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Abstract

Background We attempted to train and validate a model of deep learning for the preoperative prediction of the response of

patients with intermediate-stage hepatocellular carcinoma (HCC) undergoing transarterial chemoembolization (TACE).

Method All computed tomography (CT) images were acquired for 562 patients from the Nan Fang Hospital (NFH), 89 patients

from Zhu Hai Hospital Affiliated with Jinan University (ZHHAJU), and 138 patients from the Sun Yat-sen University Cancer

Center (SYUCC). We built a predictive model from the outputs using the transfer learning techniques of a residual convolutional

neural network (ResNet50). The prediction accuracy for each patch was revaluated in two independent validation cohorts.

Results In the training set (NFH), the deep learning model had an accuracy of 84.3% and areas under curves (AUCs) of 0.97, 0.96,

0.95, and 0.96 for complete response (CR), partial response (PR), stable disease (SD), and progressive disease (PD), respectively. In the

other two validation sets (ZHHAJU and SYUCC), the deep learning model had accuracies of 85.1% and 82.8% for CR, PR, SD, and

PD. The ResNet50 model also had high AUCs for predicting the objective response of TACE therapy in patches and patients of three

cohorts. Decision curve analysis (DCA) showed that the ResNet50 model had a high net benefit in the two validation cohorts.

Conclusion The deep learning model presented a good performance for predicting the response of TACE therapy and could help

clinicians in better screening patients with HCC who can benefit from the interventional treatment.

Key Points

• Therapy response of TACE can be predicted by a deep learning model based on CT images.

• The probability value from a trained or validation deep learning model showed significant correlation with different therapy

responses.

• Further improvement is necessary before clinical utilization.
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Abbreviations

AI Artificial intelligence

AUCs Areas under the curve

BCLC Barcelona Clinic Liver Cancer

CECT Contrast-enhanced computed tomography

CI Confidence interval

CNNs Convolutional neural networks

CR Complete response

DCA Decision curve analysis

GLCM Gray-level co-occurrence matrix

HCC Hepatocellular carcinoma

IDH Isocitrate dehydrogenase

ILSVRC ImageNet Large Scale Visual Recognition

Challenge

MRI Magnetic resonance imaging

NCR Non-complete response

NFH Nan Fang Hospital

OS Overall survival

PACS Picture archiving and communication system

PD Progressive disease

PR Partial response

RFs Radiomics features

ROC Receiver operating characteristic

ROIs Regions of interest

RNNs Recurrent neural networks

SD Stable disease

SGD Stochastic gradient descent

SYUCC Sun Yat-sen University Cancer Center

TACE Transarterial chemoembolization

ZHHAJU Zhu Hai Hospital Affiliated with Jinan

University

Introduction

Hepatocellular carcinoma (HCC) ranks second as themajor cause

of cancer-related deaths globally and is the sixth most common

cancer in the world. Its incidence has continuously increased in

recent years, and approximately 850,200 new cases of HCC are

annually diagnosed worldwide [1, 2]. Less than 30% of patients

with HCC are eligible for potentially curative therapies, such as

transplantation, resection, or ablation [3, 4]. For selected patients

who are not suitable for such interventions, but have liver-

confined disease, preserved liver function, and good performance

status, transarterial chemoembolization (TACE) is recommended

according to international guidelines [5–9].

Although repeated TACE procedures are often needed, the

initial response effectively predicts the overall survival (OS) be-

cause the best response cannot always be achieved after one

session of TACE, especially in large tumors. Moreover, the

achievement of a treatment response at an early time point is

the robust predictor for favorable outcomes [10]. The texture

analysis based on contrast-enhanced magnetic resonance

imaging (MRI) before TACE may act as imaging biomarkers

to predict an early response from patients with HCC. The highest

accuracy for complete response (CR) group and the non-

complete response (NCR) was 0.76 [11]. A pretherapeutic dy-

namic CT texture analysis can also be valuable in predicting the

therapy response of HCC to TACE. Higher arterial enhancement

and GLCM (gray-level co-occurrence matrix) moments, lower

homogeneity, and smaller tumor size are significant predictors of

complete response (CR) after TACE [12]. However, based on the

traditional statistics and machine learning, the accuracy of this

method is limited. On the condition of optimal cutoff values for

predicting a CR to TACE in the receiver operating characteristic

(ROC) curves, the highest AUC of texture parameters was 0.72.

Furthermore, most studies focused on the two classifications (CR

or NCR) and the prediction of four classifications (CR, PR, SD,

and PD) using CT images is unclear. Therefore, a more effective

model to accurately identify patients who would have an initial

response after TACE therapy is urgently needed to facilitate in-

dividualized treatment strategies.

Deep learning has recently gained attention as a technique for

realizing Artificial intelligence (AI) [13–15]. Several types of

deep-stacked artificial neural networks, such as convolutional

neural networks (CNNs) and recurrent neural networks

(RNNs), have been proposed and judiciously used in various

fields. Deep CNNs are especially recognized as demonstrating

high performance for image recognition tasks [16, 17]. Some

initial successes in applying deep learning to the assessment of

radiological images have beenwitnessed [18–21]. A study used a

deep learning algorithm to non-invasively predict the IDH

(Isocitrate Dehydrogenase) status within a multi-institutional

dataset of low- and high-grade gliomas [22]. Deep learning also

shows the potential to stage liver fibrosis based on radiological

images [23]. However, there is embarrassed that performing deep

learning often faces a shortage of medical data, especially in

radiological images of patients undergoing treatment. Transfer

learning, which is a feasible deep learning technique for address-

ing a lack of image data, has been proven a highly effective

technique, particularly in the case of limited medical images

[24, 25]. The models have been used to distinguish the features

of the medical images in a much faster manner and with signif-

icantly fewer training medical images [13].

In this study, based on the CT images from three independent

centers, we aimed to investigate a deep learning algorithm to

precisely and non-invasively evaluate the different therapy re-

sponse in HCC patients before the TACE treatment.

Materials and methods

Patients

Our retrospective study had been approved by the institutional

review board and Ethical Committee (NFEC-201208-K3). This

Eur Radiol (2020) 30:413–424414



study included patients in Nan Fang Hospital (NFH), Zhu Hai

Hospital Affiliated with Jinan University (ZHHAJU), and Sun

Yat-sen University Cancer Center (SYUCC), who matched the

following criteria for selection: (a) radiologically or pathological-

ly proven HCC; (b) received initial treatment of TACE; (c) avail-

ability of hepatic-arterial CT imaging within 7 days before treat-

ment; (d) availability of hepatic-arterial CT imaging within

30 days after treatment; and (e) patients with Barcelona Clinic

Liver Cancer (BCLC) stage B. The exclusion criteria were as

follows: (a) previous treatments, including loco-regional or

whole-body therapies, such as liver transplantation, radiotherapy,

radiofrequency ablation, or sorafenib treatment, and (b) other

malignant liver tumors. Electronic medical records were used

to collect the pretreatment clinical characteristics of patients.

Supplemental Figure 1 shows the recruitment pathways for pa-

tients in training and two validation cohorts. Based on the radi-

ology evaluation in patients after the first TACE therapy, the

different responses on hepatic-arterial CT images were deter-

mined by modified RECIST (mRECIST 1.1), including com-

plete response (CR), partial response (PR), stable disease (SD),

and progressive disease (PD). We defined the objective response

as CR+PR and the non-response as SD+PD.

CT acquisition and region-of-interest segmentation

Contrast-enhanced computed tomography (CECT) was per-

formed at three hospitals as previously described [26].

Supplemental Table S1 presents the scan characteristics for

the three centers. All CT images were downloaded using a

picture archiving and communication system (PACS; Nan

Fang Hospital, Zhu Hai Hospital Affiliated with Jinan

University, and Sun Yat-sen University Cancer Center

Network Center, China). The CT images of all patients were

input into the ITK-SNAP software (version 3.6). The tumor

regions of interest (ROIs) were analyzed by three senior radi-

ologists who had 14-year experience (reader 1, Jing Zhang),

17-year experience (reader 2, Jingxian Shen), and 23-year

experience (reader 3, Yikai Xu). The ROIs of CT images from

the training cohort (NFH) and two validation cohorts

(ZHHAJU and SYUCC) were manually segmented by reader

1 and reader 2, respectively. Then, reader 3 confirmed each

ROI and saved as the main file (CT image) and segmentation

file (mask image) in the ITK-SNAP software. All radiologists

were specifically blinded to the therapy outcome of the pa-

tients from three cohorts.

Image preprocessing

The window width and level were transformed into the orig-

inal one. All CT images were reconstructed using a medium

sharp reconstruction algorithm with a thickness of 1 mm.

Subsequently, the intensity values of the image were mapped

to [0, 1]. This target of the deep learning algorithm is the

classified labels of CR, PR, SD, and PD. We saved one CT

image and mask of ROI from the largest tumor area for each

patient and then saved the other two CT images and two cor-

responding masks of ROIs from the nearest sequences. Using

an in-house algorithm, we extracted an average of approxi-

mately three patches with a resize of 224 × 224 × 3 for each

patient in the training and two validation cohorts, respectively.

Notably, each patch for the training and validation of the net-

work was entirely included in the ROIs of the CT images.

Finally, 1687 patches were extracted from 562 patients for

training (NFH); 268 patches were extracted from 89 patients

for validation 1 (ZHHAJU); and 406 patches were extracted

from 138 patients for validation 2 (SYUCC). Data augmenta-

tion techniques were introduced before the training procedure

considering the potential bias caused by the unbalanced data

and big data requirement of deep learning [27]. Specifically, in

our study, the patches were equally and randomly distributed

across each class by data augmentation, including level flip,

vertical flip, level and vertical flip, 90° rotation, and − 90°

rotation. Using this method, we built a “new” training data

and this augmentation was only performed on the NFH co-

hort, not on the two external validation cohorts. In order to

minimize memory usage, we used data augmentation only in

real time.

Transfer learning of the residual neural network

ResNet is a representative deep convolutional neural network

integrated with images, auto-encoding, and classification. It

won the 2015 ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) by using feature transmission to prevent

gradient vanishing, such that a much deeper network than

those used previously could be effectively trained [28].

Motivated by a previous study that a deeper network is poten-

tially more powerful than shallow networks, our residual net-

work was derived from a 50-layer residual network architec-

ture and has 177 layers in total, showing detailed information

in the Supplementary Information (ResNet50). ResNet50 has

been trained on a subset of the ImageNet database (http://

www.image-net.org) and can classify images into 1000

object categories (e.g., keyboard, mouse, pencil, and many

animals). The architecture of ResNet50 and flowchart of

deep learning for CT images were shown in Fig. 1a–c. We

froze the weights of earlier layers (1 to 174) in the pretrained

network. The trained network does not update the parameters

of the frozen layers. Freezing the weights of many initial

layers can significantly speed up network training and

prevent over-fitting to the new medical dataset.

A series of blocks consisting of three convolutional

layers (fc1000, fc1000_softmax, and classification

layers_fc1000) were replaced by new layers (fc4,

fc4_softmax, and classification layers_fc4) to extract deep

residual features and transmit features from the front layer
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to the latter one. At the end of the network, a full-

connection layer was used to perform classification.

During training, the weights were optimized via the sto-

chastic gradient descent (SGD) optimization algorithm

with a mini-batch size 64 [29]. After fine-tuning parame-

ters of deep learning, the learning rate and the number of

max epochs were set to 0.0001 and 54, respectively, to

ensure covering of the entire data for efficient training.

The loss function was identified as binary cross-entropy.

We used the sigmoid function to compute the probability

before the output layer. The performance of deep learning

mod e l wa s e s t im a t e d b y AUC and a c c u r a c y

(Accuracy ¼ 1
n
∑1 yi ¼ tið Þ ). The patches from Nan Fang

Hospital (NFH) were trained via pretrained ResNet50.

Based on the trained model, patches from Zhu Hai

Hospital Affiliated with Jinan University (ZHHAJU) and

Sun Yat-sen University Cancer Center (SYUCC) were used

to be validated, respectively.

Implementation details

Our implementation was based on the Deep Learning

Toolbox™ Model for the ResNet50 Network in MATLAB

(version 2018a; MathWorks). Our training experiments were

performed in a Linux environment on a machine with the

following specifications: CPU Intel Xeon Processor E5-

2640V3 at 2.60 GHz, GPU NVIDIA Pascal Titan X, and

128-GB RAM.

Fig. 1 The architecture of ResNet50 and deep learning model flowchart.

a, b Architecture of ResNet50 is shown and includes convolution layers,

max pooling layers, and a fully connected layer. cAResNet50model was

pretrained on a million images from the ImageNet database and can

classify images into 1000 object categories. Based on this new dataset

of CT images, a transfer learning model was adapted to significantly

shorten the training time and improve the accuracy. The earlier

connected layers were frozen (1 to 174), and the final connected layers

were replaced (175 to 177). Finally, this model was transferred to a novel

network. All patches were augmented in the proposed approach after the

ROI patches were determined from the CT images. A transfer learning

50-layer residual convolutional neural network was used to predict the

response to TACE therapy
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Statistical analysis

Statistical analyses were performed with R statistical software

version 3.5.0 (R Core Team, 2018), GraphPad prism 7.0, and

MATLAB 2018a. The receiver operating characteristic (ROC)

curves were plotted with the “pROC” package. A confidence

interval (CI) of 95% for AUC was calculated using each dataset

(1000 bootstrap). The confusion matrices were plotted with

MATLAB 2018a in three different cohorts to calculate the accu-

racies of estimating the response of TACE therapy. Decision

curve analysis (DCA)was performed using the “dca.R” package.

The Mann–Whitney U test was analyzed by R statistical soft-

ware. Two-sided p values < 0.05 were considered significant.

Results

Clinical characteristics of patients

Five hundred sixty-two patients with HCC were finally in-

cluded in the training cohort (NFH), and 89 and 138 patients

were allocated to the independent validation cohorts 1

(ZHHAJU) and 2 (SYUCC), respectively. Table 1 summa-

rizes the baseline clinical characteristics of the training and

two validation cohorts. In the training cohort, validation co-

hort 1, and validation cohort 2, the age of 168 (29.90%), 28

(31.46%), and 38 (27.54) patients was more than 60 years,

respectively. Sixty (10.68%), 14 (15.73%), and 15 (10.87%)

patients were females in the training cohort, validation cohort

1, and cohort 2, respectively. In the training cohort, the pa-

tients for CR, PR, SD, and PD were 83 (14.77%), 151

(26.87%), 222 (39.50%), and 106 (18.86%), respectively. In

validation cohorts 1 and 2, the patients for CR, PR, SD, and

PD were 13 (14.61%) and 21 (15.22%), 24 (26.97%) and 37

(26.81%), 35 (39.33%) and 54 (39.13%), and 17 (19.09%)

and 26 (18.84%), respectively. No significant differences were

observed between the three cohorts in the clinical database.

Training and validation of the deep learning model
in multi-class classification

All the patches (n = 1687) were augmented and trained in the

training cohort via the residual convolutional neural network

(ResNet50) to increase the robustness of the model. Figure 2a

shows that the accuracy was above 80% and the cross-entropy

loss was close to 0.5 after 54 epochs training (1401 iterations)

and 71min 38 s time (Fig. 2b). The resulting model had an AUC

of 0.97 (0.97–0.98), 0.96 (0.96–0.97), 0.95 (0.94–0.96), and 0.96

(0.96–0.97) for CR, PR, SD, and PD, respectively (Fig. 3a). We

then tested the patches (n= 268) in validation cohort 1. An AUC

of 0.98 (0.97–0.99), 0.96 (0.95–0.98), 0.95 (0.93–0.98), and 0.94

(0.90–0.98) for CR, PR, SD, and PD was observed (Fig. 3b). In

validation cohort 2, the AUCs of predicting CR, PR, SD, and PD

in TACE treatment were 0.97 (0.96–0.98), 0.96 (0.94–0.98),

Fig. 1 (continued)
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0.94 (0.92–0.97), and 0.97 (0.95–0.98), respectively (Fig. 3c).

The deep learning model indicated good discrimination of the

therapy response using the ROI patches in the two cohorts.

We next focused on the predictive accuracy of the deep learn-

ingmodel in each patch by confusionmatrix. The training cohort

exhibited an average accuracy of 84.0% and a low error of 16%

of predicting CR, PR, SD, and PD in TACE therapy (Fig. 3d).

The independent validation cohorts 1 and 2 showed an average

accuracies of 85.1% and 82.8% and low errors of 14.9% and

17.2%, respectively (Fig. 3e, f). We further chose four typical

patches of different therapy responses from validation cohort 2

and displayed the CT images of the maximum cross-sectional

diameter of the liver tumor, including pretreatment and post-

treatment of the hepatic-arterial phase images (Fig. 4a). As

shown, the deep learning model performed well in the classifica-

tion of predicting CR, PR, SD, and PD of TACE treatment.

There were some difficult cases of these patterns that were

misclassified in the ResNet50. We displayed eight misclassified

Table 1 Participant

characteristics in the training and

validation cohorts

Characteristic Training cohort

(n = 562)

Validation cohort 1

(n = 89)

Validation cohort 2

(n = 138)

Age (years)

≤ 60 394 (70.10%) 61 (68.54%) 100 (72.46%)

> 60 168 (29.90%) 28 (31.46%) 38 (27.54%)

Sex

Male 502 (89.32%) 75 (84.27%) 123 (89.13%)

Female 60 (10.68%) 14 (15.73%) 15 (10.87%)

HBsAg status

Positive 514 (91.46%) 80 (96.67%) 125 (90.57%)

Negative 48 (8.54%) 9 (3.33%) 13 (9.43%)

Child–Pugh classification

A 451 (80.25%) 74 (83.15%) 111 (80.43%)

B 111 (19.75%) 15 (16.85%) 28 (19.57%)

ALT (U/mL)

≤ 40 240 (42.70%) 45 (50.56%) 69 (50.00%)

> 40 322 (57.30%) 44 (49.44%) 69 (50.00%)

AST (U/mL)

≤ 40 147 (26.16%) 27 (30.34%) 37 (26.81%)

> 40 415 (73.84%) 62 (69.66%) 101 (73.19%)

AFP (ng/mL)

≤ 20 322 (57.30%) 49 (55.06%) 83 (60.14%)

> 20 240 (42.70%) 40 (44.94%) 55 (39.86%)

Hepatocirrhosis status

Present 294 (52.31%) 40 (44.94%) 70 (50.73%)

Absent 268 (47.69%) 49 (55.06%) 68 (49.27%)

Tumor size (cm)

≤ 5 83 (14.77%) 12 (13.48%) 22 (15.94%)

> 5, ≤ 10 245 (43.59%) 37 (41.57%) 52 (37.68%)

> 10 234 (41.64%) 40 (44.95%) 64 (46.38%)

Tumor numbers

≤ 3 463 (82.38%) 77 (86.51%) 114 (82.61%)

> 3 99 (17.62%) 12 (13.49%) 24 (17.39%)

Response to therapy

CR 83 (14.77%) 13 (14.61%) 21 (15.22%)

PR 151 (26.87%) 24 (26.97%) 37 (26.81%)

SD 222 (39.50%) 35 (39.33%) 54 (39.13%)

PD 106 (18.86%) 17 (19.09%) 26 (18.84%)

HBsAg, hepatitis B surface antigen; ALT, alanine aminotransferase; AST, aspartate aminotransferase; AFP, alpha-

fetoprotein; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease
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images of ROI from validation cohorts 1 and 2 in Fig. 4b. For

example, CR could be incorrectly predicted as SD (44.67%) in

patient 2, and PD also could be incorrectly predicted as PR

(76.02%) in patient 7.

Evaluation on performance of two-class classification
via trained ResNet50 model

Multiple 2D arrays were output by the convolutional layers of

a ResNet50 model. To further estimate the classification per-

formance of our deep network trained on four-category learn-

ing, we have considered a clinically important task, including

two-class classification of objective response (CR or PR) and

non-response (SD or PD). On the task of two-class classifica-

tion, we have merged the output prediction probability by the

trained deep learning model for four-category classification,

for adding CR and PR (i.e., yresponse = yCR + yPR). The proba-

bility value of therapy response (objective response) was sig-

nificantly increased in the response HCC patches versus the

non-response HCC patches in Supplemental Figure 2A–C

(each cohort, p < 0.0001). Throughout this method, the model

achieved an AUC of 0.95 (0.95–0.96), 0.96 (0.94–0.97), and

0.97 (0.96–0.98) in the patches from NFH, ZHHAJU, and

SYUCC cohorts (Fig. 5a). The probability value of therapy

response was calculated bythe average probability values of

all patches in each patient of three cohorts. We found the

ResNet50 model presented high AUC in the patients of three

cohorts (Fig. 5b). To analyze the clinical use of model based

on deep learning, the decision curve analysis (DCA) for the

predictor of ResNet50 was performed in this study. When the

threshold probabilities are ~ 2% and 4%, the model shows

stronger benefit in comparison with the treat-all or treat-none

strategy in the ZHHAJU (Fig. 5c) and SYUCC (Fig. 5d) co-

horts. This similar performance of DCA also has been

displayed in the training cohort (Supplemental Figure 3).

Discussion

In this study, we demonstrated a novel application of deep

learning to predict the response of TACE therapy in a three-

institution dataset of HCC. As far as we know, this is the first

time that the deep learning model based on radiological im-

ages is used to predict the four responses of interventional

treatment in liver cancer. This algorithm may facilitate deep

learning techniques for the medical field of precise therapy

oncology. Based on the pretreatment ROI images of patients

with HCC, this utility model of deep learning is a potential

method for predicting the response of TACE therapy.

According to the BCLC stage system, TACE is recommend-

ed for patients with HCC with BCLC stage B [6, 30–32]. In

patients with stage C, TACE therapy is also a frequent and

important application treatment, especially in comprehensive

treatment [33–35]. Recent studies revealed that the therapy re-

sponse at first chemoembolization is a good predictor for the

favorable outcome in hepatocellular carcinoma [10, 36].

However, no report was associated with the prediction response

of TACE therapy in the field of hepatocellular carcinoma via

Fig. 2 Training and validation

processes of the deep learning

model based on the CT images.

Accuracy (a) and cross-entropy

loss (b) were plotted against the

training step during the length of

the training of the four-class clas-

sifier over the course of 54 steps.

The red and black lines represent

the training and validation pro-

cesses, respectively. The cross-

entropy loss was close to 0.5,

while the final validation accura-

cy was 85.07%
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deep learning of CT images. Previous studies showed that dif-

ferent clinical risk factors (e.g., tumor size) perform well in

prediction [37–39], but the precise estimation of four therapy

responses remains challenging in clinical settings and difficult

to implement. A new method involving a radiomics approach

based on radiological images (e.g., CT, MR, and PET-CT) is

also currently being applied in various tumors. It extracts radio-

graphic features from conventional images and includes the

features of tumor shape, texture, intensity, and wavelet trans-

form characteristics [40–46]. However, numerous pre-

engineered features are artificial design features. This may lead

to poor reproducibility and nonredundant radiomics features

(RFs) for CT images because of the variable scan parameters

of different types of imaging equipment [47]. The application of

radiomics also relies on traditional machine learning tech-

niques. Unlike the above method, the algorithm of deep learn-

ing can directly learn predictive features from the images and

potentially greatly increase the robust accuracy in these radio-

logical images [48, 49].

Fig. 4 Examples of correctly predicted and misclassified patches by the

ResNet50. a Horizontal cross-section CT images through four patients of

validation cohort 2 with HCC before and after 1 month of TACE therapy.

b Eight patches showed the misclassifications of four therapy responses

in validation cohorts 1 and 2, respectively. The output of the deep learning

model is presented below each patch. Red and green colors represent the

ROI images from validation cohorts 1 and 2, respectively

Fig. 3 ROC curve and confusion matrix for predicting the response to

TACE therapy. a Each patient for the assessment of the response to TACE

therapy is shown via the ROC curve. In the training set, the deep learning

model had an AUC of 0.97, 0.96, 0.95, and 0.96 for CR, PR, SD, and PD,

respectively. b In validation 1 set, the deep learningmodel had anAUC of

0.98, 0.96, 0.95, and 0.94 for CR, PR, SD, and PD, respectively. c In

validation 2 set, the deep learning model had an AUC of 0.97, 0.96, 0.95,

and 0.95 for CR, PR, SD, and PD, respectively. d–f The model exhibited

accuracies of 84.3%, 85.1%, and 82.8% in the three cohorts (NFH,

ZHHAJU, and SYUCC), respectively

R
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Previous studies mostly focused on deep learning based on

the small segmentation patches of each ROI image to enhance

the size of the sample and frequently showed a significant AUC

[50–52]. However, the scenario of predicting the labels of entire

ROI images was often ignored. Therefore, we used an algorithm

of transfer learning to evaluate the treatment response via the

whole CT-ROI patches. Comparing with previous study, high

AUCs of predicting CR, PR, SD, and PD in the therapy response

of TACEwere observed among the three cohorts [12]. This result

indicated that our transfer learning model performed well in

predicting different therapy responses using CT images from

three independent centers. The result of the confusion matrix

presented significantly high accuracies of prediction in the

NFH, ZHHAJU, and SYUCC cohorts and was distinct from

previous report [11]. Interestingly, we found the accuracy for

the training cohort was lower than for the validation cohort 1

(84.3% vs. 85.1%). We speculated the phenomenon was corre-

lated with a small sample size of patients in validation cohort 1.

Increasing number of patients would potentially reduce the val-

idation accuracy. Misclassified CR patches by the deep learning

model were more observed in PR patches than in SD and PD

patches in the training cohort (1.5%) and validation cohorts 1

(1.7%) and 2 (1.1%). Meanwhile, misclassified PD patches were

more frequently found in PR patches than in SD andCR patches.

The precision probability of preoperatively predicting the four

therapy responses (i.e., CR, PR, SD, and PD) via each ROI patch

Fig. 5 ROC curve and DCA curve for estimating the objective response

to TACE therapy. a In the NFH, ZHHAJU, and SYUCC cohorts, the deep

learning model had an AUC of 0.95, 0.96, and 0.97 for predicting therapy

response via patches, respectively. b Based on the predictive probability,

the model presented an AUC of 0.95, 0.96, and 0.97 for predicting

therapy response in all patients from NFH, ZHHAJU, and SYUCC

cohorts, respectively. In the ZHHAJU (c) and SYUCC (d) cohorts, the

DCA indicated that when the threshold probability was above 2% and

4%, THE use of the deep learning model for predicting TACE response

would gain more benefit than the “treat-all” patients or “treat-none”

schemes

Eur Radiol (2020) 30:413–424422



was calculated and found useful in individualized clinical treat-

ment. We further investigate the prediction of objective response

(response or non- response) in patches or patients and also found

high accuracies in the three cohorts. This finding demonstrated

that the deep learning model based on CT images may help

doctors recognize patients who would acquire well or poor initial

response of TACE therapy.

However, our study has several limitations. First, the sam-

ple size of patients with HCC was relatively small, and this

was a retrospective research. A much larger database of the

prospective study would be collected frommore centers in the

future. Second, we trained and validated all the patches of the

2D CT images from three medical centers. Because of 3D

patches’ potential of having more context information, we

speculated the 3D CT patches had an accuracy higher and a

better model quality than that of the 2D CT patches. The 3D

CT patches would be investigated in the next step. Third, the

correlation between the biological processes (e.g., differential

gene expression and pathway) and the prediction results of

deep learning networks in HCC was unknown and should be

analyzed in the future. Fourth, the ROIs were drawn manually

in our study. Lesions selected from different abdominal radi-

ologists might have various differences, impacting on disease

classification. We would use the combination of the algorithm

for HCC segmentation and ResNet50 model to automatically

predict the outcome of TACE therapy in the following study.

In summary, the deep learning model based on CT images

would potentially serve as a new tool for predicting the ther-

apy response of patients undergoing TACE treatment. Our

method using transfer learning for predictive classification of

radiological images may also be used to determine more pre-

cise clinical treatments in other malignant tumors.
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