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A metastasis map of human cancer cell lines
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Most deaths from cancer are explained by metastasis, and yet large-scale metastasis 

research has been impractical owing to the complexity of in vivo models. Here we 

introduce an in vivo barcoding strategy that is capable of determining the metastatic 

potential of human cancer cell lines in mouse xenografts at scale. We validated the 

robustness, scalability and reproducibility of the method and applied it to 500 cell 

lines1,2 spanning 21 types of solid tumour. We created a frst-generation metastasis 

map (MetMap) that reveals organ-specifc patterns of metastasis, enabling these 

patterns to be associated with clinical and genomic features. We demonstrate the 

utility of MetMap by investigating the molecular basis of breast cancers capable of 

metastasizing to the brain4a principal cause of death in patients with this type of 

cancer. Breast cancers capable of metastasizing to the brain showed evidence of 

altered lipid metabolism. Perturbation of lipid metabolism in these cells curbed brain 

metastasis development, suggesting a therapeutic strategy to combat the disease and 

demonstrating the utility of MetMap as a resource to support metastasis research.

Human cancer cell lines have been a driving force in cancer research, 

leading to the discovery of oncogenic mechanisms and therapeutic 

targets134. However, large-scale characterization of cell lines has been 

limited to rudimentary readouts such as viability in cell culture, because 

more complex phenotypes4such as behaviours in vivo4have not been 

tractable at scale. By contrast, most studies of metastasis rely on only 

a small number of experimental models539, thereby making it difficult 

to extrapolate findings to genetically diverse human tumours10.

Ideally, it would be possible to construct a map of organ-specific 

metastatic potential of hundreds of human cancer cell lines using 

xenograft models, so that the molecular features of the cell lines could 

be related to their ability to survive and proliferate in organ-specific 

microenvironments. However, the prospect of in vivo testing of each 

cell line individually is unattractive, because it is labour-intensive and 

expensive, as well as because of the difficulty in sufficiently controlling 

for variability between animal experiments. We proposed that if cell 

lines were labelled with molecular barcodes and injected into recipi-

ent mice as a pool, internally controlled, metastatic potential could be 

assessed in a highly scalable manner.

Pilot study with breast cancer

To test the feasibility and reliability of in vivo barcoding to monitor growth 

in different tissues in mice, we performed a pilot study using four breast 

cancer cell lines (Fig. 1a, Extended Data Fig. 1, Supplementary Note 1). 

Each cell line was engineered to express a unique 26-nucleotide barcode, 

together with luciferase for in vivo imaging and either GFP or mCherry to 

facilitate subsequent cell sorting and measurement of reproducibility 

within a single mouse (Extended Data Fig. 1a, Supplementary Table 1). The 8 

barcoded lines were injected as a pool into the left ventricle of 536-week-old 

NOD-SCID-gamma (NSG) mice so as to focus our analysis on the ability of 

tumour cells to exit circulation and undergo expansion in distant organs. 

Bioluminescence imaging (BLI) revealed metastatic lesions throughout 

the body (Extended Data Fig. 1b). Five weeks after injection, brain, lung, 

liver, kidney and bone were collected, human tumour cells were isolated 

by fluorescence-activated cell sorting (FACS) using GFP or mCherry, and 

barcodes were quantified using RNA sequencing (RNA-seq) (Extended 

Data Fig. 1c3g). Whereas barcode abundances were similar pre-injection, 

some barcodes were enriched in specific organs (Extended Data Fig. 1h). 

Different cell lines exhibited distinct patterns of metastatic spread, but 

each cell line showed highly similar pattern of spread across multiple mice 

independent of whether GFP or mCherry versions were used, demonstrat-

ing the reproducibility of this pooled approach (Extended Data Fig. 1d). For 

example, HCC1954 was most strongly detected in brain, whereas extrac-

ranial metastases were dominated by MDAMB231. Barcodes quantified 

by bulk RNA-seq were independently validated by quantitative PCR with 

reverse transcription (RT3qPCR) and single-cell RNA-seq (Extended Data 

Fig. 1i3m, Supplementary Note 1).

Having validated the method, we next characterized the metastatic 

behaviours of all 21 basal-like breast cancer cell lines in the Cancer Cell 

Line Encyclopedia (CCLE) (Extended Data Fig. 1a3d). Basal-like breast 

cancers are known to have diverse metastatic abilities in patients11. 

Reflecting this diversity, the cell lines showed disparate metastatic pat-

terns: pan-metastatic, metastatic preferentially to particular organs or 

not metastatic (Fig. 1b, Supplementary Table 2). Notably, one cell line 

(BT20) was detected in multiple organs, but at very low abundance in all 

of them, reflecting its ability to colonize but not expand. To validate the 

patterns of metastasis observed in the pooled in vivo system, we selected 

eight cell lines for individual characterization, and observed similar 

results from the pooled and individual screens (Extended Data Fig. 1n, o).
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A metastasis map of 500 human cancer cell lines

Having demonstrated its feasibility in breast cancer, we attempted 

to expand the mapping of metastatic potential to human cancer cell 

lines from diverse lineages. To facilitate higher-throughput profil-

ing, we used cell lines barcoded for use with the PRISM method, which 

was developed for in vitro drug-sensitivity screening12. A simplified 

workflow enabled the quantitative detection of barcodes from crude 

tissue lysates without the need for FACS-based tumour cell purification 

(Extended Data Fig. 2, Supplementary Note 2). We applied this method 

to 503 cell lines spanning 21 lineages to develop a first-generation 

Metastasis Map (MetMap) (Fig. 2a). The data and interactive visualiza-

tion are publicly accessible at https://pubs.broadinstitute.org/metmap.

To test the robustness of the MetMap dataset, we tested cell lines in 

two formats: in one, we injected all 498 cell lines as a single pool; in the 

other, we injected 5 pools of 25 lines, with each pool being injected into 

different mice (referred to as MetMap500 and MetMap125, respectively) 

(Fig. 2b). We similarly varied cell numbers, mouse age and cohort size to 

determine whether results varied substantially with these parameters. 

We observed strong correlation of the metastatic potential despite 

differences in experimental conditions (Fig. 2c), suggesting that the 

approach is extremely robust. We also note that intracardiac injec-

tion enabled the evaluation of many more cell lines in vivo compared 

with subcutaneous injection. Specifically, we recovered an average of  

197 cell lines per mouse following intracardiac injection, whereas an average 

of 42 cell lines were recovered following subcutaneous injection (Extended 

Data Fig. 3a3c). We suspect that this difference is explained by the local 

competition for nutrients and other microenvironmental factors in the sub-

cutaneous setting, whereas the spatial separation of tumour cells delivered 

through the intracardiac route minimizes such competition. A similarly 

reduced diversity was observed in the orthotopic setting, where injection of 

a pool of nine breast cancer cell lines into the mammary fat pad resulted in 

a single cell line dominating the resulting tumour (Extended Data Fig. 3d).

To determine whether the MetMap reflects the metastatic behaviour 

of human cancers, we analysed available clinical annotations of the cell 

lines (Fig. 3a3e, Extended Data Fig. 4). We found statistically significant 

associations with tumour lineage, the site from which the cell line was 

derived (primary tumour versus metastatic lesion) and patient age. There 

was no association between metastatic potential and gender or ethnicity. 

As expected, metastatic potential was higher in certain tumour types, 

such as melanoma and pancreatic cancer, which also tend to develop 

metastasis in the human disease setting13. By contrast, cell lines derived 

from brain tumours were generally non-metastatic, reflective of their 

tendency to not undergo haematogenous spread14,15. Similarly, the DU145 

prostate cancer cell line, derived from a brain metastasis lesion16, exhib-

ited brain metastasis in our experimental system. Cell lines derived from 

metastases showed higher metastatic potential than lines derived from 

primary tumours, although lines derived from primary tumours known 

to later give rise to metastases in patients were metastatic in the MetMap 

(Fig. 3b), consistent with previously reported suggestions that metastatic 

potential is already encoded in primary tumours17319. The association 

between decreased metastatic potential and increased patient age was 

unexpected (Fig. 3c), and its basis remains to be determined.

Perhaps most importantly, extensive variation in metastatic potential 

was observed within individual lineages, making it possible to search 

for associations between metastasis propensity and genomic features 

of the tumours. Of note, metastatic potential was not simply explained 

by proliferation rate or mutational burden (Fig. 3f3h, Extended Data 

Fig. 4f, g), suggesting that more subtle molecular determinants of 

metastasis were involved.

Molecular correlates of brain metastasis

To develop mechanistic insights, we focused on breast cancer and its 

potential for brain metastasis (Fig. 1b), because brain metastasis is a 

feature of some4but not all4breast cancers, and little is known about 

the underlying factors that could inform therapeutic approaches20,21. We 

therefore undertook a systematic and unbiased comparison of the molec-

ular features that distinguished brain metastatic versus non-metastatic 

lines, using genomic data available for each of the cell lines.

At the level of somatic mutations, PIK3CA was the top associated cor-

relate: 4 out of 7 brain metastatic lines contained a PIK3CA mutation, 

compared with 0 out of 14 non-metastatic or weakly metastatic lines 

(false discovery rate (FDR) = 0.0034) (Fig. 4a, Extended Data Fig. 5a).  

A fifth line, HCC70, has a loss-of-function mutation in PTEN. PI3K is a prin-

cipal downstream mediator of ERBB2 (also known as HER2), which itself 

has been reported to be associated with brain metastasis in humans11,20. 

Indeed, two of the brain metastatic cell lines ( JIMT1 and HCC1954) also 

contain typical ERBB2 gene amplifications (Extended Data Fig. 5a).

At the level of DNA copy number, we observed an association between 

metastatic potential and deletions of chromosome 8p1238p21.2 (referred 

to as 8p) (FDR = 0.0017) (Fig. 4b). Five out of seven brain metastatic breast 

cancer cell lines contained deletions in this region, compared with 0 out 

of 14 non-metastatic lines (Extended Data Fig. 5a). A sixth metastatic 

line, JIMT1, has a small deletion within this commonly deleted region.

To ascertain the clinical relevance of these associations, we analysed 

clinical breast cancer datasets for which metastasis information was 

available18. We observed a strong correlation between 8p copy number 

and gene expression in the METABRIC and TCGA datasets22,23 (Extended 

Data Fig. 6a), thereby validating 8p expression as a surrogate for copy 

number in datasets for which copy number data were not available. 

Coordinated expression of 8p genes stratified tumours into two clus-

ters, with the low-expressing cluster showing enrichment in brain 

metastasis and lower brain metastasis-free survival (Extended Data 

Fig. 6b). Whereas 8p loss was more frequent in basal-subtype breast 

cancer (known to have poor prognosis), 8p loss remained significantly 

associated with brain metastases within basal tumours. A similar trend 

was seen in other subtypes, but the sample size was too small to reach 
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statistical significance. Concordant with these findings, the 8p-low 

signature was strongly enriched in brain metastasis lesions compared 

with extracranial metastases or primary tumours24 (Extended Data 

Fig. 6c, d). Similarly, we observed that response signatures25,26 indicat-

ing PI3K activation are associated with brain metastases (Extended 

Data Fig. 6e3g). The PI3K-high signature tended to co-occur with the 

8p-low signature, and the overlapping events captured the majority 

of patients with brain metastases (Extended Data Fig. 6h, i). These 

results established the validity of the MetMap experimental system 

for discovery.

Lipid metabolism and brain metastasis

Confirming these genetic findings, expression analysis revealed enrich-

ment of PI3K and ERBB2 signatures in the brain metastatic cell lines 

(Fig. 4c). Furthermore, we observed a strong association between 

brain metastatic potential and a lipid-synthesis signature (Fig. 4c), 

which has been reported in association with both PI3K activation and 

8p-deletion27,28. To investigate a potential role of lipid metabolism in 

breast-cancer brain metastatic potential, we analysed the abundance 

of lipid metabolites across the cell lines29. We observed increased 

levels of cholesterol species in highly brain metastatic cells (Fig. 4d).  

In addition to cholesterols, membrane lipids including phosphatidyl-

choline and sphingomyelin were similarly more abundant, as were 

metabolites associated with the pentose phosphate pathway30, which 

can support cholesterol and lipid synthesis. By contrast, we observed 

global decreases in levels of triacylglycerols (TAGs) in brain metastatic 

cells (Fig. 4d). Non-brain metastatic cells had higher levels of TAGs and 

contained a fatty acid oxidation signature (Fig. 4c). Metabolite profiling 

of normal mouse tissues31 showed that the brain has markedly lower 

levels of TAGs compared with other tissues (Fig. 4e). This reflects brain 

physiology, whereby instead of storing fatty acids as TAGs, the brain 

accumulates specialized lipids to support neural activity and brain 

function32. One possibility is that for breast cancer cells to survive in the 
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brain microenvironment, where TAGs and other storage lipids present 

in other tissues are not abundant, they must access lipids via de novo 

synthesis or another route, in line with the seed-and-soil hypothesis33.

To further investigate the characteristics of breast cancer cell lines 

capable of brain metastasis, we analysed genome-wide CRISPR3Cas9 

viability-screening data34 to identify gene vulnerabilities associated with 

the brain metastatic state. We identified SREBF1 as the top-correlated 

dependency with brain metastasis (FDR = 0.001) (Fig. 4f). SREBF1 is a 

pivotal transcription factor that mediates lipid synthesis downstream 

of the PI3K pathway27,35. SREBF1 was selectively required for growth of 

brain metastatic lines in culture compared with breast cancer lines with 

low or no brain metastatic potential. The association was specific to 

brain, as no association was observed between SREBF1 essentiality and 

metastasis to other organs (Fig. 4f). This SREBF13breast-cancer brain 

metastasis association was also recovered in the MetMap500 data-

set, indicating strong reproducibility of the finding (Extended Data 

Fig. 5b, c). Of note, the SREBF1 paralogue SREBF2 showed no association 

between its essentiality in culture and metastatic potential (Fig. 4g).

To investigate the role of SREBF1 in affecting the lipid phenotype 

observed in brain metastatic cells, we performed lipidomics after 

knocking out SREBF1 in JIMT1 and HCC1806 cells using CRISPR3Cas9. 

SREBF1 knockout resulted in a marked shift in intracellular lipid con-

tent, including a decrease in levels of cholesterol, membrane lipids and 

diacylglycerols (Fig. 4h). SREBF1 knockout also resulted in an increase 

in intracellular TAG levels, presumably by scavenging TAGs from the 

lipid-rich serum added to the culture medium. To test this hypoth-

esis, we repeated the experiment in culture medium prepared with 

delipidated serum, which prevented the increase in TAGs observed in 

SREBF1-knockout cells (Extended Data Fig. 7).

To further explore the role of SREBF1, we performed RNA-seq fol-

lowing SREBF1 knockout and found SCD35 to be the most consistently 

downregulated gene (Fig. 4i). Consistent with this, SCD was the top 

co-dependency of SREBF1 across 688 cell lines in the genome-wide 

CRISPR3Cas9 viability screens (Fig. 4j). The next highest scoring SREBF1 

co-dependency was SCAP, which encodes the upstream activator of 

SREBF135. Comparison of gene expression in breast cancer cells grown 

in vitro or in the brain similarly showed that in the brain, cells adopted 

gene-expression signatures of adipogenesis, fatty acid metabolism 

and xenobiotic metabolism (Extended Data Fig. 8, Supplementary 

Note 3). The enrichment of lipid-metabolism signatures (including 

upregulation of SREBF1 and SCD) was unique to brain compared with 

other sites of metastasis. Similar upregulation was also observed in 

brain metastases from patients compared with extracranial metastases 

or their matched primary tumours36 (Extended Data Fig. 9). Further-

more, the requirement for SREBF1, SCD, SCAP and other members of 

the lipid-metabolism pathway for brain metastasis formation was con-

firmed in both mini-pool and individual gene-knockout experiments 

(Fig. 5a3c, Supplementary Note 4). Together, these genetic, metabolic, 

transcriptomic and functional genomic evidence all point to an associa-

tion between SREBF1-mediated lipid metabolism and brain metastasis.

Given the observation that SREBF1 knockout resulted in a viability 

defect in vitro (Extended Data Fig. 10a), we compared the relative effect 

of knockout on metastasis to different organs, to determine whether the 

viability defect was preferentially observed in brain (Fig. 5d). Five weeks 

following intracardiac injection of SREBF1-knockout cells, we observed a 

marked defect in brain metastasis (196-fold reduction), compared with a 

modest defect in other organs (9321 fold) (Fig. 5d). Histologic examina-

tion of brains from xenografted mice revealed large metastatic lesions in 

mice receiving wild-type cells, whereas those receiving SREBF1-knockout 

cells contained micrometastases (Extended Data Fig. 10b), suggesting 

that SREBF1 is not required for seeding the brain, but rather for prolifera-

tion in the brain microenvironment. Consistent with this hypothesis, 

injection of tumour cells into the carotid artery increased the probability 

of seeding the brain, but nevertheless a marked growth defect was still 

observed in SREBF1-knockout cells (Fig. 5e).

To determine the generality of the SREBF1 requirement for breast 

cancer growth in the brain, we knocked out SREBF1 in additional 

brain metastatic lines including HCC1954, MDAMB231 and HCC1806 

using CRISPR3Cas9. As with JIMT1, a significant inhibition in brain 

metastatic growth was also observed in these lines, although the 

magnitude and duration of growth inhibition varied (Extended Data 

Fig. 10c, d). The least responsive cell line was HCC1806, in which 

SREBF1-knockout cells displayed a brain growth defect for the first 

week, but then assumed a growth trajectory that paralleled wild-type 

cells. This restoration of growth was not explained by reversion of the 

genome editing, as brain metastases at the end of the experiment 

showed evidence of editing at the SREBF1 locus and minimal SREBF1 

protein expression (Extended Data Fig. 10e, f). Instead, we found that 

the SREBF1-independent growth was associated with upregulation 

of the fatty acid transporter CD36 and the fatty acid-binding protein 

FABP6 (Extended Data Fig. 10g). Of note, culture of HCC1806 in mouse 

brain-slice-conditioned medium similarly resulted in upregulation of 

SCD and CD36 expression (Extended Data Fig. 10h, i). JIMT1 cells did 

not upregulate CD36 or FABP6 expression following SREBF1 knockout 

(Extended Data Fig. 10g), perhaps explaining their inability to survive 

in the brain. Together, these results further demonstrate the relation-

ship between lipid metabolism and brain metastasis, as cells under the 

selective pressure of SREBF1 loss must acquire lipids by other means 

to survive in the brain microenvironment.
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Discussion

This work describes MetMap as an approach for large-scale in vivo char-

acterization of human cancer cell lines. The MetMap resource (available 

at https://pubs.broadinstitute.org/metmap) currently includes metas-

tasis profiles of 500 cell lines spanning 21 tumour types, providing a 

large repertoire of models for exploration of metastasis mechanisms. 

A limitation of the use of human cell lines for such experiments is that 

they require the use of immunodeficient mice. The extent to which the 

immune system has a role in mediating patterns of metastasis remains 

to be determined37.

We followed up only a small proportion of the MetMap findings4

specifically, breast cancer metastasis to brain. Multiple lines of 
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Fig. 4 | An altered lipid-metabolism state associates with brain metastatic 

potential in basal-like breast cancer. a, Somatic mutations that associate 

with brain metastatic potential in the basal-like breast cancer cohort. The top 

correlate, PIK3CA, reaches statistical significance (FDR = 0.0034, highlighted 

in bold). All PIK3CA mutations are activating. Positive correlations are in red, 

negative correlations are in blue. Selected known oncogenes or tumour 

suppressors in basal-like breast cancer are presented for comparison.  

b, Alterations in copy number that associate with brain metastatic potential. 

The top correlates cluster in chr 8p1238p21.2 (FDR = 0.0017, highlighted in 

bold). c, Gene-expression signatures that associate with brain metastatic 

potential. Bars indicate P values. Expression signature scores were projected 

for each cell line with their in vitro RNA-seq data and used for regression 

analysis. GO (Gene Ontology), Hallmark, Reactome and Burton are gene sets in 

the MSigDB gene set enrichment analysis (GSEA) collection. d, Lipid-metabolite 

species that associate with brain metastatic potential. Bars indicate P values. 

Lipid metabolites measured by mass spectrometry were grouped by species, 

and enrichment analysis of the species was performed using GSEA. CE, 

cholesterol ester; PC, phosphatidylcholine; SM, sphingomyelin; LPC, 

lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; DAG, 

diacylglycerol; PPP, pentose phosphate pathway metabolites. e, Heat map 

presenting distribution of lipid species measured by mass spectrometry from 

different mouse tissues. Gastroc, gastrocnemius. f, CRISPR gene dependencies 

that associate with brain metastatic potential. The top gene, SREBF1 

(FDR = 0.001), is a selective dependency in highly brain metastatic lines. 

Positive correlations are in red, negative correlations are in blue.  

g, Distribution of SREBF1 (top) and SREBF2 (bottom) dependencies across 688 

human cancer cell lines. The positions of highly brain metastatic (met) breast 

lines are highlighted in red, whereas weakly metastatic or non-brain metastatic 

breast lines are highlighted in blue. h, Consensus alterations in lipid species 

abundance upon SREBF1 knockout (KO) in JIMT1 and HCC1806, two brain 

metastatic cell lines. Bars indicate adjusted P values. Lipid metabolites 

measured by mass spectrometry were grouped by species, and enrichment 

analysis of the species was performed using GSEA. WT, wild type. i, Consensus 

gene-expression changes upon SREBF1 knockout in JIMT1, HCC1806, HCC1954 

and MDAMB231, four brain metastatic cell lines. The two top genes are SREBF1 

and SCD (FDR <0.05, highlighted in bold). j, Co-dependencies of SREBF1 across 

688 human cancer cell lines in genome-wide CRISPR viability screen. The two 

top genes are SCD and SCAP (FDR < 1 × 10260, highlighted in bold).
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experimental and clinical evidence pointed to a role of lipid metabo-

lism in governing the ability of cells to survive in the brain microen-

vironment. The importance of lipid metabolism in cancer has been 

highlighted by a number of studies, but its role in brain metastasis 

has, to our knowledge, not been fully appreciated38341. The possibility 

that interfering with lipid or cholesterol metabolism might abrogate 

metastatic growth in the brain is particularly intriguing. More generally, 

this work illustrates the complex interplay between cancer cell growth 

and the tissue microenvironment.
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Fig. 5 | Investigation of lipid-metabolism genes in breast cancer brain 

metastasis. a, A schematic of an in vivo CRISPR screen investigating relative 

gene fitness in brain metastasis outgrowth. b, Volcano plot showing the result 

of a mini-pool in vivo CRISPR screen targeting 29 lipid-metabolism-related 

genes. Thirteen genes scored at FDR < 0.05, with selective hits highlighted.  

c, Individual gene validation of six hits by intracranial injection of JIMT1 edited 

cells. Cell outgrowth in brain metastasis was monitored by real-time BLI. Two 

independent guides per gene were tested, with one guide per-mouse. d, BLI and 

quantification of relative fold change in metastasis load in the organs of mice 

receiving intracardiac injection of wild-type (WT) or SREBF1-knockout (KO) 

JIMT1 cells. Data are mean ± s.e.m. Each group contains five mice. e, BLI and 

quantification of relative fold change in brain metastasis load in mice receiving 

intracarotid injection of wild-type or SREBF1-KO JIMT1 cells. Data are 

mean ± s.e.m. n = 7 (wild-type) and n = 8 (knockout) mice.
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Methods

No statistical methods were used to predetermine sample size. The 

experiments were not randomized. The investigators were not blinded 

to allocation during experiments and outcome assessment.

Breast cancer cell lines and barcoding

Breast cell lines were cultured under the recommended conditions from 

CCLE (https://portals.broadinstitute.org/ccle). Cell line identities were 

confirmed by SNP fingerprinting as well as RNA-seq, and compared to 

the CCLE results. All cell lines were tested negative for mycoplasma. The 

fluorescence-luciferase-barcode (FLB) construct was engineered using 

the FUW lentiviral vector backbone (a gift from D. Baltimore; Addgene 

plasmid no. 14882). Barcodes 26 nucleotides in length were designed 

using barcode_generator.py (v.2.8; http://comailab.genomecenter.

ucdavis.edu/index.php/), and cloned into the landing pad C-terminal to 

the TGA stop codon of fluorescence luciferase using Gibson assembly 

(New England Biolabs). Lentivirus preparation and cell infection were 

performed according to published protocols available at http://www.

broadinstitute.org/rnai. Infected cells were analysed by FACS with a 

fixed gate for GFP or mCherry, using a Sony SH4800 sorter.

Animal studies

Animal work was performed in accordance with a protocol approved 

by the Broad Institute Institutional Animal Care and Use Committee 

(IACUC). NSG female mice (The Jackson Laboratory) at 536 weeks of age 

were used. Cancer cells were suspended in PBS, 0.4% BSA and 100 μl of 

cell suspensions were injected into the left ventricle of anaesthetized 

mice (ketamine 100 mg kg21; xylazine 10 mg kg21). In vivo metastasis 

progression was monitored via real-time BLI using the IVIS SpectrumCT 

Imaging System (PerkinElmer) on a weekly basis. Mice were anaesthe-

tized with inhaling isoflurane, injected intraperitoneally with D-Luciferin 

(150 mg kg21), and imaged with the auto exposure setting in prone and 

supine positions. At the end point, ex vivo BLI was performed by sub-

merging the excised organs in DMEM/F12 medium (Thermo Fisher 

Scientific) containing D-Luciferin for 10 min and imaged with the auto 

exposure setting. BLI analysis was performed using Living Image soft-

ware (v.4.5, PerkinElmer). In the case of breast cancer cohort study (pilot, 

group 1 and group 2 in Fig. 1, Extended Data Fig. 1), cell lines were mixed 

at an equal ratio immediately before animal injection, and cell line pools 

containing 2 × 104 cells per barcoded line were injected. In the case of 

single breast cell line validation (Extended Data Fig. 1n), cell lines were 

injected individually at a density of 2 × 104 cells, to be comparable with 

the pooled experiments. In the case of MetMap125 (Fig. 2, Extended 

Data Fig. 2), PRISM pools of 25 cell lines were used, and 2.5 × 105 total 

cells were injected per mouse, corresponding to 1 × 104 cells per bar-

coded line. Five PRISM pools were injected separately into cohorts of 

536-week-old NSG mice. In the case of MetMap500, 20 PRISM pools of  

25 cell lines were combined to form a large pool of 498 cell lines. The large 

pool was injected into a cohort of 8310-week-old NSG mice, with 2.5 × 105 

cells per mouse, equivalent to a density of 500 cells per line. Mammary 

fat pad and subcutaneous injections were performed with Matrigel 

(Corning) support, at a matching density to their intracardiac assays, 

respectively (Extended Data Fig. 3). For all pooled cell line experiments, 

mice were euthanized 5 weeks after injection, in a time-matched manner, 

unless they displayed severe paralysis or poor body condition, in which 

case they were euthanized earlier. Intracartoid injection of JIMT1 was 

performed following a published protocol42, at a density of 1 × 105 cells 

per mouse, similar to the intracardiac injection (Fig. 5e). Intracranial 

injection was performed as previously described43, at a density of 1 × 103 

cells per perturbation per animal (Fig. 5a3c, Extended Data Fig. 10c, d).

Tissue processing and cancer cell isolation from organs

Organs including brain, lung, liver, kidney were dissociated using 

gentleMACS Octo Dissociator with Heaters (Miltenyi Biotec).  

The optimized dissociation solutions and programs (Miltenyi Bio-

tec) are listed in Supplementary Table 9. Bones (from both hind limbs) 

were chopped into fine pieces and incubated in the dissociation buffer 

with vigorous shaking. The dissociated cell suspensions were filtered 

using 100-μm filters, and washed with DMEM/F12 twice. Cell suspen-

sions were then washed with staining buffer (PBS, 2 mM EDTA, 0.5% 

BSA), and incubated with mouse cell depletion beads according to 

the instructions (Miltenyi Biotec). Cell suspensions were subjected 

to negative selection using autoMACS Pro Separator (Miltenyi Bio-

tec) to deplete mouse stroma. Brains were subjected to an additional 

myelin-debris-depletion step using myelin removal beads II (Miltenyi 

Biotec). The resultant cell suspensions were then analysed by FACS 

using a Sony SH4800 sorter, with the fixed gate for GFP or mCherry. 

DAPI staining was used to exclude dead cells. For bulk RNA-seq, cells 

were sorted to a single tube in PBS, 0.4% BSA and RNasin Plus RNase 

Inhibitor (Promega), centrifuged at 1,500 rpm for 10 min, and cell pel-

lets were frozen at 280)°C for downstream use. For single-cell RNA-seq, 

single cells were sorted into 96-well plates containing cold TCL buffer 

(Qiagen) containing 1% ³-mercaptoethanol, snap frozen on dry ice, 

and then stored at 280)°C. Ninety single cells were sorted per plate, 

the rest wells on the plate were used for negative and positive controls.

RNA extraction, library preparation and sequencing

Individual cell lines, cell line pools before injection, and cells isolated 

from metastases were analysed by RNA-seq. RNA extraction was per-

formed using Quick-RNA MicroPrep according to the manufacturer’s 

instructions (Zymo Research). RNA was quantified using an RNA 6000 

Pico Kit on a 2100 Bioanalyzer (Agilent). RNA samples from cell num-

bers lower than 500 were not measured but all were used as input for 

library preparation. cDNA was synthesized using Clontech SmartSeq 

v.4 reagents from up to 2 ng RNA input according to the manufacturer’s 

instructions (Clontech). Full-length cDNA was fragmented to a mean 

size of 150 bp with a Covaris M220 ultrasonicator and Illumina libraries 

were prepared from 2 ng of sheared cDNA using Rubicon Genomics 

Thruplex DNaseq reagents according to the manufacturer’s protocol. 

The finished double-stranded DNA (dsDNA) libraries were quantified 

by Qubit fluorometer, Agilent TapeStation 2200, and RT3qPCR using 

the Kapa Biosystems library-quantification kit. Uniquely indexed librar-

ies were pooled in equimolar ratios and sequenced on Illumina Next-

Seq500 runs with paired-end 75-bp reads at the Dana-Farber Cancer 

Institute Molecular Biology Core Facilities. RT3qPCR quantification of 

barcodes was performed using Maxima First Strand cDNA Synthesis 

Kit, Taqman Fast Advanced Master Mix, custom synthesized Taqman 

probes, and QuantStudio 6 PCR System (ThermoFisher Scientific). 

Single-cell RNA-seq was performed as previously described44.

Bioinformatic analysis

Barcode quantification from RNA-Seq of metastases. Because the 

RNA-seq library preparation sheared the cDNA randomly into small 

pieces, demultiplexed RNA-seq reads were mapped to the barcode 

references using Bowtie 2 local mode45 for barcode detection and 

quantification. Mapped reads were filtered with the criteria that reads 

(either 52 or 32) must cover over 50% of the barcodes from either end, 

and counted using samtools. Barcode percentage corresponding to 

cell composition was calculated for single cell lines, pre-injected cell 

mixtures and in vivo metastasis samples.

Metastatic potential quantification and feature associations. For 

breast cohort study, metastatic potential of cell line j targeting organ 

i, Mi,j was calculated as: M c p= 3i j n k
n

i j,
1

=1 , in which ci is the total cancer 

cell number isolated from organ i, pj is the fractional proportion of cell 

line j estimated by barcode quantification, and n is the number of rep-

licates of mice. To identify features that associate with brain meta-

static potential, a two-class comparison method was used46. The 

analysis was performed on mutation, copy number, expression, 

https://portals.broadinstitute.org/ccle
http://comailab.genomecenter.ucdavis.edu/index.php/
http://comailab.genomecenter.ucdavis.edu/index.php/
http://www.broadinstitute.org/rnai
http://www.broadinstitute.org/rnai
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metabolite, and CRISPR-gene dependency (available at https://depmap.

org/portal/). Copy number data were binarized using a cutoff of f21 

(loss) and g1 (gain).

Cancer transcriptomic analysis from RNA-seq of metastases. Po-

tential mouse contaminating reads were removed by competitive map-

ping to the human/mouse hybrid genome using BBSplit (https://source-

forge.net/projects/bbmap/). Reads that uniquely mapped to the human 

genome were then used as input for mapping and gene-level counting 

with the RSEM package47. Gene count estimates were normalized using 

the TMM method in edgeR48. For differential analysis, to properly ac-

count for the cancer cell composition differences in each in vivo sam-

ple, an in silico modelled in vitro mixture was generated first. For each 

in silico metastasis model, the estimated expression � of gene i is com-

puted as a weighted average of the cell lines present in the correspond-

ing in vivo sample: g g pˆ = 3 ,
i j

M

i j j=1 ,
in which gi,j is the baseline in vitro 

expression of gene i in cell line j and pj is the fractional proportion of 

cell line j in the in vivo sample, as estimated by barcode quantification, 

and M is the number of cell lines present in the in vivo sample. The in vivo 

and in silico counterpart were then compared using a paired design for 

each organ in voom-limma46. GSEA was performed using camera or 

GSEA-preranked method implemented in fgsea46,49. Single sample GSEA 

signature projection was performed using gsva package50. 

Gene-signature datasets were from MSigDB (https://www.gsea-msigdb.

org/).

PRISM in vivo assay

PRISM pool preparation. PRISM cell lines (source of each available 

at https://depmap.org/portal/) were adapted to the same culture 

conditions in phenol-red-free RPMI1640 medium (ThermoFisher 

Scientific) and barcoded as previously described12. SNP fingerprint-

ing authentication was performed before and after barcoding. My-

coplasma contamination was examined (MycoScope, Genlantis) and 

only negative lines were used for experiments. These included eight 

oestrogen-receptor-positive breast cancer cell lines. Despite the lack 

of phenol red (a weak oestrogen) these breast cell lines maintained 

ESR1 positivity and expression of a downstream marker of its activity, 

FOXA1. This is probably explained by the remaining oestrogens in the 

fetal bovine serum (FBS). PRISM cell lines were pooled on the basis of 

their in vitro doubling bins, at equal number, in the format of 25 lines 

per pool, and cryopreserved until use. Cells were thawed and recovered 

for 48 h before in vivo injection. To form the large pool of 498 cell lines, 

20 PRISM pools were mixed at equal total number immediately before 

injection.

Tissue processing, library preparation and sequencing. After in vivo 

experiments, organs were subjected to tissue dissociation, mouse 

stroma depletion, and the dissociated cell pellets were frozen at 280)°C 

as described above. The pellets (f50 mg dry weight) were lysed in 200 μl 

freshly prepared lysis buffer with proteinase K, heat digested at 60)°C, 

and denatured at 95)°C for 10 min. Twenty microlitres of the lysates was 

used for barcode amplification per 100 μl PCR volume (multiple tech-

nical replicates per sample). PCR was performed using the following 

conditions: 95)°C for 3 min; 98)°C for 20 s, 57)°C for 15 s, 72)°C for 10 s (30 

cycles); 72)°C for 5 min; 4)°C stop. PCR libraries were pooled, purified 

using Select-a-Size DNA Clean & Concentrator Kit (Zymo Research), and 

quantified using Qubit dsDNA HS Assay Kit (ThermoFisher Scientific) 

and a 2100 Bioanalyzer (Agilent). The purified 2 nM of libraries with 

20% spike-in PhiX DNA were sequenced on Illumina MiSeq or HiSeq at 

800 K mm22 cluster density.

Metastatic potential quantification. Demultiplexed sequencing reads 

were mapped to the barcode reference to generate a table of cell line 

barcode counts for each sample/condition. Sequencing-depth normal-

ized read counts were used for calculation of relative metastatic 

potential. Relative metastatic potential of cell line j targeting organ i, 

rMi,j, was defined as: rM c p= 3 / 3i j n k
n

i j m k
m

j,
1

=1 ,
1

=1 , in which ci,j is the read 

counts of cell line j from organ i, pj is the read counts of cell line j from 

pre-injected population, n is the number of replicate samples of mice, 

m is the number of replicates of pre-injected population. Confidence 

intervals were calculated using bootstrap resampling.

In vivo CRISPR screen and gene validation

CRISPR3Cas9 versions of cell lines were generated by infecting lucifer-

ized cells with Cas9-Blast lentivirus and selecting in 5 μg ml21 blasticidin 

for 10 days with continuous passaging until non-infected controls were 

killed. For pooled in vivo screen, JIMT13Cas9 cells were infected with a 

CRISPR guide library (Supplementary Table 10) in an arrayed-fashion in 

6-well plates, and selected in 2 μg ml21 puromycin for 4 days. At this time, 

non-infected controls were killed, and no growth defect was observed in 

the perturbed cell lines. Post antibiotic selection, cells were pooled and 

subjected to intracranial injection at 6 × 104 cells per mouse in 1 μl PBS. 

This was equivalent to 1 × 103 cells per guide on average per mouse. Intrac-

ranial growth was allowed to progress for 4 weeks, and brain tissues 

were processed adopting the workflow of PRISM in vivo assay, except 

that guides were amplified using primers targeting the guide vector. 

Demultiplexed sequencing reads were mapped to the guide reference 

to generate a table of barcode counts for each guide for each sample. 

Sequencing-depth was normalized using the upper-quartile method 

and relative depletion was quantified using a linear model in limma46. 

For individual gene validation (Fig. 5c, Extended Data Fig. 10c, d),  

Cas9-expressing cells of different cell lines were infected with cor-

responding guides, selected in 2 μg ml21 puromycin for 4 days, and 

subjected to intracranial injection at 1 × 103 cells per mouse in 1 μl PBS. 

Two independent guides per gene were tested, with one mouse per 

guide. Intracranial growth was monitored by BLI following injection.

Liquid chromatography–mass spectrometry lipidomics

Positive ion mode analyses of polar and nonpolar lipids (C8-pos) were 

conducted using a liquid chromatography3mass spectrometry (LC3MS)  

system composed of a Shimadzu Nexera X2 U-HPLC (Shimadzu) cou-

pled to an Exactive Plus orbitrap mass spectrometer (ThermoFisher 

Scientific). Cellular extracts were collected from 6-well plate culture, 

in LC-MS-grade isopropanol (Sigma-Aldrich) containing an internal 

standard 1,2-didodecanoyl-sn-glycero-3-phosphocholine (Avanti Polar 

Lipids). Extracts were centrifuged for 10 min at 10,000g to remove resid-

ual cellular debris. After centrifugation, supernatants were injected 

directly onto a 100 × 2.1 mm, 1.7-μm ACQUITY BEH C8 column (Waters). 

The column was eluted isocratically with 80% mobile phase A (95:5:0.1 

v/v/v 10 mM ammonium acetate/methanol/formic acid) for 1 min fol-

lowed by a linear gradient to 80% mobile phase B (99.9:0.1 v/v methanol/

formic acid) over 2 min, a linear gradient to 100% mobile phase B over 

7 min, then 3 min at 100% mobile phase B. Mass spectrometry analyses 

were performed using electrospray ionization in the positive ion mode 

using full scan analysis over 200 to 1,000 m/z at 70,000 resolution and 3 

Hz data acquisition rate. Other mass spectrometry settings were as fol-

lows: sheath gas 50, in source collision-induced dissociation 5 eV, sweep 

gas 5, spray voltage 3 kV, capillary temperature 300)°C, S-lens RF 60, 

heater temperature 300)°C, microscans 1, automatic gain control target 

106, and maximum ion time 100 ms. Lipid identities were determined on 

the basis of comparison to reference standards and reference plasma 

extracts and were denoted by the total number of carbons in the lipid 

acyl chain(s) and total number of double bonds in the lipid acyl chain(s).

Western blot

Protein lysates were prepared in RIPA lysis buffer (ThermoFisher Sci-

entific) with cOmplete Mini EDTA-free Protease Inhibitor Cocktail 

(Roche). Western blot was performed using NuPAGE gel (ThermoFisher 

Scientific) with wet tank blotting (Bio-Rad) and Odyssey detection 

system (LI-COR). SREBF1 primary antibody (14088-1-AP, Proteintech), 

https://depmap.org/portal/
https://depmap.org/portal/
https://sourceforge.net/projects/bbmap/
https://sourceforge.net/projects/bbmap/
https://www.gsea-msigdb.org/
https://www.gsea-msigdb.org/
https://depmap.org/portal/


SCD (CD.E10) antibody (ab19862, Abcam), GAPDH (D16H11) XP rabbit 

monoclonal antibody (5174S, Cell Signaling), ³-actin (8H10D10) mouse 

monoclonal antibody (3700S, Cell Signaling), and IRDye 800CW goat 

anti-mouse IgG (926-32210, LI-COR), IRDye 680RD goat anti-rabbit IgG 

(926-68071, LI-COR) secondary antibodies were used. Western blot was 

performed for cells cultured in different medium conditions. These 

include RPMI1640 with 10% FBS, with 10% delipidated FBS, with 10% 

human cerebrospinal fluid (991-19-P-5, Lee BioSolutions), or with 1% 

SM1 supplement (05711, STEMCELL Tech), or brain-slice-conditioned 

medium. Brain-slice-conditioned medium was prepared by submerg-

ing brain slices (150 μm) in RPMI1640 (no serum) for 48 h. Delipidated 

FBS was prepared as described51.

Clinical data analysis

METABRIC, TCGA and MSK targeted-sequencing breast cancer datasets 

were downloaded from cBioPortal52. The EMC-MSK dataset including 

615 primary tumours (GSE2035, GSE2603, GSE5327 and GSE12276) 

and the 65-metastasis-sample dataset (GSE14020) were collected and 

processed as previously described18. Paired primary breast tumour 

and brain metastasis RNA-seq was obtained from ref. 36. To exclude the 

confounding effect of brain stroma contamination in this dataset, a con-

tamination indicator generated from GSE52604 was applied, and the 

contaminating effect was regressed out, generating a corrected gene 

matrix. PI3K-response signatures were from refs. 25,26. Signature analysis 

was conducted as described7. Hierarchical clustering and heatmaps 

were generated using gplots package. Other plots were generated using 

ggplot2. log-rank tests of survival curve difference were calculated 

using survival package. A multivariate Cox proportional hazards model 

was built using the coxph function (Extended Data Fig. 6h). Significance 

of overlap was calculated using chisq.test or fisher.test function.

Reporting summary

Further information on research design is available in the Nature 

Research Reporting Summary linked to this paper.

Data availability

MetMap data and interactive visualization can be accessed at https://

pubs.broadinstitute.org/metmap. RNA-seq data generated from 

this study have been deposited in the Gene Expression Omnibus 

(GEO) under accession numbers GSE148283 and GSE148372. Addi-

tional datasets used in this study include METABRIC, TCGA and 

MSK-targeted-sequencing breast cancer datasets from cBioPortal, 

the EMC-MSK dataset (GSE2035, GSE2603, GSE5327 and GSE12276), 

the 65-metastasis-sample dataset (GSE14020), paired primary tumour 

and brain metastasis RNA-seq from ref. 36, and GSE52604. Source data 

are provided with this paper.

Code availability

Custom codes used for this study are accessible at the MetMap portal 

(https://pubs.broadinstitute.org/metmap).
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | An in vivo barcoding approach to establish 

multiplexed cancer metastasis xenografts and validation using 

orthogonal assays. a, Principal component analysis (PCA) of transcriptomic 

expression of the breast cancer collection from CCLE, and the pooling schemes 

focusing on basal-like breast cancer. G, GFP; R, mCherry. The linked numbers 

indicate the labelling barcodes. b, Real-time BLI monitoring of the overall 

metastasis progression from pilot, group1, group2 cell line pools. Data are 

mean ± s.e.m. n = 5 (pilot), n = 8 (group1), n = 7 (group2) mice. c, Total cancer cell 

numbers isolated by FACS from each target organ from pilot, group1, group2 

pools. Each dot represents an animal. Box plots display quartiles of the data.  

d, Cancer cell composition of metastases from different organs as determined 

by barcode abundance from pilot, group1, group2 pools. pilot: G portion 

samples are highlighted in green, R portion samples are highlighted in red. 

preinj, pre-injected population. Data c, d were used to quantify the metastatic 

potential presented in Fig. 1b. e, An example of the gating strategy to isolate 

GFP+ barcoded cancer cells for the pilot pool. Infected cell lines expressed GFP 

at different levels as shown in the histogram, and a fixed gate was used to enrich 

cells with closer expression level. Numbers correspond to cell percentages 

within the gate. f, An example of barcode mapping result visualized by 

Integrative Genomics Viewer (IGV). g, Distribution of the barcode read counts 

versus all gene transcript counts. Barcodes are among the top 10% highly 

expressed genes, allowing robust quantification. h, An example of barcode 

read quantification in the pre-injected and metastasis samples from pilot pool. 

Barcodes are listed as in a. cpk, counts per thousand. i, Taqman assay on in vitro 

cultured barcoded cell lines from the pilot pool. The signal is very specific to 

each barcode and there is no cross detection. j, Quantification of barcode 

abundance and cancer cell composition using the Taqman RT3qPCR assay in 

the pre-injected and metastasis samples from the pilot pool. The results agree 

with barcode quantification from bulk RNA-Seq (Extended Data Fig. 1d).  

k, Single cell RNA-Seq of metastases from different organs from the pilot pool. 

Single cancer cells isolated from each organ were sorted into 96-well plates, 

with 90 cells per plate (rest 6 wells for positive and negative controls), and 

subjected to Smart-Seq2. PCA revealed that PC1 maximally separated the 

cancer cells into 2 clusters (CLs), with CL1 enriched in cells isolated from brain, 

and CL2 enriched in cells isolated from lung, liver and bone. Heat map on the 

right shows gene expression that associates with PC1 and clustering of cells. 

Based on marker expression, CL1 corresponds to HCC1954 (ERBB2+, CDH1+) 

and CL2 corresponds to MDAMB231 (CDKN2A loss, VIM+). l, Projection of 

marker gene expression on the PCA plot. m, Cancer cell composition based on 

single cell RNA-Seq data. The results agree with barcode quantification from 

bulk RNA-Seq (Extended Data Fig. 1d). n, Real-time BLI monitoring of 

metastasis progression of the 8 cell lines that were individually tested. Each 

plot highlights one of the 8 lines. Data are mean ± s.e.m. Each group contains  

4 mice. o, Scatter plot showing the correlation of overall metastatic potential  

(5 organs combined) from pooled cell line experiments with whole body BLI of 

metastases measured individually. Pearson’s correlation coefficient and its 

test P value are presented.
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Using PRISM cell line pools for metastatic potential 

profiling. a, Optimizing the workflow of metastatic potential mapping using 

PRISM. A PRISM pool of 25 cell lines was used for testing the need of GFP 

labelling and cancer cell purification. The barcode abundance altered 

compared to the unlabelled population after GFP labelling as shown by the pie 

chart. b, A detailed line-by-line view of barcode abundance before and after GFP 

labelling. The unlabelled cell pool had more even distribution. Post labelling, 

several lines showed noticeable dropout, but all lines were detectable.  

c, Scatter plot comparing barcode enrichment after normalizing to the pre-

injected input from the two experiments. Pearson’s correlation coefficient and 

its test P value are presented. Strong positive correlation is observed, with the 

exception of one cell line U2OS. d, Quality control of MetMap500 and 

MetMap125 datasets showing initial barcode abundance in the pre-injected 

populations. MetMap500, 1 large pool containing 498 cell lines was profiled, 

with 10 cell lines showing low initial abundance. These 10 cell lines were not 

detected in any in vivo sample, and were excluded from subsequent analysis. 

MetMap125, 5 pools of 25 cell lines were profiled separately and data were 

combined for analysis. e, Quality control of MetMap500 and MetMap125 

datasets showing scatter plots of raw barcode abundance from in vivo organs 

versus the data normalized to the pre-injected input (in d). A strong linear 

relationship was observed.
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Extended Data Fig. 3 | Subcutaneous injection of PRISM cell line pool.  

a, The same PRISM pool of 498 cell lines used for MetMap500 profiling was 

tested using subcutaneous injection on a cohort of 6 mice. Survival curves 

compare animal survival difference between subcutaneous and intracardiac 

(IC) injections, P value calculated using two-sided, log-rank test. b, Total 

numbers of cell lines detected in animals from the subcutaneous and IC 

injections. Detected lines are coloured in pink and non-detected lines are 

coloured in light-blue. P value calculated using two-sided t-test. c, Scatter plot 

showing barcode-quantified tumorigenic potential and metastatic potential 

from subcutaneous and IC experiments respectively. d, Group1 of basal breast 

cancer pool (Extended Data Fig. 1a) was subjected to mammary fat pad 

injection, barcode quantitation through RNA-Seq, and cell number inference.



Extended Data Fig. 4 | Association of overall metastatic potential with 

clinical parameters. a. Bar plots showing significance of single variate and 

multi variate association analysis with metastatic potential in MetMap500.  

P values are calculated using linear regression and Anova (type II) of the linear 

models. The dotted lines indicate 0.05 cutoff. b. Box plots showing metastatic 

potential of cell lines stratified by metastasis status in the corresponding 

patients and cancer lineage. Box plots display quartiles of the data. Outlier 

points extend beyond 1.5 × interquartile ranges from either hinge. c, Scatter 

plots showing correlation of metastatic potential with patient age, stratified by 

cancer lineage. An inverse correlation was observed in several cancer types.  

d3g, Correlation of overall metastatic potential with derived site (d), time 

length in culture to derive the cell lines (e), mutation burden (f) and cell 

doubling (g) in the 21 basal breast cancer cohort. d, P value calculated using 

two-sided t-test. e3g, Pearson’s correlation coefficients and test P values are 

presented.



Article

Extended Data Fig. 5 | Genetic correlates of brain metastatic potential in 

basal-like breast cancer. a. A line-by-line view of brain metastatic potential 

and its associated features at genetic, expression, metabolite, and gene 

dependency levels. Mutation: mutant (MUT), wild-type (WT). Copy number: 

data are binarized, with deletion (DEL) cutoff < = -1 and amplification (AMP) 

cutoff > = 1. Expression signatures: 1. Hallmark: PI3K/AKT/MTOR signalling,  

2. GO: ERBB signalling pathway, 3. GO: ERBB2 signalling pathway, 4. Burton: 

adipogenesis peak at 8hr, 5. GO: carnitine metabolic process, 6. Reactome: 

mitochondrial fatty acid beta oxidation, 7. GO: short chain fatty acid metabolic 

process. Data not available for the cell lines are marked with X. b, c, Scatter 

plots showing the correlation of SREBF1 in vitro dependency and brain 

metastatic potential in MetMap500 (a) and MetMap125 (b). Strong inverse 

correlation was observed for breast cancer in both datasets. Each dot 

represents a cell line.



Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Association of chr 8p gene copy number status and 

PI3K-response signatures with brain metastasis in clinical breast cancer 

specimens. a, Heat maps showing coordinated expression of chr 8p genes 

mirrored their copy number status in the two large breast cancer datasets, 

METABRIC and TCGA. The 8plow cluster is defined by CNA data. The right panel 

shows distribution of 8plow cluster in different breast cancer subtypes and its 

association with disease specific survival. P values calculated using two-sided, 

log-rank tests. CNA, Copy Number Alteration. Exp, RNA-Seq Expression.  

b, Hierarchical clustering of primary breast tumours by 8p gene expression in 

the EMC-MSK dataset. The 8plow cluster is enriched in tumours that developed 

brain metastasis, but not lung or bone metastasis. The right panel shows organ-

specific metastasis free survival curves stratified by 8plow status. The 8plow 

cluster displays poorer brain metastasis compared to the 8pWT cluster. Brain 

metastasis free survival curves stratified by 8plow status in different subtypes  

is also presented. P values calculated using two-sided, log-rank tests.  

c, Hierarchical clustering of breast cancer metastases by 8p gene expression, 

with the 8plow cluster being enriched in brain metastases. d, Chr 8p CNA status 

determined by Targeted Seq in the MSK metastatic breast cancer dataset. Brain 

metastases are enriched in chr 8p deletion compared to primary tumour, local 

recurrence and metastases at other sites. The 8plow cluster predicts poor brain 

metastasis free survival. P values calculated using two-sided, log-rank tests. LN, 

lymph node. e, Heat maps showing co-regulated patterns of two independent 

PI3K-response signatures in METABRIC and TCGA breast cancer datasets. 

PI3Ksig.1 was generated by overexpression of PIK3CAmut in breast epithelial 

cells. PI3Ksig.2 was generated by PI3K inhibitor treatment in the CMap 

database. The right panel shows distribution of PI3Ksighigh cluster in different 

breast cancer subtypes and its association with disease specific survival.  

P values calculated using two-sided, log-rank tests. f, Hierarchical clustering of 

primary breast tumours by PI3K signatures in the EMC-MSK dataset. The 

PI3Ksighigh cluster is enriched in tumours that developed brain metastasis. The 

right panel shows organ-specific metastasis free survival curves stratified by 

PI3K signatures. The PI3Ksighigh cluster displayed poorer brain metastasis. 

Brain metastasis free survival curves stratified by PI3K signatures in different 

subtypes is also presented. P values calculated using two-sided, log-rank tests. 

g, Hierarchical clustering of breast cancer metastases by PI3K signatures, with 

the PI3Ksighigh cluster being enriched in brain metastases. h, Heat maps 

showing significant yet non-complete overlap between 8plow and PI3Ksighigh 

clusters in the EMC-MSK dataset. 8plow and PI3Ksighigh clusters co-capture a 

subset of patients with the worst brain metastasis prognosis. P values 

calculated using two-sided, log-rank tests. The lower panel presents a Cox 

proportional-hazards model of brain metastasis free survival using multi 

variates 3 8p, PI3Ksig, and breast cancer subtype. The 8plow/PI3Ksighigh cluster 

is the most associated with brain metastasis. i. 8plow and PI3Ksighigh clusters co-

capture the majority of brain metastasis samples.



Extended Data Fig. 7 | Lipid metabolite profile changes upon SREBF1 

knockout. Heat maps showing relative lipid abundance in cells cultured in 

medium supplemented with serum or delipidated serum. SREBF1-WT and 

SREBF1-KO of JIMT1 (PIK3CAmut) and HCC1806 (8plow) were used. Lipid species 

groupings and lipid desaturation levels are also presented. WT, wild-type; KO, 

knockout.
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Extended Data Fig. 8 | Analysis of multiplexed breast cancer metastasis 

in vivo transcriptomes. a, A schematic of the differential analysis approach 

for in vivo transcriptomes with mixtured cancer cell lines. An in silico 

transcriptome was modelled based on single cell line in vitro transcriptomes 

and cell line composition (comp.) of the metastasis sample. The in silico profile 

was then compared with the actual in vivo data in a paired-wise manner.  

b, Comparison of in silico modelled profiles to the actual pre-injected or in vivo 

metastasis sample profiles. The pre-injected populations are direct mixtures 

of in vitro cell lines and show tight correlation with in silico data. In vivo 

samples show large fold changes. c, Box plots showing log2 fold changes of 

MUCL1 and SCGB2A2 in in vivo metastasis samples and pre-injected cells. Each 

point represents a sample. Box plots display quartiles of the data. Outlier 

points extend beyond 1.5 × interquartile ranges from either hinges. d, Heat map 

showing log2 fold change of lung metastasis genes (Minn et al.) in lung, liver, 

kidney and bone metastasis samples from the pilot study, where MDAMB231 

dominated the population. e, Correlation of gene expression changes in 

different metastasis sites. Pre-injected population had no expression change 

and thus showed no correlation with in vivo samples. Brain metastases showed 

weaker correlations with extracranial metastases. f, Bubble plot showing 

enrichment of Hallmark gene pathways (MSigDB) comparing in vivo expression 

of metastases at different organ sites to their in vitro counterparts. g, Bubble 

plot showing in vivo upregulation of SREBF1, SCD and SREBF1-response 

signature in brain metastases. h, i, GSEA analysis of lipid metabolism gene sets 

using in vivo RNA-Seq profiles combined by metastasis organ sites irrespective 

of sample or cell line composition (h). Gene sets related to lipid metabolism are 

selectively enriched on top in the brain but not in other organs or in vitro. 

Restricting analysis to JIMT1-dominant samples revealed a similar result. No 

enrichment was seen in normal brain when analysis was performed on GTEX 

normal tissue (i). Each tick represents a lipid metabolism gene set from 

MSigDB. ***, P = 0.001; ** = 0.01.



Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Expression of TGF³ signalling, EMT status, 

inflammatory response and lipid metabolism genes in clinical breast 

cancer metastasis specimens. a, Comparison of brain metastasis versus 

extracranial metastasis clinical samples. Lower expression of TGF³ signature 

genes and EMT signature genes in brain metastases than other metastasis sites. 

Enriched expression of selective SREBF1 target genes (including FASN, SCD, 

SREBF1 itself) and Pentose Phosphate Pathway (PPP) genes in brain metastases. 

b, c, A strategy to remove brain stroma contamination effect from brain 

metastasis expression profiles when performing comparison of paired 

primary breast tumour and brain metastasis clinical specimens. A gene 

signature indicating brain stroma contamination was derived from 

comparison of brain with breast and breast cancer brain metastasis (b). 

Arrowheads indicate a few brain metastasis samples with noticeable brain 

stroma contamination. A brain contamination score was calculated and its 

effect was regressed out in the RNASeq data of matched primary tumours and 

brain metastases (c). The heat map shows expression of brain stroma indicator 

before and after removal of the contamination effect. d, e, Paired comparison 

of primary breast tumour and brain metastasis clinical specimens after 

removal of brain stroma contamination. d, Lipid metabolism genes and PPP 

genes. e, Signature scores were projected for each sample using the corrected 

RNA-Seq profiles. P, Primary breast tumour; M, brain Metastasis; upregulation 

in red, downregulation in blue. P values calcutated using paired, two-sided  

t-tests.



Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | In vivo and in vitro effects of SREBF1 knockout.  

a, Growth kinetics of SREBF1-WT and -KO cells in in vitro culture medium with 

10% serum or 10% delipidated serum. Cell growth was monitored by Incucyte 

real-time imaging. WT, wild-type, in black; KO, knockout, in red. Two 

independent guides were used per group. b, Fluorescence imaging of 

metastases in serial brain sections from mice receiving intracardiac injection 

of JIMT1 SREBF1-WT or -KO cells (Fig. 5d). Confocal tile scans of representative 

sections are presented at the lower panel. GFP+ signals indicate cancer lesions. 

Circles highlight macro-metastatic lesions and arrows indicate micro lesions. 

c, d, One-by-one assessment of lipid metabolism gene fitness in additional 

brain metastatic cell lines through intracranial injection. SREBF1 was tested for 

HCC1954, MDAMB231 (c) and HCC1806. Additional genes were tested for 

HCC1806 (d). Cell outgrowth in brain metastasis was monitored by real-time 

BLI. Two independent guides per gene were tested, in a one guide one mouse 

fashion. e3g, Outgrowing (HCC1806) or residual (JIMT1) SREBF1-KO cells from 

brain metastases were derived for CRISPR-seq (e), western blot (f), and RT3

qPCR (g) assays. e, CRISPR-seq quantifying SREBF1 gene editing efficiencies of 

brain-derived and pre-injected cells. f, Western blot quantifying SREBF1 

protein levels. g, RT3qPCR quantifying relative expression of SREBF1, SCD, 

CD36, FABP6 in brain-derived versus pre-injected cells. Pre-injected WT 

HCC1806 was used as reference. h, i, Brain-derived and pre-injected HCC1806 

cells were cultured in brain-slice-conditioned medium (CM) or medium 

supplemented with cerebrospinal fluid, or serum, or delipidated serum, or SM1 

supplement, and western blot (h) or RT3qPCR was performed (i). SREBF1, SCD 

and CD36 were upregulated when cells were cultured in brain slice CM, 

cerebrospinal fluid, and delipidated serum. Brain-derived SREBF1-KO cells 

were better at inducing SCD and CD36, in comparison to pre-injected SREBF1-

KO cells. Experiments were performed twice independently with similar 

results.



1

n
atu

re research
  |  rep

o
rtin

g
 su

m
m

ary
O

c
to

b
e

r 2
0

1
8

Corresponding author(s): Todd R Golub; Xin Jin

Last updated by author(s): Jul 21, 2020

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Bioluminescence imaging data was acquired with Living Image software (v4.5, PerkinElmer). Lipidomics mass spectrometry data was 

acquired using a LC-MS system composed of a Shimadzu Nexera X2 U-HPLC (Shimadzu Corp) coupled to a Exactive Plus orbitrap mass 

spectrometer (ThermoFisher Scientific). 

Data analysis Following softwares were used for data analysis: Living Image software (v4.5), Bowtie 2 (v2.2.8), samtools (v 1.3.1), BBSplit (https://

sourceforge.net/projects/bbmap/), RSEM (v1.3.1), R statistical software (v3.6.2), ggplot2 (3.3.0), limma (3.42.2), edgeR (3.28.0), gsva 

(1.34.0), gplots (3.0.1.2), survival (3.1-8), fgsea (1.12.0), GSEA (v3.0), GenePattern (v2.0). 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 

We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

MetMap data and interactive visualization can be accessed at pubs.broadinstitute.org/metmap. RNA-seq data generated from this study have been deposited to 

Gene Expression Omnibus (GEO), at accession numbers GSE148283 and GSE148372. Additional datasets used in this study include METABRIC, TCGA, and MSK-

targeted-sequencing breast cancer datasets downloadable from cBioPortal, EMC-MSK dataset (GSE2035, GSE2603, GSE5327, GSE12276), 65 metastasis sample 

dataset (GSE14020), paired primary tumor and brain metastasis RNA-Seq from Vareslija et al, and GSE52604. 
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were determined to be adequate for minimal n required for statistical tests, or consistency of measurable differences between 

groups following guidance and experience from Ref. 5, 7, 18. 

Data exclusions Failed RNA-Seq samples were excluded from analysis presented in the manuscript. In MetMap500 experiment (Fig. 2), one animal died early 

and organs could not be collected in time, and is excluded from analysis.

Replication Cell culture based experiments (including growth assay, RT-qPCR, western blot) were performed twice independently. Animal experiments 

were validated using completely independent methods instead of direct repeat (Pooled experiment vs individual injection in Fig. 1a, Extended 

Data Fig. 2g; MetMap500 vs MetMap125 in Fig. 2c; mini-pool CRISPR screen vs one-by-one testing in Fig. 5a-c). 

Randomization Randomization was not applicable to experiments in this study. In MetMap profiling, we varied pooling format, cell density, cohort size, 

animal age to account for these potential covariates. 

Blinding Blinding to group allocations was not applicable to experiments in this study. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies

Antibodies used SREBF1 primary antibody (14088-1-AP, Proteintech)  

SCD (CD.E10) antibody (ab19862, Abcam)  

GAPDH (D16H11) XP® Rabbit mAb (5174S, Cell Signaling)  

β-Actin (8H10D10) Mouse mAb (3700S, Cell Signaling) 

IRDye® 800CW Goat anti-Mouse IgG (926-32210, LI-COR)  

IRDye® 680RD Goat anti-Rabbit IgG secondary antibodies (926-68071, LI-COR).

Validation SREBF1 primary antibody (14088-1-AP, Proteintech): validated by manufacturer, and by this study (Extended Data Fig. 11f,h), and 

cited in publications, suitable for western blot 

SCD (CD.E10) antibody (ab19862, Abcam): validated by manufacturer, and by this study (Extended Data Fig. 11f,h), suitable for 

western blot 

GAPDH (D16H11) XP® Rabbit mAb (5174S, Cell Signaling): validated by manufacturer and cited in publications, suitable for 

western blot 

β-Actin (8H10D10) Mouse mAb (3700S, Cell Signaling): validated by manufacturer and cited in publications, suitable for western 

blot
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Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) All cell lines listed in Supplementary Table 1 and 3 were obtained from CCLE. 

Authentication Cell lines were authenticated by DNA fingerprinting analysis. The breast cell line identities were also confirmed by RNA-Seq 

and compared to CCLE RNA-Seq profiles. 

Mycoplasma contamination All cell lines were confirmed to be mycoplasma free using the MycoAlertTM Mycoplasma Detection Kit (Lonza).

Commonly misidentified lines
(See ICLAC register)

PC-14 was identical to PC-9 as reported before (https://web.expasy.org/cellosaurus/CVCL_1640; https://

www.sigmaaldrich.com/catalog/product/sigma/cb_90071810?lang=en&region=US). To keep consistent with CCLE 

nomenclature, PC14_LUNG was used. KPL-1 was found to be a MCF-7 derivative (https://web.expasy.org/cellosaurus/

CVCL_2094). To keep separate from MCF-7 and consistent with CCLE nomenclature, KPL1_BREAST was used.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals NOD scid gamma (NSG) female mice (The Jackson Laboratory) of 5~6 or 8~10 weeks were used for metastasis xenograft studies.  

Broad Vivarium’s housing conditions for NSG mice include sterilized, individually ventilated cages with cellulose bedding. Water 

bottles are supplied with acidified, reverse osmosis water. The holding room is maintained under positive pressure, temperature 

70°F (+/-2°F), humidity 40% (+/- 10%), lighting 12 on/12 off light cycle. 

Wild animals No wild animals were used in the study. 

Field-collected samples No field collected samples were used in the study.

Ethics oversight Animal work was performed in accordance with a protocol approved by the Broad Institute Institutional Animal Care and Use 

Committee (IACUC).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Organs were dissociated using dissociation protocols listed in Supplementary Table 9 with gentleMACS Octo Dissociator (Miltenyi 

Biotec). Dissociated cell suspensions were filtered using 100 μm filters, and washed with DMEM/F12 twice. Cell suspensions 

were then washed with staining buffer (PBS + 2mM EDTA + 0.5% BSA), and incubated with mouse cell depletion beads according 

to the instructions (Miltenyi Biotec). Cell suspensions were subjected to negative selection using autoMACS Pro Separator 

(Miltenyi Biotec) to deplete mouse stroma. Brains were subjected to an additional myelin debri depletion step using myelin 

removal beads II (Miltenyi Biotec). In vitro cultured cells were trypsinized and resuspended as single cell suspensions. DAPI 

staining was used to exclude dead cells. 

Instrument SONY SH4800

Software SH4800S and FlowJo (v10.2)

Cell population abundance Data is presented in Extended Data Fig 1c and Source Data. 

Gating strategy Gating strategy is illustrated in Extended Data Fig. 1e to select for single cells with the fixed gate for GFP or mCherry.  

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.


