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De novo and somatic structural variant 
discovery with SVision-pro

Songbo Wang1,2,3, Jiadong Lin2,3, Peng Jia)  )1,2,3, Tun Xu)  )2,3, Xiujuan Li2,3, 

Yuezhuangnan Liu4, Dan Xu4, Stephen J. Bush2,3, Deyu Meng3,5,6,7 & 

Kai Ye)  )1,2,3,4,8,9 

Long-read-based de novo and somatic structural variant (SV) discovery 

remains challenging, necessitating genomic comparison between samples. 

We developed SVision-pro, a neural-network-based instance segmentation 

framework that represents genome-to-genome-level sequencing diferences 

visually and discovers SV comparatively between genomes without any 

prerequisite for inference models. SVision-pro outperforms state-of-the-art 

approaches, in particular, the resolving of complex SVs is improved, with 

low Mendelian error rates, high sensitivity of low-frequency SVs and reduced 

false-positive rates compared with SV merging approaches.

Long-read sequencing (LRS) technologies have greatly facilitated the 

detection of SVs1, including simple SVs (SSV)235 and complex SVs (CSVs)6, 

which typically comprise several internal SSV subcomponents. Given that 

de novo and somatic SVs7,8 are responsible for Mendelian disorders9,10 

and development of cancers11,12, comparative SV discovery between 

genomes (for example, comparing a proband genome against parent 

genomes to identify de novo SVs) has generally been attempted by either 

callset-merge or read-inference strategies. Callset-merge strategies13315 

(for example, Jasmine) extract genome-specific calls from merged call-

sets and hence inevitably incorporate the miscalls from callers, lead-

ing to many false positives. In contrast, read-inference strategies16 (for 

example, nanomonsv) directly search differential alignments between 

genomes and construct SV inference models. However, this is typically 

limited to SSVs, and CSV modeling cannot be accommodated due to 

the unexplored CSV types and nested internal components17. Although 

sequencing-to-image and deep-learning-based callers have improved 

CSV characterization6,18, two principal issues hinder their application to 

comparative SV discovery. First, existing sequencing-to-image schemas 

can represent SVs only of an individual genome, whereas comparative SV 

discovery requires additional image features that can represent SV dif-

ferences between genomes. Second, comparative SV discovery demands 

several recognition tasks to detect and genotype SV between genomes 

simultaneously, while current single-task deep-learning callers classify 

one entire image into either a specific SV type6,19 or genotype20.

Here we propose SVision-pro, comprising two key modules: a 

sequence-to-image representation module encoding genomic fea-

tures from two samples in a single image, from which a neural-network 

recognition module comparatively recognizes SVs as well as their 

intergenome differences. SVision-pro integrates SV detection and 

genotyping between genomes as a one-stop neural-network-based 

image instance segmentation task, facilitating the discovery of both 

de novo and somatic SSVs and CSVs.

The sequence-to-image representation module first takes as 

input aberrant genome loci identified from LRS data. In contrast to 

traditional LRS-based callers, which search for SV-specific alignment 

signatures, SVision-pro summarizes each read into a series of sym-

bols (Extended Data Fig. 1a3d and Methods). These one-dimensional 

(1D)-symbol series are obtained directly from read alignment results 

without any SV-type-oriented preprocessing, and then clustered 

together iteratively as candidate aberrant loci (Extended Data Fig. 1e). 

This process, without matching known SV types, ensures the com-

prehensive capture of SV loci, especially for unexplored CSVs. The 

SV-type-classification task is delegated to subsequent representation 

and recognition modules.
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alignments in three image channels (Fig.1a and Extended Data Fig. 3a). 

Then, we use a fixed-height track above these structures (upper track) 

to encode the normalized ACT from the control genome (for example, 

from parent samples or normal tissue) while the track below (lower 

track) encodes ACT from the case genome (Extended Data Fig. 3b). This 

representation strategy facilitates genome-to-genome comparison, 

simultaneously encoding both SV structures (via segments and gaps) 

and their intergenome differences (via contrasting ACTs in lower and 

upper tracks), thereby requiring a multitask neural-network framework 

that can perform the detection and genotyping tasks simultaneously.

We integrated those many tasks into a one-stop neural- 

network-based image instance segmentation framework instead of 

utilizing several deep-learning classification modules (Fig. 1b and 

The sequence-to-image representation module then compares 

two genomes (termed as case and control genome) in two steps (Fig. 1a): 

structure sketching and content rendering. For an aberrant locus in the 

case genome (for example, from child or tumor tissue), the structure 

sketching step directly transforms the 1D read symbol series into a 

two-dimensional (2D) similarity image (Extended Data Fig. 2a), which 

uses segments and gaps to measure the structural similarity of the 

reference sequence and the variant feature sequence from the case 

genome in an image (Extended Data Fig. 2b). The content rendering 

step (Methods) fills the sparse image regions with augmented coverage 

tracks (ACTs), which represent genomic differences between the case 

and control genome. First, we color the raw coverage track according 

to the forward-, inverted- and duplicated-matching conditions of 
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Fig. 1 | SVision-pro overview. a, Overview of the sequence-to-image 

representation module in SVision-pro. SVision-pro sketches the structures of 

a candidate SV locus and renders ACTs (above) into the sparse image regions. 

The ACT is generated from mapped alignments by the three-channel RGB 

augmentation (below). Dup., duplicated-matching; Rev., reversed-matching; 

For., forward-matching. b, Overview of the comparative recognition module 

in SVision-pro. The neural-network-based instance segmentation framework 

outputs a segmentation mask, providing intuitive SV types (above). By 

comparative genotyping analysis of the colored regions in the upper and lower 

panels (below), we can determine the SV differences between case and control 

genomes. c, Neural-network model training and selection strategy of SVision-

pro. SVision-pro was trained with five basic SV subcomponent types along 

with wild type (identical to reference genome) and was able to recognize CSVs 

with several internal subcomponents (above). To select an efficient instance 

segmentation models (red solid circle), we leveraged three factors: validation 

accuracy, parameter size and interpretability. d, Attribution maps of the Lite-

Unet model. Pixels relevant for a certain prediction class are highlighted. DEL, 

deletion; DUP, duplication; INV, inversion; INS, insertion; invDUP, inverted-

duplication; WT, wild type; R, red; G, green; B, blue; w1, w2 and wn, parameter 

weights.
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Extended Data Fig. 4; Methods). Briefly, this framework takes in an 

encoded image and generates a pixel-level segmentation mask, clas-

sifying image areas in the upper and lower tracks into five basic SV com-

ponent classes (Fig. 1b and Extended Data Fig. 4a), and one wild-type 

reference (REF). The other image regions, such as the flanking sequence 

encoding region, were classified as Background. SV types are predicted 

directly by joining components together in both the case and control 

tracks. Moreover, this instance segmentation framework enables a 

three-task comparison of SV component types, breakpoints and allele 

frequencies (AFs) between the case and control genomes (Fig. 1b). 

Specifically, for each SV component in the segmentation mask, the 

horizontal span of the masked pixels represents its breakpoint span, 

while the vertical span represents its AF (Extended Data Fig. 4b). Apart 

from the widely used genotyping tags (1/1, 0/1 and 0/0) derived from 

AF, SVision-pro generated four distinct categories by contrasting each 

SV component presented in the case genome with that of the control 

genome (Extended Data Fig. 4b; Methods). These categories are: (1) 

8Germline,9 indicating the presence of the SV subcomponent in the 

control genome with the same allele frequency as that of the case; (2) 

8New component,9 indicating the absence of the SV subcomponent in 

the control genome; (3) 8New breakpoint,9 indicating the presence of 

the SV subcomponent in the control genome but with a different break-

point span to the case and (4) 8New alleles,9 indicating the presence of 

the SV subcomponent in the control genome but with a different AF 

to the case. In the scenarios for de novo SV discovery, SVision-pro will  

output the differences between the case genome and each control 

genome (Extended Data Fig. 4c). SVision-pro offers flexible image prop-

erties for different sensitivity requirements. Currently, SVision-pro 

enables a minimum detection AF of 0.01. Larger image sizes result 

in lower minimum representable and detectable AFs (Extended Data 

Fig. 4d; Methods).

To identify an appropriate instance segmentation model (Fig. 1c), 

five well-known models of different parameter sizes, including Unet21, 

Fully-Convolutional-Network22, Deeplab)v.3 (ref. 23), Lite-Unet and 

mini-Unet were trained and compared on simulated data (Supplemen-

tary Note 1). The default model, Lite-Unet, achieved a balance between 

accuracy and model size (Extended Data Fig. 5a,b) while also exhibiting 

strong model interpretability (Fig. 1d and Extended Data Fig. 5c,d).

We benchmarked the performance of SVision-pro and other 

approaches using both simulated and publicly available datasets (Sup-

plementary Table 1), covering high-fidelity (HiFi), Oxford nanopore 

(ONT) and continuous long reads (CLR). The computational resource 

usages were assessed on both a personal computer and a cluster node 

(Supplementary Note 2 and Supplementary Table 14).

SVision-pro outperformed other callers on HG002 groundtruth 

SSVs and simulated CSVs (Extended Data Fig. 6a,b and Supplementary 

Table 2; Methods). Moreover, SVision-pro achieved 96398% accuracy 

in CSV subcomponent accuracy (Extended Data Fig. 6c and Supple-

mentary Table 3; Methods), improving, on average, 15% compared 

with SVision4the state-of-the-art CSV caller. Further experimental 

validations (Supplementary Table 4, Supplementary File 1 and Sup-

plementary Note 3) supported that SVision-pro has high sensitivity 

and a low false-positive rate for CSV detection.

We next compared SVision-pro with callset-merge strategies on 

six families, including a ChineseQuartet24 (Methods). SVision-pro 

achieved the highest Mendelian consistency (97.3398.4% on HiFi reads 

and 94.5%-97.6% on ONT reads) and the lowest discordancy (0.7%) 

between monozygotic twins (Fig. 2a and Supplementary Tables 5 and 

6; Methods). When restricted to high-confidence regions (Methods), 

SVision-pro continued to outperform other approaches: the Mendelian 

consistency improved to 98.4399.3% and 96.8398.8% for HiFi and ONT, 

respectively, and the twin discordancy decreased to 0.3% (Supple-

mentary Tables 5 and 6 and Extended Data Fig. 7). On a simulated trio 

harboring de novo/inherited CSVs (Supplementary Note 4), SVision-pro 

achieved 96.6% and 93.3% Mendelian genotype accuracy on HiFi and 

ONT long reads, respectively, while the second-best approach, SVision 

(followed by Jasmine merging), achieved 53.2% and 33.5% (Fig. 2b and 

Supplementary Table 7).

The high genotyping accuracy of SVision-pro led to reliable discov-

eries in Mendelian samples. For instance, a 32,549)bp deletion, encom-

passing the genes LCE3B and LCL3C and associated with increased risk 

of psoriasis25,26, was incorrectly genotyped by Sniffles2 (ref. 15) yet was 

correctly genotyped by SVision-pro in the six families (Extended Data 

Fig. 8 and Supplementary File 2). Another complex locus, which was 

mis-called by all other approaches, comprised two SV alleles: an SSV 

(insertion) and an CSV (insertion3deletion) (Extended Data Fig. 9a3c). 

SVision-pro correctly genotyped these two alleles (Fig. 2c and Extended 

Data Fig. 9d), consistent with visual verification on HiFi reads and 

published assemblies (Supplementary File 3).

In the six families, SVision-pro reported 26 de novo SVs, includ-

ing 13 insertions and 13 deletions (Supplementary Table 8), all of 

which were validated manually (Supplementary File 4). LRS enabled 

the discovery of a larger proportion of de novo insertions compared 

with SRS, and further annotation of the reported de novo SVs revealed 

that 20 of them featured repeat expansions or contractions (Sup-

plementary Table 8). By contrast, Sniffles2 reported 90 whereas Jas-

mine/SURVIVOR reported many more redundant calls: 5,831312,468 

de novo SVs in total (Fig. 2d). We overlapped these 90 de novo calls of  

Sniffles2 with SVision-pro (Fig. 2e and Supplementary Table 9): 

among the 59 nonoverlapping calls, only one true-positive de novo 

SV was confirmed by manual inspection. Of the remaining 31 over-

lapped calls, 19 were identified as germline by both SVision-pro and  

manual curation (Supplementary File 5), indicating that they are  

false positives. Additional experimental validations (Supple-

mentary Note 3, Supplementary Files 6 and 7 and Supplementary  

Table 10) further supported that SVision-pro effectively reduced 

false-positive calls in Mendelian samples and reported high-quality 

de novo SVs.

To assess the somatic detection performance, we simulated a 

subclonal tumor genome, which harbored somatic SSVs and CSVs 

with AFs ranges from 0.01 to 0.10 (Supplementary Note 4). For SSVs, 

the F1-scores of SVision-pro were 0.98 (HiFi) and 0.94 (ONT), leading 

the other two somatic-capable callers, Sniffles2 and nanomonsv16, by 

0.03 to 0.45 (Extended Data Fig. 10a). For CSVs, the F1-scores were 0.95 

and 0.91. As expected, as the AF decreased, the detection accuracy 

exhibited a decreasing trend (Extended Data Fig. 10b). Nevertheless, for 

somatic SSVs and CSVs with AF)=)0.01, SVision-pro still achieved average 

accuracies of 95.3% and 90.4% on HiFi and ONT reads (Supplementary 

Table 11). SVision-pro maintained consistent high-performance with 

various numbers of simulated events and coverages (Supplementary 

Table 12).

We next assessed SVision-pro using normal-tumor paired cell 

lines, HCC1395 and HCC1395BL, across three sequencing technologies, 

including HiFi, ONT and CLR (Methods). SVision-pro detected 87390% 

of the published somatic SSV loci27, while Sniffles2 detected 66381% 

and nanomonsv detected 6329% (Fig. 2f). Through computational 

validation using Vapor28 on the detected somatic calls, SVision-pro 

demonstrated a much lower false-positive rate (4.338.7%; Fig. 2g, Sup-

plementary Table 13 and Supplementary Note 5) compared with Snif-

fles2 (9.8340.3%). Taken together, these results show that SVision-pro 

detects somatic SVs with higher sensitivity and lower false-positive 

rates compared with Sniffles2 and nanomonsv16.

Moreover, SVision-pro resolved eight CSVs that were previously 

reported as SSVs (Supplementary File 8; Methods), including a dis-

persed duplication-deletion-inversion where the deletion component 

was missed and the dispersed duplication component was classified as 

a translocation (Extended Data Fig. 10c,d). SVision-pro also identified a 

nonsomatic complex locus, which was previously reported as a somatic 

SSV (Fig. 2h). SVision-pro revealed that the paired normal genome com-

prised one SSV allele and one CSV allele (deletion-inversion), whereas 
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the tumor genome lost the SSV allele and acquired a homozygous CSV 

(Extended Data Fig. 10e).

In summary, SVision-pro is an accurate and interpretable 

approach for comparative SV detection and genotyping, addressing 

the challenges in de novo and somatic SV discovery from long-read 

data. SVision-pro visually compares genomic features encoded from 

sequencing alignments, and so avoids the error-prone merging process 

intrinsic to a callset-level strategy, hence resulting in high-quality calls. 
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by Vapor validation decrease as the supporting read number increases.  

h, SVision-pro identified a nonsomatic complex locus that had been reported  

as a somatic SSV. SVision-pro revealed that the paired normal genome  

exhibited a heterozygous SSV and CSV, whereas the tumor genome exhibited 

homozygous CSV.
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The instance segmentation framework removes the requirement for 

prebuilding inference models for SV types, thereby providing high 

CSV resolution. We conducted experimental validation for the find-

ings of SVision-pro, in which certain events were deemed inconclu-

sive due to PCR failure, characterized by the absence of notable PCR 

band or the presence of noisy PCR bands. This ambiguity raises the 

possibility that these events could be false positives, necessitating 

an orthogonal technique capable of validating SVs identified by LRS. 

Future work would develop merging- and model-free approaches for 

population-scale SV characterization to further improve discovery of 

the human SV spectrum.
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Methods
SVision-pro methodology
Overall workflow of SVision-pro. SVision-pro initiates by searching 

the case genome for candidate SV loci, after which a sequence-to-image 

module encodes genome-to-genome image to visually compare the 

case and control genomes. Then, the neural-network-based instance 

segmentation framework recognizes basic SV component types from 

the encoded image and determines the genomic differences between 

the case genome and the control genome. Note that, if several control 

genomes (N and N)>)1) are specified, SVision-pro works in a 1-to-N mode 

and generates representation images for the case genome and each 

control genome. Consequently, the instance segmentation frame-

work outputs the SV differences between the case genome and each 

control genome.

Candidate SV locus searching from case genome. SVision-pro 

identifies candidate SV loci by collecting and clustering abnormal read 

alignments in a model-free way that avoids searching for specific aber-

rant patterns of read alignments (Extended Data Fig. 1). Specifically, 

SVision-pro converts each read into a series of signature symbols, which 

can be extracted directly from a BAM file: M indicates directly mapping 

of alignment to the reference genome, V indicates reversed mapping 

and I indicates an additional sequence in read. Moreover, several prop-

erties are allocated to each signature symbol, including its span on the 

reference sequence, span on the read sequence, subsequence length 

and read name. Typically, symbols M and V are converted from split 

read alignments (primary and supplementary alignments) according 

to their reference span (reference start and end position) and mapping 

orientation. The symbol I is derived from both intraread alignments, 

by examining the CIGAR string, and inter-read alignments, by retriev-

ing unmapped sequence between split alignments (Extended Data 

Fig. 1a). Note that for I, if the unmapped sequence is aligned to a distal 

location on the reference sequence, SVision-pro marks it as a mapped 

I by recoding the additional source reference span. Finally, each read 

is converted into a series of symbols arranged in their read order. For 

example, if a read does not span any SVs, there will be only one symbol 

M (Extended Data Fig. 1b). If a read spans a deletion, the read will be 

converted into symbol series MM, where there is a gap between the 

reference end position of the first M and the reference start position 

of the last M (Extended Data Fig. 1c). For complex events, such as a 

deletion associated with an inversion, the event-supporting read is 

converted into symbol series MVM (Extended Data Fig. 1d). By adopt-

ing this convention, we are able to cluster similar read symbol series 

iteratively and identify any abnormal ones (Extended Data Fig. 1e). A 

read with the converted symbol series M is considered a normal read, 

otherwise, it will be marked as an aberrant one. If the number of reads 

supporting the same aberrant symbol series surpasses the minimum 

requirement (default ten reads), the genomic region covered by the 

aberrant symbol series is considered a candidate SV locus.

Image representation at candidate SV loci. To generate representa-

tion images, SVision-pro takes two main steps: structure sketching 

(Extended Data Fig. 2) and content rendering (Extended Data Fig. 3).

 (1) Structure sketching: for a candidate SV locus, the structure 

sketching step directly converts the 1D read symbol series 

into a 2D similarity image (Extended Data Fig. 2a), which uses 

segments and gaps to visually measure the mapping similarity 

between reference sequence (x)axis) against variant feature 

sequence (y)axis). The reference axis ranges from the start refer-

ence position of the frst symbol to the end reference position 

of the last symbol. The read axis ranges from 0 to the length  

of the read. Typically, segments are derived from symbols M,  

V and mapped I, whereas gaps are derived from the  

unmapped symbol I and reference gaps between M and  

V symbols. Segments and gaps, excluding those converted from 

M symbols, are marked with aberrant fags for subsequent con-

tent rendering step (Extended Data Fig. 2b). This type of similar-

ity image makes it easy for humans and machines to visualize SV 

structures.

 (2) Content rendering: SVision-pro flls the sparse region in the sim-

ilarity image with ACTs originated from both case and control 

genomes.

Generating ACTs. Inspired by the regular coverage track commonly 

used in Integrative Genomics Viewer (IGV)29, SVision-pro introduces 

the ACT. In brief, the regular coverage track is a 2D grayscale barplot, 

where the x)axis indicates reference positions and y)axis indicates 

the coverage values, which are computed by counting the number of 

mapped alignments at each reference position (Extended Data Fig. 3a). 

The ACT in SVision-pro utilizes an RGB (red, green and blue) stacked 

barplot to encode additional genomic information that reflects SV 

signatures. Before constructing the ACT (Extended Data Fig. 3a), we 

count the number of alignments along with their mapping conditions. 

The mapping conditions of alignments include forward mapping, 

reversed mapping, duplicated mapping and reverse-duplicated map-

ping. Forward and reversed mapping conditions are retrieved directly 

from the aligner9s outputs and duplicated mapping is determined by 

checking whether an alignment is encompassed by other alignments 

from the same read (Extended Data Fig. 3a).

Next, we convert the count table into a three-channel RGB image. 

We use the RGB color values (135, 206, 255) to plot the coverage value 

of forward-mapped alignments. For the coverage value of reversed 

alignments, we subtract 100 from the color value in the second channel 

(Supplementary Fig. 1a). Likewise, for the coverage value of duplicated 

alignments, we subtract 100 from the color value in the third channel 

(Supplementary Fig. 1b). In cases of reverse-duplicated alignments, 

both the second and third channels undergo a subtraction of 100 

(Supplementary Fig. 1c). In brief, we use the second image channel to 

depict the reverse signatures and the third image channel to depict the 

duplication signatures. By leveraging this RGB stacked barplot in the 

ACT, SVision-pro provides a more comprehensive representation of the 

coverage information, incorporating distinct color variations to depict 

different types of alignments and their contribution to the SV signature.

Filling ACTs into similarity image. Genome-to-genome comparison 

requires comparative representation features to contrast the SV differ-

ences between the case genome and the control genome. Therefore, 

we utilize the sparse regions within the similarity image to fill the two 

ACTs originating from the case and control genomes (Extended Data 

Fig. 3b). To accomplish this, we first create two fixed-height and empty 

tracks along these sketched segments and gaps: one track (upper track) 

above and one track below (lower track). The upper track is used to 

fill the ACT of the control genome whereas the lower track is used to 

fill the ACT of the case genome. For a sketched similarity image i, we 

generate ACTs in both case and control genomes by fetching all read 

alignments from i.reference_start to i.reference_end. This ensures 

that the reference span of the sketched similarity image matches that 

of the ACTs. Next, we fill ACTs into upper/lower tracks that surround 

aberrant segments and gaps by aligning the reference coordinates. 

Contrasting ACTs in upper and lower tracks show apparent SV differ-

ences between the case and control genomes. Moreover, this kind of 

similarity image and ACTs maintains readability for both human and 

machines for further analysis.

Insertion-associated SV representation. Insertions and insertion- 

related SVs involve additional sequence present in the read sequence 

that is not in the reference sequence, leading to vertical gaps in the 

sketched similarity images (Supplementary Fig. 2a). Therefore, for 

insertions, we create two empty tracks located on the left (used to fill 
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the ACT of the control genome) and right (used to fill the ACT of the 

case genome) sides of these insertion-induced vertical gaps (Sup-

plementary Fig. 2b). Unlike deletions, inversion and duplications, 

where we count the alignment mapping conditions against the refer-

ence genome, for insertions, we count the alignments at read-level 

to calculate the number of reads that contain the inserted sequence 

(Supplementary Fig. 2c). Then, we generate vertical ACTs for both 

case genome and control genome and fill them into the right and 

left empty tracks, respectively. For insertion-associated CSVs, such 

as insertion-associated inversion, alignments are counted at both 

read-level and reference-level (Supplementary Fig. 2d).

One-to-N mode. The genome-to-genome representation module in 

SVision-pro allows for the comparison of one case genome with one 

control genome within a single image. However, in certain applications, 

such as de novo SV discovery, several control genomes are involved. To 

accommodate such scenarios, SVision-pro employs a One-to-N mode to 

generate images between case genome and each control genome. For 

example, de novo SV discovery in a trio comprises three genomes: child, 

father and mother. For a candidate SV locus, SVision-pro generates one 

image that compares the child genome with the father genome, and 

another that compares the child genome with the mother genome. This 

process results in two images that can be utilized by the subsequent 

instance segmentation framework for further analysis. By employing 

the One-to-N mode, SVision-pro enables direct comparison of the case 

genome with several control genomes. Moreover, SVision-pro can 

identify any genome-specific SVs among several genomes by taking 

one genome as the case genome and all others as control genomes.

Flexible properties of representation image. The image sizes, colors 

and track heights are flexible and can be customized to meet various 

application scenarios. Currently, SVision-pro offers three optional 

image sizes for different sensitivity requirements, including 256, 512 

and 1,024, whose track height for rendering contents is 25, 50 and 100 

pixels, respectively. Thereby, the minimum representable (1 pixel) and 

detectable AFs (one per track height) of the three image sizes are 0.04, 

0.02 and 0.01, respectively. Note that AF 0.01 is not the lowest detection 

limit of SVision-pro, and that the track heights and images sizes can be 

customized to meet lower AF detection requirements.

SV detection and genotyping by instance segmentation. The encoded 

representation images are directly fed into a neural-network-based 

instance segmentation framework without any manual or 

knowledge-oriented preprocessing. Since CSVs typically comprise 

several internal subcomponents, the instance segmentation framework 

in SVision-pro is designed to recognize five basic subcomponent types, 

including insertion (INS), deletion (DEL), inversion (INV), duplication 

(DUP) and inverted duplication (invDUP). In cases where there is no 

SV present in the control genome, a recognition type reference (REF) 

is included to denote that the control genome is identical to the refer-

ence genome. Specifically, the instance segmentation framework rec-

ognizes these six instance types in the encoded image and generates a 

segmentation mask. The mask assigns each pixel in the image to either 

a predicted specific type or the background type, segmenting the image 

regions and providing quantitative information about the presence 

and location of various SV subcomponents (Extended Data Fig. 4a). 

The horizontal span of the masked regions represents the breakpoint 

span of the subcomponents, while the vertical span represents the 

allele frequency (Extended Data Fig. 4b). Finally, in respective panels, 

we obtain the final SV type of the candidate locus by directly jointing 

together these subcomponents in their read order. By contrasting the 

lower and upper panels in the segmentation mask image, SVision-pro 

can determine whether a SV subcomponent is (Extended Data Fig. 4b) 

Germline, indicating that the SV subcomponent is present in the control 

genome with same allele frequency; (2) New allele, indicating that the 

SV subcomponent is present in the control genome at a different allele 

frequency; (3) New component, indicating that the SV subcomponent is 

absent from the control genome or (4) New breakpoint, indicating that 

the SV subcomponent is present in the control genome with a different 

breakpoint span. If several control genomes are provided, such as the 

father and mother genome in the scenarios for de novo SV discovery, 

SVision-pro will output the differences between the case genome and 

each control genome (Extended Data Fig. 4c).

Performance benchmarking methodology
SSV detection benchmark in HG002 groundtruth. The groundtruth 

SSVs (HG002_SVs_Tier1_v0.6.vcf.gz, highly confident insertions and 

deletions) of HG002 (Ashkenazim Trio, son), were applied to bench-

mark the SSV detection performance of callers. The detailed data 

generation steps were identical to those described in cuteSV3 paper. 

Briefly, both raw HiFi and ONT reads were aligned to human genome 

GRCh37 using Minimap2 (ref. 30) with parameter 8-x pacbio/ont9. Seven 

state-of-the-art callers, including SVision-pro, SVision6, Sniffles2  

(ref. 15), cuteSV3, debreak4, pbsv and SVDSS5, were applied to the 

aligned reads with the minimum SV supporting read number set to 

ten. Truvari31 was employed to calculate precision, recall and F1-score 

between the groundtruth and the callset. Please refer to Supplementary 

Note 6 for the specific versions and parameters of each caller.

CSV detection benchmark in simulated data. The CSV simulation set, 

which contains 3,000 CSVs crossing ten frequently reported types, was 

obtained directly from our previous SVision paper6. We followed the 

same procedure described in this paper to generate both HiFi and ONT 

reads and performed subsequent alignment to GRCh38 by NGMLR2. 

The five highest-performing callers on the HG002 groundtruth dataset 

(SVision-pro, SVision, Sniffles2, cuteSV and debreak) were employed 

for the subsequent Truvari region-based comparison. Type-based 

comparison was performed by examining the CSV subcomponent 

accuracy. To accomplish this (Supplementary Fig. 3a), we first extracted 

the matched SV record pairs between the groundtruth and callset from 

Truvari output files, namely TP-base.vcf and TP-call.vcf, which respec-

tively enumerated the groundtruth record and matched callset record, 

respectively. Then, for each matched record pair, if any SV component 

from the groundtruth record was absent from the called record, this 

record pair was marked as inaccurate (Supplementary Fig. 3b). Note 

that, only SVision-pro and SVision reported SV component types. For 

the remaining callers, since they only reported SSVs and limited number 

of CSV types, we treated their output type directly as a component type.

Mendelian consistency analysis in six families. We collected 19 Men-

delian samples from six previously published families, including the 

Ashkenazim Trio, Chinese Trio, YRI Trio, CHS Trio, PUR Trio and Chinese 

Quartet (Supplementary Table 1). All six families were sequenced using 

HiFi reads, with the Ashkenazim Trio, Chinese Trio and Chinese Quar-

tet also sequenced with ONT reads. All reads were aligned to GRCh38 

genome using Minimap2. We utilized five callers, including SVision-pro, 

SVision, Sniffles2, cuteSV and debreak, and two merging approaches, 

including Jasmine and SURVIVOR. For SVision-pro, we considered 

the child sample as the case genome and parent samples as control 

genomes. Sniffles2 was employed in multisample calling mode, follow-

ing official instructions. For the remaining three callers that required 

merging approaches, we first applied them independently to generate 

callsets for each sample, including child(ren), father and mother. Then, 

we merged these callsets (for example, for ChineseQuartet, there were 

four callsets) together by Jasmine and SURVIVOR with the default or 

recommended parameters (Supplementary Note 2). To measure the 

Mendelian consistency within each family, we extracted the child and 

parent genotypes from each SV record in the VCF. If the genotypes of 

child, father and mother adhered to the Mendelian Law, we marked 

this record as a consistent one. Finally, we computed the Mendelian 
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consistency rate by dividing the number of consistent records by the 

total number of records.

Twin discordancy analysis in Chinese Quartet. A common assump-

tion is that the genomes of monozygotic twins are almost identical32. 

Therefore, the monozygotic twins (termed as child1 and child2) in 

the Chinese Quartet were used to calculate the twin discordancy. In 

brief, if one SV was present in the child1 genome while absent from the 

child2 genome, we would consider this SV as a discordant one between 

the twins. As such, for each SV record, we extracted the outputted 

genotypes of both child1 and child2 and examined whether they were 

identical. Finally, we computed the twin discordancy by dividing the 

number of discordant records by the total number of records.

De novo SV analysis in six families. For SVision-pro, de novo SVs 

were extracted by checking whether the comparison results of 

child-to-father and child-to-mother were both 8New Component.9 

For Sniffles2 and the merging approaches, de novo SV records were 

extracted by checking whether the SUPP_VEC equaled 100, indicating 

this SV record presented only in the child genome. Moreover, we com-

pared the de novo SVs between SVision-pro and Sniffles2. De novo SV 

calls from Sniffles2 were overlapped with all SV calls from SVision-pro 

using the BEDtools33 intersect option with reciprocal overlap fraction 

set to 0.5. Since merging approaches resulted in many more redun-

dant de novo SVs, we verified manually only the de novo SVs called by 

SVision-pro and Sniffles2 using IGV29 (Supplementary Files 4 and 5).

Somatic SV analysis in tumor-normal paired cell line HCC1395. 

A previous study27 utilized several sequence technologies and estab-

lished a consensus somatic SV callset of 1,788 SVs on cell line HCC1395 

and its normal pair HCC1395BL. We download the published HiFi, 

ONT and PacBio CLR long reads of the two cell lines and aligned them 

to human genome GRCh38 by Minimap2 with parameter 8-x pacbio.9 

Three callers that could detect somatic SVs were employed on this 

tumor-normal paired cell line, including SVision-pro, Sniffles2 and 

nanomonsv. SVision-pro took the tumor cell line as the case genome 

and normal cell line as the control genome. Sniffles2 was employed in its 

nongermline mode and nanomonsv was employed according to official 

instructions. For the three callers, the minimum number of support-

ing reads was set to 2 and the minimum detectable AF was set to 0.01.

High-confidence region filter. The raw high-confidence regions 

(HG002_SVs_Tier1_v0.6.bed) were hg19-based. Therefore, following 

the instruction of SVDSS paper5, we first used liftOver to convert these 

regions into hg38-based coordinates. Then we applied BEDtools inter-

sect option with reciprocal overlap fraction set to 0.5 to filter out SV 

calls that were not located within high-confidence regions.

Reporting summary
Further information on research design is available in the Nature 

Portfolio Reporting Summary linked to this article.

Data availability
The sources of HiFi, ONT and CLR reads of the six family datasets 

and HCC1395 normal-tumor paired cell are listed in Supplementary 

Table 1. The human reference genome GRCh37 was downloaded from 

http://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/

phase2_reference_assembly_sequence/hs37d5.fa.gz. The human refer-

ence genome GRCh38 was downloaded from http://ftp.1000genomes.

ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/.

Code availability
SVision-pro (v.1.6) is available at GitHub (https://github.com/song-

bowang125/SVision-pro.git)34. The scripts for model training, perfor-

mance valuation and simulate data generation are available at GitHub  

(https://github.com/songbowang125/SVision-pro-Utils.git)35. Both 

repositories are available under a GNU General Public License v.3.0, 

and are free for noncommercial use by academic, government and 

nonprofit/not-for-profit institutions.
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Extended Data Fig. 1 | Illustration of the candidate SV locus searching step in 

SVision-pro. a, SVision-pro converts each read into a series of symbols, including 

8M9, 8V9 and 8I9, based on the aligner9s output. Staring with inter-alignment 

examination, primary alignment and supplementary alignments of the read 

are directly converted into 8M9 and 8V9 according to their mapping orientation. 

Unmapped sequence between split alignments are converted into 8I9. For each 

alignments, SVision-pro further examine their CIGAR string (intra-alignment) 

to retrieve more 8I9s. Consequently, a read is converted into a series of symbols 

arranged in their occurrence on read sequence. Each symbol contains several 

inner properties, including start position on reference sequence, start position 

on read sequence and its length. Each symbol can be abbreviated as 8reference_

start-reference_end, length and symbol type9 for subsequent clustering step.  

b, An example of converting a normal read into a symbol series. c, An example of 

converting an abnormal read, which spans a deletion, into a symbol series. d, An 

example of converting an abnormal read, which spans a CSV deletion-inversion, 

into a symbol series. e, For a genome locus, normal reads, which contain only 

one 8M9 in their symbol series, are filtered out. The remaining abnormal reads 

are iteratively clustered together by comparing their symbol series to identify 

candidate SV loci.
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Extended Data Fig. 2 | Illustration of the structure sketching step in SVision-

pro. a, SVision-pro directly transforms the 1-dimensional symbol series into a 

2-dimensional similarly image, which utilizes segments and gaps to sketch the 

structure of the SV. Segments, derived from symbol 8M9 and 8V9, are represented 

in solid lines while gaps, derived from symbol 8I9, are represented in dash lines. 

Gaps along with segments converted from symbol 8V9 are mark with an aberrant 

flag (red arrows) for subsequence process. b, Several examples for transforming 

symbol series that span SSVs or CSVs, into similarity images.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Illustration of the content rendering step in SVision-

pro. a, Comparison of regular coverage track and the augmented coverage track 

(ACT) in SVision-pro. The ACTs are generated by 3-channel RGB augmentation. 

SVision-pro counts read alignments according to their mapping conditions 

and generates a RGB stacked bar-plot, where different mapping conditions are 

represented in their respective RGB colors. b, Overview of the content rendering 

step. For both control and case genomes, the ACTs are generated, normalized, 

and further filled into the upper/lower tracks around aberrant segments and 

gaps in the similarity. Abbreviations: 8Dup.9 denotes duplicated mapping; 8Rev.9 

denotes reversed mapping; 8For.9 denotes forward mapping.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Illustration of the image instance segmentation 

framework in SVision-pro. a, At the pixel level, the segmentation process 

predicts each image pixel as either belonging to the background or a specific 

variant type in the segmentation mask image b, The segmentation mask provides 

obvious comparison in SV subcomponent type, breakpoint, and allele frequency 

(AF) by contrasting the lower and upper track. Mask color comparison indicates 

the differences in SV subcomponent type. Horizontal comparison indicates the 

differences in SV subcomponent breakpoint span. Vertical comparison indicated 

the differences in SV subcomponent AF. Consequently, SVision-pro outputs four 

distinct comparison types to depict the SV difference between the case genome 

and the control genome, including germline, new components, new breakpoints 

and new alleles. c, In the scenarios where multiple control genomes are provided 

(such as the parent genomes in de no SV discovery), the instance segmentation 

framework predicts each image and outputs the SV difference between 

case genome and each control genome. Abbreviation: 8NewComp9 for new 

component; 8NewBKP9 for new breakpoint; 8NewAllele9 for new allele frequency. 

d, SVision-pro currently provides three different image sizes. Larger image 

sizes lead to larger track heights, and thereby lower minimum representable 

allele frequencies (AFs). Moreover, the properties of the representation image, 

such as image size, track height and colors, can be customized for user-specific 

applications.
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Extended Data Fig. 5 | Comparison and interpretation of the neural-network-

based instance segmentation frameworks. a, Comparison of the accuracy 

(y-axis) on validation dataset among the five models (x-axis). The models 

are arranged based on their parameter sizes. b, the network architecture of 

the default Lite-Unet model. c, A heatmap to illustrate the Feature Ablation 

interpretation of the Lite-Unet model. Positives values (in green) indicates 

positive attrition to the specific prediction while negative values are shown in 

red. d, Using Grad-Cam to generate attribution maps of each layer in Lite-Unet.
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Extended Data Fig. 6 | Performance evaluation of SSV and CSV calling among 

callers. a, SSV detection performance on HG002 groundtruth HiFi and ONT 

dataset. Recall, precision and F1-score were compared among callers. b, CSV 

detection performance on simulated 3,000 CSV HiFi and ONT dataset. Five of the 

highest-performing callers at SSV detection were chosen for a CSV performance 

comparison. Since only SVision-pro and SVision were equipped with CSV 

characterization ability, we utilized the region matching strategy to avoid the 

comparison of CSV types. c, CSV structure concordance evaluation among 

callers. Each box contains four values (Supplementary Table 3). The boxplot 

defines the median (Q2, 50th percentile), first quartile (Q1, 25th percentile) and 

third quartile (Q3, 75th percentile). The bounds of box, that is interquartile range 

(IQR), of the boxplot is between Q1 and Q3. The minima and maxima values are 

defined as Q1-1.5*IQR and Q3)+)1.5*IQR, respectively. The whiskers are values 

between minima and Q1 as well as between Q3 and maxima. Values falling outside 

the Q1 3 Q3 range are plotted as outliers of the data.
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Extended Data Fig. 7 | Performance evaluation of Mendelian sample calling 

within high-confidence regions. a, In high-confidence regions, comparison of 

the Mendelian consistency in six family datasets (left) and the twin discordancy 

in the ChineseQuartet (right). SVision-pro is compared to Sniffles2 (multi-sample 

mode) and SVision, cuteSV and debreak (followed by SURVIVOR and Jasmine 

merging). Each box contains six and three values for HiFi and ONT, respectively 

(Supplementary Table 5). The boxplot defines the median (Q2, 50th percentile), 

first quartile (Q1, 25th percentile) and third quartile (Q3, 75th percentile). The 

bounds of box, that is interquartile range (IQR), of the boxplot is between Q1 and 

Q3. The minima and maxima values are defined as Q1-1.5*IQR and Q3)+)1.5*IQR, 

respectively. The whiskers are values between minima and Q1 as well as between 

Q3 and maxima. Values falling outside the Q1 3 Q3 range are plotted as outliers 

of the data. b, Venn diagrams show the overlapping results of high-confidence 

calls among approaches. We overlapped these high-confidence calls from each 

approach in AshkenazimTrio. there were only several unique calls (n)=)12 and 4 

when overlapping with SURVIVOR and Jasmine, respectively) from SVision-pro 

(9,348 in total), indicating that the leading consistency in Mendelian samples was 

attribute to the higher genotyping accuracy of SVision-pro compared to merging 

approaches.
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Extended Data Fig. 8 | IGV screenshot of the 32,549)bp deletion in 

chromosome 1. The Ashkenazim Trio (HG002, HG003 and HG004) from GIAB 

was used to illustrate the various genotypes of this deletion. Sniffles calculated 

incorrect genotypes in this trio, leading to mendelian inconsistency. SVision-pro 

correctly genotyped this locus in the trio dataset, revealing that both the child 

genome (HG002) and the father genome (HG003) exhibited a heterozygous 

deletion, while the mother genome (HG004) contained no SV in this locus.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Illustration of the complex locus in chromosome 11. 

a, IGV screenshot on this complex locus in the ChineseQuartet. This complex 

locus comprised of two alleles, including one SSV deletion and one CSV deletion-

insertion. Read that supported the SSV allele was marked in red while read that 

supported the CSV allele was marked in blue. b, The summarized pattern at this 

complex locus. c, Gepard Dotplots36 were used to show the differences between 

the SSV allele and CSV allele. d, SVision-pro correctly genotyped the two alleles, 

outputting the correct genotype of each allele. Sniffles2 and callset-merging 

strategies missed the CSV allele and incorrectly genotyped the SSV allele as 

homozygous in the child and father genome.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Somatic detection evaluation and discovery. a, The 

Precision, Recall, and F1-score of SVision-pro, Sniffles2, and nanomonsv on the 

simulated somatic SSVs and CSVs. b, The recall values of various low-frequency 

SSVs and CSVs in the simulation. c, A somatic CSV locus in chromosome 2 of 

HCC1395 cell line. SVision-pro reported this locus as somatic CSV, dispersed 

duplication-deletion-inversion, while in the previous published somatic SV set, 

the deletion component was missed and the dispersed duplication component 

was classified into translocation. d, IGV screenshot supported the CSV outputted 

by SVision-pro. e, IGV screenshot supported the homozygous CSV in the tumor 

genome and heterozygous SSV and CSV in the paired normal genome. The SSV 

large deletion breakpoint present in the paired normal genome while absent 

from the tumor genome.
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