, nutrients and minerals (Supplementary
Note 3). The genes linked to brain development and plasticity tended
to be related to mental health disorders, including major depression
disorder and schizophrenia, whereas those that encoded iron-related
proteins tended to be related to neurodegenerative disorders, such as
amyotrophic lateral sclerosis, Parkinson’s disease and Alzheimer’s dis-
ease. We also uncovered enrichments of functional annotations for
many of the structural and diffusion IDPs.

A valuable aspect of this work has been to link the associated SNPs
back to spatial properties of the voxel-level brain imaging data. For
example, we have linked SNPs associated with IDPs to both highly
spatially localized and widely spatially distributed effects, restricting
these voxelwise analyses to the same imaging modality from which
the original phenotypic association was found (though of course other
modalities could also be tested in the same way). In addition, looking
at PheWAS plots has been useful when working with so many pheno-
types. It has allowed us to investigate the overall patterns of association
and has led to the identification of SNP associations that span multiple
modalities.

We used two additional sets of 930 and 3,456 samples to replicate
a large number of the associations uncovered at the discovery phase.
Over coming years, the number of UK Biobank participants for whom
imaging data are available will increase to 100,000, allowing more com-
plete discovery of the genetic basis of human brain structure, function
and connectivity. Combining the discovery and replication samples is
also likely to lead to novel associations, as will the use of methods that
can analyse the huge IDP X SNP matrix of summary statistics of asso-
ciation. A potential avenue of research will involve attempts to uncover
causal pathways that link genetic variants to IDPs and then to a range
of neurological, psychiatric and developmental disorders.

Online content
Any methods, additional references, Nature Research reporting summaries, source

data, statements of data availability and associated accession codes are available at
https://doi.org/10.1038/s41586-018-0571-7.
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METHODS

Imaging data and derived phenotypes. The UK Biobank brain imaging protocol
consists of six distinct modalities covering structural, diffusion and functional
imaging, summarized in Supplementary Table 1. For this study, we primarily used
data from the February 2017 release of ~10,000 participants’ imaging data (and
an additional ~5,000 subjects’ data released in January 2018 provided the larger
replication sample).

The raw data from these six modalities have been processed for UK Biobank to
create a set of IDPs*”. These are available from UK Biobank, and it is these IDPs
from the 2017-2018 data releases that we used in this study.

In addition to the IDPs directly available from UK Biobank, we created two extra
sets of IDPs. First, we used FreeSurfer v6.0.0°7* (https://surfer.nmr.mgh.harvard.
edu) to model the cortical surface (inner and outer 2D surfaces of cortical grey
matter), as well as modelling several subcortical structures. We used both the T1
and T2 FLAIR images as inputs to the FreeSurfer modelling (or just the T1 when
the T2 was not available). FreeSurfer estimates a large number of structural pheno-
types, including volumes of subcortical structures, surface area of parcels identified
on the cortical surface, and grey matter cortical thickness within these areas. The
areas are defined by mapping an atlas containing a canonical cortical parcellation
onto an individual subject’s cortical surface model, thus achieving a parcellation
of that surface. Here we used two atlases in common use with FreeSurfer: the
Desikan-Killiany-Tourville atlas (denoted DKT?®) and the Destrieux atlas (denoted
22009s*°). The DKT parcellation is gyrus-based, whereas Destrieux aims to model
both gyri and sulci based on the curvature of the surface. Cortical thickness is
averaged across each parcel from each atlas, and the cortical area of each parcel
is estimated, to create two IDPs for each parcel. Finally, subcortical volumes are
estimated, to create a set of volumetric IDPs.

Second, we applied a dimension reduction approach to the large number of
functional connectivity IDPs. Functional connectivity IDPs represent the network
edges between many distinct pairs of brain regions, comprising in total 1,695 dis-
tinct region-pair brain connections (http://www.fmrib.ox.ac.uk/ukbiobank/). In
addition to this being a very large number of IDPs from which to interpret associ-
ation results, these individual IDPs tend to be substantially noisier than most of the
other, more structural, IDPs. Hence, while we did carry out GWAS for each of these
1,695 connectivity IDPs, we also reduced the full set of connectivity IDPs into just
six new summary IDPs using data-driven feature identification. We performed this
dimensionality reduction by applying ICA*!, applied to all functional connectivity
IDPs from all subjects, to find linear combinations of IDPs that are independent
between the different features (ICA components) identified*2. We carried out the
ICA feature estimation without any use of the genetic data, and we maximized
independence between component IDP weights (as opposed to subject weights).
We used split-half reproducibility (across subjects) to optimize both the initial
dimensionality reduction (14 eigenvectors from a singular value decomposition
was found to be optimal) and also the final number of ICA components (6 ICA
components was optimal, with reproducibility of ICA weight vectors greater than
r=0.9). The resulting six ICA features were then treated as new IDPs, representing
six independent sets (or, more accurately, linear combinations) of the original func-
tional connectivity IDPs. These six new IDPs were added into the GWAS analyses.
The six ICA features explain 4.9% of the total variance in the full set of network
connection features, and are visualized in Supplementary Fig. 18. More details of
the ICA analysis of the resting state data, together with browsing functionality of
the highlighted brain regions can be found on the FMRIB UK Biobank Resource
web page (http://www.fmrib.ox.ac.uk/ukbiobank/).

We organized all 3,144 IDPs into 9 groups (Supplementary Table 12), each with
a distinct pattern of missing values (not all subjects have usable, high-quality data
from all modalities*). For the GWAS in this study we did not try to impute missing
IDPs owing to the low levels of correlation observed across groups.

The distributions of IDP values varied considerably between phenotype classes,
with some phenotypes exhibiting substantial skew (Supplementary Fig. 19) that
would probably invalidate the assumptions of the linear regression used to test for
association. To ameliorate this, we quantile-normalized each of the IDPs before
association testing. This transformation also helped to avoid undue influence of
outlier values. We also (separately) tested an alternative process in which an outlier
removal process was applied to the untransformed IDPs; this gave very similar
results for almost all association tests, but was found to reduce the significance
of a very small number of associations. This possible alternative method for IDP
preprocessing was therefore not followed through (data not shown).

No statistical methods were used to predetermine sample size. The experiments
were not randomized and the investigators were not blinded to allocation during
experiments and outcome assessment.

Genetic data processing. We used the imputed genetic dataset made available by
UK Biobank in its July 2017 release®. This consists of >92 million autosomal vari-
ants imputed from the Haplotype Reference Consortium (HRC) reference panel*®
and a merged UK10K + 1000 Genomes reference panel. We first identified a set of
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12,623 participants who had also been imaged by UK Biobank. We then applied
filters to remove variants with minor allele frequency (MAF) below 0.1% and with
an imputation information score below 0.3, which reduced the number of SNPs to
18,174,817. We then kept only those samples (subjects) estimated to have recent
British ancestry using the sample quality control information provided centrally
by UK Biobank® (using the variable in.white. British.ancestry.subset in the file
ukb_sqc_v2.txt); population structure can be a serious confound to genetic asso-
ciation studies*$, and this type of sample filtering is standard. This reduced the
number of samples to 8,522. The UK Biobank dataset contains a number of close
relatives (third cousins or closer). We therefore created a subset of 8,428 nominally
unrelated subjects following procedures similar to those described previously®.
After running GWAS on all the (SNP) variants in the 8,428 samples we applied
three further variant filters to remove variants with a Hardy-Weinberg equilibrium
Pvalue <1077, remove variants with MAF <0.1% and keep only those variants in
the HRC reference panel. This resulted in a dataset with 11,734,353 SNPs.

We used two separate datasets to replicate the associated variants found in this

study. The first set of 930 subjects was a subset of the 1,279 subjects with imaging
data that we did not use for the main GWAS, who had primarily been excluded
because they were not in the recent British ancestry subset. An examination of
these samples according the genetic principal components (PCs) revealed that
many of those samples are mostly of European ancestry (Supplementary Fig. 20).
We selected 930 samples with a first genetic PC <14 from Supplementary Fig. 20
and these constituted the replication sample. In January 2018 a further tranche
of 4,588 samples with imaging data was released by UK Biobank. Of these sub-
jects, we selected 3,956 subjects that both had genetic data available and also had
been imaged in the same imaging centre as the discovery sample. We applied the
same pre-processing pipeline as for the discovery set. We then restricted this to
3,456 subjects that were of recent British ancestry and replication tests were then
conducted on these 3,456 subjects.
Potential confounds for brain IDP GWAS. There are a number of potential con-
founding variables when carrying out GWASs of brain IDPs. We used three sets of
covariates in our analyses relating to (a) imaging confounds (b) measures of genetic
ancestry, and (c) non-brain imaging body measures.

We identified a set of variables that were likely to represent imaging confounds,
for example those associated with biases in noise or signal level, corruption of data
by head motion or overall head size changes. For many of these we generated vari-
ous versions (for example, using quantile normalization and also outlier removal,
to generate two versions of a given variable, as well as including the squares of
these to help model nonlinear effects of the potential confounds). This was done
in order to generate a rich set of covariates and hence reduce as much as possible
potential confounding effects on analyses such as the GWAS, which are particularly
of concern when the subject numbers are so high**.

Age and sex are can be variables of biological interest, but can also be sources
of imaging confounds, and here were included in the confound regressors. Head
motion is summarized from resting and task-based fMRI as the mean displacement
(in mm) between one time point and the next, averaged over all time points and
across the brain. Head motion can be a confounding factor for all modalities and
not just those comprising timeseries of volumes, but is readily estimable only from
the timeseries modalities. Nevertheless, the amount of head motion is expected to
be reasonably similar across all modalities (for example, correlation between head
motion in resting and task fMRI is r=0.52) and so it is worth using fMRI-derived
head motion estimates as confound regressors for all modalities.

The exact location of the head and the radio-frequency receiver coil in the
scanner can affect data quality and IDPs. To help to account for variations in posi-
tion in different scanned participants, several variables have been generated that
describe aspects of the positioning (see http://biobank.ctsu.ox.ac.uk/showcase/
field.cgi?id=25756, http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=25757,
http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=25758, and http://biobank.
ctsu.ox.ac.uk/showcase/field.cgi?id=25759). The intention is that these can be
useful as ‘confound variables’; for example, these might be regressed out of brain
IDPs before carrying out correlations between IDPs and non-imaging variables.
TablePosition is the Z-position of the coil (and the scanner table on which the
coil sits) within the scanner (the Z axis points down the centre of the magnet).
BrainCoGZ is somewhat similar, being the Z-position of the centre of the brain
within the scanner (derived from the brain mask estimated from the T1-weighted
structural image). BrainCoGX is the X-position (left-right) of the centre of the
brain mask within the scanner. BrainBackY is the Y-position (front-back relative
to the head) of the back of brain mask within the scanner.

UK Biobank brain imaging aims to maintain as fixed an acquisition protocol as
possible during the 5-6 years that the scanning of 100,000 participants will take.
There have been a number of minor software upgrades (the imaging study seeks to
minimize any major hardware or software changes). Detailed descriptions of every
protocol change, along with thorough investigations of the effects of these on the
resulting data, will be the subject of a future paper. Here, we attempted to model
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any long-term (over scan date) changes or drifts in the imaging protocol or soft-
ware or hardware performance, by generating a number of data-driven confounds.
The first step was to form a temporary working version of the full subjects x IDPs
matrix with outliers limited (see below) and no missing data, using a variant of
low-rank matrix imputation with soft thresholding on the eigenvalues®. Next, the
data were temporally regularized (approximate scale factor of several months with
respect to scan date, see https://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=53,
Instance 2) with spline-based smoothing. We then applied PCA and kept the top
10 components, to generate a basis set that reflects the primary modes of slowly
changing drifts in the data.

To describe the full set of imaging confounds we use a notation where subscript i
indicates quantile normalization of variables, and m indicates median-based outlier
removal (discarding values greater than five times the median absolute deviation
from the overall median). If no subscript is included, no normalization or outlier
removal was carried out. Certain combinations of normalization and powers were
not included, either because of very high redundancy with existing combinations,
or because a particular combination was not well-behaved. The full set of variables
used to create the confounds matrix are: a, age at time of scanning, demeaned
(cross-subject mean subtracted); s, sex, demeaned; g, four confounds relating to
the position of the radio-frequency coil and the head in the scanner (see above),
all demeaned; d, ten drift confounds (see above); m, two measures of head motion
(one from resting fMRI, one from task-based fMRI); and h, volumetric scaling
factor needed to normalize for head size?.

The full matrix of imaging confounds is then:

2 2 2 2 2 2
la a® axs a’xs a; ai a;xs af xs m, my h, q q d, m
2
h; g, q; 4]

Any missing values in this matrix are set to zero after all columns have had
their mean subtracted. This results in a full-rank matrix of 53 columns (ratio of
maximum to minimum eigenvalues is 42.6). Additional discussion on the dangers
and interpretation of imaging confounds in big imaging data studies, particularly
in the context of disease studies, has been published*.

Genetic ancestry is a well-known potential confound in GWAS. We ameliorated
this by filtering out samples that were not of recent British ancestry. However, a
set of 40 genetic principal components (PCs) has been provided by UK Biobank®,
and we used these PCs as covariates in all of our analyses. The matrix of imaging
confounds, together with a matrix of 40 genetic principal components, was
regressed out of each IDP before the analyses reported here.

There exist a number of substantial correlations between IDPs and non-

genetic variables collected on the UK Biobank subjects?. We therefore also car-
ried out some analyses involving variables relating to blood pressure (diastolic
and systolic), height, weight, head bone mineral density, head bone mineral
content and two principal components from the broader set of bone mineral
variables available (https://biobank.ctsu.ox.ac.uk/crystal/docs/DXA_explan_
doc.pdf). Supplementary Fig. 21 shows the association of these eight variables
against the IDPs and shows significant associations. These are variables that
are likely to have a genetic basis, at least in part. Genetic variants associated
with these variables might then produce false positive associations for IDPs.
To investigate this possibility, we ran GWASs for these eight traits (conditioned
on the imaging confounds and genetic PCs) (Supplementary Fig. 22). We also
ran a parallel set of IDP GWASs with these ‘body confounds’ regressed out of
the IDPs.
Heritability and genetic correlation of IDPs. We used a linear mixed model
implemented in the SBAT (sparse Bayesian association test) software (https://
jmarchini.org/sbat/) to calculate additive genetic heritabilities for the P= 3,144
traits. To estimate genetic correlations we used a multi-trait mixed model. If Y'is
an N x P matrix of P phenotypes (columns) measured on N individuals (rows)
then we use the model:

Y=U+¢ (1)

where Uis an N X P matrix of random effects and ¢ is an N x P matrix of residuals,
and these are modelled using Matrix normal distributions as follows:

U~ MN(0,K, B)

€~ MN (0,1, E)

In this model, K is the N x N kinship matrix between individuals, B is the P x P
matrix of genetic covariances between phenotypes and E is the P x P matrix of
residual covariances between phenotypes. We estimate the covariance matrices
Band E using a new C++ implementation of an EM algorithm*® included in the
SBAT software (https://jmarchini.org/sbat/).

For the marginal heritabilities and genetic correlation analysis we used a realized
relationship matrix (RRM) for the kinship matrix (K). This RRM was calculated
from the 8,428 nominally unrelated individuals using fastLMM (https://github.
com/MicrosoftGenomics/FaST-LMM). We used the subset of imputed SNPs
that were both assayed by the genotyping chips and included in the HRC refer-
ence panel, and so will essentially be hard-called genotypes. In addition, all SNPs
with duplicate rsids (reference SNP cluster IDs) were removed. PLINK (http://
www.cog-genomics.org/plink/2.0/) was used for file conversion before input into
fastLMM.

To estimate genetic correlations, we fit the model to several of the groupings of
IDPs detailed in Supplementary Table 12. The estimated covariance matrices B and
E were used to estimate the genetic correlation of pairs of IDPs. The genetic correla-
tion between the ith and jth IDPs in a jointly analysed group of IDPs is estimated as

’ B""Bjj
Multi-trait association tests. We used a multi-trait mixed model to test each SNP
for association with different groupings of traits (Supplementary Table 7). The
model has the form Y=Ga + U + ¢, where G is an N X 1 vector of SNP dosages
and avisa 1 x P vector of effect sizes. We fit the model using estimates of B and
E from the ‘null’ model with =0 and a leave one chromosome out (LOCO)
approach for RRM calculation. We ran this test on the main set of 8,428 samples
and on the replication samples. For the replication analysis we used the estimates
of B and E from the main set of 8,428 samples. This test was implemented in SBAT
software.
Genetic association of IDPs. We used BGENIE v1.2 (https://jmarchini.org/
bgenie/) to carry out GWASs of imputed variants against each of the processed IDPs.
This program was designed to carry out the large number of IDP GWAS required
in this analysis. It avoids repeated reading of the genetic data file for each IDP and
uses efficient linear algebra libraries and threading to achieve good performance.
The program has already been used by several studies to analyse genetic data from
the UK Biobank***". We fit an additive model of association at each variant, using
expected genotype count (dosage) from the imputed genetic data. We ran associated
tests on the main set of 8,428 samples and the replication samples.
Identifying associated genetic loci. Most GWAS analyse only one or a few different
phenotypes, and often uncover just a handful of associated genetic loci, which can be
interrogated in detail. Owing to the large number of associations uncovered in this
study, we developed an automated method to identify, distinguish and count indi-
vidual associated loci from the 3,144 GWASs (one GWAS for each IDP). For each
GWAS we first identified all variants with —log;o(P) >7.5. We applied an iterative
process that starts by identifying the most strongly associated variant, storing it as
a lead variant, and then removing it, and all variants within 0.25 cM from the list
of variants (equivalent to approximately 250 kb in physical distance). The process
was then repeated until the list of variants was empty. We applied this process to
each GWAS using two filters on MAF: (a) MAF > 0.1%, and (b) MAF > 1%. We
grouped associated lead SNPs across phenotypes into clusters. This process first
grouped SNPs within 0.25 cM of each other, and this mostly produced sensible
clusters, but some hand curation was used to merge or split clusters based on visual
inspection of cluster plots and levels of linkage disequilibrium between SNPs. For
some clusters in Extended Data Table 1, we report coding SNPs that were found
to be in high linkage disequilibrium with the lead SNPs.
Accounting for multiple IDPs. We adjusted the genome-wide significance threshold
(—logo(P) >7.5) by a Bonferroni factor (-log(3,144) = 3.5) that accounts for
the number of IDPs tested, giving a threshold of -log;o(P) > 11. This assumes
(incorrectly) that the IDPs are independent and so is likely to be conservative, but
we preferred to be cautious when analysing so many IDPs.
Genetic correlation analysis. We used linkage disequilibrium score regression®!
to estimate the genetic correlation between the IDPs studied in our analysis and
ten disease-, personality- or brain-related traits. We gathered summary statistics
for GWASs of the neuroticism personality trait (https://www.thessgac.org/data),
autism spectrum (https://www.med.unc.edu/pgc/) and sleep duration (http://www.
t2diabetesgenes.org/data/) and also seven disease traits: attention deficit hyper-
activity disorder, schizophrenia, major depressive disorder and bipolar disorder
(https://www.med.unc.edu/pgc/), Alzheimer’s disease (http://web.pasteur-lille.
fr/en/recherche/u744/igap/igap_download.php), stroke (PMC4818561 from
http://cerebrovascularportal.org/informational/downloads) and amyotrophic
lateral sclerosis (http://databrowser.projectmine.com/). The number of samples
in each of these studies and the DOIs for the corresponding studies are provided
in Supplementary Table 13.

For each IDP-trait pair, we used the LDSCORE regression software (v1.0.0;
https://github.com/bulik/ldsc) to compute the genetic correlation between the
IDP and the trait, with linkage disequilibrium measurements taken from the
1000 Genomes Project (provided by the maintainers of the LDSCORE regression

© 2018 Springer Nature Limited. All rights reserved.
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software). We filtered the SNPs to include only those with imputation INFO > 0.9
and MAF > 0.1%. Only INFO scores for major depressive disorder, schizophrenia
and attention deficit hyperactivity disorder were provided by the source studies,
and so for these three analyses we applied the INFO threshold to both the SNPs
from our study and also the source study. For the remaining six studies, an INFO
filter was applied to the SNPs from our own study. Owing to low levels of herit-
ability of the functional edge IDPs, all of these were removed from this analysis.
As calculation of genetic correlation between traits only really makes sense if both
traits are themselves heritable, we only used those IDPs with z-scores for signifi-
cantly non-zero heritability greater than 4. In total, we used 897 IDPs. To account
for correlations between IDPs, we used the raw phenotype correlation matrix to
simulate z-scores (and associated tail probabilities) using samples from a multi-
variate normal distribution with that same correlation matrix.

Analysis of enrichment of functional categories. We used the LDSCORE regres-
sion software to carry out the heritability enrichment partitioning analysis into dif-
ferent functional categories (https://github.com/bulik/ldsc). We used 24 functional
categories: coding, UTR, promoter, intron, histone marks H3K4mel, H3K4me3,
H3K9ac5 and two versions of H3K27ac, open chromatin DNase I hypersensitivity
site (DHS) regions, combined chromHMM)/Segway predictions, regions conserved
in mammals, super-enhancers and active enhancers from the FANTOMS panel of
samples. For each IDP, the enrichment of each functional category was summarized
as the proportion of h? explained by the category divided by the proportion of
common variants in the category. For each IDP and each annotation we used the
two-sided enrichment P value as reported by the LDSCORE regression software.
We labelled those P values as enriched or depleted depending on whether the
enrichment estimate was greater or less than 1. We stratified these P values
accordingly into 23 groups of IDPs.

Code availability. Most of the software and code used in this study are publicly
available, including custom Matlab scripts used to prepare IDPs for GWAS (http://
www.fmrib.ox.ac.uk/ukbiobank/gwaspaper/). Pre-compiled binaries for the latest
version of BGENIE and SBAT are available at https://jmarchini.org/software/. This
software is currently licensed free for use by researchers at academic institutions.
Commercial organizations wishing to use these packages must enquire about a
licence from the University of Oxford. Brain image processing was largely carried
out with FSL (FMRIB’s Software Library, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) and
further Matlab-based preparation of IDPs and imaging confounds utilized code
from FSLNets (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets).
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Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this paper.

Data availability

The full set of GWAS results from this study is available on the Oxford BIG web
browser (http://big.stats.ox.ac.uk/), which allows users to browse associations by
SNP, gene or phenotype.
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Extended Data Fig. 1 | Manhattan plot and spatial mapping of the
associations between grey matter volume and rs13107325 (SLC39A8).

a, The Manhattan plot relates to the original GWAS for the IDP of grey
matter volume in the left ventral striatum. b, ¢, Spatial mapping of
rs13107325 against voxelwise local grey matter volume (grey matter was
averaged across all 1,181 subjects with one copy of the non-reference allele,
and the average from all 7,215 subjects that had zero copies was subtracted

from that, for display in colour here; the difference was thresholded at
0.015 (unitless relative measure of local grey matter volume)). The maps
show that the effect of rs13107325 is found more generally bilaterally in
the ventral caudate, putamen, ventral striatum, anterior cingulate cortex,
and with a strong cerebellar contribution (lobules VI-X), particularly

in the prefrontal-projecting Crus I/II, which are selectively expanded in
humans.

© 2018 Springer Nature Limited. All rights reserved.



ARTICLE

#IDPs with p-value < 0.05

Coding UCSC (0.015) 158
Conserved LindbladToh (0.026) 281
CTCF Hoffman (0.024) 44
DGF ENCODE (0.138) 163
DHS Trynka (0.168) 197
Enhancer Andersson (0.004) 80
Enhancer Hoffman (0.063) 143 )
0.8-1.0
FetalDHS Trynka (0.085) 180 :
H3K27ac Hnisz (0.391) 272 [0.6-08
H3K27ac PGC2 (0.269) 365
H3K4me1 Trynka (0.427) 392 [0.4-06
H3K4me3 Trynka (0.133) 358
H3K9ac Trynka (0.126) 431 z-os

Intron UCSC (0. 387). . .. . . .. ... B4 01-02
Promoter UCSC (0.031) . . . .-. . . 189
PromoterFlanking Hoffman (0.008) . .- . 105
Repressed Hoffman (0.461) 30
SuperEnhancer Hnisz (0. 168). . .- . . 519 o
TFBS ENCODE (0.132) .. .. . 135

Transcribed Hoffman (0.345) 64

TS Hofinan 0018 H N HE B BN ]

UTR 3 UCSC (0.011) 78

omsucsooos [ 0 E EHE
WeakEnhancer Hoffman (0.021) . . 121
4 4 211713 J 92999292 929 99229999229 94FdrDp D DD
-~ - I © 3 @ » ¥ 2 ¥ 2 F 2 = ¥ F ¥ F 2 F F F X F F o § 2 & 2 2
@ ©» m o © ©o m & £ £ £ £ & £ & £ £ £ £ £ ¢ ¢ ¢ ¢ ¢ ¢ ®= &2 & &2 & @&
s 5 » 2 2 o [ 8 © 9 6 6 9 9 9 & 6 & 6 9 &6 © & 6 & o 5 5 5 5 5 5
g 7 O g < < >, o) <) o) ) o ) ) o) o ) o o o ) ) o o 5] = @ @ @ @ @
§ 1 %25 5 5 %22 8555588855858 8885558885848 aae @
s $ 8 3 3 = 7 £ 252 22252 2222 5 22 2 222 2 55555
2§ 2888 g T T3 T I I I I I I I I I I I I I I F 222D
3 & 2 ¢ 2 2 ¥ 5§ 3 1 £z z z K - LK CcEKC-C 53838906 - L1183
§ s 2 3 8 8 3§ 2235868056086 =2 2DbnNMbe 22558 3 T % O 5 s
2 £ & 5 2 32 Z d 33 33 3 FI3IFITITF33F5F g g = ¢ ¢
s 3 € 3 53 8T 8 B s ¥3s » s ns »Hs FIDIE S =2 8 B 3
= 8 T 23 2o g gz Lo o0 0 B3 P s HdD X 2 7 2 8
2 5 3 2 2 X 8 £ 35 2 35 28 8 =8 B g 23 8 3 28 5 3 5
T 5 2 3 3 3 %22 2 2 8 %3 2 8 2 8 22038 2 2 0 2 3 5 & & 8
S g 3 & 2 2 2828 2 22 8 §F 28 235 g 3 2 8 &
3 ® 3 s ¢z e = = ® 8 &8 2 ° 5 3 & § 8 @ & 3
3 &g = 5 3 = = S T g 3 ez 28 3 =
@ X ™ =5 =z Nz
Z 3 S e 3
3 - o &
Extended Data Fig. 2 | Partitioning of heritability by functional given on the right edge of the plot. The number of IDPs in each IDP group
category. The plot shows the proportion of IDPs in each of the 23 IDP is given in parentheses in the x-axis labels. The proportion of the genome
groupings (x-axis) that show a nominal enrichment P value <0.05 annotated by each functional category is given in parentheses in the y-axis
(two-sided tests, uncorrected P values, see Methods) for the 24 functional labels.

categories (y-axis). The total number of such IDPs for each category is
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Extended Data Table 1 | Summary of most highly associated SNP-IDP clusters

cluster |cluster name # IDPs [top IDP chr |RSID position locus ref |nonref [nonref [p value [replication |replication |GTEX eQTL

index allele |allele |AF p-value p-value
(N=3456) |(N=930)

1 Volume Cerebellum Villa 1 T1_FAST_ROIs_V_cerebel|1 |rs76934732 |76013268 |SLC44A5 |G A 0.145 |8.51E-13 |6.10E-04 |[5.22E-02 |SLC44A5ACADM
(vermis) lum_Vllla

2 dMRI Corpus callosum 1 dMRI_TBSS_ICVF_Genu_ |1 |rs2365715 |156615114 |BCAN A G 0.388 |5.38E-12 |4.50E-03 [1.33E-02 |BCAN.APOAI1BP, SYT11
(genu) of_corpus_callosum

3 Volume WM lesions 1 T2_FLAIR_BIANCA_WMH |2 rs3762515 (56150864 |[EFEMP1 ([C T 0.0959|4.27E-13 |1.18E-02 |(4.84E-01

_volume (5' UTR)

4 rfMRI Cortical and 2 NODEamps25_0012 2 |rs60873293 1114092549 |intergenic |G T 0.217 |9.86E-15 |3.10E-07 |9.50E-02 |AC016745.3, RP11-
cerebellar motor nodes and 480C16.1
edges

5 T2* Pallidum 1 SWI_T2* pallidum_L+R |2 |rs6740926 |190326498 |WDR75 C T 0.038 |1.31E-14 |3.50E-09 (3.78E-04 |WDR75

6 rfMRI Middle temporal 2 netmat_ICA_003 3 |rs35124509 (89521693 |EPHA3 T [o 0.3853|4.49E-22 (3.27E-09 |3.73E-03 |EPHA3
sulcus nodes and edges (missense)

7 T2* Putamen and pallidum |6 SWI_T2* putamen_L+R |3 |rs4428180 |133466374 |TF A G 0.152 |2.23E-22 |6.11E-07 |1.03E-03 |TF

8 rfMRI Prefrontal and 1 netmat_ICA_002 3 [rs2279829 (147106319 |(ZIC4 C T 0.221 |8.34E-12 |5.46E-05 |[2.51E-03
parietal edges (3' UTR)

9 dMRI Superior cerebellar 8 dMRI_TBSS_ICVF_Superi |4 |rs4697414 |23724255 |RP11- C T 0.823 |5.83E-24 |1.33E-06 |[4.63E-02 |RP13-497K6.1, RP11-
peduncles or_cerebellar_peduncle_ 380P13.2 380P13.2

L

10 Volume Putamen, ventral (20 IDP_T1_FAST_ROIs_L_ve |4 [rs13107325 |103188709 [SLC39A8 |C T 0.073 |1.04E-42 (6.64E-20 |8.97E-06

striatum, cerebellum Villb, ntral_striatum (missense)
IX, X; T2* Pallidum; dMRI
Cerebral peduncles

11 dMRI Most WM tracts 199 |dMRI_ProbtrackX_ICVF_il|5 |rs67827860 (82860485 |VCAN [o T 0.188 |4.06E-37 [3.93E-12 |2.19E-04

fr

12 rfMRI Parietal and 1 netmat_ICA_004 5 |rs7442779 (92788278 |NR2F1- |A G 0.05 |8.18E-15 [1.90E-04 |4.04E-02
prefrontal edges AS1

13 dMRI Corpus callosum 7 dMRI_TBSS_ICVF_Genu_ [5 |rs4150221 (139719991 |HBEGF  |T C 0.264 |8.43E-20 (1.72E-09 |4.06E-02 [SRA1
(genu, body, splenium) of_corpus_callosum

14 T2* Putamen 3 SWI_T2*_putamen_L+R [6 |rs1800562 (26093141 |HFE G A 0.0768|6.61E-20 (2.91E-04 |3.44E-03 [U91328.19

(missense)
15 dMRI Crossing pontine tract 1 dMRI_TBSS_MO_Pontine |7 |rs2286184 |84630516 |SEMA3D |C T 0.201 |5.31E-17 |6.02E-09 |1.58E-04
_crossing_tract

16 dMRI Corpus callosum 1 dMRI_TBSS_OD_Genu_of|7 |rs12113919 |117612315 |intergenic |C G 0.416 |3.96E-12 |1.44E-04 |1.84E-03 |CTTNBP2
(genu) _corpus_callosum

17 Volume Brain 2 volume_MaskVol 7 |rs2908004 |120969769 |WNT16 G A 0.4455|3.55E-16 |7.07E-09 |2.50E-04 |CPED1, FAM3C

(missense)

18 T2* Putamen 2 SWI_T2* putamen_L+R |8 |rs35469695 |23406169 |SLC25A37 |C G 0.174 |2.22E-12 |2.11E-02 [2.17E-01 |SLC25A37

19 Volume Pallidum 3 T1_FIRST_pallidum_volu |8 |rs2923405 42448126 [SMIM19/S|T G 0.583 |3.31E-17 |1.34E-04 [5.98E-03 |SMIM19, SLC20A2

me_L+R LC20A2

20 T2* Pallidum 2 SWI_T2* pallidum_L+R |8 [rs2978098 |101676675 | SNX31 A C 0.468 |6.43E-15 |1.08E-05 [3.23E-01 |SNX31

21 Volume Cerebellum 3 T1_FAST_ROIs_L_cerebell|9 |[rs72754248 (119061396 |PAPPA G A 0.069 |1.38E-17 |4.23E-06 |[2.01E-01

um_crus_|

22 T2* Pallidum, putamen and |17 SWI_T2*_pallicum_L+R |10 |rs10764176 |18,242,311 |SLC39A12 (A G 0.3 3.30E-21 |1.01E-11 [9.71E-02 |SLC39A12
caudate (missense)

23 T2* Caudate 3 SWI_T2* caudate_L+R |10 |rs12570727 |18,425,519 |CACNB2 |G A 0.394 |2.17E-22 |2.20E-10 [6.23E-04  |SLC39A12-AS1

24 rfMRI Parietal, temporal and|20 NODEamps100_0002 10 |rs2274224 |96039597 |[PLCE1 G C 0.431 |6.55E-19 |1.73E-03 |7.21E-02 NOC3L, PLCE1, PLCE1-
prefrontal nodes (missense) AS1

25 rfMRI Prefrontal nodes 6 NODEamps25_0013 10 [rs11596664 (134280157 [INPPSA C T 0.439 |1.97E-15 |2.23E-05 |3.60E-02 |INPP5A RP11, 432)24.6

26 T2* Pallidum 3 SWI_T2* pallidum_L+R [11 |rs11230859 [61769972 |intergenic |G A 0.663 |2.31E-17 [6.39E-03 |4.83E-02

27 dMRI Crossing pontine tract |1 dMRI_TBSS_MO_Pontine [11 |rs4935898 |124742385 |ROBO3 G A 0.048 |1.76E-19 |2.47E-05 |[2.47E-01

_crossing_tract (missense)

28 Volume Mesencephalon 3 volume_Right- 12 |rs4301837 |102336310 |DRAM1 |T C 0.501 |3.40E-13 |3.37E-04 (1.23E-02 |GNPTAB, CHPT1,
(WM cerebellum, Cerebellum-White- GNPTAB DRAM1
brainstem) Matter CHPT1

29 Volume Hippocampus 2 T1_FAST_ROIs_R_hippoc |12 [rs7315280 |[117320938 |[intergenic |A G 0.115 |7.06E-14 |6.80E-05 [6.69E-01 |FBXWS, HRK

ampus

30 Volume Putamen 4 volume_Right-Putamen |14 |rs945270 |56200473 | intergenic|C G 0.419 |3.67E-14 |9.27E-06 |[3.32E-03

31 Volume and area of 11 T1_FAST_ROIs_R_intracal|14 [rs74826997 |59628609 [DAAM1 |T [o 0.125 |2.46E-16 (3.08E-07 |2.88E-02 [L3HYPDH, JKAMP
precuneus and cuneus c_cortex

32 Thickness, area and volume |15 a2009s_lh_S_central_are |15 |rs4924345 39639898 |RP11- A C 0.081 |3.27E-53 |1.69E-27 |1.01E-06
of primary sensorimotor a 62414.1
cortex

33 Volume 4th ventricle 1 volume_4th-Ventricle 15 |rs2642636 |58363242 |ALDH1A2 |C G 0.415 |5.24E-16 |5.63E-03 [1.81E-01 |ALDH1A2, AQPS

34 dMRI Uncinate 4 dMRI_ProbtrackX_ISOVF |16 |rs7197215 |51449978 |intergenic (A G 0.566 |2.24E-15 |4.50E-02 |1.43E-04

_unc_r
35 Volume Cerebellum IX 2 T1_FAST_ROIs_L_cerebell|17 |rs9905515 (35261073 [RP11- G C 0.23  |3.32E-13 |9.84E-06 |2.70E-04
um_IX 445F12.1
36 T2* Caudate and putamen |6 SWI_T2*_putamen_L+R |17 |rs668799 40716235 |COASY C T 0.278 |1.43E-17 |1.79E-04 |9.86E-04 |TUBG2, CNTNAP1,
FAM134C, NAGLU,
BECN1, HSD17B1,
PLEKHH3
37 Volume WM lesions 1 T2_FLAIR_BIANCA_WMH (17 |rs3744020 |73871773 [TRIM47 |G A 0.188 |1.15E-12 |6.05E-06 |3.36E-02 |TRIM47, TRIM65, RP11-
_volume 552F3.9, etc.
38 dMRI Crossing pontine tract |1 dMRI_TBSS_MO_Pontine |18 |[rs2928990 |49421125 [intergenic |T G 0.898 |[3.97E-16 |3.96E-05 |2.27E-03
_crossing_tract

The table summarizes the 38 clusters of SNP-IDP associations (n=8,428 subjects, see main text and Methods for details). For each cluster, the most significant association between an SNP and an IDP
is detailed by the chromosome, rsID, base-pair position, SNP alleles, non-reference allele frequency, P value in the discovery sample and the replication P values. The locus column details a gene if the

SNP is in that gene. If we found a coding SNP or eQTL in high linkage disequilibrium with the lead SNP, then this is reported instead.

© 2018 Springer Nature Limited. All rights reserved.
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Statistical parameters

When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main
text, or Methods section).

Confirmed
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El The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|X| An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|X| The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[X] A description of all covariates tested
|X| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

lXI A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars
State explicitly what error bars represent (e.g. SD, SE, Cl)
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Our web collection on statistics for biologists may be useful.

Software and code

Policy information about availability of computer code

Data collection There isn't a clear distinction between software used for data collection vs data analysis, so all software is listed here.
All software is described in the text - the list is:
Oxford BIG server http://big.stats.ox.ac.uk/
BGENIE v1.2 https://jmarchini.org/bgenie/
SBAT https://jmarchini.org/sbat/
fastLMM https://github.com/MicrosoftGenomics/FaST-LMM
PLINK v2.0 http://www.cog-genomics.org/plink/2.0/
LDSCORE v1.0.0 regression software https://github.com/bulik/Idsc
PheWeb https://github.com/statgen/pheweb/
FSL v5.0 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
FSLNets v0.6 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets
FreeSurfer v6.0.0 https://surfer.nmr.mgh.harvard.edu
Matlab code for working with IDPs is available at http://www.fmrib.ox.ac.uk/ukbiobank/gwaspaper/

Data analysis Please see above.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Data Availability

Full details of availability of source data and results data are covered in the main text and are re-summarised here. The data used in this work was obtained from UK
Biobank under Data Access Application 8107 and (as with all UK Biobank data) are available to any bona fide researcher upon data access application to UK Biobank.

A custom quality control, phasing and imputation pipeline was developed to address the challenges specific to the experimental design, scale, and diversity of the
UK Biobank dataset. The genetic data was publicly released in July 2017 and consists of ~96 million genetic variants in ~500,000 participants.

The UK Biobank Brain imaging protocol consists of 6 distinct modalities covering structural, diffusion and functional imaging, summarised in Supplementary Table 1.
For this study, we primarily used data from the February 2017 release of ~10,000 participants’ imaging data (and an additional ~5,000 subjects’ data released in
January 2018 provided the larger replication sample). The raw data from these 6 modalities has been processed for UK Biobank to create a set of imaging derived
phenotypes (IDPs). These are available from UK Biobank, and it is these IDPs from the 2017/18 data releases that we used in this study.

The full set of GWAS results from this study are available on the Oxford Brain Imaging Genetics (BIG) web browser, that allows users to browse associations by SNP,
gene or phenotype.

For the genetic correlation analysis we used summary statistic data from several GWAS of brain related conditions as follows: the ISGC Cerebrovascular Disease
Knowledge Portal, International Genomics of Alzheimer's Project (IGAP), the Project MinE GWAS Consortium, the Social Science Genetic Association Consortium
(SSGAC), the University of Exeter research group on Type 2 Diabetes, Obesity, Growth & Reproductive Ageing Genetics, the Psychiatric Genomics Consortium (PGC)
and the ENIGMA consortium.
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For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences

Study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Please see next question for sample size. No power calculation was needed in advance and we used all samples available (see below).

Data exclusions  We used the imputed genetic dataset made available by UK Biobank in its July 2017
release[6]. This consists of >92 million autosomal variants imputed from the Haplotype
Reference Consortium (HRC) reference panel[79] and a merged UK10K + 1000
Genomes reference panel. We first identified a set of 12,623 participants who had also
been imaged by UK Biobank. We then applied filters to remove variants with minor
allele frequency (MAF) below 0.1% and with an imputation information score below
0.3, which reduced the number of SNPs to 18,174,817. We then kept only those
samples (subjects) estimated to have recent British ancestry using the sample quality
control information provided centrally by UK Biobank[6] (using the variable
in.white.British.ancestry.subset in the file ukb_sqc_v2.txt); population structure can be
a serious confound to genetic association studies[80], and this type of sample filtering is
standard. This reduced the number of samples to 8,522. The UK Biobank dataset
contains a number of close relatives (3rd cousin or closer). We therefore created a
subset of 8,428 nominally unrelated subjects following similar procedures in Bycroft
et al. (2017). After running GWAS on all the (SNP) variants in the 8,428 samples we
applied three further variant filters to remove variants with a HWE (Hardy-Weinberg
equilibrium) p-value less than 10-7, remove variants with MAF<0.1% and to keep
only those variants in the HRC reference panel. This resulted in a dataset with
11,734,353 SNPs. Subjects were aged 40-69y at the point of original recruitment and

45-79y at the time of MRI scanning; 52% female.

Replication Two successful replication-sample analyses were carried out:
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In all analyses we estimated genetic effects with respect to the number of copies of the non-reference allele. In the discovery dataset, using a
minor allele frequency filter of 1% and a —log10 p-value threshold of 7.5, we found 1,262 significant associations between SNPs and the 3,144
IDPs. These associations span all classes of IDPs, except task fMRI (Supplementary Table 4), with the swMRI T2* group showing a relatively
large number of associations. The —log10 p-value threshold of 7.5 controls for the number of tests carried out across SNPs and accounts for
the correlation structure between genetic variants. 844 and 455 of these 1,262 associations replicated at the 5% significance level using our
two smaller replication datasets (Methods and Supplementary Table 5). Some associated genetic loci overlap across IDPs; we estimate that
there are approximately 427 distinct associated genetic regions (“clusters”), and 148 of these “clusters” have a lead SNP that replicates at the
5% level in our replication set of 3,456 participants, and 91 below a 5% False Discovery Rate (FDR) threshold. We would expect ~21 of the lead
SNPs in the 148 clusters to replicate under a null hypothesis of no association.

At a threshold of -log10 p-value > 11, which additionally corrects for all 3,144 GWAS carried out (see Methods), we find 368 significant
associations between genetic regions and distinct IDPs (Supplementary Table 6, Supplementary Fig. 4). These associations with 78 unique
SNPs can be grouped together into 38 distinct clusters by grouping across IDPs (Extended Data Table 1). Taking our lead SNP in each of the 38
regions, we find that all 38 have p<0.05 in our replication set of 3,456 participants, and all 38 are significant at 5% FDR. We found no
appreciable change in these GWAS results when we included a set of potential body confound measures in addition to the main set of imaging
confound measures (see Methods and Supplementary Fig. 5). We also carried out a Winner’s Curse corrected post-hoc power analysis that
agrees well with the results of our replication studies. (Supplementary Note 2).
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Randomization UK Biobank is an observational prospective epidemiological study, and the GWAS and heritability analyses in our study use all available
subjects that fulfil the criteria described above. Hence there is no equivalent process of randomization that comes into this analysis (this is not
a controlled randomised study).

Blinding For exactly the same reasons (this is not a controlled randomised study), there is no step equivalent to blinding involved.

Materials & experimental systems

Policy information about availability of materials

n/a | Involved in the study
D Unique materials
D Antibodies

D Eukaryotic cell lines
D Research animals

CIXIXIXIX

E Human research participants

Human research participants

Policy information about studies involving human research participants

Population characteristics We used the imputed genetic dataset made available by UK Biobank in its July 2017
release[6]. This consists of >92 million autosomal variants imputed from the Haplotype
Reference Consortium (HRC) reference panel[79] and a merged UK10K + 1000
Genomes reference panel. We first identified a set of 12,623 participants who had also
been imaged by UK Biobank. We then applied filters to remove variants with minor
allele frequency (MAF) below 0.1% and with an imputation information score below
0.3, which reduced the number of SNPs to 18,174,817. We then kept only those
samples (subjects) estimated to have recent British ancestry using the sample quality
control information provided centrally by UK Biobank[6] (using the variable
in.white.British.ancestry.subset in the file ukb_sqc_v2.txt); population structure can be
a serious confound to genetic association studies[80], and this type of sample filtering is
standard. This reduced the number of samples to 8,522. The UK Biobank dataset
contains a number of close relatives (3rd cousin or closer). We therefore created a
subset of 8,428 nominally unrelated subjects following similar procedures in Bycroft
et al. (2017). After running GWAS on all the (SNP) variants in the 8,428 samples we
applied three further variant filters to remove variants with a HWE (Hardy-Weinberg
equilibrium) p-value less than 10-7, remove variants with MAF<0.1% and to keep
only those variants in the HRC reference panel. This resulted in a dataset with
11,734,353 SNPs. Subjects were aged 40-69y at the point of original recruitment and

45-79y at the time of MRI scanning; 52% female.

Method-specific reporting

n/a | Involved in the study

E D ChlIP-seq
E D Flow cytometry

D E Magnetic resonance imaging
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Magnetic resonance imaging

Experimental design

Design type Please see "Methods" for full details. Our analyses include data from Structural MRI (T1 and T2FLAIR), susceptibility-
weighted MRI, diffusion MRI, task functional MRI and resting-state functional MRI.

Design specifications MRI data processing (to generate imaging-derived phenotypes) was done previously and is full described in references 4
(Miller) and 5 (Alfaro-Almagro).

Behavioral performance measures  Behavioral performance in the MRI scanner was not used in this study.
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Acquisition

Imaging type(s) Please see "Methods" for full details. Our analyses include data from Structural MRI (T1 and T2FLAIR), susceptibility-
weighted MRI, diffusion MRI, task functional MRI and resting-state functional MRI.

Field strength 3T

Sequence & imaging parameters MRI data acquisition for these 6 modalities covers several pages of full detail, which is fully provided previously in
reference 4 (Miller).

Area of acquisition Siemens' auto-align was used to include the full brain in the imaged field-of-view; this was checked (and corrected if
necessary) by the radiographer.

Diffusion MRI [X] Used [ ] Not used

Parameters Please see above for information about full details. Summary: 100 distinct directions spread over two b shells (1000 and 2000). 2mm
isotropic voxels.

Preprocessing

Preprocessing software See above (covered previously in full detail in Miller and in Alfaro-Almagro).
Normalization See above (covered previously in full detail in Miller and in Alfaro-Almagro).
Normalization template See above (covered previously in full detail in Miller and in Alfaro-Almagro).
Noise and artifact removal See above (covered previously in full detail in Miller and in Alfaro-Almagro).
Volume censoring See above (covered previously in full detail in Miller and in Alfaro-Almagro). No volume censoring.

Statistical modeling & inference

Model type and settings See above (covered previously in full detail in Miller and in Alfaro-Almagro).

Effect(s) tested See above (covered previously in full detail in Miller and in Alfaro-Almagro).

Specify type of analysis:  [X] Whole brain [ ] ROI-based [ ] Both

Statistic type for inference Inference was not carried out when generating IDPs, but within this study inference was applied at the level of the
(See Eklund et al. 2016) combined imaging-genetics modelling (see above).
Correction See above (Statistic type for inference).

Models & analysis

n/a | Involved in the study
|:| |X| Functional and/or effective connectivity

|X| |:| Graph analysis

|:| |X| Multivariate modeling or predictive analysis
Functional and/or effective connectivity Partial correlation.

Multivariate modeling and predictive analysis New features were generated using independent component analysis applied to partial correlation edge
strengths - see text around line ~500 in main paper.




