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Abstract

Responses of sensory neurons differ across repeated measurements. This variability is usually
treated as stochasticity arising within neurons or neural circuits. However, some portion of the
variability arises from fluctuations in excitability due to factors that are not purely sensory, such as
arousal, attention, and adaptation. To isolate these fluctuations, we developed a model in which
spikes are generated by a Poisson process whose rate is the product of a drive that is sensory in
origin, and a gain summarizing stimulus-independent modulatory influences on excitability. This
model provides an accurate account of response distributions of visual neurons in macaque LGN,
V1, V2, and MT, revealing that variability originates in large part from excitability fluctuations
which are correlated over time and between neurons, and which increase in strength along the
visual pathway. The model provides a parsimonious explanation for observed systematic
dependencies of response variability and covariability on firing rate.

Introduction

Neurons transmit information with sequences of action potentials. These responses are
variable — repeated measurements under identical experimental conditions give different
spike trains — but the origins of this variability are unknown. If spike generation were
variable, it might account for response variability, but in vitro measurements indicate that it
is highly reliablé. Variability in synaptic transmission is another possible s8ub its
magnitude is also believed to be insufficient to account for the observed variability in

spiking responsés*. A more likely explanation is that the variability arises from the
accumulation and amplification of small amounts of noise as signals flow through neural
circuits®. And recent theories propose that the substantial variability in neural responses may
arise from the dynamics of recurrent but largely deterministic net&drks
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Regardless of its source, characterizing variability with simple stochastic models has proven
useful in understanding the nature of neural coding. The simplest stochastic model is a
Poisson process, in which spikes occur independent of one another. A hallmark of the
Poisson model is that the variance of the spike count in any time interval is equal to the
mean. In visual cortex, the spike count variance typically equals or exceeds the mean, but
rarely falls below &°. This suggests that Poisson-like behavior is a “floor” state of cortical
variability, and raises the question of the origin of the excess variance. Arousal, attention,
adaptation and other contextual factors are known to modulate sensory re$péfses

typical electrophysiological experiments, some of these may be well-controlled, but many
are not. The idea that fluctuations in excitability can inflate estimates of neuronal variance
has a long histof®, and we wondered whether a more directed analysis of single-neuron
responses might reveal the effect of these factors.

We formalize this hypothesis in a doubly stochastic response model in which spikes arise
from a Poisson process whose rate is the product of “drive” and “gain” (the “modulated
Poisson model”, Fig. 1). The drive is a reproducible firing rate response to a sensory
stimulus; the gain represents modulatory influences on excitability, and can vary across
repeated measurements. Under this model, trial-to-trial variability in spike counts can be
partitioned into a sum of Poisson point process variance and variance arising from
fluctuations in gain. Likewise, spike count covariation can be partitioned into point process
covariance, and covariance arising from correlated gain fluctuations.

We found that this model provides an excellent account of single-neuron response
distributions in macaque visual thalamus and cortex. Inferred gain fluctuations are correlated
over long timescales (minutes), are larger in anesthetized than in awake animals, and (in
anesthetized animals) increase in strength along the visual hierarchy. They are also shared
across wide areas of primary visual cortex, while point process variance is more localized.
Together, these results suggest that much of the response variability of sensory neurons
arises from fluctuations in excitability which are correlated over time and between neurons
and which increase in strength along the visual pathway.

Portions of these results have been presented in conferences (R.L.T. Goris, J.A. Movshon
and E.P. SimoncellGoc. Neurosci. AbstB11.01, 2013Cosyne Abstrl-37, 2012), and

two other groups have recently presented models similar to the one shown in Fig. 1 (ref. 13,
and 1.-C. Lin, M. Okun, M. Carandini and K. Harr@gsyne Abstrlll-11, 2014), though

their application and conclusions are somewhat different from our own.

Results

Modulated Poisson framework
Consider the most commonly-used rate model, in which the spike dhdaliows a
Poisson distribution:

(uAt)™

N!

p(N|p, At)= exp(—pAt) (1)
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wherep is the mean spike rate, antidthe duration of the counting window. Assume that
the rate arises from the product of two positive-valued signals:

p=f(S)G (2

wheref(S) is some function of the stimulus, a@ds a stimulus-independent gain. In this
case, the variance and mean of the spike count in a time intéua Both equal to
f(SGAL

If the gain signal is unobserved, and varies over repeated trials, the observed spike counts
over those trials will have a variance larger than predicted by the simple Poisson model.
Assume the gain has a mean of one, but fluctuates randomly on a timescale that is slow
relative to the interval over which spikes are counted. In this case, the net distribution of
spike counts is a mixture of Poisson distributions (Online Methods) whose variance can be
decomposed into two components:

var[ N|S, At]=(f(S)At)+a2 (f(S)At)*  (@3)

The first term is simply the variance of a Poisson distribution with mean f{&uktt The

second term is the variance of the expected spike count conditioned on the stimulds drive
and is proportional to the square of the first term, with a proportionality factor equal to the
variance of the gain signal. Thus, in the presence of gain fluctuations, the spike count
variance exceeds the mean by an amount that is proportional to the square of the mean. Note
that the spike count variance does not depend on the firing rate or duration of the counting
window per s¢ but on their producf(S)At.

The variance-to-mean relationship expressed in Eqg. (3) is inherent to systems with
modulatory effects, and depends on gain only through its variance: all gain distributions
with the same variance will produce the same variance-to-mean relationship. To fit the
model to data, the form of the gain distribution must be specified. If we assume that the gain
follows a Gamma distribution, the overall spike count distribution will follow a negative
binomial (Online Methods):

[(N+1/02) (@2 f(s)at)"
(NFIT(A/02) (o2 £(S) AL+ 1)V H/7)

p(N|S, At)= T @

WherelI'(.) represents the standard gamma function. This distribution is parameterized by

the variance of the gaai, and the mean spike couf(§)At, and is readily fit to neural data.

Gain fluctuations increase along the visual hierarchy

We measured responses of neurons in areas LGN, V1, V2 and MT to drifting sinusoidal
gratings of the preferred size and speed, varying either in spatial frequency (12 spatial
frequencies, ranging from 0 to 10 c/deg) or in drift direction (16 equally spaced directions).
Each grating was presented for 1,000 ms and repeated at least five times. Responses were
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computed by counting spikes in a 1,000-ms window following response onset. We fit both
the Poisson and modulated Poisson models to the responses of each individual neuron.

Consider the actual and model-predicted response distributions for an example V1 cell (Fig.
2a). The mean spike count depends on the direction of motion of the stimulus (center Fig.
2a), and the variance grows with the mean. The variance-to-mean relation is well described
by the modulated Poisson model (Fig. 2b). As predicted (eq. 3), this relation does not
depend on firing rate or measurement interval (inset Fig. 2b). Comparing histograms of the
measured spike counts with the predictions of the models reveals that the modulated Poisson
model captures the data much better than the standard Poisson model (Fig. 2a). When the
mean spike count is low, both models produce similar response distributions with mode at
zero and variance approximately equal to the mean (Fig. 2b). But as the mean spike count
grows, model predictions diverge, and the Poisson model fails to account for the shape of
the count distributions (Fig. 2a). In contrast, the data are well-described by the modulated
Poisson model, suggesting that a substantial part of the response variance arises from
fluctuations of modulatory inputs, whose distribution is well-described by a Gamma
distribution.

This visual impression is confirmed by statistical analysis of the model fits. To quantify
relative goodness of fit of the two models, we performed a cross-validation analysis (CVA),
comparing the log-probability of observing the hold-out data under each fitted model
(Online Methods). For the example neuron, the value for the modulated Poisson model is
much higher than that of the Poisson model. To assess the model fits in absolute terms, we
developed a parametric bootstrap test that compares the log-probability of the data with its
expectation under the model in question (Online Methods). For the example neuron, the fit
of the Poisson model is very poét € 0.001, absolute goodness of fit test; Fig. 2c), but the
modulated Poisson model cannot be rejedied 0.91; Fig. 2c).

In sum, the variable discharge of this V1 cell is well described as originating from three
different sources: the stimulus attributes (i.e., direction of motion), a Poisson point process,
and Gamma-distributed fluctuations in excitability. To estimate the relative contribution of
each source, we used the modulated Poisson model to partition the spike count variance
(Online Methods). Surprisingly, Poisson noise accounts for only a small fraction of the total
variance (5.5%). The gain fluctuations account for nearly half of the variance (47.5%), a
share comparable to the fraction due to variations in the stimulus drive (47%). The latter is
dependent on the set of stimuli and the tuning properties of the neuron. To focus our analysis
on the variability across repeated measurements, we consider the portion of within-condition
variance that is explained by the excitability fluctuations. For the example neuron in Fig. 2,
this fraction is 89.6%.

In our model, stronger gain fluctuations lead to a more rapidly accelerating variance-to-

mean relationship, which deviates more and more from the Poisson expectation as spike
count grows (Fig. 2d). Note that this accelerating relationship implies that the ratio of
variance to mean (Fano factor) can vary within a single spike train, and over short time
scales. As such, a single Fano factor provides an incomplete and potentially biased, measure
of neuronal variability.
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In the modulated Poisson model, the rate arises from the product of two positive-valued
signals, one a function of the stimulus and the other arising elsewhere. An alternative model
adds these signals rather than multiplying them. Under this additive model, if the two signals
are statistically independent the expected spike count variance is given by the sum of the
point process variance and a constant equal to the variance of the drive fluctuations, yielding
a variance-to-mean relationship (Fig. 2d) which is unlike that in our data.

Fluctuations in excitability modulate neuronal activity throughout visual thalamus and

cortex. Neurons in LGN, V1, V2, and MT all exhibit super-Poisson variability (Fig. 3a).

Within each area, the variance-to-mean relationship is consistent with the predictions of the
modulated Poisson model (compare Fig. 3a to Fig. 2d), but note that the fitted gain variance
increases in strength along the visual processing stream. Specifically, the modulated Poisson
model systematically outperforms the standard Poisson model for all areas (Fig. 3b), and the
proportion of neurons for which this model is selected increases from LGN ® ¥/1 (

0.001,t test), from V1 to V2R = 0.004) and from V1 to MTR = 0.004). The strength of
fluctuations in excitability, as measured by the coefficient of variation of the gain, grows

from LGN to V1 P < 0.001, Wilcoxon rank sum test), from V1 to \R< 0.001), and from

V1 to MT (P < 0.001) (Fig. 3c). As information propagates through the visual hierarchy,
fluctuations in excitability not only increase in strength, but also account for a larger share

of variance. When stimulated with drifting gratings, within-condition variance primarily
reflects Poisson-like noise in LGIR € 0.02, Wilcoxon signed rank test), but becomes
progressively more dominated by excitability fluctuations in cortex (LGN td?&10.001,
Wilcoxon rank sum test; V1 to VB, < 0.001, V1 to MTP < 0.001; Fig. 3d).

Response correlations in the modulated Poisson framework

Trial-to-trial response fluctuations are often correlated among simultaneously recorded
neuron$®. Pairwise response correlations can arise when neurons receive shared sensory
inpu®®, but also when they are subject to correlated modulatory influences that are not
sensory in origit®17. Our model provides a vehicle for separating the effects of these two
contributions. Specifically, for doubly stochastic processes, the spike count covariance can
be decomposed in a manner that is analogous to the variance decomposition introduced in
Eq. (3) (Online Methods):

cov[ N, Nj|S, At]=r,, \[ fi(S)f;(S)A2+rg 06,06 [i(S)[;(S)AL ()

whererpjj indicates the point process correlation (assumed to be independent of sgmnulus
andrgjj the gain correlation. The first term is the covariance expected for the spike counts of
neuroni andj with a constant gain of one. The second component is the covariance of the
conditional expectations that arises from correlated gain fluctuations, and can generate spike
count correlations even when the two point processes are independent. Note that Eq. (5)
reduces to the expression for spike count variance (Eq. (3))iwhérhe spike count

correlation is obtained by dividing this equation by the square root of the product of the

spike count variances of neurarendj, as expressed in Eq. (3), yielding a complicated
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dependence of spike count correlation on stimulus drive, and on the variance of the gain
signals in the two neurons.

Studies of response correlation typically combine normalized responses across conditions to
estimate a single spike count correlation for a pair of netf#dfsBut equation (5) implies

that even if the point process and gain correlations are both stable properties of a given cell
pair, measured spike count correlations can vary dramatically with stimulus drive.
Specifically, when the geometric mean of the stimulus-driven response of the two neurons is
low, the spike count correlation will approximate the point process corretatjdn

contrast, when this geometric mean is high, the spike count correlation will be dominated by
the gain correlationg;jj If rpjj andrg;jj differ, the spike count correlation will depend on the
stimulus conditions, and any single estimate will provide an incomplete and potentially
biased measure of neuronal covariability.

We analyzed the responses of four populations of simultaneously recorded neurons in the
superficial layers of macaque primary visual coffeXhe recordings were made over 2.5 h,
during which gratings drifting in 72 equally spaced directions were presented for 1,280 ms
each, interleaved with a 1,280 ms blank screen and repeated 50 times in random order. We
analyzed 379 well-isolated units (62, 94, 87, and 136 from the four data sets). We fit the
modulated Poisson model to the responses of each neuron, and then fit the model to the
spike count correlations of pairwise combinations of neurons in each data set (Online
Methods).

Consider the actual and predicted response correlations for three example pairs of V1 cells
(Fig. 4). For each neuron, the mean spike count depended on the direction of motion of the
stimulus (Fig. 4a—c), and for each pair of neurons, the spike count correlation estimated from
the combined normalized responses) was small and positive. But estimates of spike

count correlation computed separately for different response levels reveal a variety of
different behaviors, including a decrease with mean response strength (Fig. 4d),
independence of response strength (Fig. 4e), or an increase with response strength (Fig. 4f).
The modulated Poisson model can mimic each of these behaviors using particular choices of
the underlying point process and excitability correlatiopgandrgjj. We estimated both
statistics for each cell pair, and Fig. 4g—i illustrate the full spike count correlation surface
predicted by the fitted models.

The structure of correlations in primary visual cortex

V1 spike count correlations have been shown to depend on cortical distance and tuning
similarityl®, but as revealed by the examples in Fig. 4, this measure mixes two underlying
sources of correlation. We wondered whether these two sources might be differently
structured across the neuronal population. In particular, common point process variance
might be local in space and time, while joint excitability fluctuations could reflect network
changes that affect larger populations of neurons on a slower time scale.

We examined how point process correlation and excitability correlation depend on electrode
separation and on the similarity of tuning (Fig. 5, Online Methods). Point process
correlations were on average smaller than excitability correlatioa(001,F 34= 24.16,
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ANCOVA and fell more rapidly with electrode distan&<0.001,F; 34= 18.05). Note

that neurons recorded on the same electrode (the leftmost datum in Fig. 5a—b) might have
inflated the significance of the latter difference since they are vulnerable to spike sorting
errors that can alter the measured correl&®éf21 Nevertheless, we find that excluding

this datum does not alter the conclusiBrk(0.001,F; 3o=41.17). Analysis of tuning

similarity effects (Fig. 5¢) revealed that the average point process and excitability
correlation had a largely similar (linear) dependency on tuning correl&ie(6,F1 14=

0.28), differing only in their means (Fig. 5d).

In summary, we find that the relationship between response correlations and mean responses
in V1 depends on both inter-neural distance and tuning similarity: Spike count correlations

are most likely to decrease with response strength for nearby neurons with similar tuning

(Fig. 4d). As inter-neural distance or tuning dissimilarity grows, response correlations will
initially tend to be independent of the mean responses (Fig. 4e), and eventually exhibit an
increasing relation (Fig. 4f).

The temporal structure of gain fluctuations

We assume that the Poisson point process variance is independent across trials, so all
temporal structure in neural responses that is not explained by the stimulus must arise from
structure in the gain signal. Consider how normalized spiking activity evolves over 2.5 h for
three simultaneously recorded neurons (Fig. 6a). Response strength rises and falls over
minutes, suggesting that excitability varies slowly. This is consistent with the slow decay of
the autocorrelation of the gain (Fig. 6b), computed from temporal correlations in the trial-
by-trial responses (Online Methods). At a time lag of 5 sec, 307/379 neurons had positive
autocorrelationtftest,P < 0.05. For longer time lags, this fraction gradually decreased (at a
time lag of 2 minutes, > 0 for 185/379 neurons; at a time lag of 10 minutes, this fraction
drops to 81/379). Although the average profiles for the four data sets differ in detail, they
share a slow falloff, indicating that changes in excitability persist for many minutes (Fig.
6¢).

Trial-to-trial changes in excitability are often correlated across neurons (Fig. 5). It might
therefore be expected that the slow component of excitability fluctuations is also shared
across neurons. However, across neurons, excitability correlations decrease dramatically at
all time lags exceeding 0 sec (Fig. 6d). The slow component of excitability fluctuations thus
appears to be local.

Effects of anesthesia

We have shown that neural response variability in visual cortex of anesthetized macaques
originates largely from excitability fluctuations that are correlated over time. To what degree
does this arise from fluctuations in the state of anesthesia? To address this, we analyzed data
recorded in area MT of awake monkeys performing a psychophysical task involving random
dot kinematogram stimdf#-22 We fit both the Poisson and modulated Poisson model to the
responses of 307 individual neurons. As in anesthetized animals, MT neurons in awake
monkey typically exhibit super-Poisson variability (Fig. 7a), and the modulated Poisson
framework successfully accounts for this variability. The inclusion of gain fluctuations
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improves goodness of fit for 224/307 neurons (CVA analysis). At a significance level of 5%,
the Poisson model is accepted for only 28/307 of neurons, while the modulated Poisson
model is accepted for 294/307 of cells (absolute goodness of fit test). Fluctuations in
excitability were the main source of within-condition variarfee (0.001, Wilcoxon signed

rank test; Fig. 7b). Finally, the average autocorrelation function reveals that gain fluctuations
in awake animals exhibit a slow temporal structure similar in timescale to that seen under
anesthesia (Fig. 7c).

Qualitatively, there is thus an excellent agreement between these data sets. However,
comparing the coefficient of variation of the excitability signal reveals that its fluctuations
are significantly stronger in the anesthetized cortex (compare Fig. 3¢ with Fig. 7b). It is also
notable that the time course of this correlation is substantially shorter in the awake data set,
suggesting that the fluctuations in gain seen under the two conditions may have different
origins.

Discussion

The distinction between inputs that drive the responses of a neuron and those that modulate
its response is well know But while both factors influence the mean response, response
variance is usually treated as if it arises solely from noise in driving inputs. Our analysis
suggests instead that variability of modulatory signals may underlie much of the response
variability in visual cortex. We have shown that a Poisson spiking model whose rate is
multiplied by a fluctuating gain signal can explain why the variance of spike count generally
grows faster than the mean (Figs. 2 and 3), and that an additive noise model cannot account
for this basic behavior (Fig. 2d). The modulated Poisson model also explains why the
covariance of spike counts in pairs of neurons can exhibit a diversity of behaviors depending
on their means (Fig. 4). Fitting the model to individual neurons from a variety of visual

areas reveals that gain fluctuations account for a substantial fraction of spike count
variability, and that in anesthetized animals this fraction increases as one ascends the visual
hierarchy (Fig. 3).

Poisson spiking models have been common in neuroscience since thé*85aisd are

implicit in all analyses in which responses are summarized solely with mean spike counts.
They provide the simplest statistical description of the data, are readily fit to data, and
capture the basic fact that spike count variances grow with the mean. Poisson processes can
mimic the spiking behaviors of integrate-and-fire moHeds well as the responses of model
neurons embedded in cortical networks with balanced configurations of excitatory and
inhibitory input®~’. But neuronal responses generally exhibit super-Poisson
variability®/—9-27-28 and the model presented here provides a simple but effective means of
explaining this behavior. Some authors have reported sub-Poisson variability, especially in
brief time bins immediately after a sudden stimulus fis#& This is likely a consequence

of neuronal refractorine3%-34 which could be naturally incorporated into our modeling
framework through modulatory spike-feedback terms in a generalized linearféélel

Our work complements recent work on the temporal dynamics of firing rate variinifity
One study used the mean-matched Fano factor as a proxy for firing rate variability, but did
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not explore the dependence of this value on the fieAnother estimated firing rate

variability by subtracting an estimate of the point process variance from the measured spike
count varianc¥. The estimate of point process variance is taken from the minimum of an
ensemble of experimental measurements, and is therefore vulnerable to the well-known
problems associated with estimating extreme values of sample distributions. In contrast, we
found it useful to make explicit distributional assumptions: specifically, that gain is drawn
from a Gamma distribution, and that the spikes arise from a Poisson process. The resulting
negative binomial spike count distribution (a particular continuous mixture of Poisson
distributions) is easily fit to data and validated (Fig. 2d, see also ref. 37), and its
parameterization as a modulated Poisson distribution provides a natural interpretation in
terms of excitability fluctuations. The spike count distribution bears some resemblance to
the discrete mixture-of-Poissons model that has been successfully used to account for super-
Poisson variability8, but has the added advantage that it has far fewer parameters, and
provides an interpretation in terms of modulatory input. It is important to note, on the other
hand, that our analyses of joint behaviors are based solely on correlations. A full model for
joint neural responses would allow better fitting and validation, but requires an explicit
description of both the joint point process distribution, as well as the joint distribution of
gain signals.

Our analyses indicate that fluctuations in gain account for a substantial portion of spike
count correlation. This has been long-suspected, but it has been difficult to segregate the
effects of shared sensory inputs from correlated modulatory inflléh&as model

provides an explicit method for achieving this (Eq. 5). In V1, this analysis reveals that point
process correlation and excitability correlation have different structure. Point process
correlations decrease rapidly with cortical distance, while excitability correlations change
less. Both point process and excitability correlations increase with tuning similarity (Fig. 5).
Together, these patterns suggests that point process correlations are caused by inputs that are
shared within local functional circuits, while excitability correlations likely arise from
fluctuations in modulatory signals that affect larger populations of neurons (e.g., sensory
adaptation, metabolic resource availability, attentional signals, reward signals).

The analysis in Fig. 3 indicates that the portion of spike count variability attributable to
modulatory fluctuations increases as one ascends the visual hierarchy. This presumably
depends on the context in which responses are measured, including the choice of stimuli, the
presence or absence of anesthesia, and the cognitive state of the animal. For example,
attentional mechanisms are widely believed to act by increasing the gain of neurons
involved in a task. Relative to conditions of uncontrolled attention, we might expect that this
would lead to a net increase in the mean, but a decrease in the variance, of the modulatory
input. Under the modulated Poisson model, this would result in an increase in spike count,
accompanied by a decrease in Fano Factor, as has been reported in area V4 (ref. 39). The
corresponding predictions for spike count correlation are more complicated, since the
relative contributions of the point process and gain correlations depends on the stimulus
drive to each cell, as well as the variance of the gain of each cell (Eq. 5). But if the gain
correlation is larger than the point process correlation and the two cells are receiving similar
stimulus drive, our model predicts that a reduced modulatory variance would decrease spike
count correlation, as has also been obséfved
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The modulated Poisson model has broad implications for the characterization of neuronal
response variability. It is common practice to summarize variability with the Fano factor

(the ratio of the spike count variance to its mean). As clearly revealed in Figs. 2—3, this
measure is highly dependent on the conditions under which it is estimated. For example, the
Fano factor for the neuron in Fig. 2b would be near 1 if estimated from trials in which the
response was low (less than 1 spike per time bin), but would be significantly higher if
estimated from trials with larger responses. Thus, the Fano factor, by itself, does not provide
a reliable summary of neural variability. In contrast, spike count variability of the modulated
Poisson model may be decomposed into a sum of two distinct values, one corresponding to
the Poisson component (which is always equal to the mean) and the second arising from
unobserved modulatory influences, which grows as the square of the mean (Eq. 2). The
amplitude of this second term, which corresponds to the variance of the modulated gain,
provides a compact summary of variability beyond that expected from the basic Poisson
model.

An analogous issue arises with the common practice of summarizing the covariation of pairs
of neurons with spike count correlation. This measure can depend critically on the
conditions under which it is measured (Fig. 4), and thus provides a potentially biased
summary of covariability. Indeed, previous studies have noted that neural correlations can
increase with firing raf®, and that this behavior can be explained by models in which

spikes arise when a Gaussian-distributed membrane voltage crosses a téSHdi®ur

model is quite different but accounts for this phenomenon, as well as the more diverse range
of behaviors seen across different cell pairs (Fig. 4), by summarizing covariation with two
distinct values. One value represents the point process correlation (which could arise from
noise in common sensory inptAs and the other the correlation of the modulatory

influences. At low firing rates, response correlations primarily reflect the former, whereas at
high firing rates they reflect the latter. This insight suggests a resolution for a recent
controversy in the literature regarding the nature and magnitude of cortical correlations.
Despite decades of experimental evidence that cortical cells exhibit modest but significant
spike count correlations on the order of 0.1-0.3 (ref. 15), a recent study in macaque V1
found correlations statistically indistinguishable from zero, and concluded that previously
reported values arose from experimental confotfdowever, average firing rates were
unusually low in this study, and measured correlations were significantly positive for the
small subset of neuronal pairs with high responses. The interpretation arising from our
model and data (Fig. 4) is that the correlation values reported in ref. 17 primarily reflect
point process correlations, which are dominant at low firing rates and fall rapidly with
cortical distance, whereas most previously reported values reflect correlated modulation,
which is only evident at high firing rates, but is generally more substantial and falls more
slowly with cortical distance.

Our analysis suggests that fluctuations in gain are correlated over long time scales within but
not across neurons (Fig. 6). This implies that the mechanisms underlying slow drifts in
response gain differ from the mechanisms that give rise to instantaneous gain correlations.
The local nature of these drifts rules out that they result simply from global state changes
induced by factors like anesthesia or arousal. That said, comparison of responses in area MT
of behaving and anesthetized macaque revealed that cortex is less stable under anesthesia:
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Fluctuations in gain are significantly stronger (Fig. 3c and 7b) and slower (Fig. 6¢c and 7c) in
the anesthetized cortex.

What are the implications of our findings for understanding the representation of sensory
information in the brain? We believe that the gradual increase in the strength of modulatory
fluctuations along the visual pathway (Fig. 3) reflects the gradual transformation and
combination of visual signals with information from other sources, such as other sensory
inputs, top-down signals representing attention, arousal, metabolic state, reward
expectations, emotional state, and so forth. Regardless of the source of modulatory
variability, its increasing weight as information ascends cortical pathways raises the
guestion of why it does not overwhelm the sensory information encoded in higher-level
visual aread with deleterious effects on the accuracy of behaviors that arise from decoding
those neural respongés** It is perhaps worth noting that information encoded in the
relative responses of groups of neurons will not be affected by common modulatory
changes, such as those resulting from attentional ¥ad@esolving this mystery is a critical
step in understanding how stable perception of the visual world can arise from apparently
volatile neural activity, a step made easier by the principled and proven analysis that we
have presented here.

Surgical preparation

We recorded from 18 anesthetized, paralyzed, adult macaque monkeys of either sex (3
Macaca nemestrinal Macaca mulattaand 14Macaca cynomolgysOur standard

procedures for the surgical preparation of animals and single-unit recordings have been
reported in detail previousty. Briefly, experiments typically lasted 5-6 d, during which we
maintained anesthesia with infusion of sufentanil citrate (6-30 gy and paralysis

with infusion of vecuronium bromide (Norcuron; 0.1 mg'kg?) in isotonic dextrose-

Normosol solution. We monitored vital signs (heart rate, lung pressure, end-tidgl pCO

EEG, body temperature, urine flow, and osmolarity) and maintained them within appropriate
physiological ranges. Pupils were dilated with topical atropine. The eyes were protected
with gas-permeable contact lenses, and refracted with supplementary lenses chosen through
direct ophthalmoscopy. At the conclusion of data collection, the animal was killed with an
overdose of sodium pentobarbital. All procedures were conducted in compliance with the
National Institute of Health Guide for the Care and Use of Laboratory Animals, and with the
approval of the New York University Animal Welfare Committee.

Unit recording

Extracellular recordings were made with quartz-platinum-tungsten microelectrodes (Thomas
Recording), advanced mechanically into the brain through a craniotomy and small
durotomy. Electrode insertion angle and location varied across experiments, depending on
the targeted area. We distinguished V1 from V2 on the basis of depth from the cortical
surface and changes in the receptive field location of the recorded units. Area MT was
identified from the brisk direction-selective responses of isolated neurons. We made
recordings from every single unit with a spike waveform that rose sufficiently above noise
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to be isolated. Stimuli were presented in random order. Data are reported from every unit for
which we completed at least 5 repetitions.

Visual stimulation

We presented visual stimuli on a gamma-corrected CRT monitor (Eizo T966; mean

luminance, 33 cd/A) at a resolution of 1,280 x 960 with a refresh rate of 120 Hz. Stimuli

were presented using Expo softwarné(://corevision.cns.nyu.ejilon an Apple Macintosh

computer. For each isolated unit, we first determined its ocular dominance and occluded the
non-preferred eye. We presented circularly windowed sinusoidal grating stimuli to map each
cell's receptive field, determined its preferred size and speed, and then measured selectivity
for orientation or spatial frequency.

Analysis of single electrode recordings

Responses were computed by counting spikes in a 1,000-ms window following response
onset. We estimated latency for each cell by choosing the latency that maximized the
variance of the tuning cur$® The modulated Poisson model describes a doubly-stochastic
process (also known as a “Cox procé$s’in which spiking responses are generated by a
Poisson process whose rate is the product of drive and gain (Egs. 1 and 2). To make the
model identifiable, we assume that the g&@inis constant within trials, and is distributed

across trials according to a Gamma distribution with a mean of one and vari'af;ce of

G"lexp(—-G/S)

p(Girys)= ST

with shape parametr=1/02, and scale paramets=o>. The mean spike count of the
modulated Poisson model is the product of the @aithe stimulus driven rat§S), and the
bin duration, A and is thus also distributed according to a Gamma distribution, with

parametem«:l/ai ands:aif(S)At. The spike count distribution is a Gamma mixture of
Poisson distributions, and marginalizing over the gain variable yields a negative binomial
distribution (Eq. 4) for the spike codft

P(N;r,s):%(liSy(lj__S)N

With parameters ands described above, this distribution has a meas sff(SAt and a

variance ors+rs®=f(S)At+o? f(S)*At” as expressed in Eq. (3). The negative binomial
can also be derived as a Poly-gamma mixture of Gaussian distrif8tiafierm that allows
efficient inferencé’, but lacks the modulatory interpretation provided here.

We fit both the ordinary and modulated Poisson models to the responses of each individual
neuron. The maximum likelihood estimator of the parametbat characterizes a Poisson
distribution is the sample mean, which we estimate separately for each stimulus condition.
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The modulated Poisson model has two parametensds) that are related to the stimulus
drive and the variance of the gain. We used a simplex algorithm (the Matlab function
‘fminsearch’) to search for the value of § that minimized the negative log likelihood
(NLL) of the full set of observed responses.

To assess the models' goodness-of-fit, we performed a 100-fold cross-validation. We fitted
both models to a data-set consisting of all trials except for one randomly chosen trial per
stimulus condition and compared the average log-probability of the hold-out data under each
model (Fig. 3b). To evaluate the models' absolute goodness-of-fit, we compared the log-
probability of the data with that of a large number of simulated data sets drawn from the
fitted model. Each simulated data set has the same number of repeats as the observed data.
We consider a model fit acceptable if the log-probability of the real data lies within the
central 95% of the distribution of log-probability of the simulated data. This test can detect
both under-dispersion and over-dispersion.

We used the modulated Poisson model to estimate the fraction of spike count variance that
arises from the gain signal. As is standard in ANOVA, one can partition the sum of squares
into components arising from variations in the stimuflig.), the gain signaly,jy), and

the point processX):

R e )
SN ATt N4y (N~ F)
k k k

= Spp +Sqa7'n +Sstim

whereN is the spike count on thh trial, Nk_is the spike count averaged over those trials

in which the presented stimulus was the same as that kihthréal, andN is the spike count
averaged over all trials. The second line follows from the first given the spike count variance
of the modulated Poisson model, as expressed in Eq. (3). The fraction of within condition

variance that arises from excitability fluctuations is giveisS ,;,/ (Sgain+Spp)-

Analysis of multielectrode array recordings

Full details regarding these data sets may be found in ref. 20. Briefly, an array containing 96
fixed electrodes was used to record from single units in the superficial layers of macaque
primary visual cortex. The animal was anesthetized and stimulated with sinusoidal gratings.
We included all units that could be tracked throughout the entire experiment and whose
mean response exceeded 2 spikes/sec for at least one stimulus condition. We opted to leave
out one set of array recordings (data set 3 in ref. 20) because the responses exhibited
uncharacteristically strong correlations across time and neurons; we suspect the cortical
surface was still recovering from array insertion. In our modeling framework, pairwise
response correlations can result from both correlated point processes, as well as correlated
gain fluctuations. To separate these two sources, we used the covariance decomposition
formula in Eq. (5) and searched for the point process correlation and gain correlation that
maximized the likelihood of the observed response relations. Rather than fitting response
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correlations directly, we performed the optimization on Z-transformed spike count
correlations:

wherer is the spike count correlation, and In the natural logarithm. The advantages of this
Fisher transformation include a quicker convergence to normality and variance stabilization.
We used a simplex algorithm to find theif, rgjj] values that maximized the likelihood of

the observed response correlations under a normal residual distribution. This approach
works well for most neuronal pairs (Fig. 4), but the model parameters are not always well
constrained. For instance, when the modulation of the direction tuning curve is weak for
both neurons, many parameter combinations will yield a similar likelihood. For the
population analysis (Fig. 5), we therefore took the uncertainty associated with the parameter
estimates into account. We modeled the population distribution of the mean parameter
values with a bivariate normal distribution, and searched for the parameter values that
maximized the likelihood across all neuronal pairs. Poorly constrained pairs of neurons have
a flatter likelihood function and are therefore down-weighted in this analysis. Although we
consider this approach preferable, simple averaging of the parameter estimates yielded
similar results.

To study the temporal structure of the gain signal, we estimated its autocorrelation function.
We first removed the stimulus-induced temporal structure by subtracting the appropriate
stimulus-elicited mean response from the observed responses. We then estimated the
remaining covariance between pairs of responses separated by different time lags. To obtain
the autocorrelation of the excitability signal at a given time lag, this covariance is

normalized by the variance of the excitability sigigghin/(N - 1).
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Processing Spike generation

— Il

f(S)

Figure 1.
The modulated Poisson model. Spikes are generated by a Poisson process whose rate is the

product of two signals: a stimulus-dependent dii{f&, that is under experimental control,
and a gain signa, that summarizes the net effect of stimulus-independent modulatory
inputs that are assumed to fluctuate slowly relative to the duration of experimental trials.
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Figure 2.
Neural response variability originates in substantial part from gain fluctuat®msctpal

and model-predicted response distributions for a V1 neuron, stimulated with gratings
drifting in different directions. Responses were computed by counting spikes in a 1,000-ms
window following response onset. The mean response varies with drift direction (center).
Spike count histograms (outer ring) were calculated from 125 stimulus repetitions. Response
distributions are superimposed on the best fitting probability densities of the Poisson (red)
and gamma-modulated Poisson (blue) modb)sVériance-to-mean relationship of the

neural responses (grey dots, one per direction of motion), compared with predictions of the
Poisson model (red line) and the modulated Poisson model (blue line). The inset shows this
relation for three directions of motion (red, black, and green), where each data point is
obtained from a randomly selected epoch with duration drawn uniformly from the range 1—
1,000 ms in the corresponding spike raster (the red data are taken from the inset raster).
Mean and variance are computed over all trigsL¢g-probability of the cell responses

under the Poisson model (red triangle) and the modulated Poisson model (blue triangle).
Histograms illustrate the expected range of the log-probability statistic (computed with a
1,000 run parametric bootstrap) for the Poisson model (red) and the modulated Poisson
model (blue). d) Variance-to-mean relationships predicted by the modulated Poisson model
and an additive model for weak (orange) to strong (green) fluctuations in gain.
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Figure 3.

Comparison of neural response variability for cells in different visual aggagafiance-to-

mean relationship for 63 LGN cells (orange), 396 V1 cells (green), 189 V2 cells (blue) and
137 MT cells (violet). Each data point illustrates the mean and variance of the spike count in
a 1,000-ms window of one cell for one stimulus conditibh Qomparison of the predictive
accuracy of the Poisson and modulated Poisson models. Log-likelihood is computed for a
set of hold-out data and expressed per spike (Online MethodB)is{ribution of stimulus-
independent fluctuations in gain, summarized by the coefficient of variation of the gain.
Triangles indicate the median value for each aa-iaction of within-condition variance
explained by gain fluctuations. Asterisks (***) indicate P < 0.0001.
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Response correlation analysis for three example pairs of simultaneously recorded V1

neurons. ¢ Mean response to drifting sinusoidal gratings, as a function of direction (72
stimulus conditions, 50 repeats, 1,280-ms count windalaf) Spike count correlation as a
function of the geometric mean of the mean spike counts of the two neurons. Each data point

corresponds to a different a stimulus condition. The blue line shows the correlations

predicted by the modulated Poisson model, and the surrounding light blue region indicates
+/- one standard deviation of the distribution of estimates computed from 50 regeiats. (

Spike count correlation as a function of the mean response of the two neurons, as predicted
by the modulated Poisson model (color indicates correlation, points indicate response means
for different stimulus conditions, as depicted in the two tuning curves shown in the first

column).
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Figure 5.
Model-based decomposition of measured spike count correlations into gain and point

process correlationsa{b) Measured spike count correlatia),(and inferred point process
and gain correlation$], as a function electrode distance. Thickness of lines indicates the
95% confidence intervalc{d) Measured and inferred correlations plotted as a function of
the correlation in mean responses (i.e., tuning curves) of the two neurons.
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Figure 6.

Gain fluctuations are correlated over tima. Nlormalized responses as a function of time

for three simultaneously recorded V1 neurob¥.The autocorrelation function of the

inferred gain for the example neurons. The autocorrelation function of the gain, averaged
across units for each data sel). The cross-correlation function of the gain, averaged across
pairs for each data set.
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Analysis of spike count variance for a population of MT neurons recorded in awake,
behaving macaqu&$?2 (a) Variance-to-mean relationship for 307 MT cells. Each data

point illustrates the mean and variance of the spike count in a 2,000-ms window of one cell
for one stimulus conditionbj Distribution of stimulus-independent fluctuations in gain,
summarized by the coefficient of variation of the gain (top) and fraction of within-condition
variance explained by gain fluctuations (bottorn).Tthe autocorrelation function of the

gain, averaged across units (trials are assumed to be separated by 5 sec).
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