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Long-read-based de novo and somatic structural variant (SV) discovery

remains challenging, necessitating genomic comparison between samples.
We developed SVision-pro, a neural-network-based instance segmentation
framework that represents genome-to-genome-level sequencing differences
visually and discovers SV comparatively between genomes without any
prerequisite for inference models. SVision-pro outperforms state-of-the-art
approaches, in particular, the resolving of complex SVs isimproved, with
low Mendelian error rates, high sensitivity of low-frequency SVs and reduced
false-positive rates compared with SV merging approaches.

Long-read sequencing (LRS) technologies have greatly facilitated the
detection of SVs', including simple SVs (SSV)*~ and complex SVs (CSVs)®,
which typically comprise several internal SSV subcomponents. Given that
de novo and somatic SVs”® are responsible for Mendelian disorders®°
and development of cancers'"?, comparative SV discovery between
genomes (for example, comparing a proband genome against parent
genomes toidentify denovo SVs) hasgenerally been attempted by either
callset-merge or read-inference strategies. Callset-merge strategies
(forexample, Jasmine) extract genome-specific calls from merged call-
sets and hence inevitably incorporate the miscalls from callers, lead-
ing to many false positives. In contrast, read-inference strategies'® (for
example, nanomonsv) directly search differential alignments between
genomes and construct SV inference models. However, this is typically
limited to SSVs, and CSV modeling cannot be accommodated due to
the unexplored CSV types and nested internal components”. Although
sequencing-to-image and deep-learning-based callers have improved
CSV characterization®', two principalissues hinder their applicationto
comparative SV discovery. First, existing sequencing-to-image schemas
canrepresent SVsonly of anindividual genome, whereas comparative SV
discovery requires additional image features that can represent SV dif-
ferences between genomes. Second, comparative SV discovery demands
several recognition tasks to detect and genotype SV between genomes

simultaneously, while current single-task deep-learning callers classify
one entire image into either a specific SV type®' or genotype®.

Here we propose SVision-pro, comprising two key modules: a
sequence-to-image representation module encoding genomic fea-
tures fromtwo samplesin asingle image, from which aneural-network
recognition module comparatively recognizes SVs as well as their
intergenome differences. SVision-pro integrates SV detection and
genotyping between genomes as a one-stop neural-network-based
image instance segmentation task, facilitating the discovery of both
denovo and somatic SSVs and CSVs.

The sequence-to-image representation module first takes as
input aberrant genome loci identified from LRS data. In contrast to
traditional LRS-based callers, which search for SV-specific alignment
signatures, SVision-pro summarizes each read into a series of sym-
bols (Extended Data Fig. 1a-d and Methods). These one-dimensional
(1D)-symbol series are obtained directly from read alignment results
without any SV-type-oriented preprocessing, and then clustered
together iteratively as candidate aberrantloci (Extended Data Fig. 1e).
This process, without matching known SV types, ensures the com-
prehensive capture of SV loci, especially for unexplored CSVs. The
SV-type-classification task is delegated to subsequent representation
and recognition modules.
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Fig.1|SVision-pro overview. a, Overview of the sequence-to-image
representation module in SVision-pro. SVision-pro sketches the structures of
acandidate SVlocus and renders ACTs (above) into the sparse image regions.
The ACT is generated from mapped alignments by the three-channel RGB
augmentation (below). Dup., duplicated-matching; Rev., reversed-matching;
For., forward-matching. b, Overview of the comparative recognition module
in SVision-pro. The neural-network-based instance segmentation framework
outputs asegmentation mask, providing intuitive SV types (above). By
comparative genotyping analysis of the colored regions in the upper and lower
panels (below), we can determine the SV differences between case and control

Attribution map

-1.00

genomes. ¢, Neural-network model training and selection strategy of SVision-
pro. SVision-pro was trained with five basic SV subcomponent types along
withwild type (identical to reference genome) and was able to recognize CSVs
with severalinternal subcomponents (above). To select an efficient instance
segmentation models (red solid circle), we leveraged three factors: validation
accuracy, parameter size and interpretability. d, Attribution maps of the Lite-
Unet model. Pixels relevant for a certain prediction class are highlighted. DEL,
deletion; DUP, duplication; INV, inversion; INS, insertion; invDUP, inverted-
duplication; WT, wild type; R, red; G, green; B, blue; w,, w, and w,,, parameter
weights.

The sequence-to-image representation module then compares
two genomes (termed as case and control genome) in two steps (Fig. 1a):
structure sketching and content rendering. For an aberrantlocusinthe
case genome (for example, from child or tumor tissue), the structure
sketching step directly transforms the 1D read symbol series into a
two-dimensional (2D) similarity image (Extended Data Fig. 2a), which
uses segments and gaps to measure the structural similarity of the
reference sequence and the variant feature sequence from the case
genome in an image (Extended Data Fig. 2b). The content rendering
step (Methods) fills the sparse image regions with augmented coverage
tracks (ACTs), which represent genomic differences between the case
and control genome. First, we color the raw coverage track according
to the forward-, inverted- and duplicated-matching conditions of

alignmentsin threeimage channels (Fig.1a and Extended Data Fig. 3a).
Then, we use afixed-height track above these structures (upper track)
toencode the normalized ACT from the control genome (for example,
from parent samples or normal tissue) while the track below (lower
track) encodes ACT from the case genome (Extended DataFig. 3b). This
representation strategy facilitates genome-to-genome comparison,
simultaneously encoding both SV structures (viasegments and gaps)
and their intergenome differences (via contrasting ACTs in lower and
upper tracks), thereby requiring a multitask neural-network framework
thatcan performthe detection and genotyping tasks simultaneously.

We integrated those many tasks into a one-stop neural-
network-based image instance segmentation framework instead of
utilizing several deep-learning classification modules (Fig. 1b and

Nature Biotechnology


http://www.nature.com/naturebiotechnology

Brief Communication

https://doi.org/10.1038/s41587-024-02190-7

Extended Data Fig. 4; Methods). Briefly, this framework takes in an
encoded image and generates a pixel-level segmentation mask, clas-
sifyingimage areasin the upper and lower tracks into five basic SV com-
ponent classes (Fig. 1b and Extended Data Fig. 4a), and one wild-type
reference (REF). The otherimage regions, such as the flanking sequence
encodingregion, were classified as Background. SV types are predicted
directly by joining components together in both the case and control
tracks. Moreover, this instance segmentation framework enables a
three-task comparison of SV component types, breakpoints and allele
frequencies (AFs) between the case and control genomes (Fig. 1b).
Specifically, for each SV component in the segmentation mask, the
horizontal span of the masked pixels represents its breakpoint span,
whilethe vertical spanrepresentsits AF (Extended Data Fig. 4b). Apart
from the widely used genotyping tags (1/1, 0/1and 0/0) derived from
AF, SVision-pro generated four distinct categories by contrasting each
SV component presented in the case genome with that of the control
genome (Extended Data Fig. 4b; Methods). These categories are: (1)
‘Germline, indicating the presence of the SV subcomponent in the
control genome with the same allele frequency as that of the case; (2)
‘New component, indicating the absence of the SV subcomponentin
the control genome; (3) ‘New breakpoint, indicating the presence of
the SVsubcomponentinthe control genome but with a different break-
pointspanto the case and (4) ‘New alleles, indicating the presence of
the SV subcomponent in the control genome but with a different AF
to the case. In the scenarios for de novo SV discovery, SVision-pro will
output the differences between the case genome and each control
genome (Extended Data Fig. 4c). SVision-pro offers flexible image prop-
erties for different sensitivity requirements. Currently, SVision-pro
enables a minimum detection AF of 0.01. Larger image sizes result
in lower minimum representable and detectable AFs (Extended Data
Fig. 4d; Methods).

Toidentify an appropriate instance segmentation model (Fig. 1c),
five well-known models of different parameter sizes, including Unet?,
Fully-Convolutional-Network??, Deeplab v.3 (ref. 23), Lite-Unet and
mini-Unet were trained and compared on simulated data (Supplemen-
tary Note1). The default model, Lite-Unet, achieved abalance between
accuracy and modelsize (Extended Data Fig. 5a,b) while also exhibiting
strong model interpretability (Fig. 1d and Extended Data Fig. 5c,d).

We benchmarked the performance of SVision-pro and other
approaches using both simulated and publicly available datasets (Sup-
plementary Table 1), covering high-fidelity (HiFi), Oxford nanopore
(ONT) and continuous long reads (CLR). The computational resource
usages were assessed onboth a personal computer and a cluster node
(Supplementary Note 2 and Supplementary Table 14).

SVision-pro outperformed other callers on HGO02 groundtruth
SSVs and simulated CSVs (Extended Data Fig. 6a,b and Supplementary
Table 2; Methods). Moreover, SVision-pro achieved 96-98% accuracy
in CSV subcomponent accuracy (Extended Data Fig. 6¢ and Supple-
mentary Table 3; Methods), improving, on average, 15% compared
with SVision—the state-of-the-art CSV caller. Further experimental
validations (Supplementary Table 4, Supplementary File 1 and Sup-
plementary Note 3) supported that SVision-pro has high sensitivity
and alow false-positive rate for CSV detection.

We next compared SVision-pro with callset-merge strategies on
six families, including a ChineseQuartet** (Methods). SVision-pro
achieved the highest Mendelian consistency (97.3-98.4% on HiFireads
and 94.5%-97.6% on ONT reads) and the lowest discordancy (0.7%)
between monozygotic twins (Fig.2a and Supplementary Tables 5 and
6; Methods). When restricted to high-confidence regions (Methods),
SVision-pro continued to outperformother approaches: the Mendelian
consistency improved to 98.4-99.3% and 96.8-98.8% for HiFiand ONT,
respectively, and the twin discordancy decreased to 0.3% (Supple-
mentary Tables 5 and 6 and Extended Data Fig. 7). On a simulated trio
harboring de novo/inherited CSVs (Supplementary Note 4), SVision-pro
achieved 96.6% and 93.3% Mendelian genotype accuracy on HiFiand

ONT longreads, respectively, while the second-best approach, SVision
(followed by Jasmine merging), achieved 53.2% and 33.5% (Fig. 2b and
Supplementary Table 7).

Thehigh genotyping accuracy of SVision-proled toreliable discov-
eriesinMendelian samples. Forinstance, a 32,549 bp deletion, encom-
passing the genes LCE3B and LCL3Cand associated withincreased risk
of psoriasis®?*®, was incorrectly genotyped by Sniffles2 (ref.15) yet was
correctly genotyped by SVision-proin the six families (Extended Data
Fig. 8 and Supplementary File 2). Another complex locus, which was
mis-called by all other approaches, comprised two SV alleles: an SSV
(insertion) and an CSV (insertion—deletion) (Extended Data Fig. 9a-c).
SVision-pro correctly genotyped these two alleles (Fig. 2c and Extended
Data Fig. 9d), consistent with visual verification on HiFi reads and
published assemblies (Supplementary File 3).

In the six families, SVision-pro reported 26 de novo SVs, includ-
ing 13 insertions and 13 deletions (Supplementary Table 8), all of
whichwere validated manually (Supplementary File 4). LRS enabled
the discovery ofalarger proportion of de novoinsertions compared
with SRS, and further annotation of the reported de novo SVs revealed
that 20 of them featured repeat expansions or contractions (Sup-
plementary Table 8). By contrast, Sniffles2 reported 90 whereas Jas-
mine/SURVIVOR reported many more redundant calls: 5,831-12,468
denovo SVsintotal (Fig.2d). We overlapped these 90 de novo calls of
Sniffles2 with SVision-pro (Fig. 2e and Supplementary Table 9):
among the 59 nonoverlapping calls, only one true-positive de novo
SV was confirmed by manual inspection. Of the remaining 31 over-
lapped calls, 19 were identified as germline by both SVision-pro and
manual curation (Supplementary File 5), indicating that they are
false positives. Additional experimental validations (Supple-
mentary Note 3, Supplementary Files 6 and 7 and Supplementary
Table 10) further supported that SVision-pro effectively reduced
false-positive calls in Mendelian samples and reported high-quality
denovo SVs.

To assess the somatic detection performance, we simulated a
subclonal tumor genome, which harbored somatic SSVs and CSVs
with AFs ranges from 0.01to 0.10 (Supplementary Note 4). For SSVs,
the F1-scores of SVision-pro were 0.98 (HiFi) and 0.94 (ONT), leading
the other two somatic-capable callers, Sniffles2 and nanomonsv'®, by
0.03t00.45 (Extended DataFig.10a). For CSVs, the F1-scores were 0.95
and 0.91. As expected, as the AF decreased, the detection accuracy
exhibited adecreasing trend (Extended DataFig.10b). Nevertheless, for
somatic SSVsand CSVs with AF = 0.01, SVision-pro stillachieved average
accuracies 0of 95.3% and 90.4% on HiFi and ONT reads (Supplementary
Table 11). SVision-pro maintained consistent high-performance with
various numbers of simulated events and coverages (Supplementary
Table12).

We next assessed SVision-pro using normal-tumor paired cell
lines, HCC1395and HCC1395BL, across three sequencing technologies,
including HiFi, ONT and CLR (Methods). SVision-pro detected 87-90%
of the published somatic SSV loci”’, while Sniffles2 detected 66-81%
and nanomonsyv detected 6-29% (Fig. 2f). Through computational
validation using Vapor® on the detected somatic calls, SVision-pro
demonstrated amuch lower false-positive rate (4.3-8.7%; Fig. 2g, Sup-
plementary Table 13 and Supplementary Note 5) compared with Snif-
fles2(9.8-40.3%). Taken together, these results show that SVision-pro
detects somatic SVs with higher sensitivity and lower false-positive
rates compared with Sniffles2 and nanomonsv*.

Moreover, SVision-pro resolved eight CSVs that were previously
reported as SSVs (Supplementary File 8; Methods), including a dis-
persed duplication-deletion-inversion where the deletion component
was missed and the dispersed duplication component was classified as
atranslocation (Extended DataFig.10c,d). SVision-proalsoidentified a
nonsomatic complexlocus, which was previously reported as asomatic
SSV (Fig.2h).SVision-prorevealed that the paired normal genome com-
prised one SSV allele and one CSV allele (deletion-inversion), whereas
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Fig.2|Performance comparison. a, Comparison of the Mendelian consistency
insix family datasets (above) and the twin discordancy in the ChineseQuartet
(below). SVision-pro is compared with Sniffles2 (multisample mode) and SVision,
cuteSV and debreak (followed by SURVIVOR and Jasmine merging). Each box
contains six and three values for HiFi and ONT, respectively (Supplementary
Table 5). The boxplot defines the median (Q2, 50th percentile), first quartile
(Q1, 25th percentile) and third quartile (Q3, 75th percentile). The bounds of the
boxplot, representing interquartile range (IQR), are between Qland Q3. The
minimum and maximum values are defined as Q1 - 1.5x IQR and Q3 + 1.5x IQR,
respectively. The whiskers are values between minima and Q1 and between

Q3 and maxima. Values falling outside the Q1-Q3 range are plotted as outliers
ofthe data. b, Comparison of the CSV Mendelian genotype consistency on

the simulated trio data. SVision-pro was compared with state-of-the-art CSV

caller SVision (followed by SURVIVOR and Jasmine merge). ¢, In the six families,
SVision-pro correctly genotyped a complex locus comprising bothan SSVand a
CSV.Three distinct alleles are found by SVision-pro, including homologous SSV,
homologous CSV and mixed heterozygous SSV and CSV.d, Comparison of the
number of de novo calls in the six family datasets. e, Overlapping of 90 de novo
calls produced by Sniffles2 with all calls produced by SVision-pro. f, Recall values
on the previously published somatic SV callset of HCC1395 tumor-normal paired
celllines. g, The number of somatic SVs and the false-positive rates produced

by Vapor validation decrease as the supporting read number increases.

h, SVision-pro identified a nonsomatic complex locus that had been reported

as asomatic SSV. SVision-pro revealed that the paired normal genome

exhibited a heterozygous SSV and CSV, whereas the tumor genome exhibited
homozygous CSV.

the tumor genome lost the SSV allele and acquired ahomozygous CSV
(Extended DataFig.10e).

In summary, SVision-pro is an accurate and interpretable
approach for comparative SV detection and genotyping, addressing

the challenges in de novo and somatic SV discovery from long-read
data. SVision-pro visually compares genomic features encoded from
sequencing alignments, and so avoids the error-prone merging process
intrinsic toa callset-level strategy, hence resulting in high-quality calls.
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The instance segmentation framework removes the requirement for
prebuilding inference models for SV types, thereby providing high
CSV resolution. We conducted experimental validation for the find-
ings of SVision-pro, in which certain events were deemed inconclu-
sive due to PCR failure, characterized by the absence of notable PCR
band or the presence of noisy PCR bands. This ambiguity raises the
possibility that these events could be false positives, necessitating
an orthogonal technique capable of validating SVs identified by LRS.
Future work would develop merging- and model-free approaches for
population-scale SV characterization to furtherimprove discovery of
the human SV spectrum.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41587-024-02190-7.
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use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.
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Methods

SVision-pro methodology

Overall workflow of SVision-pro. SVision-proinitiates by searching
the case genome for candidate SV loci, after which asequence-to-image
module encodes genome-to-genome image to visually compare the
case and control genomes. Then, the neural-network-based instance
segmentation framework recognizes basic SV component types from
theencodedimage and determines the genomic differences between
the case genome and the control genome. Note that, if several control
genomes (Nand N >1) are specified, SVision-pro worksinal-to-Nmode
and generates representation images for the case genome and each
control genome. Consequently, the instance segmentation frame-
work outputs the SV differences between the case genome and each
control genome.

Candidate SV locus searching from case genome. SVision-pro
identifies candidate SV lociby collecting and clustering abnormal read
alignmentsinamodel-free way that avoids searching for specific aber-
rant patterns of read alignments (Extended Data Fig. 1). Specifically,
SVision-pro converts eachreadintoaseries of signature symbols, which
canbeextracted directly from aBAM file: M indicates directly mapping
of alignment to the reference genome, V indicates reversed mapping
andlindicates an additional sequenceinread. Moreover, several prop-
ertiesare allocated to each signature symbol, includingitsspanonthe
reference sequence, span on the read sequence, subsequence length
and read name. Typically, symbols M and V are converted from split
read alignments (primary and supplementary alignments) according
totheirreference span (reference start and end position) and mapping
orientation. The symbol lis derived from both intraread alignments,
by examining the CIGAR string, and inter-read alignments, by retriev-
ing unmapped sequence between split alignments (Extended Data
Fig.1a). Note that forl, ifthe unmapped sequenceis aligned to adistal
location onthe reference sequence, SVision-pro marksit asamapped
I by recoding the additional source reference span. Finally, each read
is converted into a series of symbols arranged in their read order. For
example, if aread does not span any SVs, there will be only one symbol
M (Extended Data Fig. 1b). If a read spans a deletion, the read will be
converted into symbol series MM, where there is a gap between the
reference end position of the first M and the reference start position
of the last M (Extended Data Fig. 1c). For complex events, such as a
deletion associated with an inversion, the event-supporting read is
converted into symbol series MVM (Extended Data Fig. 1d). By adopt-
ing this convention, we are able to cluster similar read symbol series
iteratively and identify any abnormal ones (Extended Data Fig. 1e). A
read with the converted symbol series M is considered anormal read,
otherwise, it willbe marked as an aberrant one. If the number of reads
supporting the same aberrant symbol series surpasses the minimum
requirement (default ten reads), the genomic region covered by the
aberrant symbol series is considered a candidate SV locus.

Image representation at candidate SV loci. To generate representa-
tion images, SVision-pro takes two main steps: structure sketching
(Extended DataFig. 2) and content rendering (Extended Data Fig. 3).

(1) Structure sketching: for a candidate SV locus, the structure
sketching step directly converts the 1D read symbol series
into a 2D similarity image (Extended Data Fig. 2a), which uses
segments and gaps to visually measure the mapping similarity
between reference sequence (x axis) against variant feature
sequence (y axis). The reference axis ranges from the start refer-
ence position of the first symbol to the end reference position
of the last symbol. The read axis ranges from O to the length
of the read. Typically, segments are derived from symbols M,
Vand mapped I, whereas gaps are derived from the
unmapped symbol I and reference gaps between M and

V symbols. Segments and gaps, excluding those converted from
M symbols, are marked with aberrant flags for subsequent con-
tent rendering step (Extended Data Fig. 2b). This type of similar-
ity image makes it easy for humans and machines to visualize SV
structures.

(2) Content rendering: SVision-pro fills the sparse region in the sim-
ilarity image with ACTs originated from both case and control
genomes.

Generating ACTs. Inspired by the regular coverage track commonly
used in Integrative Genomics Viewer (IGV)*, SVision-pro introduces
the ACT. In brief, the regular coverage track is a 2D grayscale barplot,
where the x axis indicates reference positions and y axis indicates
the coverage values, which are computed by counting the number of
mapped alignments at each reference position (Extended DataFig. 3a).
The ACT in SVision-pro utilizes an RGB (red, green and blue) stacked
barplot to encode additional genomic information that reflects SV
signatures. Before constructing the ACT (Extended Data Fig. 3a), we
countthe number of alignments along with their mapping conditions.
The mapping conditions of alignments include forward mapping,
reversed mapping, duplicated mapping and reverse-duplicated map-
ping.Forward and reversed mapping conditions are retrieved directly
from the aligner’s outputs and duplicated mapping is determined by
checking whether an alignment is encompassed by other alignments
from the same read (Extended Data Fig. 3a).

Next, we convert the count table into athree-channel RGB image.
We use the RGB color values (135,206, 255) to plot the coverage value
of forward-mapped alignments. For the coverage value of reversed
alignments, we subtract 100 from the color value in the second channel
(Supplementary Fig.1a). Likewise, for the coverage value of duplicated
alignments, we subtract 100 from the color value in the third channel
(Supplementary Fig. 1b). In cases of reverse-duplicated alignments,
both the second and third channels undergo a subtraction of 100
(Supplementary Fig. 1c). In brief, we use the second image channel to
depictthereverse signatures and the thirdimage channel to depict the
duplication signatures. By leveraging this RGB stacked barplot in the
ACT, SVision-pro provides amore comprehensive representation of the
coverage information, incorporating distinct color variations to depict
different types of alignments and their contribution to the SV signature.

Filling ACTs into similarity image. Genome-to-genome comparison
requires comparative representation features to contrast the SV differ-
ences between the case genome and the control genome. Therefore,
we utilize the sparse regions within the similarity image to fill the two
ACTs originating from the case and control genomes (Extended Data
Fig.3b). Toaccomplishthis, we first create two fixed-height and empty
tracks along these sketched segments and gaps: one track (upper track)
above and one track below (lower track). The upper track is used to
fill the ACT of the control genome whereas the lower track is used to
fill the ACT of the case genome. For a sketched similarity image i, we
generate ACTs in both case and control genomes by fetching all read
alignments from i.reference_start to i.reference_end. This ensures
that the reference span of the sketched similarity image matches that
of the ACTs. Next, we fill ACTs into upper/lower tracks that surround
aberrant segments and gaps by aligning the reference coordinates.
Contrasting ACTs in upper and lower tracks show apparent SV differ-
ences between the case and control genomes. Moreover, this kind of
similarity image and ACTs maintains readability for both human and
machines for further analysis.

Insertion-associated SV representation. Insertions and insertion-
related SVsinvolve additional sequence present in the read sequence
that is not in the reference sequence, leading to vertical gaps in the
sketched similarity images (Supplementary Fig. 2a). Therefore, for
insertions, we create two empty tracks located on the left (used to fill
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the ACT of the control genome) and right (used to fill the ACT of the
case genome) sides of these insertion-induced vertical gaps (Sup-
plementary Fig. 2b). Unlike deletions, inversion and duplications,
where we count the alighment mapping conditions against the refer-
ence genome, for insertions, we count the alignments at read-level
to calculate the number of reads that contain the inserted sequence
(Supplementary Fig. 2c). Then, we generate vertical ACTs for both
case genome and control genome and fill them into the right and
left empty tracks, respectively. For insertion-associated CSVs, such
as insertion-associated inversion, alignments are counted at both
read-level and reference-level (Supplementary Fig. 2d).

One-to-N mode. The genome-to-genome representation module in
SVision-pro allows for the comparison of one case genome with one
control genome within asingleimage. However, in certain applications,
suchas denovo SV discovery, several control genomes are involved. To
accommodate such scenarios, SVision-proemploys a One-to-Nmodeto
generateimages between case genome and each control genome. For
example, denovo SVdiscoveryinatrio comprisesthree genomes: child,
father and mother. For acandidate SVlocus, SVision-pro generates one
image that compares the child genome with the father genome, and
another that compares the child genome with the mother genome. This
process results in two images that can be utilized by the subsequent
instance segmentation framework for further analysis. By employing
the One-to-Nmode, SVision-pro enables direct comparison of the case
genome with several control genomes. Moreover, SVision-pro can
identify any genome-specific SVs among several genomes by taking
one genome as the case genome and all others as control genomes.

Flexible properties of representation image. The image sizes, colors
and track heights are flexible and can be customized to meet various
application scenarios. Currently, SVision-pro offers three optional
image sizes for different sensitivity requirements, including 256, 512
and 1,024, whose track height for rendering contentsis 25,50 and 100
pixels, respectively. Thereby, the minimum representable (1 pixel) and
detectable AFs (one per track height) of the three image sizes are 0.04,
0.02and 0.01, respectively. Note that AF 0.01is not the lowest detection
limit of SVision-pro, and that the track heights and images sizes canbe
customized to meet lower AF detection requirements.

SV detection and genotyping by instance segmentation. The encoded
representation images are directly fed into a neural-network-based
instance segmentation framework without any manual or
knowledge-oriented preprocessing. Since CSVs typically comprise
severalinternal subcomponents, the instance segmentation framework
inSVision-prois designed torecognize five basicsubcomponent types,
including insertion (INS), deletion (DEL), inversion (INV), duplication
(DUP) and inverted duplication (invDUP). In cases where there is no
SV present in the control genome, a recognition type reference (REF)
isincluded to denote that the control genome is identical to the refer-
ence genome. Specifically, the instance segmentation framework rec-
ognizes these six instance types in the encoded image and generates a
segmentation mask. The mask assigns each pixelin the image to either
apredicted specific type or the background type, segmenting theimage
regions and providing quantitative information about the presence
and location of various SV subcomponents (Extended Data Fig. 4a).
The horizontal span of the masked regions represents the breakpoint
span of the subcomponents, while the vertical span represents the
allele frequency (Extended Data Fig. 4b). Finally, in respective panels,
we obtain the final SV type of the candidate locus by directly jointing
together these subcomponents in their read order. By contrasting the
lower and upper panels in the segmentation mask image, SVision-pro
can determine whether a SV subcomponent is (Extended Data Fig. 4b)
Germline, indicating that the SV subcomponentis present in the control
genome with same allele frequency; (2) New allele, indicating that the

SVsubcomponent is present in the control genome at a different allele
frequency; (3) New component, indicating that the SVsubcomponent is
absent fromthe control genome or (4) New breakpoint, indicating that
the SVsubcomponentis presentin the controlgenome with a different
breakpoint span. If several control genomes are provided, such as the
father and mother genome in the scenarios for de novo SV discovery,
SVision-pro will output the differences between the case genome and
each control genome (Extended Data Fig. 4c).

Performance benchmarking methodology

SSV detection benchmark in HGO02 groundtruth. The groundtruth
SSVs (HGO02_SVs_Tierl_vO0.6.vcf.gz, highly confident insertions and
deletions) of HGOO02 (Ashkenazim Trio, son), were applied to bench-
mark the SSV detection performance of callers. The detailed data
generation steps were identical to those described in cuteSV? paper.
Briefly, both raw HiFi and ONT reads were aligned to human genome
GRCh37 using Minimap2 (ref. 30) with parameter ‘-x pacbio/ont’. Seven
state-of-the-art callers, including SVision-pro, SVision®, Sniffles2
(ref. 15), cuteSV?, debreak®, pbsv and SVDSS’, were applied to the
aligned reads with the minimum SV supporting read number set to
ten. Truvari* was employed to calculate precision, recall and F1-score
betweenthe groundtruth andthe callset. Please refer to Supplementary
Note 6 for the specific versions and parameters of each caller.

CSV detection benchmark in simulated data. The CSV simulation set,
which contains 3,000 CSVs crossing ten frequently reported types, was
obtained directly from our previous SVision paper®. We followed the
same procedure describedinthis paperto generate both HiFiand ONT
reads and performed subsequent alignment to GRCh38 by NGMLR.
Thefive highest-performing callers on the HGO02 groundtruth dataset
(SVision-pro, SVision, Sniffles2, cuteSV and debreak) were employed
for the subsequent Truvari region-based comparison. Type-based
comparison was performed by examining the CSV subcomponent
accuracy. Toaccomplish this (Supplementary Fig. 3a), we first extracted
the matched SVrecord pairs between the groundtruth and callset from
Truvarioutputfiles, namely TP-base.vcf and TP-call.vcf, which respec-
tively enumerated the groundtruthrecord and matched callset record,
respectively. Then, for each matched record pair, ifany SV component
from the groundtruth record was absent from the called record, this
record pair was marked as inaccurate (Supplementary Fig. 3b). Note
that, only SVision-pro and SVision reported SV component types. For
the remainingcallers, since they only reported SSVs and limited number
of CSVtypes, we treated their output type directly asacomponent type.

Mendelian consistency analysis in six families. We collected 19 Men-
delian samples from six previously published families, including the
Ashkenazim Trio, Chinese Trio, YRI Trio, CHS Trio, PUR Trio and Chinese
Quartet (Supplementary Table 1). All six families were sequenced using
HiFireads, with the Ashkenazim Trio, Chinese Trio and Chinese Quar-
tet also sequenced with ONT reads. All reads were aligned to GRCh38
genome using Minimap2. We utilized five callers, including SVision-pro,
SVision, Sniffles2, cuteSV and debreak, and two merging approaches,
including Jasmine and SURVIVOR. For SVision-pro, we considered
the child sample as the case genome and parent samples as control
genomes. Sniffles2 was employed in multisample calling mode, follow-
ing official instructions. For the remaining three callers that required
merging approaches, wefirstapplied themindependently to generate
callsets for each sample, including child(ren), father and mother. Then,
we merged these callsets (for example, for ChineseQuartet, there were
four callsets) together by Jasmine and SURVIVOR with the default or
recommended parameters (Supplementary Note 2). To measure the
Mendelian consistency within each family, we extracted the child and
parent genotypes from each SV record in the VCF. If the genotypes of
child, father and mother adhered to the Mendelian Law, we marked
this record as a consistent one. Finally, we computed the Mendelian
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consistency rate by dividing the number of consistent records by the
total number of records.

Twin discordancy analysis in Chinese Quartet. A common assump-
tion is that the genomes of monozygotic twins are almost identical®.
Therefore, the monozygotic twins (termed as childl and child2) in
the Chinese Quartet were used to calculate the twin discordancy. In
brief, if one SVwas presentin the childl genome while absent fromthe
child2 genome, we would consider this SV as adiscordant one between
the twins. As such, for each SV record, we extracted the outputted
genotypes of both childland child2 and examined whether they were
identical. Finally, we computed the twin discordancy by dividing the
number of discordant records by the total number of records.

De novo SV analysis in six families. For SVision-pro, de novo SVs
were extracted by checking whether the comparison results of
child-to-father and child-to-mother were both ‘New Component.
For Sniffles2 and the merging approaches, de novo SV records were
extracted by checking whether the SUPP_VEC equaled 100, indicating
thisSVrecord presented only in the child genome. Moreover, we com-
pared the de novo SVs between SVision-pro and Sniffles2. De novo SV
calls from Sniffles2 were overlapped with all SV calls from SVision-pro
using the BEDtools* intersect option with reciprocal overlap fraction
set to 0.5. Since merging approaches resulted in many more redun-
dant de novo SVs, we verified manually only the de novo SVs called by
SVision-pro and Sniffles2 using IGV* (Supplementary Files 4 and 5).

Somatic SV analysis in tumor-normal paired cell line HCC1395.
A previous study” utilized several sequence technologies and estab-
lished a consensus somatic SV callset of 1,788 SVs on cell line HCC1395
and its normal pair HCC1395BL. We download the published HiFi,
ONT and PacBio CLR long reads of the two cell lines and aligned them
to human genome GRCh38 by Minimap2 with parameter ‘-x pacbio.
Three callers that could detect somatic SVs were employed on this
tumor-normal paired cell line, including SVision-pro, Sniffles2 and
nanomonsv. SVision-pro took the tumor cell line as the case genome
and normal cell line as the control genome. Sniffles2 was employedinits
nongermline mode and nanomonsv was employed according to official
instructions. For the three callers, the minimum number of support-
ingreads was set to 2 and the minimum detectable AF was set to 0.01.

High-confidence region filter. The raw high-confidence regions
(HG002_SVs_Tierl_v0.6.bed) were hgl9-based. Therefore, following
theinstruction of SVDSS paper®, we first used liftOver to convert these
regionsinto hg38-based coordinates. Then we applied BEDtools inter-
sect option with reciprocal overlap fraction set to 0.5 to filter out SV
calls that were not located within high-confidence regions.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The sources of HiFi, ONT and CLR reads of the six family datasets
and HCC1395 normal-tumor paired cell are listed in Supplementary
Table 1. The human reference genome GRCh37 was downloaded from
http://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/
phase2_reference_assembly_sequence/hs37d5.fa.gz. The human refer-
ence genome GRCh38 was downloaded from http://ftp.1000genomes.
ebi.ac.uk/voll/ftp/technical/reference/GRCh38_reference_genome/.

Code availability

SVision-pro (v.1.6) is available at GitHub (https://github.com/song-
bowang125/SVision-pro.git)**. The scripts for model training, perfor-
mance valuationand simulate data generation are available at GitHub

(https://github.com/songbowang125/SVision-pro-Utils.git)*. Both
repositories are available under a GNU General Public License v.3.0,
and are free for noncommercial use by academic, government and
nonprofit/not-for-profitinstitutions.
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a. Convert read into a series of symbols

Symbol internal properties

read_start length abbreviation
1 400 1000-1400,400M
400 50 1400-1400,501
450 600 1400-2000,600M
1050 500 2000-2500,500V
1550 500 2500-2500,5001
2050 500 2500-3000,500M

Sorted in read-order Symbol series: 1000-1400,400M; 1400-1400,501; 1400-2000,600M; 2000-2500,500V; 2500-2500,5001; 2500-3000,500M
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d. A converted abnormal read at a deletion-inversion locus
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Extended Data Fig. 1| Illustration of the candidate SV locus searching step in
SVision-pro. a, SVision-pro converts each read into a series of symbols, including
‘M’,“V’and ‘I, based on the aligner’s output. Staring with inter-alignment
examination, primary alignment and supplementary alignments of the read

are directly converted into ‘M’ and ‘V’ according to their mapping orientation.
Unmapped sequence between split alignments are converted into ‘I. For each
alignments, SVision-pro further examine their CIGAR string (intra-alignment)
toretrieve more ‘I's. Consequently, aread is converted into a series of symbols
arranged in their occurrence on read sequence. Each symbol contains several
inner properties, including start position on reference sequence, start position

Iterative cluster

Read3: 1100-2000, 900M; 2500-3500,1000V; 3500-4100,600M

Cluster: 1000-2000,1000M; 2500-3500,1000V; 3500-4100,500M
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onreadsequence and its length. Each symbol canbe abbreviated as ‘reference_
start-reference_end, length and symbol type’ for subsequent clustering step.

b, Anexample of converting a normal read into a symbol series. ¢, An example of
converting an abnormal read, which spans adeletion, into asymbol series.d, An
example of converting an abnormal read, which spans a CSV deletion-inversion,
into asymbol series. e, For agenome locus, normal reads, which contain only
one ‘M’in their symbol series, are filtered out. The remaining abnormal reads
areiteratively clustered together by comparing their symbol series to identify

candidate SVloci.
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a. Transforming read symbol series into similarity image
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(1) 1-D read symbol series

b. Examples of similarity image
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(2) 2-D similarity image

INV:M, V, M idDUP: M, mapped I, M

/
/

INS+INV: M, V, |, M dDUP+DEL: M, mapped |, M

s N

Extended Data Fig. 2| Illustration of the structure sketching step in SVision-
pro. a, SVision-pro directly transforms the 1-dimensional symbol series into a
2-dimensional similarly image, which utilizes segments and gaps to sketch the
structure of the SV. Segments, derived from symbol ‘M’ and ‘V’, are represented

dDUP+DEL: M, mapped |, M, V

—  Segments

i \ === Gaps

t % / s

Aberrant segments/gaps

insolid lines while gaps, derived from symbol ‘I’ are represented in dash lines.
Gaps along with segments converted from symbol ‘V’ are mark with an aberrant
flag (red arrows) for subsequence process. b, Several examples for transforming
symbol series that span SSVs or CSVs, into similarity images.
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a. The differences between regular coverage track and augmented coverage track (ACT) of SVision-pro
(1) Regular coverage track and Augmented coverage track:
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Extended DataFig. 3 | lllustration of the content rendering step in SVision-
pro.a, Comparison of regular coverage track and the augmented coverage track
(ACT) in SVision-pro. The ACTs are generated by 3-channel RGB augmentation.
SVision-pro counts read alignments according to their mapping conditions

and generates a RGB stacked bar-plot, where different mapping conditions are

represented in their respective RGB colors. b, Overview of the content rendering
step. For both control and case genomes, the ACTs are generated, normalized,
and further filled into the upper/lower tracks around aberrant segments and
gapsin the similarity. Abbreviations: ‘Dup. denotes duplicated mapping; ‘Rev.
denotes reversed mapping; ‘For. denotes forward mapping.
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a, Pixel-level instance segmentation framework
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d, different image sized offered by SVision-pro
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Extended Data Fig. 4 | See next page for caption.

Track height: 100

(customization)

Image size: 1024 x 1024
Track height: 100
Min-representable AF: 0.01
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Extended Data Fig. 4 | Illustration of the image instance segmentation
framework in SVision-pro. a, At the pixel level, the segmentation process
predicts each image pixel as either belonging to the background or a specific
variant type in the segmentation mask image b, The segmentation mask provides
obvious comparisonin SV subcomponent type, breakpoint, and allele frequency
(AF) by contrasting the lower and upper track. Mask color comparison indicates
the differences in SV subcomponent type. Horizontal comparison indicates the
differences in SV subcomponent breakpoint span. Vertical comparison indicated
the differences in SV subcomponent AF. Consequently, SVision-pro outputs four
distinct comparison types to depict the SV difference between the case genome
and the control genome, including germline, new components, new breakpoints

and new alleles. ¢, In the scenarios where multiple control genomes are provided
(such as the parent genomes in de no SV discovery), the instance segmentation
framework predicts eachimage and outputs the SV difference between

case genome and each control genome. Abbreviation: ‘NewComp’ for new
component; ‘NewBKP’ for new breakpoint; ‘NewAllele’ for new allele frequency.
d, SVision-pro currently provides three differentimage sizes. Larger image

sizes lead to larger track heights, and thereby lower minimum representable
allele frequencies (AFs). Moreover, the properties of the representation image,
such asimage size, track height and colors, can be customized for user-specific
applications.
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a. Model performance on difference image sizes
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Extended Data Fig. 5| Comparison and interpretation of the neural-network-
based instance segmentation frameworks. a, Comparison of the accuracy
(y-axis) on validation dataset among the five models (x-axis). The models

are arranged based on their parameter sizes. b, the network architecture of

the default Lite-Unet model. ¢, Aheatmap to illustrate the Feature Ablation
interpretation of the Lite-Unet model. Positives values (in green) indicates
positive attrition to the specific prediction while negative values are shown in
red. d, Using Grad-Cam to generate attribution maps of each layer in Lite-Unet.
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Extended Data Fig. 6 | Performance evaluation of SSV and CSV calling among
callers. a, SSV detection performance on HGOO2 groundtruth HiFiand ONT
dataset. Recall, precision and F1-score were compared among callers. b, CSV
detection performance on simulated 3,000 CSV HiFi and ONT dataset. Five of the
highest-performing callers at SSV detection were chosen for a CSV performance
comparison. Since only SVision-pro and SVision were equipped with CSV
characterization ability, we utilized the region matching strategy to avoid the
comparison of CSV types. ¢, CSV structure concordance evaluation among
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callers. Each box contains four values (Supplementary Table 3). The boxplot
defines the median (Q2, 50th percentile), first quartile (Q1, 25th percentile) and
third quartile (Q3, 75th percentile). The bounds of box, that isinterquartile range
(IQR), of the boxplot is between Q1 and Q3. The minima and maxima values are
defined as Q1-1.5*IQR and Q3 + 1.5*IQR, respectively. The whiskers are values
between minima and Q1 as well as between Q3 and maxima. Values falling outside
the Q1- Q3 range are plotted as outliers of the data.
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mode) and SVision, cuteSV and debreak (followed by SURVIVOR and Jasmine
merging). Each box contains six and three values for HiFi and ONT, respectively
(Supplementary Table 5). The boxplot defines the median (Q2, 50th percentile),
first quartile (Q1, 25th percentile) and third quartile (Q3, 75th percentile). The
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respectively. The whiskers are values between minima and Q1 as well as between
Q3 and maxima. Values falling outside the Q1 - Q3 range are plotted as outliers
ofthe data. b, Venn diagrams show the overlapping results of high-confidence
callsamong approaches. We overlapped these high-confidence calls from each
approachin AshkenazimTrio. there were only several unique calls (n=12and 4
when overlapping with SURVIVOR and Jasmine, respectively) from SVision-pro
(9,348 in total), indicating that the leading consistency in Mendelian samples was
attribute to the higher genotyping accuracy of SVision-pro compared to merging
approaches.
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Extended Data Fig. 8 | IGV screenshot of the 32,549 bp deletionin
chromosome 1. The Ashkenazim Trio (HG002, HGO03 and HG004) from GIAB
was used toillustrate the various genotypes of this deletion. Sniffles calculated
incorrect genotypesin this trio, leading to mendelian inconsistency. SVision-pro

correctly genotyped this locusin the trio dataset, revealing that both the child
genome (HG002) and the father genome (HGOO03) exhibited a heterozygous
deletion, while the mother genome (HG004) contained no SV in this locus.
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a. IGV screenshot on this complex locus b. Pattern and dotplot of this complex locus
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Extended DataFig. 9 | Illustration of the complex locus in chromosome 11. complex locus. ¢, Gepard Dotplots® were used to show the differences between
a,IGV screenshot on this complex locus in the ChineseQuartet. This complex the SSV allele and CSV allele. d, SVision-pro correctly genotyped the two alleles,
locus comprised of two alleles, including one SSV deletion and one CSV deletion- outputting the correct genotype of each allele. Sniffles2 and callset-merging
insertion. Read that supported the SSV allele was marked in red while read that strategies missed the CSV allele and incorrectly genotyped the SSV allele as
supported the CSV allele was marked in blue. b, The summarized pattern at this homozygousin the child and father genome.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Somatic detection evaluation and discovery. a, The the deletion component was missed and the dispersed duplication component
Precision, Recall, and F1-score of SVision-pro, Sniffles2, and nanomonsv on the was classified into translocation. d, IGV screenshot supported the CSV outputted
simulated somatic SSVs and CSVs. b, The recall values of various low-frequency by SVision-pro. e, IGV screenshot supported the homozygous CSVin the tumor
SSVs and CSVsin the simulation. ¢, Asomatic CSV locus in chromosome 2 of genome and heterozygous SSV and CSV in the paired normal genome. The SSV
HCC1395 cell line. SVision-pro reported this locus as somatic CSV, dispersed large deletion breakpoint present in the paired normal genome while absent
duplication-deletion-inversion, while in the previous published somatic SV set, from the tumor genome.
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The human reference genome GRCh37: http://ftp-trace.nchi.nih.gov/1000genomes/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
The human reference genome GRCh38: http://ftp.1000genomes.ebi.ac.uk/voll/ftp/technical/reference/GRCh38_reference_genome/

NA19238 HiFi: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/working/20191205_YRI_PacBio_NA19238_HIFI/

NA19239 HiFi: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/working/20191205_YRI_PacBio_NA19239_HIFI/

NA19240 HiFi: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/working/20191005_YRI_PacBio_NA19240_HiFi/

HG00512 HiFi: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/working/20191031_CHS_PacBio_HGO00512_HiFi/

HG00513 HiFi: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/working/20191031_CHS_PacBio_HGO00513_HiFi/

HG00514 HiFi: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/working/20200731_CHS_PacBio_HGO00514_HiFi_reseq/

HG00731 HiFi: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/working/20190925_PUR_PacBio_HiFi/

HG00732 HiFi: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/working/20190925_PUR_PacBio_HiFi/

HG00733 HiFi: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/working/20190925_PUR_PacBio_HiFi/

HGO002 HiFi: https://ftp-trace.ncbi.nIm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb_20kb_chemistry2/

HGOO3 HiFi: https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HGO03_NA24149_father/PacBio_CCS_15kb_20kb_chemistry2/

HGO004 HiFi: https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HGO04_NA24143_mother/PacBio_CCS_15kb_20kb_chemistry2/

HGOOS HiFi: https://ftp-trace.ncbi.nim.nih.gov/giab/ftp/data/ChineseTrio/HG005_NA24631_son/PacBio_CCS_15kb_20kb_chemistry2/

HGOO06 HiFi: https://ftp-trace.ncbi.nim.nih.gov/giab/ftp/data/ChineseTrio/HGO06_NA24694-huCA017E_father/PacBio_CCS_15kb_20kb_chemistry2

HGOO7 HiFi: https://ftp-trace.ncbi.nim.nih.gov/giab/ftp/data/ChineseTrio/HGO07_NA24695-hu38168_mother/PacBio_CCS_15kb_20kb_chemistry2

Chinese Quartet LCL5 HiFi: https://chinese-quartet.org/#/data/download/quartet-genomics

Chinese Quartet LCL6 HiFi: https://chinese-quartet.org/#/data/download/quartet-genomics

Chinese Quartet LCL7 HiFi: https://chinese-quartet.org/#/data/download/quartet-genomics

Chinese Quartet LCL8 HiFi: https://chinese-quartet.org/#/data/download/quartet-genomics

HG002 ONT: https://ftp-trace.nchi.nim.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/UCSC_Ultralong_OxfordNanopore_Promethion/

HGO0O03 ONT: https://ftp-trace.nchi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HGO03_NA24149_father/UCSC_Ultralong_OxfordNanopore_Promethion/
HG004 ONT: https://ftp-trace.ncbi.nim.nih.gov/giab/ftp/data/AshkenazimTrio/HG004_NA24143_mother/UCSC_Ultralong_OxfordNanopore_Promethion/
HGOO0S ONT: https://ftp-trace.ncbi.nim.nih.gov/giab/ftp/data/ChineseTrio/HGO05_NA24631_son/UCSC_Ultralong_OxfordNanopore_Promethion/

HG0O06 ONT: https://ftp-trace.ncbi.nim.nih.gov/giab/ftp/data/ChineseTrio/HGO06_NA24694-huCA017E_father/UCSC_Ultralong_OxfordNanopore_Promethion/
HGOO07 ONT: https://ftp-trace.ncbi.nim.nih.gov/giab/ftp/data/ChineseTrio/HGO07_NA24695-hu38168_mother/UCSC_Ultralong_OxfordNanopore_Promethion/
Chinese Quartet LCL5 ONT: https://chinese-quartet.org/#/data/download/quartet-genomics

Chinese Quartet LCL6 ONT: https://chinese-quartet.org/#/data/download/quartet-genomics

Chinese Quartet LCL7 ONT: https://chinese-quartet.org/#/data/download/quartet-genomics

Chinese Quartet LCL8 ONT: https://chinese-quartet.org/#/data/download/quartet-genomics

HCC1395 CCS: https://downloads.pacbcloud.com/public/revio/2023Q2/HCC1395/HCC1395/

HCC1395 ONT: https://www.ncbi.nIm.nih.gov/sra?term=SRP162370

HCC1395 CLR: https://www.ncbi.nlm.nih.gov/sra?term=SRP162370

HCC1395BL CCS: https://downloads.pacbcloud.com/public/revio/2023Q2/HCC1395/HCC1395-BL/

HCC1395BL ONT: https://www.ncbi.nlm.nih.gov/sra?term=SRP162370

HCC1395BL CLR: https://www.ncbi.nIm.nih.gov/sra?term=SRP162370

HGO002 SV callset: https://ftp-trace.ncbi.nim.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/HG002_SVs_Tierl_vO0.6.vcf.gz
HCC1395 SV callset: https://static-content.springer.com/esm/art%3A10.1186%2Fs13059-022-02816-6/MediaObjects/13059_2022_2816_MOESM4_ESM.xIsx

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Not relevant to our study

Population characteristics Not relevant to our study
Recruitment Not relevant to our study
Ethics oversight Not relevant to our study

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size For de novo structural variant analysis, we collected 19 already-published samples from six family datasets, including Ashkenazim Trio,
Chinese Trio, YRI Trio, CHS Trio, PUR Trio and Chinese Quartet.
For somatic structural variant analysis, we collected one already-published normal-tumor paired cell line, including HCC1395 and HCC1395BL.
These sample sizes were chosen based on the accessibility of already-published long-read-sequencing data. These sample sizes were sufficient
for performance benchmarking of SVision-pro and other callers due to they possessed ground-truth callsets.

Data exclusions | No data were excluded in this study

Replication Replication was not relevant to our study. This study used deterministic algorithms without statistical analysis, and this study aims to
demonstrate SVision-pro and its application to de novo and somatic structural variant detection with long-read sequencing data.
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Randomization  Randomization was not relevant to our study. SVision-pro is a deterministic method. and all analysis in this study was done with preexisting
data sources.

Blinding Blinding was not relevant to our study. We used publicly available data, no data acquisition or statistical analysis was involved. Besides, in this
study, all softwares are deterministic and do not take advantages from knowing the origin of the input data.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
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