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In optical communication systems, fibre nonlinearity is the major obstacle in increasing the
transmission capacity. Typically, digital signal processing techniques and hardware are used
to deal with optical communication signals, but increasing speed and computational com-
plexity create challenges for such approaches. Highly parallel, ultrafast neural networks
using photonic devices have the potential to ease the requirements placed on the digital sig-
nal processing circuits by processing the optical signals in the analogue domain. Here we
report a silicon photonic—electronic neural network for solving fibre nonlinearity compen-
sation of submarine optical fibre transmission systems. Our approach uses a photonic neu-

ral network based on wavelength-division multiplexing built on a CMOS-compatible silicon



photonic platform. We show that the platform can be used to compensate optical fibre non-
linearities and improve the signal quality (Q)-factor in a 10,080 km submarine fibre com-
munication system. The Q-factor improvement is comparable to that of a software-based
neural network implemented on a 32-bit graphic processing unit assisted workstation. Our
reconfigurable photonic-electronic integrated neural network promises to address pressing

challenges in high-speed intelligent signal processing.

Artificial Neural networks (ANNs) can learn from examples and perform tasks without being
programmed with explicit rules, providing a powerful tool to solve problems in many disciplines™2.
Current applications with ANNs, such as image and voice recognition, are typically performed lo-
cally at kHz speed or on cloud servers — which high latency — using conventional computers.
But many emerging ANN applications demand gigahertz bandwidth, real-time operations, and
low power consumption . ANNSs have, for example, been applied in optical fiber communica-
tions where they can learn optical fiber transmission models from received signals without prior
knowledge of transmission conditions®”. The ANNs can be used to compensate fibre nonlinear-
ity impairment, the major limiting effect of increasing capacities in long-distance transmission
systems®. Compared to conventional fiber nonlinearity compensation approaches, such as digital
backpropagation (DBP)?, an ANN can achieve comparable signal quality improvement with lower
computational complexity'”. However, such ANNs have only been implemented in software, and

thus the data processing was not in real-time®.

In optical communication systems, the signal bandwidth is tens of gigahertz, and the signals



must be processed in real-time. Bounded by the clock rate of digital electronic hardware (typically
application-specific integrated circuits; ASICs), processing such high-speed signals requires mas-
sive parallelisation. As a result, the circuit complexity scales with the computational complexity of
the digital signal processing (DSP) algorithms. At the same time, the signal processing unit needs
to be built into a pluggable transceiver module and its power consumption needs to fit into the
power envelope of network switches, typically tens of watts including both optical and electrical
modules'!. The challenges in high circuit complexity with a tight power budget have prohibited
implementing high-performance, but computationally intensive, ANN based algorithms'?. And ef-
forts have been focused on developing algorithms that lead to a compromise between transmission

link performance and DSP complexity.

An alternative approach is to explore hardware that intrinsically offers both high bandwidth
and low power consumption in ANN applications, and photonic neural networks (PNNs) could
potentially provide such capabilites’*!#, PNNs aim to leverage high-speed optical devices to mimic
the essential computing primitives (neurons and synapses) and connect them into a neural network
with highly parallel and dense optical interconnects. As a result, PNNs are potentially capable of
supporting real-time ANN implementations with tens of gigahertz bandwidth in a single pipeline.
The approach could thus address DSP related hardware constraints, such as analogue-to-digital
performance and computational complexity, and help cope with the increasing data transmission

capacity.

PNNs have previously been demonstrated on various platforms, including free-space!>1¢,



2021l and integrated photonic circuits®**2%, The past decade has

optical fibres' /"1, diffractive optics
seen a rapid development of silicon photonics, driven by the rising demands in optical communica-
tion capacities. These advances have provided fast and efficient optical modulators and detectors
for optical communications, and have led to high-density integrated optoelectronic devices and
interconnects that can perform scalable information processing and computing tasks. However,
many of the integrated devices demonstrated so far have focused on building analogue intercon-
nects for multiply-accumulate (MAC) computations for linear matrix-vector multiplication opera-

tions 2024

with nonlinear activation functions (neurons) implemented offline (in the digital domain)
or with slow optics. Alternatively, there have been demonstrations of neurons with reconfigurable
activation functions but without co-integrated linear operations 2228, The lack of a fully integrated

neuron with network compatibility prevents PNNs from performing real-time processing with gi-

gahertz bandwidth, which is vital for many signal processing applications.

In this Article, we report an integrated silicon PNN system that integrates a full NN model
with neurons and synapses, and demonstrate for the first time that a PNN is capable of simul-
taneously providing accurate weighting, summation, and biased nonlinearity (i.e., neurons) for
high-speed signals. Integrating fast photonic neurons on chip is a critical step toward achieving
high-speed NN for real-time intelligent signal processing. Our PNN is a reconfigurable photonic-
electronic integrated circuit and is programmable to perform different tasks. We demonstrate a
unique application of PNN for fibre nonlinearity compensation (NLC) in submarine optical fibre
communications transmission systems. ANN parameters trained on a computer in advance are

accurately uploaded to our photonic chip, which can then be used to perform inference acceler-



ation tasks. Our platform can predict optical fibre nonlinearities and improve the signal quality
(Q)-factor in a 10,080 km submarine fibre communication system. The Q-factor improvement
is comparable to the results obtained from a software-based neural network running on a 32-bit
graphics processing unit (GPU)-assisted workstation. The results illustrate that our photonic ana-
logue computing circuit can preserve signal integrity, while offering potential speed and gigahertz
bandwidth advantages without sacrificing accuracy. The NLC application could also be gener-
alized as a regression problem, and extended to solve different real-world application problems

currently unreachable with conventional computing technologies.

1 Neural network model for fiber nonlinearity compensation

We investigate a 10,080 km submarine optical transmission system carrying a single channel
Gbaud polarization-multiplexed (PM)-16 quadrature amplitude modulation (QAM) signal. While
recent demonstrations have shown the transmission capacities have approached the Shannon limit
in the linear regime of optical fibers, the nonlinear impairment remains the major limiting effect in
long-distance transmission systems “*. The evolution of the signals in the fiber link is described by

the Nonlinear Schrodinger Equation:
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where u, /, (t, z) is the optical field at the x and y polarizations, respectively, 3, is the group veloc-
ity dispersion governing the linear impairment, and ~y is the Kerr nonlinear coefficient governing

the nonlinear impairment in the fiber transmission systems. Although state-of-the-art DSP can



overcome linear impairments, nonlinear impairments remain difficult to overcome due to the dif-
ficulty in applying computationally expensive nonlinear compensation algorithms using ASICs.
The nonlinearity impairment can be treated as the the perturbation due to the nonlinear effects, i.e.,
Ugy(t, 2) = Uozsy(t, 2) + Augyy(t, 2), Where ug 4/, (t, 2) is the solution of linear propagation and
Aug/,(t, 2) is the nonlinear perturbation. The idea of NLC is to build up a model of the nonlin-
ear perturbation Au,,,(t, z) with the abundance of transmission data using a NN, and remove the

distortion by subtracting the perturbation from the received optical field w, (%, z).

Here we first consider how fiber nonlinearities impair the signal on the x-polarization as

an example. We define a term triplet as T’ = H,H

m-+n

H,, + V.V, . Hy, where H and V' are
the received symbol sequences at the x- and y- polarizations, respectively. m and n are symbol
indices with respect to the symbols of interest H,. Triplet 7" represents the nonlinearities added
on the X-polarization signals, which is caused by the nonlinear interactions among the signals at

the same polarization (i.e., H,, H,, ,, Hy,) and orthogonal polarizations (V,,V, . H,,), as shown in

m—i—n

Eq.[2] Triplet T" corresponds to the nonlinear terms on the right side of Eq.[I] Then, the nonlinear

perturbation can be approximated by a combination of triplets 7"V
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where F is the launch power, C,, ,, are the nonlinear perturbation coefficients.

Fig.[I(a) shows the NN model for NLC. The NN is a fully connected feed-forward network
consisting of an input layer with 892 triplets, two hidden layers with 2 and 8 neurons, respectively,
and an output layer. The model is trained using the signal on either x or y polarization only, but
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Figure 1: (a) (left) Neural network (NN) model for fiber nonlinearity compensation (NLC). The NN has
an input layer with nonlinear triplets, 2 hidden layers with of 2 and 8 neurons in each layer, and an output
layer with 2 output nodes corresponding to the real and imaginary parts of the estimated nonlinearity on
one polarization, and (right) PNN implementation of the second hidden layer of the NN model based on
weight-and-broadcast architecture223, Red (blue) arcs are n-doped (p-doped) regions. (b) A false-color
confocal micrograph of the PNN device. (c) Chip packaging and optical coupling setup. (d) A detailed
circuit diagram of a photonic neuron.



the trained parameters can be applied to both polarizations. Here, we choose polarization x as
an example. The inputs of the NN are the triplets T for the x-polarization signal ®. The two
outputs of the NN are the real and imaginary components of the estimated nonlinearity H kNI at
the k-th symbol. The recovered symbol H, is obtained by subtracting H %, Nz from the received
symbol Hy, i.e. f[k = H, — ﬁk, ~r- The NN is trained by searching for the tensor parameters
that minimize the mean squared error (MSE) between the H , and the transmitted symbol A, .
After training, the NN can execute the inference task of estimating the optical nonlinearity of
every incoming symbol. The NN is much simpler than those used for many other applications
(e.g. image processing). Nevertheless, high-speed communications signals require fast operating
speed, posing many challenges to today’s digital electronic hardware. For example, to process 32
Gbaud PM-16QAM signals, NN hardware must have a throughput of approximately 232.4 TOPS.
A typical NN accelerator, Tensor Processing Unit (TPU), offers a peak operation throughput of
92 TOPS*2. As a result, the need for evaluating NN models for optical communication signals

necessitates the development of new hardware.

2 Photonic hardware implementation

The NN model are implemented using a PNN with WDM-based broadcast-and-weight architec-
ture, as shown in the yellow region of Fig. [I{a). The information of each neuron is encoded on
a unique wavelength of light and multiplexed on a single optical waveguide. In the feed-forward
network, the neuron output in the previous layer is first broadcast to all neurons in the next layer

by a power splitter, then weighted in parallel with an array of microring resonators (MRR) in an



MRR weight bank configuration, and finally summed by a balanced photodetector. Weights are
applied by the MRR banks by tuning the partial transmission of signals. The weighted signals are
detected, generating photocurrent to drive the optical modulators in the second layer. This process
involves a nonlinear conversion of optical power into electrical current and back into the signal

pathway, and hence serves as the nonlinear activation function (i.e. neuron) in the PNN4,

The signal pathways in the PNN can be fabricated using standard silicon photonic platforms,
which provides critical aspects of feasibility and economies of scaling to the full NN model for
NLC. Several notable studies have demonstrated the integration of thousands of photonic compo-
nents on a single silicon photonic chip>*3%, For the first time, we show that the PNN can provide
accurate and fast weighting, summation, and biased nonlinearity for high-speed signals, and we
experimentally implement the second hidden layer of the NN model using a 4x2 PNN, as shown
in Fig. [I(b). In particular, integrating fast photonic neurons on chip is a critical move toward
achieving high-speed NNs for real-time applications such as NLC. In the Discussion section, we

discuss that the PNN can be robustly scaled to incorporate the full NN model.

The PNN device comprises two arrays of MRR weight banks connected to two photonic
neurons. The second hidden layer consists of 8 neurons, and each neuron is connected to the two
neurons in the first hidden layer by a 2x2 weight matrix. To emulate the second hidden layer
with the 4x2 PNN circuit, we feed the two first-layer outputs to the PNN four times with four
subsets of weights and biases. The photonic neuron circuit diagram is shown in Fig. [I[(d). The

MRR weight bank is implemented with in-ring N-doped photoconductive heaters®> and provides



the key functionality to configure connection strengths (i.e. weights or synapses). The weight is
determined by the MRR transmission, which can be thermally tuned by adjusting the electrical
current applied to the N-doped heaters®. The N-doped heaters allow continuous, multi-channel

control of the MRR weight bank with accuracies up to 8 bits>®=’

, which quantifies the precision of
weights implementation affected by the noise in the setup. The bit resolution obtained in photonic
matrix multiplier is comparable that used in DSP ASICs. The MRR weight bank has two comple-
mentary optical outputs, each of which is detected by a germanium-on-silicon photodetector. The
two photodetectors form a balanced photodetector ¥, where the output photocurrent represents
the subtraction operation between the two MRR weight bank outputs, resulting in a complemen-
tary —1 to +1 continuous weight range. The photocurrent, combined with a forward bias current
Ipiqs, modulates the transmission of the MRR modulator (i.e. photonic neuron) via free-carrier
injection to the p-n junction, and hence modulates the optical power of a continuous-wave laser
(labeled as "neuron pump’’). The on-chip capacitor and resistor provide a network matching circuit
for efficient optical-electrical-optical (OEO) conversion (see Supplementary information Photonic
neuron simulation for detailed circuit analysis). The MRR modulator exhibits nonlinear electrical-

to-optical transfer functions, which produce the activation function in the NN. Furthermore, the

neuron biases can be configured by adjusting the electrical current applied to the MRR modulator.

3 Training with photonic neural network

The proposed PNN provides trainable parameters including both weights and biases. Trainable

biases are critical for the NLC application, because they can optimize the transfer function shapes
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Figure 2: (a) Flowchart of training process. (b) Activation function of photonic neuron. (c) The Q fac-
tor converges as the NN is trained, 32,016 symbols generated from the transmission system to monitor the
training process; red trace: Q factor before nonlinearity compensation. (d) Transmission performance com-
parison. The neural network model for NLC is trained with the activation function of photonic neuron. The
3-step and 6-step DBP mean that fiber nonlinearity is compensated based on the conventional DSP approach
digital backpropagation by equally dividing 10,080 km transmission link into 3 and 6 sections, respectively.
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to best approximate the higher-order nonlinearity features from the symbols. To ensure that the
trained NN parameters can be accurately mapped on the photonic device, we include the acti-
vation function of photonic neurons in the training phase. As shown in Fig. [2(a), we begin by
characterizing the on-chip activation function by sending a training data sequence into the weight
bank and recording the corresponding neuron output waveform. The transfer function is fitted to
a Lorentzian function, as shown in Fig. 2(b), since the E/O response of MRR modulators is typi-
cally a Lorentzian function. The training data have the same data rate as the test data, in order to
capture the bandwidth and the noise in the device that would affect the activation function shape.
Following that, we apply the characterized activation function in the NN model and train the neural

network with the Adam learning algorithm?.

The NN is trained with 32,106 training symbols in a single channel 32 Gbaud PM-16-QAM
signal transmitted over a 10,080 km pure silica core fiber link. The weights are constrained to a
range of -1 to 1 during the training, according to the operation range of the MRR weight bank.
We monitor the Q-factor of a cross-validation (CV) data set to ensure that the NN is successfully
trained to recognize the fiber nonlinear distortion. The CV data set contains 32,106 symbols and is
independent with the training data set. As shown in Fig. 2]c), the Q-factor of the CV data increases
gradually in the training process and finally converges to 8.1 dB after 21,600 steps. To enable
efficient training, here we train the NN with a launch power higher than the optimal value. After
training, a test data set with varying launch powers is sent to the optical link and processed by the
trained NN. The nonlinear perturbation obtained from the NN is weighted by the difference in the

launch power between the training and test set, and is then subtracted from the received signal.
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Figure 3: Experimental Setup. MZ-Mod: Mach-Zehnder modulator; AWG: arbitrary waveform generator,
CPL: coupler; EDFA: erbium-doped fiber amplifier, PC: polarization controller; SMU: source meter unites;
PNN: photonic neural network; PD: photodetector.

The Q factor of the signal after NLC is calculated and plotted in Fig. 2[d). The optical power at
the Q factor peak is the optimal power that should be launched in the transmission fiber. Using the
simulated PNN, the Q factor of the transmission link is increased by 0.66 dB as compared to that
without NLC. Compared with 3-step DBP, the PNN is capable of achieving comparable Q factor

performance.

4 Photonic neural network implementation

Following training, we implement the trained NN model to the PNN device, and evaluate whether
the PNN can accurately compensate fiber nonlinearity impairment for high-speed signals. (See
Supplementary Table. 3 for the weights and biases values). The experimental setup is shown in
Fig. 3] To emulate the first hidden layer outputs, two external cavity lasers are modulated with

two waveforms generated from a two-channel arbitrary waveform generator (AWG). Each channel
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operates at a sampling rate of 375 MSample/s and generates a waveform of 32,106 test symbols at
a symbol rate of 46.875 Mbaud/s. The test signal is independent of the signals in the training phase.
The wavelengths of two lasers are initially aligned with the resonances of two MRRs in the MRR
weight banks. The two signals are then combined and coupled into the PNN chip via a grating
coupler. Two neuron pumps are derived from another two external cavity lasers with wavelengths
close to the resonances of the MRR modulators. The modulator’s p-n junction is forward biased,
allowing photocurrents from the balanced photodetector to modulate the neuron pumps through
free-carrier injection. Under the carrier injection mode, the measured neuron bandwidth is 150
MHz. In Supplementary information Fig. 2, we show that, with the same photonic circuits and
optimized MRR modulator geometry, the neuron bandwidth can be practically improved to 10

GHz.

The trained NN parameters are grouped into four subsets, each with a 2 x2 weight matrix and
2 neuron biases. Each weight matrix is mapped to a current matrix I, and applied to the in-ring
heaters of the MRR weight banks using the control method described in Ref *®. To apply neuron
biases, the modulator bias current I, is tuned to approximate the trained transfer function. The
22 current matrix and 2 modulator biases are simultaneously applied to the PNN chip. Fig. [4{(a)
shows the waveform snapshots from the PNN output, which presents the outputs of the second hid-
den layer, together with the measured transfer function of the eight neurons. Each neuron’s transfer
function corresponds to the different piece of the characterized Lorentzian function under intended
neuron biases. We simulate the same NN with a 32-bit GPU-assisted workstation to benchmark

the accuracy of PNN implementation. Each neuron is evaluated by comparing the experimental
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Figure 4: (a) waveforms at the second hidden layer output. Green dashed line: photonic neuron wave-
form; red dot: photonic neuron waveform downsampled to the data rate of 16-QAM signals; blue triangle:
simulated waveform after downsampling. Ideally, the red points should overlap with the blue. And biased
activation function characterized from the measured waveforms (blue dot) versus ideal activation function.
(b) constellations of the 16-QAM signal on the X-polarization. Red: without nonlinearity compensation
(NLC); blue: NLC using PNN; green: NLC using simulated NN. Red cross: constellation diagram of

16QAM without noise.
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PNN output (red dots) with the simulated NN (blue dots). The mean squared errors (MSEs) of
photonic neurons are calculated over 32,016 test symbols. MSEs are used to quantify the errors
caused by noises and derivations from target weights and activation functions. The MSEs vary
between 0.008 to 0.014. The signal’s Q factor is then calculated from the eight photonic neuron
outputs (see Supplementary information Q factor calculation). Without nonlinearity compensa-
tion, the optimal Q-factor of the signal is 9.34 dB, obtained at the launch power of -1 dBm. With
the PNN, the signal’s Q factor is improved by 0.60 dB, and the constellation diagram after NLC
is plotted in Fig. d(b.i), showing less noise in contrast to that without NLC. The Q-factor obtained
from the simulated NN indicates a 0.65 dB gain in Q-factor. That is, the penalty of loading the
neural network to the PNN is only 0.05 dB after taking into account all inherent noise from the

physical components and equipment.

S Scalability for NLC

Mainstream silicon photonic platforms offer an opportunity to implement the entire neural network
for NLC on a single silicon photonic chip. Silicon photonic circuits with a few thousands of

d 2¥3% Weight pruning® is an effective pathway for reducing

elements have been demonstrate
the PNN footprint and power consumption, which can be accomplished by having a few more
neurons in hidden layers (see Fig. [5)) while reducing the number of input triplets. The current
NN model has 892 input triplets. After weight pruning, the number of inputs can be reduced by

three times to 300. The photonic neural network, in this case, has 952 optoelectronic components.

These components require 0.38 mm? chip space. Electrical traces and pads connecting to the
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optoelectronic components provide electrical biases to the photonic circuit. Electrical traces and
pads connecting to the optoelectronic components provide electrical biases to the photonic circuit.
The amount of chip space used by electrical traces and pads varies significantly depending on
the chip floorplan and packaging technologies. For example, the electrical traces can be very
short using the flip-chip bonding technology, and the pads take up 0.76 mm? areas (each bonding
pad takes 20um x 20um area)™. Ref ¥ have demonstrated that silicon photonic devices with

comparable footprints are feasible.

A challenge of large-scale silicon photonic circuits is device non-uniformity, i.e., the dimen-
sions and performances of the devices across the chip are not uniform and deviate from the design.
In PNNs, device non-uniformity will cause variations of the relationship between the actuated
MRR currents and the actual weights, the activation function shape, etc. The influences of de-
vice variations can be minimized by pre-calibrating each device or using control methods, such as
the feedback MRR control ®>2¢, Device variances can be further reduced through post-fabrication
technologies such as trimming *! or in-situ training*?. Another challenge deals with light sources.
Frequency combs-based WDM sources* allow the generation of broadband and evenly spaced
emission wavelengths from a single laser, and thus offer a practical approach of generating WDM
light sources for the PNN. Soliton-based frequency combs built on CMOS-compatible photonic
integrated circuits can generate hundreds of comb lines. Such systems can integrate with the PNN

device.
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6 Claiming cascadability for NLC

We discuss the feasibility of scaling the current chip to a multi-layer neural network. This issue
refers to the need for cascadability, that is, the ability to have the one neuron output to excite
the neurons in the next layer. Cascadability requires 1) the neuron output can evoke an equivalent
response in neurons in the subsquent layer; 2) to avoid noise propagation along with multiple neural
layers. The main conclusion is, in order to have one layer driving the next layer, enough power
must be provided to compensate for loss and power splitting due to fan-out to the next layer. Such
power can come from optical lasers or electrical gain via a high transimpedance. The electrical
gain can be provided with a passive resistor or an active TIA, both of which are compatible with
today’s silicon photonic platform. For example, we have implemented an on-chip resistor in our
current PNN design. Alternatively, we can use an efficient modulator (i.e. small V. and junction
capacitor C) to reduce the power requirement. We derive the devices and power requirement of
maintaining the cascadability in the Supplementary information Performance comparison between

DSP and PNNs.

Regarding noise propagation, we found that if the voltage swing to the modulator is large
enough, the nonlinear transfer function of the modulator can suppress the noise and avoid noise
propagation across the network*". Such requirements can also be addressed with sufficient power

or with an efficient modulator, as argued in #4,
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7 Impact of activation function and the number of neurons

In the NLC application, the NN is trained to recognize the fiber nonlinearity perturbation from
the received symbols. An appropriate choice of activation function can benefit such regression
problems by including higher-order nonlinearities among the symbols. Fiber nonlinearity pertur-
bation manifests itself as long, heavy-tailed symbols due to nonlinear phase noise. To extract such
features, especially the tail edge, an activation function with an unbounded range is preferred.
Fig.[5(a) shows the performance gap between the Lorentzian function of an MRR modulator neu-
ron and the Leaky RelLU function which has no upper boundary for positive input. Generally, for
different NN applications, activation functions need to be chosen to synthesize particular tasks. In
contrast to a single cavity MRR, photonic devices with multiple coupled cavities can exhibit differ-
ent lineshapes beyond the Lorentzian shape. Additional transfer function programmability could
be achieved at the expense of additional circuits and calibration complexity using multiple-cavity
modulators for some or all of the neurons*®. Reconfigurable elements such as heaters or phase

change materials allow optimizing device’s transfer functions for different machine learning tasks.

In addition, as shown in Fig. [5(b), the Q-factor improves as the number of neurons on the
second-hidden layer increases. This can be expected because, with more neurons, the network
can more precisely constitute different parts of nonlinearity perturbation over symbols. PNNs add
almost no delays as the NN size increases, because the major operations in a PNN are computed at

a single time step.
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Figure 5: (a) Leaky ReLU, optimized for fiber nonlinearity compensation as demonstrated by Zhang et al %,
and Lorentzian, characterized from the PNN. (b) The comparison of Q factor improvement between Leaky

ReLU (red) and Lorentzian (blue) activation functions.

8 Conclusion

We have reported a reconfigurable photonic-electronic integrated neural network platform that
incorporates photonic components on a silicon photonic platform for high-speed information pro-
cessing. We demonstrated our system is capable of performing essential functionalities such as ac-
curate weighting, summation, and biased nonlinearity for neural network computing. We applied
this system for fibre nonlinearity compensation in trans-Pacific transmission data links, which re-
quire extremely high throughput and real-time signal processing. We experimentally implemented
the second layer of the neural network using silicon photonic neurons, and showed in simulations
that the extended system can accurately model the fibre nonlinearity, leading to a Q-factor improve-
ment comparable with numerical simulations on a conventional computer. The system is capable
of processing optical signals in the analogue domain, thereby significantly relaxing the stringent
requirements of complexity and speed that are typically placed on conventional DSP circuits. Our

approach could help in the development of reconfigurable photonic—electronic integrated circuits
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for solving a range of problems in high-speed intelligent signal processing.

Methods

Device Fabrication The device sample is fabricated on a silicon-on-insulator (SOI) wafer with
a silicon thickness of 220 nm and a buried oxide thickness of 2 ym. The waveguide is 500 nm
wide. The weight bank consists of four MRRs coupled with two bus waveguides in an add/drop
configuration. The four MRRs have radii of 8.0, 8.1, 8.2, 8.3 um, respectively. Only the first two
MRRs are used in the experiments. A slight difference is introduced in the ring radii to avoid
resonance collision. The gap between the ring and bus waveguide is 200 nm, yielding a Q factor
of ~6000. For the purpose of weight control, in-ring N-doped photoconductive heaters are used.
To implement the N-doped heater, each MRR consists of a ring waveguide etched to a 90 nm thick
pedestal that hosts the phosphorus dopants. A 10 um wide N doping section is patterned to follow
the MRR, outside of which heavy N++ doping is used to make ohmic contacts. Metal vias and
traces are deposited to connect the heater contacts of the MRR weight bank to electrical metal

pads.

The MRR modulator consists of a ring waveguide with a radius of 8 ym coupled to two bus
waveguides with gaps of 0.2 and 0.5 pm respectively. The ring waveguide is etched to a 90-nm-
thick pedestal that hosts boron and phosphorus to form n+ and n-, and p+ and p- regions, respec-
tively. The lightly p- and n-doped regions are extended to the waveguide core to form a p-n junction
for high-speed modulation. The highly p+ or n+ doped regions are located at the pedestal edge to

serve as p-type and n-type ohmic contact areas. To fabricate the germanium-on-silicon photode-
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tector, a germanium layer is deposited and patterned on top of the silicon waveguide. Boron and
phosphorus are implanted in the sidewalls and slabs of the Ge waveguide to form a horizontal p-i-n
junction as well as p-type and n-type ohmic contact areas. Metal vias and traces are deposited to
connect the electrical ports of the devices to the electrical metal pads. The cross-sections of MRR
resonator embedded with n-doped heater, MRR modulator, and germanium-on-silicon photodetec-

tor are illustrated in Supplementary Fig. 1.

The on-chip capacitor is formed by two layers of metal and has a capacitance of 2 pF. The
resistor is formed by a slab waveguide etched to a 90 nm thick pedestal that heavily doped with

phosphorus (N++). The resistor has a resistance of 300 €.
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