European Radiology (2020) 30:413-424
https://doi.org/10.1007/500330-019-06318-1

COMPUTED TOMOGRAPHY

®

Check for
updates

Residual convolutional neural network for predicting response
of transarterial chemoembolization in hepatocellular carcinoma
from CT imaging

Jie Peng? - Shuai Kang' - Zhengyuan Ning? - Hangxia Deng* - Jingxian Shen” - Yikai Xu® - Jing Zhang® - Wei Zhao” -
Xinling Li” - Wuxing Gong?® - Jinhua Huang* - Li Liu’

Received: 9 April 2019 /Revised: 21 May 2019 /Accepted: 11 June 2019/ Published online: 22 July 2019
© The Author(s) 2019

Abstract

Background We attempted to train and validate a model of deep learming for the preoperative prediction of the response of

patients with intermediate-stage hepatocellular carcinoma (HCC) undergoing transarterial chemoembolization (TACE).

Method All computed tomography (CT) images were acquired for 562 patients from the Nan Fang Hospital (NFH), 89 patients

from Zhu Hai Hospital Affiliated with Jinan University (ZHHAJU), and 138 patients from the Sun Yat-sen University Cancer

Center (SYUCC). We built a predictive model from the outputs using the transfer learning techniques of a residual convolutional

neural network (ResNet50). The prediction accuracy for each patch was revaluated in two independent validation cohorts.

Results In the training set (NFH), the deep learning model had an accuracy of 84.3% and areas under curves (AUCs) of 0.97, 0.96,

0.95, and 0.96 for complete response (CR), partial response (PR), stable disease (SD), and progressive disease (PD), respectively. In the

other two validation sets (ZHHAJU and SYUCC), the deep learning model had accuracies of 85.1% and 82.8% for CR, PR, SD, and

PD. The ResNet50 model also had high AUCs for predicting the objective response of TACE therapy in patches and patients of three

cohorts. Decision curve analysis (DCA) showed that the ResNet50 model had a high net benefit in the two validation cohorts.

Conclusion The deep learning model presented a good performance for predicting the response of TACE therapy and could help

clinicians in better screening patients with HCC who can benefit from the interventional treatment.

Key Points

* Therapy response of TACE can be predicted by a deep learning model based on CT images.

o The probability value from a trained or validation deep learning model showed significant correlation with different therapy
responses.

 Further improvement is necessary before clinical utilization.
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Abbreviations
Al Artificial intelligence

AUCs Areas under the curve

BCLC Barcelona Clinic Liver Cancer

CECT Contrast-enhanced computed tomography

CI Confidence interval

CNNs Convolutional neural networks

CR Complete response

DCA Decision curve analysis

GLCM Gray-level co-occurrence matrix

HCC Hepatocellular carcinoma

IDH Isocitrate dehydrogenase

ILSVRC ImageNet Large Scale Visual Recognition
Challenge

MRI Magnetic resonance imaging

NCR Non-complete response

NFH Nan Fang Hospital

(0N} Overall survival

PACS Picture archiving and communication system

PD Progressive disease

PR Partial response

RFs Radiomics features

ROC Receiver operating characteristic

ROIs Regions of interest

RNNs Recurrent neural networks

SD Stable disease

SGD Stochastic gradient descent

SYUCC  Sun Yat-sen University Cancer Center

TACE Transarterial chemoembolization

ZHHAJU Zhu Hai Hospital Affiliated with Jinan
University

Introduction

Hepatocellular carcinoma (HCC) ranks second as the major cause
of cancer-related deaths globally and is the sixth most common
cancer in the world. Its incidence has continuously increased in
recent years, and approximately 850,200 new cases of HCC are
annually diagnosed worldwide [1, 2]. Less than 30% of patients
with HCC are eligible for potentially curative therapies, such as
transplantation, resection, or ablation [3, 4]. For selected patients
who are not suitable for such interventions, but have liver-
confined disease, preserved liver function, and good performance
status, transarterial chemoembolization (TACE) is recommended
according to international guidelines [5-9].

Although repeated TACE procedures are often needed, the
initial response effectively predicts the overall survival (OS) be-
cause the best response cannot always be achieved after one
session of TACE, especially in large tumors. Moreover, the
achievement of a treatment response at an early time point is
the robust predictor for favorable outcomes [10]. The texture
analysis based on contrast-enhanced magnetic resonance
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imaging (MRI) before TACE may act as imaging biomarkers
to predict an early response from patients with HCC. The highest
accuracy for complete response (CR) group and the non-
complete response (NCR) was 0.76 [11]. A pretherapeutic dy-
namic CT texture analysis can also be valuable in predicting the
therapy response of HCC to TACE. Higher arterial enhancement
and GLCM (gray-level co-occurrence matrix) moments, lower
homogeneity, and smaller tumor size are significant predictors of
complete response (CR) after TACE [12]. However, based on the
traditional statistics and machine learning, the accuracy of this
method is limited. On the condition of optimal cutoff values for
predicting a CR to TACE in the receiver operating characteristic
(ROC) curves, the highest AUC of texture parameters was 0.72.
Furthermore, most studies focused on the two classifications (CR
or NCR) and the prediction of four classifications (CR, PR, SD,
and PD) using CT images is unclear. Therefore, a more effective
model to accurately identify patients who would have an initial
response after TACE therapy is urgently needed to facilitate in-
dividualized treatment strategies.

Deep learning has recently gained attention as a technique for
realizing Artificial intelligence (AI) [13—15]. Several types of
deep-stacked artificial neural networks, such as convolutional
neural networks (CNNs) and recurrent neural networks
(RNNSs), have been proposed and judiciously used in various
fields. Deep CNNs are especially recognized as demonstrating
high performance for image recognition tasks [16, 17]. Some
initial successes in applying deep learning to the assessment of
radiological images have been witnessed [18-21]. A study used a
deep learning algorithm to non-invasively predict the IDH
(Isocitrate Dehydrogenase) status within a multi-institutional
dataset of low- and high-grade gliomas [22]. Deep learning also
shows the potential to stage liver fibrosis based on radiological
images [23]. However, there is embarrassed that performing deep
learning often faces a shortage of medical data, especially in
radiological images of patients undergoing treatment. Transfer
learning, which is a feasible deep learning technique for address-
ing a lack of image data, has been proven a highly effective
technique, particularly in the case of limited medical images
[24, 25]. The models have been used to distinguish the features
of the medical images in a much faster manner and with signif-
icantly fewer training medical images [13].

In this study, based on the CT images from three independent
centers, we aimed to investigate a deep learning algorithm to
precisely and non-invasively evaluate the different therapy re-
sponse in HCC patients before the TACE treatment.

Materials and methods

Patients

Our retrospective study had been approved by the institutional
review board and Ethical Committee (NFEC-201208-K3). This
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study included patients in Nan Fang Hospital (NFH), Zhu Hai
Hospital Affiliated with Jinan University (ZHHAJU), and Sun
Yat-sen University Cancer Center (SYUCC), who matched the
following criteria for selection: (a) radiologically or pathological-
ly proven HCC; (b) received initial treatment of TACE; (c) avail-
ability of hepatic-arterial CT imaging within 7 days before treat-
ment; (d) availability of hepatic-arterial CT imaging within
30 days after treatment; and (e) patients with Barcelona Clinic
Liver Cancer (BCLC) stage B. The exclusion criteria were as
follows: (a) previous treatments, including loco-regional or
whole-body therapies, such as liver transplantation, radiotherapy,
radiofrequency ablation, or sorafenib treatment, and (b) other
malignant liver tumors. Electronic medical records were used
to collect the pretreatment clinical characteristics of patients.
Supplemental Figure 1 shows the recruitment pathways for pa-
tients in training and two validation cohorts. Based on the radi-
ology evaluation in patients after the first TACE therapy, the
different responses on hepatic-arterial CT images were deter-
mined by modified RECIST (mRECIST 1.1), including com-
plete response (CR), partial response (PR), stable disease (SD),
and progressive disease (PD). We defined the objective response
as CR+PR and the non-response as SD+PD.

CT acquisition and region-of-interest segmentation

Contrast-enhanced computed tomography (CECT) was per-
formed at three hospitals as previously described [26].
Supplemental Table S1 presents the scan characteristics for
the three centers. All CT images were downloaded using a
picture archiving and communication system (PACS; Nan
Fang Hospital, Zhu Hai Hospital Affiliated with Jinan
University, and Sun Yat-sen University Cancer Center
Network Center, China). The CT images of all patients were
input into the ITK-SNAP software (version 3.6). The tumor
regions of interest (ROIs) were analyzed by three senior radi-
ologists who had 14-year experience (reader 1, Jing Zhang),
17-year experience (reader 2, Jingxian Shen), and 23-year
experience (reader 3, Yikai Xu). The ROIs of CT images from
the training cohort (NFH) and two validation cohorts
(ZHHAIJU and SYUCC) were manually segmented by reader
1 and reader 2, respectively. Then, reader 3 confirmed each
ROI and saved as the main file (CT image) and segmentation
file (mask image) in the ITK-SNAP software. All radiologists
were specifically blinded to the therapy outcome of the pa-
tients from three cohorts.

Image preprocessing

The window width and level were transformed into the orig-
inal one. All CT images were reconstructed using a medium
sharp reconstruction algorithm with a thickness of 1 mm.
Subsequently, the intensity values of the image were mapped
to [0, 1]. This target of the deep learning algorithm is the

classified labels of CR, PR, SD, and PD. We saved one CT
image and mask of ROI from the largest tumor area for each
patient and then saved the other two CT images and two cor-
responding masks of ROIs from the nearest sequences. Using
an in-house algorithm, we extracted an average of approxi-
mately three patches with a resize of 224 x 224 x 3 for each
patient in the training and two validation cohorts, respectively.
Notably, each patch for the training and validation of the net-
work was entirely included in the ROIs of the CT images.
Finally, 1687 patches were extracted from 562 patients for
training (NFH); 268 patches were extracted from 89 patients
for validation 1 (ZHHAJU); and 406 patches were extracted
from 138 patients for validation 2 (SYUCC). Data augmenta-
tion techniques were introduced before the training procedure
considering the potential bias caused by the unbalanced data
and big data requirement of deep learning [27]. Specifically, in
our study, the patches were equally and randomly distributed
across each class by data augmentation, including level flip,
vertical flip, level and vertical flip, 90° rotation, and —90°
rotation. Using this method, we built a “new” training data
and this augmentation was only performed on the NFH co-
hort, not on the two external validation cohorts. In order to
minimize memory usage, we used data augmentation only in
real time.

Transfer learning of the residual neural network

ResNet is a representative deep convolutional neural network
integrated with images, auto-encoding, and classification. It
won the 2015 ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) by using feature transmission to prevent
gradient vanishing, such that a much deeper network than
those used previously could be effectively trained [28].
Motivated by a previous study that a deeper network is poten-
tially more powerful than shallow networks, our residual net-
work was derived from a 50-layer residual network architec-
ture and has 177 layers in total, showing detailed information
in the Supplementary Information (ResNet50). ResNet50 has
been trained on a subset of the ImageNet database (http://
www.image-net.org) and can classify images into 1000
object categories (e.g., keyboard, mouse, pencil, and many
animals). The architecture of ResNet50 and flowchart of
deep learning for CT images were shown in Fig. la—c. We
froze the weights of earlier layers (1 to 174) in the pretrained
network. The trained network does not update the parameters
of the frozen layers. Freezing the weights of many initial
layers can significantly speed up network training and
prevent over-fitting to the new medical dataset.

A series of blocks consisting of three convolutional
layers (fc1000, fc1000_softmax, and classification
layers_fc1000) were replaced by new layers (fc4,
fc4 softmax, and classification layers fc4) to extract deep
residual features and transmit features from the front layer

@ Springer
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Architecture of ResNet50 model
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Fig. 1 The architecture of ResNet50 and deep learning model flowchart.
a, b Architecture of ResNet50 is shown and includes convolution layers,
max pooling layers, and a fully connected layer. ¢ A ResNet50 model was
pretrained on a million images from the ImageNet database and can
classify images into 1000 object categories. Based on this new dataset
of CT images, a transfer learning model was adapted to significantly
shorten the training time and improve the accuracy. The earlier

to the latter one. At the end of the network, a full-
connection layer was used to perform classification.
During training, the weights were optimized via the sto-
chastic gradient descent (SGD) optimization algorithm
with a mini-batch size 64 [29]. After fine-tuning parame-
ters of deep learning, the learning rate and the number of
max epochs were set to 0.0001 and 54, respectively, to
ensure covering of the entire data for efficient training.
The loss function was identified as binary cross-entropy.
We used the sigmoid function to compute the probability
before the output layer. The performance of deep learning
model was estimated by AUC and accuracy
(Accuracy = %Zl(yi = ti) ). The patches from Nan Fang
Hospital (NFH) were trained via pretrained ResNet50.
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connected layers were frozen (1 to 174), and the final connected layers
were replaced (175 to 177). Finally, this model was transferred to a novel
network. All patches were augmented in the proposed approach after the
ROI patches were determined from the CT images. A transfer learning
50-layer residual convolutional neural network was used to predict the
response to TACE therapy

Based on the trained model, patches from Zhu Hai
Hospital Affiliated with Jinan University (ZHHAJU) and
Sun Yat-sen University Cancer Center (SYUCC) were used
to be validated, respectively.

Implementation details

Our implementation was based on the Deep Learning
Toolbox™ Model for the ResNet50 Network in MATLAB
(version 2018a; MathWorks). Our training experiments were
performed in a Linux environment on a machine with the
following specifications: CPU Intel Xeon Processor E5-
2640V3 at 2.60 GHz, GPU NVIDIA Pascal Titan X, and
128-GB RAM.
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Fig. 1 (continued)
Statistical analysis

Statistical analyses were performed with R statistical software
version 3.5.0 (R Core Team, 2018), GraphPad prism 7.0, and
MATLAB 2018a. The receiver operating characteristic (ROC)
curves were plotted with the “pROC” package. A confidence
interval (CI) of 95% for AUC was calculated using each dataset
(1000 bootstrap). The confusion matrices were plotted with
MATLAB 2018a in three different cohorts to calculate the accu-
racies of estimating the response of TACE therapy. Decision
curve analysis (DCA) was performed using the “dca.R” package.
The Mann—Whitney U test was analyzed by R statistical soft-
ware. Two-sided p values < 0.05 were considered significant.

Results
Clinical characteristics of patients

Five hundred sixty-two patients with HCC were finally in-
cluded in the training cohort (NFH), and 89 and 138 patients
were allocated to the independent validation cohorts 1
(ZHHAIJU) and 2 (SYUCC), respectively. Table 1 summa-
rizes the baseline clinical characteristics of the training and
two validation cohorts. In the training cohort, validation co-
hort 1, and validation cohort 2, the age of 168 (29.90%), 28
(31.46%), and 38 (27.54) patients was more than 60 years,
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Features Fully connected

1

i
L

Predict and assess

network accuracy
Training images

Training options

$
-
- J

Test images

Trained network

respectively. Sixty (10.68%), 14 (15.73%), and 15 (10.87%)
patients were females in the training cohort, validation cohort
1, and cohort 2, respectively. In the training cohort, the pa-
tients for CR, PR, SD, and PD were 83 (14.77%), 151
(26.87%), 222 (39.50%), and 106 (18.86%), respectively. In
validation cohorts 1 and 2, the patients for CR, PR, SD, and
PD were 13 (14.61%) and 21 (15.22%), 24 (26.97%) and 37
(26.81%), 35 (39.33%) and 54 (39.13%), and 17 (19.09%)
and 26 (18.84%), respectively. No significant differences were
observed between the three cohorts in the clinical database.

Training and validation of the deep learning model
in multi-class classification

All the patches (n=1687) were augmented and trained in the
training cohort via the residual convolutional neural network
(ResNet50) to increase the robustness of the model. Figure 2a
shows that the accuracy was above 80% and the cross-entropy
loss was close to 0.5 after 54 epochs training (1401 iterations)
and 71 min 38 s time (Fig. 2b). The resulting model had an AUC
0f0.97 (0.97-0.98), 0.96 (0.96-0.97), 0.95 (0.94-0.96), and 0.96
(0.96-0.97) for CR, PR, SD, and PD, respectively (Fig. 3a). We
then tested the patches (n = 268) in validation cohort 1. An AUC
0f0.98 (0.97-0.99), 0.96 (0.95-0.98), 0.95 (0.93-0.98), and 0.94
(0.90-0.98) for CR, PR, SD, and PD was observed (Fig. 3b). In
validation cohort 2, the AUC:s of predicting CR, PR, SD, and PD
in TACE treatment were 0.97 (0.96-0.98), 0.96 (0.94-0.98),
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Table 1 Participant

characteristics in the training and Characteristic Training cohort Validation cohort 1 Validation cohort 2
validation cohorts (n=3562) (n=89) (n=138)

Age (years)

<60 394 (70.10%) 61 (68.54%) 100 (72.46%)

> 60 168 (29.90%) 28 (31.46%) 38 (27.54%)
Sex

Male 502 (89.32%) 75 (84.27%) 123 (89.13%)

Female 60 (10.68%) 14 (15.73%) 15 (10.87%)
HBsAg status

Positive 514 (91.46%) 80 (96.67%) 125 (90.57%)

Negative 48 (8.54%) 9 (3.33%) 13 (9.43%)
Child-Pugh classification

A 451 (80.25%) 74 (83.15%) 111 (80.43%)

B 111 (19.75%) 15 (16.85%) 28 (19.57%)
ALT (U/mL)

<40 240 (42.70%) 45 (50.56%) 69 (50.00%)

>40 322 (57.30%) 44 (49.44%) 69 (50.00%)
AST (U/mL)

<40 147 (26.16%) 27 (30.34%) 37 (26.81%)
>40 415 (73.84%) 62 (69.66%) 101 (73.19%)

AFP (ng/mL)

<20 322 (57.30%) 49 (55.06%) 83 (60.14%)

>20 240 (42.70%) 40 (44.94%) 55 (39.86%)
Hepatocirrhosis status

Present 294 (52.31%) 40 (44.94%) 70 (50.73%)

Absent 268 (47.69%) 49 (55.06%) 68 (49.27%)
Tumor size (cm)

<5 83 (14.77%) 12 (13.48%) 22 (15.94%)

>5,<10 245 (43.59%) 37 (41.57%) 52 (37.68%)

>10 234 (41.64%) 40 (44.95%) 64 (46.38%)
Tumor numbers

<3 463 (82.38%) 77 (86.51%) 114 (82.61%)

>3 99 (17.62%) 12 (13.49%) 24 (17.39%)
Response to therapy

CR 83 (14.77%) 13 (14.61%) 21 (15.22%)

PR 151 (26.87%) 24 (26.97%) 37 (26.81%)

SD 222 (39.50%) 35 (39.33%) 54 (39.13%)

PD 106 (18.86%) 17 (19.09%) 26 (18.84%)

HBsAg, hepatitis B surface antigen; ALT, alanine aminotransferase; AS7, aspartate aminotransferase; AFP, alpha-
fetoprotein; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease

0.94 (0.92-0.97), and 0.97 (0.95-0.98), respectively (Fig. 3c).
The deep learning model indicated good discrimination of the
therapy response using the ROI patches in the two cohorts.

We next focused on the predictive accuracy of the deep learn-
ing model in each patch by confusion matrix. The training cohort
exhibited an average accuracy of 84.0% and a low error of 16%
of predicting CR, PR, SD, and PD in TACE therapy (Fig. 3d).
The independent validation cohorts 1 and 2 showed an average
accuracies of 85.1% and 82.8% and low errors of 14.9% and
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17.2%, respectively (Fig. 3e, f). We further chose four typical
patches of different therapy responses from validation cohort 2
and displayed the CT images of the maximum cross-sectional
diameter of the liver tumor, including pretreatment and post-
treatment of the hepatic-arterial phase images (Fig. 4a). As
shown, the deep learning model performed well in the classifica-
tion of predicting CR, PR, SD, and PD of TACE treatment.
There were some difficult cases of these patterns that were
misclassified in the ResNet50. We displayed eight misclassified
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Fig. 2 Training and validation a
processes of the deep learning 100 |
model based on the CT images.
Accuracy (a) and cross-entropy
loss (b) were plotted against the
training step during the length of
the training of the four-class clas-
sifier over the course of 54 steps.
The red and black lines represent
the training and validation pro-
cesses, respectively. The cross-
entropy loss was close to 0.5,

Accuracy (%)

while the final validation accura- ) 10 . 20 ! 30I ) 40 | 50 |
0
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Loss
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images of ROI from validation cohorts 1 and 2 in Fig. 4b. For
example, CR could be incorrectly predicted as SD (44.67%) in
patient 2, and PD also could be incorrectly predicted as PR
(76.02%) in patient 7.

Evaluation on performance of two-class classification
via trained ResNet50 model

Multiple 2D arrays were output by the convolutional layers of
a ResNet50 model. To further estimate the classification per-
formance of our deep network trained on four-category learn-
ing, we have considered a clinically important task, including
two-class classification of objective response (CR or PR) and
non-response (SD or PD). On the task of two-class classifica-
tion, we have merged the output prediction probability by the
trained deep learning model for four-category classification,
for adding CR and PR (i.e., y"P°™¢ =% 1 JPR) The proba-
bility value of therapy response (objective response) was sig-
nificantly increased in the response HCC patches versus the
non-response HCC patches in Supplemental Figure 2A—C
(each cohort, p < 0.0001). Throughout this method, the model
achieved an AUC 0f 0.95 (0.95-0.96), 0.96 (0.94-0.97), and
0.97 (0.96-0.98) in the patches from NFH, ZHHAJU, and
SYUCC cohorts (Fig. 5a). The probability value of therapy
response was calculated bythe average probability values of
all patches in each patient of three cohorts. We found the
ResNet50 model presented high AUC in the patients of three
cohorts (Fig. 5b). To analyze the clinical use of model based
on deep learning, the decision curve analysis (DCA) for the

600 800
Iteration

1000 1200 1400

predictor of ResNet50 was performed in this study. When the
threshold probabilities are ~2% and 4%, the model shows
stronger benefit in comparison with the treat-all or treat-none
strategy in the ZHHAJU (Fig. 5c) and SYUCC (Fig. 5d) co-
horts. This similar performance of DCA also has been
displayed in the training cohort (Supplemental Figure 3).

Discussion

In this study, we demonstrated a novel application of deep
learning to predict the response of TACE therapy in a three-
institution dataset of HCC. As far as we know, this is the first
time that the deep learning model based on radiological im-
ages is used to predict the four responses of interventional
treatment in liver cancer. This algorithm may facilitate deep
learning techniques for the medical field of precise therapy
oncology. Based on the pretreatment ROI images of patients
with HCC, this utility model of deep learning is a potential
method for predicting the response of TACE therapy.
According to the BCLC stage system, TACE is recommend-
ed for patients with HCC with BCLC stage B [6, 30-32]. In
patients with stage C, TACE therapy is also a frequent and
important application treatment, especially in comprehensive
treatment [33-35]. Recent studies revealed that the therapy re-
sponse at first chemoembolization is a good predictor for the
favorable outcome in hepatocellular carcinoma [10, 36].
However, no report was associated with the prediction response
of TACE therapy in the field of hepatocellular carcinoma via
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«Fig. 3 ROC curve and confusion matrix for predicting the response to
TACE therapy. a Each patient for the assessment of the response to TACE
therapy is shown via the ROC curve. In the training set, the deep learning
model had an AUC 0f0.97, 0.96, 0.95, and 0.96 for CR, PR, SD, and PD,
respectively. b In validation 1 set, the deep learning model had an AUC of
0.98, 0.96, 0.95, and 0.94 for CR, PR, SD, and PD, respectively. ¢ In
validation 2 set, the deep learning model had an AUC 0f0.97, 0.96, 0.95,
and 0.95 for CR, PR, SD, and PD, respectively. d—f The model exhibited
accuracies of 84.3%, 85.1%, and 82.8% in the three cohorts (NFH,
ZHHAIJU, and SYUCC), respectively

deep learning of CT images. Previous studies showed that dif-
ferent clinical risk factors (e.g., tumor size) perform well in
prediction [37-39], but the precise estimation of four therapy
responses remains challenging in clinical settings and difficult
to implement. A new method involving a radiomics approach

a Patient 1

Predicting
Result

Before
Treatment

After
Treatment

Patient 2

based on radiological images (e.g., CT, MR, and PET-CT) is
also currently being applied in various tumors. It extracts radio-
graphic features from conventional images and includes the
features of tumor shape, texture, intensity, and wavelet trans-
form characteristics [40-46]. However, numerous pre-
engineered features are artificial design features. This may lead
to poor reproducibility and nonredundant radiomics features
(RFs) for CT images because of the variable scan parameters
of different types of imaging equipment [47]. The application of
radiomics also relies on traditional machine learning tech-
niques. Unlike the above method, the algorithm of deep learn-
ing can directly learn predictive features from the images and
potentially greatly increase the robust accuracy in these radio-
logical images [48, 49].

Patient 4

Patient 3

b
@ . :
2 -
g_CR 17.68% 2158% 18.98% 9.79% 32.63% 6.23% 0.49% 5.31%
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Fig. 4 Examples of correctly predicted and misclassified patches by the
ResNet50. a Horizontal cross-section CT images through four patients of
validation cohort 2 with HCC before and after 1 month of TACE therapy.
b Eight patches showed the misclassifications of four therapy responses

in validation cohorts 1 and 2, respectively. The output of the deep learning
model is presented below each patch. Red and green colors represent the
ROI images from validation cohorts 1 and 2, respectively
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Fig. 5 ROC curve and DCA curve for estimating the objective response
to TACE therapy. a In the NFH, ZHHAJU, and SYUCC cohorts, the deep
learning model had an AUC 0f0.95, 0.96, and 0.97 for predicting therapy
response via patches, respectively. b Based on the predictive probability,
the model presented an AUC of 0.95, 0.96, and 0.97 for predicting
therapy response in all patients from NFH, ZHHAJU, and SYUCC

Previous studies mostly focused on deep learning based on
the small segmentation patches of each ROI image to enhance
the size of the sample and frequently showed a significant AUC
[50-52]. However, the scenario of predicting the labels of entire
ROI images was often ignored. Therefore, we used an algorithm
of transfer learning to evaluate the treatment response via the
whole CT-ROI patches. Comparing with previous study, high
AUC:s of predicting CR, PR, SD, and PD in the therapy response
of TACE were observed among the three cohorts [12]. This result
indicated that our transfer learning model performed well in
predicting different therapy responses using CT images from
three independent centers. The result of the confusion matrix
presented significantly high accuracies of prediction in the
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cohorts, respectively. In the ZHHAJU (¢) and SYUCC (d) cohorts, the
DCA indicated that when the threshold probability was above 2% and
4%, THE use of the deep learning model for predicting TACE response
would gain more benefit than the “treat-all” patients or “treat-none”
schemes

NFH, ZHHAJU, and SYUCC cohorts and was distinct from
previous report [11]. Interestingly, we found the accuracy for
the training cohort was lower than for the validation cohort 1
(84.3% vs. 85.1%). We speculated the phenomenon was corre-
lated with a small sample size of patients in validation cohort 1.
Increasing number of patients would potentially reduce the val-
idation accuracy. Misclassified CR patches by the deep learning
model were more observed in PR patches than in SD and PD
patches in the training cohort (1.5%) and validation cohorts 1
(1.7%) and 2 (1.1%). Meanwhile, misclassified PD patches were
more frequently found in PR patches than in SD and CR patches.
The precision probability of preoperatively predicting the four
therapy responses (i.e., CR, PR, SD, and PD) via each ROI patch
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was calculated and found useful in individualized clinical treat-
ment. We further investigate the prediction of objective response
(response or non- response) in patches or patients and also found
high accuracies in the three cohorts. This finding demonstrated
that the deep learning model based on CT images may help
doctors recognize patients who would acquire well or poor initial
response of TACE therapy.

However, our study has several limitations. First, the sam-
ple size of patients with HCC was relatively small, and this
was a retrospective research. A much larger database of the
prospective study would be collected from more centers in the
future. Second, we trained and validated all the patches of the
2D CT images from three medical centers. Because of 3D
patches’ potential of having more context information, we
speculated the 3D CT patches had an accuracy higher and a
better model quality than that of the 2D CT patches. The 3D
CT patches would be investigated in the next step. Third, the
correlation between the biological processes (e.g., differential
gene expression and pathway) and the prediction results of
deep learning networks in HCC was unknown and should be
analyzed in the future. Fourth, the ROIs were drawn manually
in our study. Lesions selected from different abdominal radi-
ologists might have various differences, impacting on disease
classification. We would use the combination of the algorithm
for HCC segmentation and ResNet50 model to automatically
predict the outcome of TACE therapy in the following study.

In summary, the deep learning model based on CT images
would potentially serve as a new tool for predicting the ther-
apy response of patients undergoing TACE treatment. Our
method using transfer learning for predictive classification of
radiological images may also be used to determine more pre-
cise clinical treatments in other malignant tumors.
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