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Most deaths from cancer are explained by metastasis, and yet large-scale metastasis
research has beenimpractical owing to the complexity of in vivo models. Here we

introduce aninvivo barcoding strategy that is capable of determining the metastatic
potential of human cancer cell lines in mouse xenografts at scale. We validated the
robustness, scalability and reproducibility of the method and applied it to 500 cell
lines?spanning 21 types of solid tumour. We created a first-generation metastasis
map (MetMap) that reveals organ-specific patterns of metastasis, enabling these
patterns to be associated with clinical and genomic features. We demonstrate the
utility of MetMap by investigating the molecular basis of breast cancers capable of
metastasizing to the brain—a principal cause of death in patients with this type of
cancer. Breast cancers capable of metastasizing to the brain showed evidence of
altered lipid metabolism. Perturbation of lipid metabolism in these cells curbed brain
metastasis development, suggesting a therapeutic strategy to combat the disease and
demonstrating the utility of MetMap as a resource to support metastasis research.

Human cancer cell lines have been a driving force in cancer research,
leading to the discovery of oncogenic mechanisms and therapeutic
targets'*. However, large-scale characterization of cell lines has been
limited to rudimentary readouts such as viability in cell culture, because
more complex phenotypes—such as behaviours invivo—have not been
tractable at scale. By contrast, most studies of metastasis rely on only
asmallnumber of experimental models®?, thereby making it difficult
to extrapolate findings to genetically diverse human tumours™.

Ideally, it would be possible to construct a map of organ-specific
metastatic potential of hundreds of human cancer cell lines using
xenograft models, so that the molecular features of the cell lines could
be related to their ability to survive and proliferate in organ-specific
microenvironments. However, the prospect of in vivo testing of each
celllineindividually is unattractive, because itis labour-intensive and
expensive, as well asbecause of the difficulty in sufficiently controlling
for variability between animal experiments. We proposed that if cell
lines were labelled with molecular barcodes and injected into recipi-
entmice asapool,internally controlled, metastatic potential could be
assessed in a highly scalable manner.

Pilot study with breast cancer

Totest the feasibility and reliability of in vivo barcoding to monitor growth
indifferent tissues in mice, we performed a pilot study using four breast
cancer cell lines (Fig. 1a, Extended Data Fig. 1, Supplementary Note 1).
Eachcellline was engineered to express aunique 26-nucleotide barcode,
together withluciferase forinvivoimaging and either GFP or mCherryto
facilitate subsequent cell sorting and measurement of reproducibility
withinasingle mouse (Extended DataFig.1a, Supplementary Table1). The 8
barcoded lines wereinjected asa poolintotheleft ventricle of 5-6-week-old

NOD-SCID-gamma (NSG) mice so asto focus our analysis onthe ability of
tumour cellsto exit circulationand undergo expansionin distant organs.
Bioluminescence imaging (BLI) revealed metastatic lesions throughout
the body (Extended Data Fig. 1b). Five weeks after injection, brain, lung,
liver, kidney and bone were collected, human tumour cells were isolated
by fluorescence-activated cell sorting (FACS) using GFP or mCherry, and
barcodes were quantified using RNA sequencing (RNA-seq) (Extended
DataFig.1c-g). Whereas barcode abundances were similar pre-injection,
some barcodes were enriched in specific organs (Extended Data Fig. 1h).
Different cell lines exhibited distinct patterns of metastatic spread, but
each cellline showed highly similar pattern of spread across multiple mice
independent of whether GFP or mCherry versions were used, demonstrat-
ingthe reproducibility of this pooled approach (Extended Data Fig.1d). For
example, HCC1954 was most strongly detected in brain, whereas extrac-
ranial metastases were dominated by MDAMB231. Barcodes quantified
by bulk RNA-seq were independently validated by quantitative PCR with
reverse transcription (RT-qPCR) and single-cell RNA-seq (Extended Data
Fig.1li-m, Supplementary Note1).

Having validated the method, we next characterized the metastatic
behaviours of all 21 basal-like breast cancer cell lines in the Cancer Cell
Line Encyclopedia (CCLE) (Extended Data Fig. 1a-d). Basal-like breast
cancers are known to have diverse metastatic abilities in patients™.
Reflecting this diversity, the cell lines showed disparate metastatic pat-
terns: pan-metastatic, metastatic preferentially to particular organs or
not metastatic (Fig. 1b, Supplementary Table 2). Notably, one cell line
(BT20) was detected inmultiple organs, but at very low abundanceinall
ofthem, reflectingits ability to colonize but not expand. To validate the
patterns of metastasis observedin the pooledin vivo system, we selected
eight cell lines for individual characterization, and observed similar
resultsfromthe pooled and individual screens (Extended DataFig. 1n, 0).
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Fig.1|Scalablein vivo metastatic potentialmapping withbarcoded cell
linepools. a, Aschematic of the experiment determining the feasibility of
invivo metastatic potential profiling using barcoded cell line pools. Barcode
abundance reflecting cancer cell compositions was determined by RNA-seq,
and the cellnumber of each cell line was inferred by cancer cell composition
and total cancer cell countsisolated from the target organ. b, Petal plots
displaying the metastatic patterns of 21basal-like breast cancer cell lines. Petal
length represents metastatic potential, quantifying the mean of inferred
cancer cellnumbers detected from the target organs. Dataare mean + 95%
confidenceinterval. Petal width shows penetrance, quantifying percentage of
mice detected with the cellline.

A metastasis map of 500 human cancer cell lines

Having demonstrated its feasibility in breast cancer, we attempted
to expand the mapping of metastatic potential to human cancer cell
lines from diverse lineages. To facilitate higher-throughput profil-
ing, we used cell lines barcoded for use with the PRISM method, which
was developed for in vitro drug-sensitivity screening'. A simplified
workflow enabled the quantitative detection of barcodes from crude
tissue lysates without the need for FACS-based tumour cell purification
(Extended DataFig. 2, Supplementary Note 2). We applied this method
to 503 cell lines spanning 21 lineages to develop a first-generation
Metastasis Map (MetMap) (Fig. 2a). The data and interactive visualiza-
tionare publicly accessible at https://pubs.broadinstitute.org/metmap.

To test the robustness of the MetMap dataset, we tested cell lines in
two formats: in one, we injected all 498 cell lines as a single pool; in the
other, we injected 5 pools of 25 lines, with each pool being injected into
different mice (referred to as MetMap500 and MetMap125, respectively)
(Fig. 2b). We similarly varied cell numbers, mouse age and cohort size to
determine whether results varied substantially with these parameters.
We observed strong correlation of the metastatic potential despite
differences in experimental conditions (Fig. 2c), suggesting that the
approach is extremely robust. We also note that intracardiac injec-
tion enabled the evaluation of many more cell lines in vivo compared
with subcutaneous injection. Specifically, we recovered an average of
197 celllines per mouse following intracardiacinjection, whereas an average
of42 celllineswererecovered following subcutaneousinjection (Extended
Data Fig. 3a—c). We suspect that this difference is explained by the local
competition for nutrients and other microenvironmentalfactorsinthe sub-
cutaneoussetting, whereas the spatial separation of tumour cells delivered
through the intracardiac route minimizes such competition. A similarly
reduced diversity was observed in the orthotopicsetting, whereinjection of
apool ofninebreast cancer cell linesinto themammary fat pad resulted in
asingle cellline dominating the resulting tumour (Extended DataFig. 3d).
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To determine whether the MetMap reflects the metastatic behaviour
of human cancers, we analysed available clinical annotations of the cell
lines (Fig. 3a-e, Extended DataFig. 4). We found statistically significant
associations with tumour lineage, the site from which the cell line was
derived (primary tumour versus metastaticlesion) and patient age. There
was no association between metastatic potential and gender or ethnicity.
As expected, metastatic potential was higher in certain tumour types,
such as melanoma and pancreatic cancer, which also tend to develop
metastasis in the human disease setting®. By contrast, cell lines derived
from brain tumours were generally non-metastatic, reflective of their
tendency to not undergo haematogenous spread™®. Similarly, the DU145
prostate cancer cell line, derived from a brain metastasis lesion'®, exhib-
ited brain metastasisin our experimental system. Cell lines derived from
metastases showed higher metastatic potential thanlines derived from
primary tumours, although lines derived from primary tumours known
tolater give rise to metastases in patients were metastatic in the MetMap
(Fig.3b), consistent with previously reported suggestions that metastatic
potential is already encoded in primary tumours”*°, The association
between decreased metastatic potential and increased patient age was
unexpected (Fig. 3c), and its basis remains to be determined.

Perhaps mostimportantly, extensive variation in metastatic potential
was observed within individual lineages, making it possible to search
for associations between metastasis propensity and genomic features
ofthe tumours. Of note, metastatic potential was not simply explained
by proliferation rate or mutational burden (Fig. 3f-h, Extended Data
Fig. 4f, g), suggesting that more subtle molecular determinants of
metastasis were involved.

Molecular correlates of brain metastasis

To develop mechanistic insights, we focused on breast cancer and its
potential for brain metastasis (Fig. 1b), because brain metastasisis a
feature of some—but not all-breast cancers, and little is known about
the underlying factors that could inform therapeutic approaches?®*. We
therefore undertook a systematic and unbiased comparison of the molec-
ular features that distinguished brain metastatic versus non-metastatic
lines, using genomic data available for each of the cell lines.
Atthelevel of somatic mutations, PIK3CA was the top associated cor-
relate: 4 out of 7 brain metastatic lines contained a PIK3CA mutation,
compared with O out of 14 non-metastatic or weakly metastatic lines
(false discovery rate (FDR) = 0.0034) (Fig. 4a, Extended Data Fig. 5a).
Afifthline, HCC70, has aloss-of-function mutationin PTEN. PI3K isa prin-
cipal downstream mediator of ERBB2 (also known as HER2), whichitself
hasbeen reported to be associated with brain metastasis in humans™2°,
Indeed, two of the brain metastatic cell lines (JIMT1and HCC1954) also
contain typical ERBB2 gene amplifications (Extended Data Fig. 5a).
Atthelevel of DNA copy number, we observed anassociationbetween
metastatic potential and deletions of chromosome 8p12-8p21.2 (referred
toas8p) (FDR=0.0017) (Fig.4b). Five out of seven brain metastatic breast
cancer cell lines contained deletions in this region, compared with O out
of 14 non-metastatic lines (Extended Data Fig. 5a). A sixth metastatic
line, JIMT1, has asmall deletion within this commonly deleted region.
Toascertain the clinical relevance of these associations, we analysed
clinical breast cancer datasets for which metastasis information was
available'®. We observed a strong correlation between 8p copy number
andgene expressioninthe METABRIC and TCGA datasets*? (Extended
DataFig. 6a), thereby validating 8p expression as asurrogate for copy
number in datasets for which copy number data were not available.
Coordinated expression of 8p genes stratified tumours into two clus-
ters, with the low-expressing cluster showing enrichment in brain
metastasis and lower brain metastasis-free survival (Extended Data
Fig. 6b). Whereas 8p loss was more frequent in basal-subtype breast
cancer (known to have poor prognosis), 8p loss remained significantly
associated with brain metastases within basal tumours. A similar trend
was seeninother subtypes, but the sample size wastoo smallto reach
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Fig.2|Drafting MetMap for 500 human cancer celllines. a, A schematic of
the workflow using pan-cancer PRISM cell line pools for high-throughput
metastatic potential profiling. Relative metastatic potential was quantified by
deep sequencing of PRISM barcode abundance from tissue. The cancer lineage
distribution of the profiled 500 cancer cell linesis presented, with each dot
representingacellline,and showing whether the cell line was derived from

statistical significance. Concordant with these findings, the 8p-low
signature was strongly enriched in brain metastasis lesions compared
with extracranial metastases or primary tumours* (Extended Data
Fig. 6¢, d). Similarly, we observed that response signatures®* indicat-
ing PI3K activation are associated with brain metastases (Extended
Data Fig. 6e-g). The PI3K-high signature tended to co-occur with the
8p-low signature, and the overlapping events captured the majority
of patients with brain metastases (Extended Data Fig. 6h, i). These
results established the validity of the MetMap experimental system

for discovery.

Lipid metabolism and brain metastasis

Confirming these genetic findings, expression analysis revealed enrich-
ment of PI3K and ERBB2 signatures in the brain metastatic cell lines
(Fig. 4c). Furthermore, we observed a strong association between
brain metastatic potential and a lipid-synthesis signature (Fig. 4c),

primary tumour or metastasis. b, Comparison of experimental conditions
between MetMap500 and MetMapl25. ¢, Scatter plots showing overalland
organ-specific metastatic potential as determined in MetMap500 and
MetMap125. Strong correlationis observed between the two experiments.
Eachdotrepresentsacellline. Cancerlineageis colour-codedasina.

which hasbeen reported inassociation with both PI3K activation and
8p-deletion??, To investigate a potential role of lipid metabolismin
breast-cancer brain metastatic potential, we analysed the abundance
of lipid metabolites across the cell lines*. We observed increased
levels of cholesterol species in highly brain metastatic cells (Fig. 4d).
Inadditionto cholesterols, membranelipids including phosphatidyl-
choline and sphingomyelin were similarly more abundant, as were
metabolites associated with the pentose phosphate pathway*°, which
cansupport cholesterol and lipid synthesis. By contrast, we observed
global decreasesinlevels of triacylglycerols (TAGs) in brain metastatic
cells (Fig.4d). Non-brain metastatic cells had higher levels of TAGs and
contained afatty acid oxidation signature (Fig. 4c). Metabolite profiling
of normal mouse tissues® showed that the brain has markedly lower
levels of TAGs compared with other tissues (Fig. 4e). This reflects brain
physiology, whereby instead of storing fatty acids as TAGs, the brain
accumulates specialized lipids to support neural activity and brain
function®. One possibility is that for breast cancer cells to survive in the
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quantified by somatic mutations from exon-sequencing data. h, Aneuploidy
quantified by chromosome-arm-level events from exon-sequencing data. Each
dotrepresentsacellline.

brainmicroenvironment, where TAGs and other storage lipids present
in other tissues are not abundant, they must access lipids via de novo
synthesis oranother route, in line with the seed-and-soil hypothesis™.
To further investigate the characteristics of breast cancer cell lines
capable of brain metastasis, we analysed genome-wide CRISPR-Cas9
viability-screening data* toidentify gene vulnerabilities associated with
the brain metastatic state. We identified SREBF1 as the top-correlated
dependency with brain metastasis (FDR =0.001) (Fig. 4f). SREBFlisa
pivotal transcription factor that mediates lipid synthesis downstream
of the PI3K pathway?"*. SREBF1 was selectively required for growth of
brain metastaticlines in culture compared with breast cancer lines with
low or no brain metastatic potential. The association was specific to
brain, asno association was observed between SREBF1 essentiality and
metastasis to other organs (Fig. 4f). This SREBFI-breast-cancer brain
metastasis association was also recovered in the MetMap500 data-
set, indicating strong reproducibility of the finding (Extended Data
Fig.5b, c). Of note, the SREBFI paralogue SREBF2 showed no association
between its essentiality in culture and metastatic potential (Fig. 4g).
To investigate the role of SREBFI in affecting the lipid phenotype
observed in brain metastatic cells, we performed lipidomics after
knocking out SREBF1inJIMT1and HCC1806 cells using CRISPR-Cas9.
SREBFI knockout resulted in a marked shift in intracellular lipid con-
tent, including adecreaseinlevels of cholesterol, membrane lipids and
diacylglycerols (Fig.4h). SREBFI knockout also resulted in anincrease
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inintracellular TAG levels, presumably by scavenging TAGs from the
lipid-rich serum added to the culture medium. To test this hypoth-
esis, we repeated the experiment in culture medium prepared with
delipidated serum, which prevented the increase in TAGs observed in
SREBF1-knockout cells (Extended Data Fig. 7).

To further explore the role of SREBF1, we performed RNA-seq fol-
lowing SREBFI knockout and found SCD* to be the most consistently
downregulated gene (Fig. 4i). Consistent with this, SCD was the top
co-dependency of SREBFI across 688 cell lines in the genome-wide
CRISPR-Cas9 viability screens (Fig. 4j). The next highest scoring SREBF1
co-dependency was SCAP, which encodes the upstream activator of
SREBFI*.Comparison of gene expression in breast cancer cells grown
invitroorinthe brainsimilarly showed thatinthebrain, cellsadopted
gene-expression signatures of adipogenesis, fatty acid metabolism
and xenobiotic metabolism (Extended Data Fig. 8, Supplementary
Note 3). The enrichment of lipid-metabolism signatures (including
upregulation of SREBF1 and SCD) was unique to brain compared with
other sites of metastasis. Similar upregulation was also observed in
brain metastases from patients compared with extracranial metastases
or their matched primary tumours® (Extended Data Fig. 9). Further-
more, the requirement for SREBF1, SCD, SCAP and other members of
thelipid-metabolism pathway for brain metastasis formation was con-
firmed in both mini-pool and individual gene-knockout experiments
(Fig.5a-c, Supplementary Note 4). Together, these genetic, metabolic,
transcriptomic and functional genomic evidence all point to an associa-
tionbetween SREBF1-mediated lipid metabolism and brain metastasis.

Given the observation that SREBF1 knockout resulted in a viability
defectinvitro (Extended DataFig.10a), we compared the relative effect
ofknockout on metastasis to different organs, to determine whether the
viability defect was preferentially observedin brain (Fig. 5d). Five weeks
followingintracardiacinjection of SREBFI-knockout cells, we observed a
marked defect in brain metastasis (196-fold reduction), compared witha
modest defectinother organs (9-21fold) (Fig. 5d). Histologic examina-
tion of brains from xenografted mice revealed large metastatic lesionsin
micereceiving wild-type cells, whereas those receiving SREBFI-knockout
cells contained micrometastases (Extended Data Fig.10b), suggesting
that SREBFIisnotrequired for seeding the brain, but rather for prolifera-
tion in the brain microenvironment. Consistent with this hypothesis,
injectionof tumour cellsinto the carotid artery increased the probability
of seeding the brain, but nevertheless amarked growth defect was still
observed in SREBFI-knockout cells (Fig. 5e).

To determine the generality of the SREBFI requirement for breast
cancer growth in the brain, we knocked out SREBFI in additional
brain metastaticlines including HCC1954, MDAMB231 and HCC1806
using CRISPR-Cas9. As with JIMT1, a significant inhibition in brain
metastatic growth was also observed in these lines, although the
magnitude and duration of growth inhibition varied (Extended Data
Fig.10c, d). The least responsive cell line was HCC1806, in which
SREBF1-knockout cells displayed a brain growth defect for the first
week, but then assumed agrowth trajectory that paralleled wild-type
cells. This restoration of growth was not explained by reversion of the
genome editing, as brain metastases at the end of the experiment
showed evidence of editing at the SREBFI locus and minimal SREBF1
protein expression (Extended Data Fig.10e, f). Instead, we found that
the SREBFI-independent growth was associated with upregulation
of the fatty acid transporter CD36 and the fatty acid-binding protein
FABP6 (Extended DataFig.10g). Of note, culture of HCC1806 in mouse
brain-slice-conditioned medium similarly resulted in upregulation of
SCD and CD36 expression (Extended Data Fig. 10h, i). JIMT1 cells did
notupregulate CD36 or FABP6 expression following SREBF1 knockout
(Extended DataFig.10g), perhaps explaining their inability to survive
inthe brain. Together, these results further demonstrate the relation-
ship between lipid metabolism and brain metastasis, as cellsunder the
selective pressure of SREBFI loss must acquire lipids by other means
to survive in the brain microenvironment.
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Discussion

Thiswork describes MetMap as an approach for large-scalein vivo char-
acterization of human cancer celllines. The MetMap resource (available
athttps://pubs.broadinstitute.org/metmap) currently includes metas-
tasis profiles of 500 cell lines spanning 21 tumour types, providing a
large repertoire of models for exploration of metastasis mechanisms.

0 5,000 10,000 15,000
Gene ranks

diacylglycerol; PPP, pentose phosphate pathway metabolites. e, Heat map
presenting distribution of lipid species measured by mass spectrometry from
different mouse tissues. Gastroc, gastrocnemius. f, CRISPR gene dependencies
thatassociate with brain metastatic potential. The top gene, SREBFI
(FDR=0.001), is aselective dependency in highly brain metastatic lines.
Positive correlationsareinred, negative correlations are in blue.

g, Distribution of SREBFI (top) and SREBF2 (bottom) dependencies across 688
human cancer celllines. The positions of highly brain metastatic (met) breast
lines are highlighted inred, whereas weakly metastatic or non-brain metastatic
breastlinesare highlighted inblue. h, Consensus alterationsinlipid species
abundance upon SREBFI knockout (KO) inJIMT1and HCC1806, two brain
metastatic celllines. Barsindicate adjusted Pvalues. Lipid metabolites
measured by mass spectrometry were grouped by species, and enrichment
analysis of the species was performed using GSEA. WT, wild type. i, Consensus
gene-expression changes upon SREBF1knockoutinJIMT1, HCC1806, HCC1954
and MDAMB231, four brain metastatic cell lines. The two top genes are SREBF1
and SCD (FDR <0.05, highlighted inbold). j, Co-dependencies of SREBFI across
688 human cancer celllines ingenome-wide CRISPR viability screen. The two
top genesare SCDand SCAP (FDR <1x107°°, highlighted in bold).

Alimitation of the use of human cell lines for such experiments is that
theyrequire the use ofimmunodeficient mice. The extent towhich the
immune system has arole inmediating patterns of metastasis remains
to be determined®.

We followed up only a small proportion of the MetMap findings—
specifically, breast cancer metastasis to brain. Multiple lines of
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metastasis. a, Aschematicof anin vivo CRISPR screeninvestigating relative
genefitnessin brain metastasis outgrowth. b, Volcano plot showing the result
of amini-poolinvivo CRISPR screentargeting 29 lipid-metabolism-related
genes. Thirteen genes scored at FDR<0.05, with selective hits highlighted.

¢, Individual gene validation of six hits by intracranial injection of JIMT1edited
cells. Cell outgrowth in brain metastasis was monitored by real-time BLI. Two

ind

ependentguides per gene were tested, with one guide per-mouse.d, BLIand

quantification of relative fold change in metastasis load in the organs of mice
receivingintracardiacinjection of wild-type (WT) or SREBF1-knockout (KO)

JIM

Tlcells.Dataaremean+s.e.m.Eachgroup contains five mice. e, BLIand

quantification of relative fold change in brain metastasis load in mice receiving
intracarotid injection of wild-type or SREBF1-KOJIMT1 cells. Dataare
meants.e.m.n=7 (wild-type) and n=8 (knockout) mice.

experimental and clinical evidence pointed to a role of lipid metabo-
lism in governing the ability of cells to survive in the brain microen-
vironment. The importance of lipid metabolism in cancer has been
highlighted by a number of studies, but its role in brain metastasis
has, to our knowledge, not been fully appreciated® .. The possibility
thatinterfering with lipid or cholesterol metabolism might abrogate
metastaticgrowthinthebrainis particularly intriguing. More generally,
thisworkillustrates the complexinterplay between cancer cell growth
and the tissue microenvironment.
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Methods

No statistical methods were used to predetermine sample size. The
experiments were not randomized. The investigators were not blinded
to allocation during experiments and outcome assessment.

Breast cancer cell lines and barcoding

Breast cell lines were cultured under therecommended conditions from
CCLE (https://portals.broadinstitute.org/ccle). Cell line identities were
confirmed by SNP fingerprinting as well as RNA-seq, and compared to
the CCLE results. All cell lines were tested negative for mycoplasma. The
fluorescence-luciferase-barcode (FLB) construct was engineered using
the FUW lentiviral vector backbone (a gift from D. Baltimore; Addgene
plasmid no. 14882). Barcodes 26 nucleotides in length were designed
using barcode_generator.py (v.2.8; http://comailab.genomecenter.
ucdavis.edu/index.php/), and cloned into the landing pad C-terminal to
the TGA stop codon of fluorescence luciferase using Gibson assembly
(New England Biolabs). Lentivirus preparationand cell infection were
performed according to published protocols available at http://www.
broadinstitute.org/rnai. Infected cells were analysed by FACS with a
fixed gate for GFP or mCherry, using a Sony SH4800 sorter.

Animal studies

Animal work was performed in accordance with a protocol approved
by the Broad Institute Institutional Animal Care and Use Committee
(IACUC).NSG female mice (TheJackson Laboratory) at 5-6 weeks of age
were used. Cancer cells were suspended in PBS, 0.4% BSA and 100 pl of
cell suspensions were injected into the left ventricle of anaesthetized
mice (ketamine 100 mg kg™; xylazine 10 mg kg™). In vivo metastasis
progression was monitored viareal-time BLIusing the IVIS SpectrumCT
Imaging System (PerkinElmer) on a weekly basis. Mice were anaesthe-
tized withinhalingisoflurane, injected intraperitoneally with D-Luciferin
(150 mg kg™), and imaged with the auto exposure setting in prone and
supine positions. At the end point, ex vivo BLI was performed by sub-
merging the excised organs in DMEM/F12 medium (Thermo Fisher
Scientific) containing D-Luciferin for 10 min and imaged with the auto
exposure setting. BLI analysis was performed using Living Image soft-
ware (v.4.5, PerkinElmer). In the case of breast cancer cohort study (pilot,
grouplandgroup2inFig.1, Extended DataFig.1), cell lines were mixed
atanequal ratioimmediately before animaliinjection, and cell line pools
containing 2 x 10* cells per barcoded line were injected. In the case of
single breast cell line validation (Extended Data Fig. 1n), cell lines were
injected individually at a density of 2 x 10* cells, to be comparable with
the pooled experiments. In the case of MetMap125 (Fig. 2, Extended
Data Fig. 2), PRISM pools of 25 cell lines were used, and 2.5 x 10° total
cells were injected per mouse, corresponding to 1x 10* cells per bar-
coded line. Five PRISM pools were injected separately into cohorts of
5-6-week-old NSG mice. In the case of MetMap500, 20 PRISM pools of
25 celllines were combined to formalarge pool of 498 celllines. The large
poolwas injected into a cohort of 8-10-week-old NSG mice, with 2.5x10°
cells per mouse, equivalent to adensity of 500 cells per line. Mammary
fat pad and subcutaneous injections were performed with Matrigel
(Corning) support, at a matching density to their intracardiac assays,
respectively (Extended DataFig. 3). For all pooled cell line experiments,
mice were euthanized 5weeks afterinjection, inatime-matched manner,
unlessthey displayed severe paralysis or poor body condition, in which
case they were euthanized earlier. Intracartoid injection of JIMT1 was
performed following a published protocol*, atadensity of 1x10°cells
per mouse, similar to the intracardiac injection (Fig. 5e). Intracranial
injectionwas performed as previously described*®, at adensity of 1x 103
cells per perturbation per animal (Fig. 5a-c, Extended Data Fig.10c, d).

Tissue processing and cancer cell isolation from organs
Organs including brain, lung, liver, kidney were dissociated using
gentleMACS Octo Dissociator with Heaters (Miltenyi Biotec).

The optimized dissociation solutions and programs (Miltenyi Bio-
tec) arelisted in Supplementary Table 9. Bones (from both hind limbs)
were choppedinto fine pieces and incubated in the dissociation buffer
with vigorous shaking. The dissociated cell suspensions were filtered
using 100-pum filters, and washed with DMEM/F12 twice. Cell suspen-
sions were then washed with staining buffer (PBS, 2 mM EDTA, 0.5%
BSA), and incubated with mouse cell depletion beads according to
the instructions (Miltenyi Biotec). Cell suspensions were subjected
to negative selection using autoMACS Pro Separator (Miltenyi Bio-
tec) to deplete mouse stroma. Brains were subjected to an additional
myelin-debris-depletion step using myelin removal beads Il (Miltenyi
Biotec). The resultant cell suspensions were then analysed by FACS
using a Sony SH4800 sorter, with the fixed gate for GFP or mCherry.
DAPI staining was used to exclude dead cells. For bulk RNA-seq, cells
were sorted to a single tube in PBS, 0.4% BSA and RNasin Plus RNase
Inhibitor (Promega), centrifuged at1,500 rpm for 10 min, and cell pel-
lets were frozen at —80 °C for downstream use. For single-cellRNA-seq,
single cells were sorted into 96-well plates containing cold TCL buffer
(Qiagen) containing 1% -mercaptoethanol, snap frozenondry ice,
and then stored at —80 °C. Ninety single cells were sorted per plate,
therest wellson the plate were used for negative and positive controls.

RNA extraction, library preparation and sequencing

Individual celllines, cell line pools before injection, and cells isolated
from metastases were analysed by RNA-seq. RNA extraction was per-
formed using Quick-RNA MicroPrep according to the manufacturer’s
instructions (Zymo Research). RNA was quantified usingan RNA 6000
Pico Kit on a 2100 Bioanalyzer (Agilent). RNA samples from cell num-
bers lower than 500 were not measured but all were used as input for
library preparation. cDNA was synthesized using Clontech SmartSeq
v.4reagents fromup to2 ng RNA input according to the manufacturer’s
instructions (Clontech). Full-length cDNA was fragmented to a mean
size of 150 bp with a Covaris M220 ultrasonicator and Illuminalibraries
were prepared from 2 ng of sheared cDNA using Rubicon Genomics
Thruplex DNaseq reagents according to the manufacturer’s protocol.
The finished double-stranded DNA (dsDNA) libraries were quantified
by Qubit fluorometer, Agilent TapeStation 2200, and RT-qPCR using
the KapaBiosystems library-quantificationkit. Uniquely indexed librar-
ies were pooled in equimolar ratios and sequenced on Illumina Next-
Seq500 runs with paired-end 75-bp reads at the Dana-Farber Cancer
Institute Molecular Biology Core Facilities. RT-qPCR quantification of
barcodes was performed using Maxima First Strand cDNA Synthesis
Kit, Tagman Fast Advanced Master Mix, custom synthesized Tagman
probes, and QuantStudio 6 PCR System (ThermoFisher Scientific).
Single-cell RNA-seq was performed as previously described*.

Bioinformatic analysis

Barcode quantification from RNA-Seq of metastases. Because the
RNA-seq library preparation sheared the cDNA randomly into small
pieces, demultiplexed RNA-seq reads were mapped to the barcode
references using Bowtie 2 local mode* for barcode detection and
quantification. Mapped reads were filtered with the criteriathat reads
(either 5" or 3’) must cover over 50% of the barcodes from either end,
and counted using samtools. Barcode percentage corresponding to
cell composition was calculated for single cell lines, pre-injected cell
mixtures and in vivo metastasis samples.

Metastatic potential quantification and feature associations. For
breast cohort study, metastatic potential of cell linej targeting organ
i, M;;was calculated as: M= % ke cp; in which ¢;is the total cancer
cellnumberisolated from organi, p;is the fractional proportion of cell
linejestimated by barcode quantification, and nis the number of rep-
licates of mice. To identify features that associate with brain meta-
static potential, a two-class comparison method was used*. The
analysis was performed on mutation, copy number, expression,
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metabolite, and CRISPR-gene dependency (available at https://depmap.
org/portal/). Copy number data were binarized using a cutoff of <-1
(loss) and =1 (gain).

Cancer transcriptomic analysis from RNA-seq of metastases. Po-
tential mouse contaminating reads were removed by competitive map-
ping to the human/mouse hybrid genome using BBSplit (https://source-
forge.net/projects/bbmap/). Reads that uniquely mappedto the human
genome were then used asinput for mapping and gene-level counting
with the RSEM package*. Gene count estimates were normalized using
the TMM method in edgeR*8. For differential analysis, to properly ac-
count for the cancer cell composition differencesin eachin vivo sam-
ple, aninsilico modelled in vitro mixture was generated first. For each
insilico metastasis model, the estimated expression g of gene iis com-
puted asaweighted average of the cell lines presentin the correspond-
inginvivosample: g = Z’j‘ilgup., in which g;;is the baseline in vitro
expression of geneiin celllinejand p; is the fractional proportion of
celllinejintheinvivosample, as estimated by barcode quantification,
and Misthe number of cell lines presentin the in vivo sample. The in vivo
andinsilico counterpart were then compared using a paired design for
each organ in voom-limma®*. GSEA was performed using camera or
GSEA-preranked method implemented in fgsea***. Single sample GSEA
signature projection was performed using gsva package®°.
Gene-signature datasets were from MSigDB (https://www.gsea-msigdb.
org/).

PRISMinvivo assay

PRISM pool preparation. PRISM cell lines (source of each available
at https://depmap.org/portal/) were adapted to the same culture
conditions in phenol-red-free RPMI1640 medium (ThermoFisher
Scientific) and barcoded as previously described™. SNP fingerprint-
ing authentication was performed before and after barcoding. My-
coplasma contamination was examined (MycoScope, Genlantis) and
only negative lines were used for experiments. These included eight
oestrogen-receptor-positive breast cancer cell lines. Despite the lack
of phenol red (a weak oestrogen) these breast cell lines maintained
ESR1positivity and expression of adownstream marker of its activity,
FOXAL. This is probably explained by the remaining oestrogensin the
fetal bovine serum (FBS). PRISM cell lines were pooled on the basis of
their in vitro doubling bins, at equal number, in the format of 25 lines
per pool,and cryopreserved until use. Cells were thawed and recovered
for48hbeforeinvivoinjection. Toformthelarge pool of 498 cell lines,
20 PRISM pools were mixed at equal total number immediately before
injection.

Tissue processing, library preparation and sequencing. Afterinvivo
experiments, organs were subjected to tissue dissociation, mouse
stromadepletion, and the dissociated cell pellets were frozen at—-80 °C
asdescribed above. The pellets (<50 mg dry weight) were lysedin200 pl
freshly prepared lysis buffer with proteinase K, heat digested at 60 °C,
and denatured at 95 °C for 10 min. Twenty microlitres of the lysates was
used for barcode amplification per 100 pl PCR volume (multiple tech-
nical replicates per sample). PCR was performed using the following
conditions: 95 °Cfor 3min; 98 °Cfor20s,57 °Cfor15s,72 °Cfor10s (30
cycles); 72 °C for 5 min; 4 °C stop. PCR libraries were pooled, purified
using Select-a-Size DNA Clean & Concentrator Kit (Zymo Research), and
quantified using Qubit dsDNA HS Assay Kit (ThermoFisher Scientific)
and a 2100 Bioanalyzer (Agilent). The purified 2 nM of libraries with
20% spike-in PhiX DNA were sequenced on Illumina MiSeq or HiSeq at
800 K mm™cluster density.

Metastatic potential quantification. Demultiplexed sequencing reads
were mapped to the barcode reference to generate a table of cell line
barcode counts for each sample/condition. Sequencing-depth normal-
ized read counts were used for calculation of relative metastatic

potential. Relative metastatic potential of cell linej targeting organ i,
rM,;, was defined as: rM; ;== Y%_, ¢; ;/ Y41, inwhichc;is the read
counts of cell linejfromorgan i, p;is the read counts of cell linej from
pre-injected population, nis the number of replicate samples of mice,
mis the number of replicates of pre-injected population. Confidence
intervals were calculated using bootstrap resampling.

Invivo CRISPR screen and gene validation

CRISPR-Cas9 versions of cell lines were generated by infecting lucifer-
ized cells with Cas9-Blast lentivirus and selecting in 5 ug ml™ blasticidin
for 10 days with continuous passaging until non-infected controls were
killed. For pooledinvivoscreen, JIMT1-Cas9 cells were infected witha
CRISPRguidelibrary (Supplementary Table10) in an arrayed-fashionin
6-wellplates, and selected in 2 ug ml™ puromycin for 4 days. At this time,
non-infected controls werekilled, and no growth defect was observedin
the perturbed cell lines. Post antibiotic selection, cells were pooled and
subjected tointracranial injection at 6 x10* cells per mouse in 1l PBS.
Thiswasequivalentto1x10°cells per guide onaverage per mouse. Intrac-
ranial growth was allowed to progress for 4 weeks, and brain tissues
were processed adopting the workflow of PRISM in vivo assay, except
that guides were amplified using primers targeting the guide vector.
Demultiplexed sequencing reads were mapped to the guide reference
to generate a table of barcode counts for each guide for each sample.
Sequencing-depth was normalized using the upper-quartile method
and relative depletion was quantified using a linear model in limma*©.
For individual gene validation (Fig. 5c, Extended Data Fig. 10c, d),
Cas9-expressing cells of different cell lines were infected with cor-
responding guides, selected in 2 pg ml™ puromycin for 4 days, and
subjected tointracranialinjection at1x10° cells per mouse in 1l PBS.
Two independent guides per gene were tested, with one mouse per
guide. Intracranial growth was monitored by BLI following injection.

Liquid chromatography-mass spectrometry lipidomics

Positiveion mode analyses of polar and nonpolar lipids (C8-pos) were
conducted usingaliquid chromatography-mass spectrometry (LC-MS)
system composed of a Shimadzu Nexera X2 U-HPLC (Shimadzu) cou-
pled to an Exactive Plus orbitrap mass spectrometer (ThermoFisher
Scientific). Cellular extracts were collected from 6-well plate culture,
in LC-MS-grade isopropanol (Sigma-Aldrich) containing an internal
standard1,2-didodecanoyl-sn-glycero-3-phosphocholine (Avanti Polar
Lipids). Extracts were centrifuged for 10 minat 10,000g to remove resid-
ual cellular debris. After centrifugation, supernatants were injected
directlyontoal00x2.1mm,1.7-umACQUITY BEH C8 column (Waters).
The columnwas eluted isocratically with 80% mobile phase A (95:5:0.1
v/v/v10 mM ammonium acetate/methanol/formic acid) for 1 min fol-
lowed by alinear gradient to 80% mobile phase B (99.9:0.1v/v methanol/
formic acid) over 2 min, alinear gradient to 100% mobile phase B over
7 min, then3 min at100% mobile phase B. Mass spectrometry analyses
were performed using electrospray ionization in the positive ion mode
using full scan analysis over 200 t01,000 m/zat 70,000 resolution and 3
Hz dataacquisition rate. Other mass spectrometry settings were as fol-
lows: sheath gas 50, in source collision-induced dissociation 5 eV, sweep
gas 5, spray voltage 3 kV, capillary temperature 300 °C, S-lens RF 60,
heater temperature 300 °C, microscans1, automatic gain control target
10%, and maximumion time 100 ms. Lipid identities were determined on
the basis of comparison to reference standards and reference plasma
extracts and were denoted by the total number of carbons in the lipid
acyl chain(s) and total number of double bondsin the lipid acyl chain(s).

Western blot

Protein lysates were prepared in RIPA lysis buffer (ThermoFisher Sci-
entific) with cOmplete Mini EDTA-free Protease Inhibitor Cocktail
(Roche). Westernblot was performed using NuPAGE gel (ThermoFisher
Scientific) with wet tank blotting (Bio-Rad) and Odyssey detection
system (LI-COR). SREBF1primary antibody (14088-1-AP, Proteintech),
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SCD (CD.E10) antibody (ab19862, Abcam), GAPDH (D16H11) XP rabbit
monoclonal antibody (5174S, Cell Signaling), B-actin (8H10D10) mouse
monoclonal antibody (37008, Cell Signaling), and IRDye 800CW goat
anti-mouse IgG (926-32210, LI-COR), IRDye 680RD goat anti-rabbit IgG
(926-68071, LI-COR) secondary antibodies were used. Western blot was
performed for cells cultured in different medium conditions. These
include RPMI1640 with 10% FBS, with 10% delipidated FBS, with 10%
human cerebrospinal fluid (991-19-P-5, Lee BioSolutions), or with 1%
SM1supplement (05711, STEMCELL Tech), or brain-slice-conditioned
medium. Brain-slice-conditioned medium was prepared by submerg-
ingbrainslices (150 pm) in RPMI1640 (no serum) for 48 h. Delipidated
FBS was prepared as described®.

Clinical data analysis

METABRIC, TCGA and MSK targeted-sequencing breast cancer datasets
were downloaded from cBioPortal®>. The EMC-MSK dataset including
615 primary tumours (GSE2035, GSE2603, GSE5327 and GSE12276)
and the 65-metastasis-sample dataset (GSE14020) were collected and
processed as previously described’®. Paired primary breast tumour
and brain metastasis RNA-seq was obtained fromref. . To exclude the
confounding effect of brain stroma contaminationin this dataset, acon-
tamination indicator generated from GSE52604 was applied, and the
contaminating effect was regressed out, generating a corrected gene
matrix. PI3K-response signatures were from refs. >, Signature analysis
was conducted as described”. Hierarchical clustering and heatmaps
were generated using gplots package. Other plots were generated using
ggplot2. log-rank tests of survival curve difference were calculated
using survival package. Amultivariate Cox proportional hazards model
was built using the coxph function (Extended Data Fig. 6h). Significance
of overlap was calculated using chisq.test or fisher.test function.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

MetMap data and interactive visualization can be accessed at https://
pubs.broadinstitute.org/metmap. RNA-seq data generated from
this study have been deposited in the Gene Expression Omnibus
(GEO) under accession numbers GSE148283 and GSE148372. Addi-
tional datasets used in this study include METABRIC, TCGA and
MSK-targeted-sequencing breast cancer datasets from cBioPortal,
the EMC-MSK dataset (GSE2035, GSE2603, GSE5327 and GSE12276),
the 65-metastasis-sample dataset (GSE14020), paired primary tumour
and brain metastasis RNA-seq fromref.>¢,and GSE52604. Source data
are provided with this paper.

Code availability

Custom codes used for this study are accessible at the MetMap portal
(https://pubs.broadinstitute.org/metmap).
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Extended DataFig.1|Aninvivobarcodingapproachto establish
multiplexed cancer metastasis xenografts and validation using
orthogonal assays. a, Principal component analysis (PCA) of transcriptomic
expression of the breast cancer collection from CCLE, and the pooling schemes
focusing onbasal-like breast cancer. G, GFP; R, mCherry. The linked numbers
indicate thelabelling barcodes. b, Real-time BLImonitoring of the overall
metastasis progression from pilot, groupl, group2 cell line pools. Dataare
mean ts.e.m.n=5(pilot),n=8 (groupl), n=7 (group2) mice. c, Total cancer cell
numbersisolated by FACS from each target organ from pilot, groupl, group2
pools.Eachdotrepresents an animal. Box plots display quartiles of the data.

d, Cancer cell composition of metastases from different organs as determined
by barcode abundance from pilot, groupl, group2 pools. pilot: G portion
samples are highlighted ingreen, R portionsamples are highlightedinred.
preinj, pre-injected population. Data c, d were used to quantify the metastatic
potential presentedin Fig.1b. e, Anexample of the gating strategy toisolate
GFP+barcoded cancer cells for the pilot pool. Infected cell lines expressed GFP
atdifferentlevelsasshowninthe histogram, and afixed gate was used to enrich
cellswith closer expression level. Numbers correspond to cell percentages
withinthe gate.f, An example of barcode mapping result visualized by
Integrative Genomics Viewer (IGV). g, Distribution of the barcode read counts
versusall genetranscript counts. Barcodes areamong the top 10% highly
expressed genes, allowing robust quantification. h, An example of barcode
read quantificationin the pre-injected and metastasis samples from pilot pool.
Barcodesarelisted asina. cpk, counts per thousand. i, Tagman assay oninvitro

cultured barcoded celllines from the pilot pool. The signalis very specific to
eachbarcodeand thereisno cross detection.j, Quantification of barcode
abundance and cancer cell composition using the Tagman RT-qPCR assay in
the pre-injected and metastasis samples from the pilot pool. Theresults agree
withbarcode quantification from bulk RNA-Seq (Extended Data Fig. 1d).

k, Single cell RNA-Seq of metastases from different organs from the pilot pool.
Single cancer cellsisolated from each organ were sorted into 96-well plates,
with 90 cells per plate (rest 6 wells for positive and negative controls), and
subjected to Smart-Seq2. PCArevealed that PC1 maximally separated the
cancer cellsinto2 clusters (CLs), with CL1enriched in cellsisolated from brain,
and CL2 enrichedincellsisolated fromlung, liverand bone. Heat map on the
right shows gene expression that associates with PC1and clustering of cells.
Based on marker expression, CL1corresponds to HCC1954 (ERBB2+, CDH1+)
and CL2 corresponds to MDAMB231 (CDKN2A loss, VIM+).1, Projection of
marker gene expression onthe PCA plot.m, Cancer cell composition based on
single cellRNA-Seq data. The results agree with barcode quantification from
bulk RNA-Seq (Extended Data Fig. 1d). n, Real-time BLImonitoring of
metastasis progression of the 8 celllines that were individually tested. Each
plothighlights one of the 8 lines. Data are mean + s.e.m. Each group contains

4 mice.o0,Scatter plot showing the correlation of overall metastatic potential
(5organs combined) from pooled cell line experiments with whole body BLI of
metastases measured individually. Pearson’s correlation coefficient and its
test Pvalueare presented.
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Extended DataFig. 2| Using PRISM cell line pools for metastatic potential
profiling. a, Optimizing the workflow of metastatic potential mapping using
PRISM.APRISM pool of 25 cell lines was used for testing the need of GFP
labelling and cancer cell purification. The barcode abundance altered
compared to the unlabelled population after GFP labelling as shown by the pie
chart.b, Adetailed line-by-line view of barcode abundance before and after GFP
labelling. The unlabelled cell pool had more even distribution. Post labelling,
several lines showed noticeable dropout, but all lines were detectable.

¢, Scatter plot comparing barcode enrichment after normalizing to the pre-
injected input from the two experiments. Pearson’s correlation coefficient and
itstest Pvalue are presented. Strong positive correlationis observed, with the

exception of one cellline U20S. d, Quality control of MetMap500 and
MetMap125 datasets showinginitial barcode abundance in the pre-injected
populations. MetMap500, 11arge pool containing 498 cell lines was profiled,
with10 cell lines showing low initial abundance. These 10 cell lines were not
detectedinanyinvivosample, and were excluded from subsequent analysis.
MetMap125, 5 pools of 25 cell lines were profiled separately and data were
combined for analysis. e, Quality control of MetMap500 and MetMap125
datasets showingscatter plots of raw barcode abundance fromin vivo organs
versus the datanormalized to the pre-injected input (ind). A strong linear
relationship was observed.
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Extended DataFig. 6 | Association of chr 8p gene copy number status and
PI3K-response signatures with brain metastasisin clinical breast cancer
specimens. a, Heat maps showing coordinated expression of chr 8p genes
mirrored their copy number status in the two large breast cancer datasets,
METABRIC and TCGA. The 8p'* cluster is defined by CNA data. The right panel
shows distribution of 8p'* cluster in different breast cancer subtypes and its
association with disease specific survival. Pvalues calculated using two-sided,
log-rank tests. CNA, Copy Number Alteration. Exp, RNA-Seq Expression.

b, Hierarchical clustering of primary breast tumours by 8p gene expressionin
the EMC-MSK dataset. The 8p"* cluster is enriched in tumours that developed
brain metastasis, but not lung or bone metastasis. The right panel shows organ-
specific metastasis free survival curves stratified by 8p'°¥ status. The 8p'"
cluster displays poorer brain metastasis compared to the 8p"" cluster. Brain
metastasis free survival curves stratified by 8p'" statusin different subtypes
isalso presented. Pvalues calculated using two-sided, log-rank tests.

¢, Hierarchical clustering of breast cancer metastases by 8p gene expression,
withthe 8p'" cluster being enriched in brain metastases. d, Chr 8p CNA status
determined by Targeted Seqinthe MSK metastatic breast cancer dataset. Brain
metastasesareenrichedin chr 8p deletion compared to primary tumour, local
recurrence and metastases at other sites. The 8p'* cluster predicts poor brain
metastasis free survival. Pvalues calculated using two-sided, log-rank tests. LN,
lymph node. e, Heat maps showing co-regulated patterns of twoindependent

PI3K-response signatures in METABRIC and TCGA breast cancer datasets.
PI3Ksig.1was generated by overexpression of PIK3CA™"in breast epithelial
cells. PI3Ksig.2 was generated by PI3K inhibitor treatmentin the CMap
database. The right panel shows distribution of PI3Ksig"s" cluster in different
breast cancer subtypesandits association with disease specific survival.
Pvalues calculated using two-sided, log-rank tests. f, Hierarchical clustering of
primary breast tumours by PI3K signatures in the EMC-MSK dataset. The
PI3Ksig"e" cluster is enriched in tumours that developed brain metastasis. The
right panel shows organ-specific metastasis free survival curves stratified by
PI3K signatures. The PI3Ksig"#" cluster displayed poorer brain metastasis.
Brain metastasis free survival curves stratified by PI3K signatures in different
subtypesisalso presented. Pvalues calculated using two-sided, log-rank tests.
g, Hierarchical clustering of breast cancer metastases by PI3K signatures, with
the PI3Ksig"e" cluster being enriched in brain metastases. h, Heat maps
showing significant yet non-complete overlap between 8p'°* and PI3Ksig"sh
clustersinthe EMC-MSK dataset. 8p'* and PI3Ksig"e" clusters co-capture a
subset of patients with the worst brain metastasis prognosis. Pvalues
calculated using two-sided, log-rank tests. The lower panel presents a Cox
proportional-hazards model of brain metastasis free survival using multi
variates - 8p, PI3Ksig, and breast cancer subtype. The 8p'®*/PI3Ksig"¢" cluster
is the most associated with brain metastasis. i. 8p'* and PI3Ksig"#" clusters co-
capture the majority of brain metastasis samples.
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Extended DataFig. 8| Analysis of multiplexed breast cancer metastasis

invivo transcriptomes. a, Aschematic of the differential analysis approach
forinvivo transcriptomes with mixtured cancer cell lines. Aninsilico
transcriptome was modelled based on single celllinein vitro transcriptomes
and cellline composition (comp.) of the metastasis sample. Theinsilico profile
was then compared with the actualinvivo datainapaired-wise manner.

b, Comparisonofinsilico modelled profiles to the actual pre-injected or in vivo
metastasis sample profiles. The pre-injected populations are direct mixtures
ofinvitrocelllines and show tight correlation with in silico data. In vivo
samples show large fold changes. ¢, Box plots showing log, fold changes of
MUCL1and SCGB2A2ininvivo metastasis samples and pre-injected cells. Each
pointrepresents asample. Box plots display quartiles of the data. Outlier
points extend beyond 1.5 x interquartile ranges from either hinges. d, Heat map
showinglog, fold change of lung metastasis genes (Minnetal.) inlung, liver,
kidney and bone metastasis samples from the pilot study, where MDAMB231

dominated the population. e, Correlation of gene expression changesin
different metastasis sites. Pre-injected population had no expression change
and thus showed no correlation within vivo samples. Brain metastases showed
weaker correlations with extracranial metastases. f, Bubble plot showing
enrichment of Hallmark gene pathways (MSigDB) comparingin vivo expression
of metastases at different organ sites to their in vitro counterparts. g, Bubble
plotshowinginvivoupregulation of SREBF1, SCD and SREBF1-response
signature in brain metastases. h, i, GSEA analysis of lipid metabolism gene sets
using in vivo RNA-Seq profiles combined by metastasis organsitesirrespective
of sample or cellline composition (h). Gene sets related to lipid metabolismare
selectively enriched ontopinthebrainbut notinother organsorinvitro.
Restricting analysis toJIMT1-dominant samples revealed asimilar result. No
enrichment was seeninnormal brain when analysis was performed on GTEX
normal tissue (i). Each tick represents alipid metabolism gene set from
MSigDB.***, P=0.001;**=0.01.
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Extended DataFig. 9 |Expression of TGFB signalling, EMT status,
inflammatory response and lipid metabolismgenesin clinical breast
cancer metastasis specimens. a, Comparison of brain metastasis versus
extracranial metastasis clinical samples. Lower expression of TGFf signature

genesand EMT signature genesin brain metastases than other metastasis sites.

Enriched expression of selective SREBF1target genes (including FASN, SCD,

SREBF1itself) and Pentose Phosphate Pathway (PPP) genes in brain metastases.

b, ¢, Astrategy toremove brain stroma contamination effect frombrain
metastasis expression profiles when performing comparison of paired
primary breast tumour and brain metastasis clinical specimens. A gene
signature indicating brain stroma contamination was derived from

comparison ofbrain with breast and breast cancer brain metastasis (b).

Arrowheadsindicate afew brain metastasis samples with noticeable brain
stroma contamination. A brain contamination score was calculated and its
effect wasregressed outinthe RNASeq data of matched primary tumours and
brain metastases (c). The heat map shows expression of brain stromaindicator
before and after removal of the contamination effect. d, e, Paired comparison
of primary breast tumour and brain metastasis clinical specimens after
removal of brain stroma contamination. d, Lipid metabolism genes and PPP
genes. e, Signature scores were projected for each sample using the corrected
RNA-Seq profiles. P, Primary breast tumour; M, brain Metastasis; upregulation
inred, downregulationinblue. Pvalues calcutated using paired, two-sided
t-tests.
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Extended DataFig.10|Invivoandinvitro effects of SREBF1knockout.

a, Growthkinetics of SREBF1-WT and -KO cellsinin vitro culture medium with
10% serum or 10% delipidated serum. Cell growth was monitored by Incucyte
real-timeimaging. WT, wild-type, in black; KO, knockout, inred. Two
independent guides were used per group. b, Fluorescence imaging of
metastasesinserial brainsections from micereceivingintracardiacinjection
of JIMT1SREBF1-WT or -KO cells (Fig. 5d). Confocal tile scans of representative
sectionsare presented at the lower panel. GFP+signalsindicate cancer lesions.
Circles highlight macro-metastaticlesions and arrows indicate micro lesions.
c,d, One-by-one assessment of lipid metabolism gene fitness in additional
brain metastatic cell lines throughintracranial injection. SREBF1 was tested for
HCC1954, MDAMB231 (c) and HCC1806. Additional genes were tested for
HCC1806 (d). Cell outgrowth in brain metastasis was monitored by real-time
BLI.Twoindependent guides per gene were tested, inaone guide one mouse
fashion. e-g, Outgrowing (HCC1806) or residual (JIMT1) SREBF1-KO cells from

brain metastases were derived for CRISPR-seq (e), westernblot (f), and RT-
qPCR (g) assays. e, CRISPR-seq quantifying SREBF1gene editing efficiencies of
brain-derived and pre-injected cells. f, Western blot quantifying SREBF1
proteinlevels. g, RT-qPCR quantifying relative expression of SREBF1,SCD,
CD36, FABP6 inbrain-derived versus pre-injected cells. Pre-injected WT
HCC1806 was used as reference. h, i, Brain-derived and pre-injected HCC1806
cellswere cultured in brain-slice-conditioned medium (CM) or medium
supplemented with cerebrospinal fluid, or serum, or delipidated serum, or SM1
supplement, and western blot (h) or RT-qPCR was performed (i). SREBF1, SCD
and CD36 were upregulated when cells were cultured inbrain slice CM,
cerebrospinal fluid, and delipidated serum. Brain-derived SREBF1-KO cells
were better atinducing SCD and CD36, in comparison to pre-injected SREBF1-
KO cells. Experiments were performed twice independently with similar
results.
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Data collection Bioluminescence imaging data was acquired with Living Image software (v4.5, PerkinEImer). Lipidomics mass spectrometry data was
acquired using a LC-MS system composed of a Shimadzu Nexera X2 U-HPLC (Shimadzu Corp) coupled to a Exactive Plus orbitrap mass
spectrometer (ThermoFisher Scientific).

Data analysis Following softwares were used for data analysis: Living Image software (v4.5), Bowtie 2 (v2.2.8), samtools (v 1.3.1), BBSplit (https://
sourceforge.net/projects/bbmap/), RSEM (v1.3.1), R statistical software (v3.6.2), ggplot2 (3.3.0), limma (3.42.2), edgeR (3.28.0), gsva
(1.34.0), gplots (3.0.1.2), survival (3.1-8), fgsea (1.12.0), GSEA (v3.0), GenePattern (v2.0).
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- A description of any restrictions on data availability

MetMap data and interactive visualization can be accessed at pubs.broadinstitute.org/metmap. RNA-seq data generated from this study have been deposited to
Gene Expression Omnibus (GEQ), at accession numbers GSE148283 and GSE148372. Additional datasets used in this study include METABRIC, TCGA, and MSK-
targeted-sequencing breast cancer datasets downloadable from cBioPortal, EMC-MSK dataset (GSE2035, GSE2603, GSE5327, GSE12276), 65 metastasis sample
dataset (GSE14020), paired primary tumor and brain metastasis RNA-Seq from Vareslija et al, and GSE52604.
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Data exclusions  Failed RNA-Seq samples were excluded from analysis presented in the manuscript. In MetMap500 experiment (Fig. 2), one animal died early
and organs could not be collected in time, and is excluded from analysis.

Replication Cell culture based experiments (including growth assay, RT-qPCR, western blot) were performed twice independently. Animal experiments
were validated using completely independent methods instead of direct repeat (Pooled experiment vs individual injection in Fig. 1a, Extended

Data Fig. 2g; MetMap500 vs MetMap125 in Fig. 2¢c; mini-pool CRISPR screen vs one-by-one testing in Fig. 5a-c).

Randomization  Randomization was not applicable to experiments in this study. In MetMap profiling, we varied pooling format, cell density, cohort size,
animal age to account for these potential covariates.

Blinding Blinding to group allocations was not applicable to experiments in this study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies X|[ ] chip-seq
Eukaryotic cell lines D E Flow cytometry

Palaeontology E D MRI-based neuroimaging
Animals and other organisms

Human research participants

XXOXOO S
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Clinical data

Antibodies

Antibodies used SREBF1 primary antibody (14088-1-AP, Proteintech)
SCD (CD.E10) antibody (ab19862, Abcam)
GAPDH (D16H11) XP® Rabbit mAb (5174S, Cell Signaling)
B-Actin (8H10D10) Mouse mAb (3700S, Cell Signaling)
IRDye® 800CW Goat anti-Mouse 1gG (926-32210, LI-COR)
IRDye® 680RD Goat anti-Rabbit IgG secondary antibodies (926-68071, LI-COR).

Validation SREBF1 primary antibody (14088-1-AP, Proteintech): validated by manufacturer, and by this study (Extended Data Fig. 11f,h), and
cited in publications, suitable for western blot
SCD (CD.E10) antibody (ab19862, Abcam): validated by manufacturer, and by this study (Extended Data Fig. 11f,h), suitable for
western blot
GAPDH (D16H11) XP® Rabbit mAb (5174S, Cell Signaling): validated by manufacturer and cited in publications, suitable for
western blot
B-Actin (8H10D10) Mouse mAb (3700S, Cell Signaling): validated by manufacturer and cited in publications, suitable for western
blot
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Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) All cell lines listed in Supplementary Table 1 and 3 were obtained from CCLE.

Authentication Cell lines were authenticated by DNA fingerprinting analysis. The breast cell line identities were also confirmed by RNA-Seq
and compared to CCLE RNA-Seq profiles.

Mycoplasma contamination All cell lines were confirmed to be mycoplasma free using the MycoAlertTM Mycoplasma Detection Kit (Lonza).

Commonly misidentified lines  pc-14 was identical to PC-9 as reported before (https://web.expasy.org/cellosaurus/CVCL_1640; https://

(See ICLAC register) www.sigmaaldrich.com/catalog/product/sigma/cb_90071810?lang=en&region=US). To keep consistent with CCLE
nomenclature, PC14_LUNG was used. KPL-1 was found to be a MCF-7 derivative (https://web.expasy.org/cellosaurus/
CVCL_2094). To keep separate from MCF-7 and consistent with CCLE nomenclature, KPL1_BREAST was used.
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Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals NOD scid gamma (NSG) female mice (The Jackson Laboratory) of 576 or 8~10 weeks were used for metastasis xenograft studies.
Broad Vivarium’s housing conditions for NSG mice include sterilized, individually ventilated cages with cellulose bedding. Water
bottles are supplied with acidified, reverse osmosis water. The holding room is maintained under positive pressure, temperature
70°F (+/-2°F), humidity 40% (+/- 10%), lighting 12 on/12 off light cycle.

Wild animals No wild animals were used in the study.
Field-collected samples No field collected samples were used in the study.
Ethics oversight Animal work was performed in accordance with a protocol approved by the Broad Institute Institutional Animal Care and Use

Committee (IACUC).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots

Confirm that:
E The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

E The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
E All plots are contour plots with outliers or pseudocolor plots.

E A numerical value for number of cells or percentage (with statistics) is provided.

Methodology
Sample preparation Organs were dissociated using dissociation protocols listed in Supplementary Table 9 with gentleMACS Octo Dissociator (Miltenyi
Biotec). Dissociated cell suspensions were filtered using 100 um filters, and washed with DMEM/F12 twice. Cell suspensions
were then washed with staining buffer (PBS + 2mM EDTA + 0.5% BSA), and incubated with mouse cell depletion beads according
to the instructions (Miltenyi Biotec). Cell suspensions were subjected to negative selection using autoMACS Pro Separator
(Miltenyi Biotec) to deplete mouse stroma. Brains were subjected to an additional myelin debri depletion step using myelin

removal beads Il (Miltenyi Biotec). In vitro cultured cells were trypsinized and resuspended as single cell suspensions. DAPI
staining was used to exclude dead cells.

Instrument SONY SH4800
Software SH4800S and FlowJo (v10.2)
Cell population abundance  Data is presented in Extended Data Fig 1c and Source Data.

Gating strategy Gating strategy is illustrated in Extended Data Fig. 1e to select for single cells with the fixed gate for GFP or mCherry.

E Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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