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Abstract
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Specialization and hierarchy are organizing principles for primate cortex, yet there is little direct
evidencefor how cortical areas are specialized in the temporal domain. We measured timescales
of intrinsic fluctuations in spiking activity across areas, and found a hierarchical ordering, with
sensory and prefrontal areas exhibiting shorter and longer timescales, respectively. Based on our
findings, we suggest that intrinsic timescales reflect areal specialization for task-relevant
computations over multiple temporal ranges.
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Hierarchy provides a parsimonious description of various functional differences across
cortical areas. For instance, spatial receptive field sizes increase along the visual Rjerarchy
and a posterior-anterior hierarchy exists for cognitive abstraction within prefrontaPcortex

In the temporal domain, higher areas can activate selectively for stimuli that are coherent
over longer periods of tindé". It remains an open question whether temporal specialization
arises from a cortical area's intrinsic dynamical properties, thatased to dynamics that

exist even in the absence of direct stimulus processing. We hypothesized that differential
dynamics would be manifested in the timescales of fluctuations in single-neuron spiking
activity.

Variable neuronal activity is ubiquitous across the c8feyet it has been unclear what the
timescales underlying this variability are, or whether these timescales differ across areas.
Neuronal activity fluctuates over a wide range of timescales with potential contributions
from distinct underlying mechanisms. For example, the timescales of correlated fluctuations
of activity within a local microcircuit are likely longer than the timescales timescales of
single-neuron burstiness and refractorifdsg shorter than the timescales of drifts in

arousal. In typical electrophysiological recordings from behaving animals, spike trains from
a single neuron are recorded over many trials of a task. Using single-neuron spike trains, we
sought to characterize these underlying fluctuations in activity that are not locked to trial
onset. To measure the timescales of these fluctuations, we used the spike-count
autocorrelation for pairs of time bins separated by a time lag. The spike-count
autocorrelation is calculated as the correlation coefficient between the number of spikes in
each time bin across all trials (Online Methods). As the time lag increases, the
autocorrelation decays according to the fluctuation timestéSegplementary
MathematicaNote).

We measured intrinsic timescales using single-neuron spike trains in datasets from six
research groups, recorded in a total of 26 monkeys, that include seven corticdtigreas (

1a). Five cortical areas are constituents of the visual-prefrontal hierarchy, including sensory,
parietal association, and prefrontal cortex: medial-temporal area (MT) in visual cortex;
lateral intraparietal area (LIP) in parietal association cortex; lateral prefrontal cortex (LPFC);
orbitofrontal cortex (OFC); and anterior cingulate cortex (ACC). To test for generality of
results outside of the visual system, we also examined two somatosensory areas: primary
somatosensory cortex (S1) and secondary somatosensory cortex (S2). These areas span
multiple levels of the anatomical hierarchy defined by the laminar patterns of long-range
projections among cortical ar€d€ (Fig. 1b). For each dataset, monkeys were engaged in
cognitive tasks. We restricted our analysis to one epoch of the task, the foreperiod that
begins each trial. During the foreperiod, the monkey was in a controlled, attentive state
awaiting stimulus onset (fixation of eye position for visual tasks, lever hold for the
somatosensory task). This restriction minimizes stimulus-related confounds and allows
application of the same analyses across areas and datasets. This definition of intrinsic
timescale does not refer to single-neuron physiology or imply that the timescale does not
change with stimulus conditions.

The decay of autocorrelation with increasing time lag could be well fit by an exponential
decay with an offsetHg. 1c). This fit was obtained at the population level, rather than
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single neuron level (Online Methods, &upplementary Figs. 1 & 2), enabling us to

extract an intrinsic timescale as a population-level statistic for each area in a dataset. Within
each dataset, the intrinsic timescales differed across areas, in the range of 50—-350 ms. Over
all datasets, we found a consistent ordering of the intrinsic timescales across cortical areas
(P < 1075 rg= 0.89, Spearman's rank correlatiofig( 1d). Sensory cortex showed shorter
timescales, parietal association cortex showed intermediate timescales, and prefrontal cortex
showed longer timescales, with medial prefrontal area ACC consistently showing the
longest timescale in our datasets. Hierarchical ordering was present in both visual and
somatosensory systems. Differences in intrinsic timescales could not be explained by
differences in mean firing rates across ar&agpplementary Fig. 3). Interestingly, this

hierarchy of intrinsic timescales aligns with the anatomical hierarchy defined by long-range
projections among cortical ar€g®, although our physiologically-defined hierarchy differs

from the anatomical hierarchy for OFE € 0.002,r5 = 0.97, Spearman's rank correlation).

The correspondence between physiological, anatomical, and functional hierarchies suggests
functional importance of these timescales in large-scale cortical coordination.

What is the potential relevance of intrinsic timescales to functions which may operate over
longer timescales? We examined whether the intrinsic timescale (in the range of 50—-350 ms)
may be correlated with the capacity for neurons in an area to sustain signals over long
behavioral timescales (e.g., 5-10 s). Neuronal fluctuations include contributions that operate
over a wide range of timescales. Long timescales contribute an effective offset to the
autocorrelationKig. 2a andSupplementary Mathematical Note). The offset can therefore
reflect the strength of fluctuations at long timescales that cannot be resolved with a limited
duration of the foreperiod. We found that the autocorrelation offset positively correlates with
the intrinsic timescale(= 0.004 t(9) = 3.4 t-test) Fig. 2b). We also found that the offset
reflects the strength of trial-to-trial correlatios= 0.002 t(9) = 3.9,t-test), indicating that

a portion of long-timescale variability persists across triauplementary Fig. 4). These

results imply that hierarchy may exist across multiple temporal ranges.

Of relevance to function, fluctuations at long timescales can include contributions from
long-lasting memory traces of stimuli or task variables such as reward. In the Lee dataset,
which includes areas LIP, LPFC, and ACC, we previously measured the temporal
modulation of neuronal activity by reward events during a decision-making task, at the
single-neuron levél (Supplementary Fig. 5). We refer to the time constant characterizing
the decay of a neuron's modulation by reward as its reward timescale. Consistent with this
link between intrinsic timescale and long functional timescales, the order of areas according
to median reward timescale aligns with the order according to intrinsic timeBal2d). It

is noteworthy that the median reward timescale is an order of magnitude longer than the
intrinsic timescaleThese results support the interpretation that intrinsic timescales may
reflect areal specialization for task-relevant computations over long timescales.

In summary, our physiological analyses show that cortical areas follow a hierarchical
ordering in their timescales of intrinsic fluctuations. One interpretation of their functional
relevance is that these timescales set the duration over which a neural circuit integrates its
inputs2. In this interpretation, shorter timescales in sensory areas enable them to rapidly
detect or faithfully track dynamic stiméfi14 By contrast, prefrontal areas can utilize

Nat Neurosci. Author manuscript; available in PMC 2015 June 01.



1duasnuen Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuen Joyiny

Murray et al.

Page 4

longer timescales to integrate information and improve the signal-to-noise ratio in short-term
memory or decision-making computatiéf2®. There is known hierarchical specialization
across areas at the functional level, in sensory processing and cognitive3tasks

The present study leaves as an open question what underlying mechanisms contribute to this
hierarchy of intrinsic timescales. Computational models of recurrent neural circuits have
demonstratechultiple potential mechanisi A longer intrinsic timescale in the circuit
couldreflecttimescales of cellular or synaptic dynamics. Consistent with this mechanism,
there are interareal differences in the dynamical properties of recurrent excitatory synapses,
including differential composition of glutamate receptBrexpression of short-term

synaptic plasticity’, and level of neuromodulatié® Interareal differences in cellular

physiology can also be driven by factors such as neuronal morpH8loyyonger

timescale in the circuit could also arise from strorgy@aptic connections mediating

recurrent excitation, which slows intrinsic dynamics by partially cancelingde@kere are
increases across the cortical hierarchy in the number and density of excitatory synapses onto
pyramidal celld%, which may reflect increased recurrent strength across areas. Modeling
studies have further shown ttgtitong recurrent connections can endow a cortical circuit

with the capability to exhibit persistent activity in working memory and slow accumulation

of information in decision makif§. A hierarchy of intrinsic timescales may link
neurophysiological properties to functional specialization.

Online Methods

Datasets

All experimental methods were approved by the relevant institutional animal care and use
committees. Experimental details for the datasets have been reported previously. We used
single-neuron spike train data, recorded in macaque monkeys, from the foreperiod of various
cognitive tasks. For the Romo dataset, the foreperiod entailed holding a lever by the free
hand; for all other datasets, the foreperiod entailed fixation of eye position to a central target.
Datasets were selected as they comprised multiple cortical areas, and the task foreperiod had
durations of at least 500 ms with minimal task-related stimulus during the foreperiod (for
visual tasks, only a fixation point on the screen). Only completed trials were analyzed. Cells
and trials were filtered for further analysis by two criteria. To allow computation of spike-
count autocorrelation, we required that each time bin have a non-zero mean fifhghate
minimize spurious autocorrelation due to very slow drift of firing rates across the recording
session, we selected the longest block of trials in which the total foreperiod spike count was
statistically stationary across triéds

The Pasternak dataset consists of neurons recorded in MT and¥PE®lonkeys

compared two motion stimuli separated by a brief delay. The foreperiod duration was either
500 ms or 1,000 ms. For single neurons recorded over multiple tasks, each task-neuron pair
was treated as a separate single neuron to control for task-dependent changes in foreperiod
firing. Single-neuron counts were 485 from MT (2 monkeys) and 427 from LPFC (4
monkeys). The Freedman dataset contains neurons from MT, LIP, and3.#R@onkeys
performed a motion delayed match-to-category task. The foreperiod duration was 500 ms.
Single-neuron counts were 59 from MT (2 monkeys), 222 from LIP (4 monkeys), and 458
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from LPFC (2 monkeys). The Lee dataset consists of neurons recorded in LIP, LPFC, and
ACC30-32 Monkeys performed a competitive decision-making task called matching
pennies. The foreperiod duration was 500 ms. Single-neuron counts were 192 from LIP (3
monkeys), 293 from LPFC (5 monkeys), and 146 from ACC (2 monkeys). The Wallis
dataset contains neurons from LPFC, OFC, and € Monkeys performed tasks

involving value-based choice. The foreperiod duration was 1,000 ms. Single-neuron counts
were 946 from LPFC (6 monkeys), 481 from OFC (7 monkeys), and 841 from ACC (6
monkeys). The Padoa-Schioppa dataset contains neurons from LPFC, OFC, 8fd?ACC
Monkeys performed tasks involving value-based choice. The foreperiod duration was 1,500
ms. Single-neuron counts were 1,024 from LPFC (2 monkeys), 1,768 from OFC (2
monkeys), and 987 from ACC (2 monkeys). The Romo dataset contains cells from S1 and
S2*0, Two monkeys performed a vibrotactile delayed discrimination task. The foreperiod
duration was variable, with a minimum of 1,400 ms. Single-neuron counts were 711 from S1
(2 monkeys) and 928 from S2 (2 monkeys).

Our primary analysis was the temporal autocorrelation of spike counts, which we computed
in the following way for single neurons. We divided the foreperiod into separate, successive
time bins of duration A. We set A = 50 ms; results were similar for changes of £20%. For
two time bins, indexed by their onset timAsandjA, we computed the across-trial
correlation between spike coumMsn those time bins using the Pearson's correlation
coefficientR:
Cov(N(iA),N(jA))
/Var(N(iA))xVar(N(iA))
< (N(iA)ﬁ(l(iA)) (N(jA)fﬁf(jA)) > €
V/Var(NGEA)xVar(N(jA))

where covariance (Cov) and variance (Var) are computed across trials for those time bins,
and is the mean spike count for a particular bin. Importantly, spike-count autocorrelation
corrects for nonstationarity in the mean firing rate during the foreperiod (e.g., ramping),
because covariance and varience subtract the mean spike count for each time bin.

Based on our theoretical calculations doubly stochastic processes (Supplementary
MathematicaNote), the decay of autocorrelation was fit to the population of neurons within
an area by an exponential decay with an offset as a function of the tikdedagveen time

bins & = f - j|):
R(kA)=A {ezp (;%) +B} @

whereis the intrinsic timescale amlis the offset that reflects the contribution of

timescales much longer than our observation window. Some areas in the datasets showed
sign of refractoriness or negative adaptation at short timeRagslt), which would not be
captured by Equation (2). To accommodate this feature of the autocorrelation data, fitting
started at the time lag with maximum decrease of the mean autocorrelation. We fit Equation
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3 to the full autocorrelation data for all neurons and times; fits were therefore performed at
the population level rather than singleuron level, yielding a set of fit parameters for an
area in a dataset. For the visual presentatidiignlc, autocorrelation was averaged across
neurons and times. Autocorrelation averaged across neurons but not time is presented in
Supplementary Fig. 1, and autocorrelation averaged across time but not neurons is
presented isupplementary Fig. 2.

Equation 2 was fit to the autocorrelation data using nonlinear least-squares fitting via the
Levenberg-Marquardt algorithm (through the SciPy function optimize.curve fit). The
parameter covariance matrix generated by the Levenberg-Marquardt fitting procedure
describeghe dependence between parameters in fitting an individual area in a dataset. A
positive (negative) off-diagonal term for two parameters indicates that increasing one
parameter will increase (decrease) the other to optimize the fit. For most areas (11 of 16),
this term had negative sign, indicating that the positive correlation in betvaaehB

shown inFig. 2b was not a consequence of the fitting procedure. Standard error for fit
parameters was computed by the delete-one jackknife procedure.

To test for hypothesized relationships between two measures we used a linear regression
model:

yg=mz+ Y bpbak
ke{datasets}

wheredy k is a dummy variable, which is 1 for a particular datksetd 0 otherwise. This
model assumes that all datasets have a linear dependegnae>oécross all datasets),
and allows datasets to have different constant teoghsThe statistical significance of a
regressor, in particular the dependence terwas assessed by-gest. This regression
analysis was applied to test three dependencesigdptrinsic timescaley is
autocorrelation offsefig. 2b); (2) x is mean firing ratey is intrinsic timescale
(Supplementary Fig. 3); and (3)x is trial-to-trial correlationy is autocorrelation offset
(Supplementary Fig. 4). We assessed normality of residuals for the regression analyses; in
all cases, the magnitude of skew was < 0.4. Statistical significance (defiifed ®¥5), or
lack thereof, for each test was preserved if a single constanberimwas used for all
datasets.

To test for correlation between the timescale hierarchy and anatomical hierarchy, we
calculated the Spearman rank correlation between the ordering of areas by mean timescale
and the discrete anatomical ordering shown in Fig. 1b. The rank correlation coefficient was
the same for the visual—prefrontal system (MT, LIP, LPFC, OFC, ACC) and for the
somatosensory—prefrontal hierarchy (S1, S2, LPFC, OFC, ACC). Unless otherwise stated,
reported p-values are one-sided, as we tespetbri hypotheses of positive correlations

between variables. Custom Python code was used for all analyses; analysis code is available

from the authors upon request.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Cortical area

Spike-count autocorrelation reveals a hierarchical ordering of intrinsic timescales. (a)

1duosnuey Joyiny

Datasets span seven cortical areas in the macaque monkey: MT, LIP, LPFC, OFC, ACC, S1,
and S2. (b) Anatomical hierarchy of the areas, based on long-range projection p¥tterns

(c) Spike-count autocorrelation was computed for neuronal spiking activity during the
foreperiod of cognitive tasks. Each panel shows the dataset for one of six research groups.
The decay of autocorrelation was fit by an exponential decay with an offset. Some areas in
datasets show refractory adaptation at short time lags, which were excluded from the fit
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(Online Methods). Solid lines show the exponential fit. Intrinsic timescale extracted from
the fit is shown for each area. Autocorrelation was computed with 50-ms time bins. (d)
Intrinsic timescales across the visual—-prefrontal hierarchy in five datasets (left), and the
somatosensory hierarchy (right). Error bars mark s.e.

Nat Neurosci. Author manuscript; available in PMC 2015 June 01.



1duosnue Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnuey Joyiny

Murray et al.

A(1+B) —

Autocorrelation

R=

ABI

b
A [exp(=At/T)+B] e P =0.004
3 04 <
@
£ o
]
5 03- o »
©
s | %
g 02 X
<] Om
2 e
0.1 -
Time lag (At) f T T T y T
100 200 300
Intrinsic timescale (7) (ms)
Figure 2.

Pasternak

Lee
Wallis
Padoa-Schioppa

A MT
VY LIP
B | PFC
4 OFC
® ACC
> S1

, 482

Median reward timescale (ms)

2,000 —

1,500

1,000

500 -

Page 11

Lee dataset,
matching pennies task

LPFC
v ACC

| ' | ' I
100 200 300
Intrinsic timescale (ms)

Links between intrinsic timescale and longer functional timescales. (a) Autocorrelation
offset B) reflects the strength of contributions with long timescales, which do not decay
substantially within the fixation epoch. (b) Autocorrelation offset increases with intrinsic
timescale. Colored lines show trends for individual datagaesarrow showthe slope of
dependence froma regression analysis (slope= 0.8 = 0.2 kHz). (¢) In the Lee dataset, we
previously measured timescales characterizing the decay of modulation of single-neuron
firing rates by reward events, while monkeys performed a competitive decision-making
task'l. The orderingf areas by reward timescale aligns with the ordering by intrinsic

timescale. Error bars mark s.e.
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