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Abstract

During perceptual decisions, the activity of sensory neurons correlates with a subject’s percept,
even when the physical stimulus is ideniedl The origin of this correlation is unknown. Current
theory proposes a causal effect of noise in sensory neurons on perceptual d8eiSjdns it

could result from different brain-states associated with the perceptual choigedown). These

two schemes have very different implications for the role played by sensory neurons in forming
decision$?. Here, we used white-noise analy8io measure tuning-functions of V2 neurons
associated with choice and simultaneously measure how the variation in the stimulus affects
subjects’ (two macaques) perceptual decisi®d$. In causal models stronger effects of the

stimulus upon decisions, mediated by sensory neurons, are associated with stronger choice-related
activity. However, we find that over the timecourse of the trial, these measures change in different
directions—at odds with causal models. An analysis of effect of reward size supports the same
conclusion. Finally, choice was associated with changes in neuronal gain that are incompatible
with causal models. All three results are readily explained if choice is associated with changes in
neuronal gain caused by top-down phenomena that closely resemble dfewieronclude that
top-down processes contribute to choice-related activity. Thus even forming simple sensory
decisions involves complex interactions between cognitive processes and sensory neurons.

Considerable progress has been made towards explaining the neuronal mechanisms
underlying decision makifg-a major goal in systems neuroscience. For simple perceptual
decisions, recent theory proposes that sensorimotor areas accumulate sensory evidence about
the physical world, delivered by sensory neut8A$2°-22. Noise in the sensory neurons

causes variability in the behavioral respdfis¥, resulting in a co-variation between the

neuronal activity and behavie®. (Note that this causal effect of noise in the sensory
representation has only been invoked for sensory areas, not for sensorimotor areas.)

However, this co-variation could also arise from top-down efféatswhich brain statés

that are associated with one behavioral response, also alter the response of the sensory
neurons. A third (bottom-up) possibility is that sensory neurons that themselves have no
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causal effect on the decision are correlated with sensory neurons that do have a causal effect.
These schemes have markedly different implications for the role played by sensory neurons
in forming decisions. Sensory neurons either only encode the physical stimulus, or they
simultaneously form an integral part of the mechanism used by the brain to decode the
sensory information. In order to distinguish these views, we combined the measurement of
choice-related activity in disparity selective V2 neurons in a disparity discrimination task,
with a stimulus that permitted the use of white-noise analysis. This allowed the simultaneous
application of 1) “subspace mappiit§’to describe how disparity affects the neuronal
response (“disparity subspace map”), and 2) “psychophysical reverse corréfadidig

extract a kernel describing how disparity affects the subjects’ (two macaques) perceptual
choices. This comprehensive dataset enables us to differentiate these schemes.

Two macaque monkeys performed a coarse disparity discrimination task (Fig. 1a), while we
recorded extracellularly from disparity selective neurons in their V2. The stimulus, a circular
random dot stereogram, contained a spatially uniform binocular disparity which varied
randomly on each video-frame. We exploited this random variation to perform
psychophysical reverse correlatial8 and to measure simultaneously neuronal subspace
map$?® for disparity.

First, we examined how the monkeys weight the disparity signal in the stimulus to form
their decisioh®. We calculated the difference between the average stimulus preceding the
monkeys’ near choices and the average stimulus preceding the monkeys’ far choices. This
“psychophysical kernel” measures the relative probability with which the disparity on any
given frame occurred preceding the monkeys’ near choice. The amplitude of the kernel
declines substantially over the course of the trial (Fig. 2b). (The supplementary material
discusses the shape of the psychophysical kernel and shows that this linear analysis
adequately captures the monkeys’ behavior.) This means that the monkeys rely
predominantly on the stimulus disparities in the beginning and progressively less towards
the end of the trial. Now consider neurons representing this sensory evidence. Their activity
early in the trial should have a stronger effect on the decision than activity late in the trial.
Thus, if the choice-related activity reflected only the causal effect of the neuronal firing on
the choice, the size of the choice-related activity should also decrease over time. This
prediction follows directly from the fact that, in the causal explanation, choice-related
activity is the effect of noise in the sensory evidence that is used to make a decision.

To evaluate this prediction, we quantified the choice-related signal as "choice-probability”
(CPY. (CPs were corrected for the stimulus-induced component; see supplementary
Material.) The time course of the choice-related signal in our data (Fig. 2c) is quite different
from that predicted from the time-course of the psychophysical data in the causal-only
scheme. CPs were measured for 76 neurons which had simultaneously been recorded while
the data for the psychophysical kernel were gathered. For 57/76 neurons, for which CP was
>0.5, we examined the mean CP as a function of time (Fig. 2c). Consistent with previous
findings*, CP plateaus after about 500ms -quite different from the statistically significant
decrease in amplitude of the psychophysical kernel over time (r=—0.81;33¢Edween
amplitude and time, over the second half of the trials). Although CP timecourses for
individual neurons are noisy, we addressed the possibility that some neurons behave as if
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they play a causal role, by computing the correlation coefficient between the timecourse of
CP for each individual neuron with the timecourse of the average psychophysical kernel
amplitude R, Fig. 2d). We find a significant negative correlation between tResad a

neuron’s CP (r=—0.28, p<0.05) indicating that neurons with high CPs tended to show a
negative correlation with the timecourse of the psychophysical kernel amplitude, as
expected from the average data (Fig. 2b). This and other features of individual timecourses
(see supplementatry discussion) are at odds with the causal model.

These results are incompatible with the causal-only account. It suggests that CPs are at least
partially of non-causal, possibly top-down, origin. We therefore sought a signature of
possible top-down mechanisms at the level of individual neurons. This could employ a
mechanism similar to attention which characteristically alters the gain of sensory hA&urons
We designed our disparity-varying stimulus such that it permitted the measurement of
subspace maps for disparity (see Methods), in order to test this possibility explicitly.

These subspace maps quantify the effect of each disparity (in the stimulus with 0% added
signal) on the neuron. Calculating subspace maps separately for stimuli associated with
“near” and “far” choices quantifies any effects of choice upon the neuronal response.
Choice-related activity itself implies some difference between these subspace maps. If the
difference is caused by a change in neuronal gain, the two subspace maps should be scaled
versions of each other. Example subspace maps for one neuron (Fig. 3a) show that the gain
of this neuron increased by 84%, while the additive change was close to 0 (-0.032 spikes/
frame). A second example shows a more typical gain increase (18%, y-offset: 0.005 spikes/
frame).

The distribution of relative gain change as a function of CP demonstrates that CPs are
associated with choice-related changes in neuronal gain (Fig. 3e, n=76, r=0.44; p<10
monkey 1 n=42, r=0.54, p<0.001; monkey 2 n=34, r=0.32, p<0.07). The geometric mean of
the relative gains was 1.16 (1.17 and 1.15 for monkey 1 and 2, respectively), which is
significantly different from 1 (p<0.001, by resampling). Conversely, there was no systematic
relationship between the y-offset and CP (r=0.03, p=0.77; r=-0.18, p=0.25 and r=0.18,
p=0.31 for monkey 1 and 2, respectively; mean offset: —0.03 spikes/frame). Thus, it is the
choice-dependent change in response gain which explains the difference in mean response
rate between preferred and null choices.

A modest gain change could arise, even in the causal account of CP, from the firing
properties of cortical neurons (e.g. Poisson spdna\ shuffling technique showed that
this effect was too small to account for the observed gain changes (supplements).

The gain change suggests the operation of a mechanism similar to feature selective
attentio®, but which varies from trial-to-trial. This could arise in several ways. First, as the
decision is formed, a signal altering the neuronal gain may be sent back to those neurons
supporting this decision. Alternatively, this gain change may implement a perceptual
working memory®, or a perceptual bias/expectation: attending “near” increases the response
gain of “near” neurons and thus makes a “near” response more likely.
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An additional feature of our data provides evidence that at least the latter mechanism
operates. The reward size depended systematically on the animals’ performance (see
Methods). This performance was better on trials for which a large reward was available (Fig.
4a and supplements), indicating that animals used more information about the stimulus when
reward size was large. It allows us to further test causal explanations for CP: when the
animal uses more stimulus-derived information CP should be larger. Contrary to this
prediction, we find that CPs were significantly smaller for trials on which a large reward

was available (p<0.006, paired t-test, Figure 4b). This result can be explained if one assumes
that the animal has some bias (or expectation) at the start of each trial (regardless of reward
size), and this bias engages our proposed top-down mechanism. When the available reward
is small and the monkeys make less use of the sensory input (as demonstrated by the
psychophysical kernel, Fig. 4a), the bias will have a stronger impact on the behavioral
response. Conversely, when a large reward is available, the improved performance implies
that any initial bias is more likely to be overridden by the evidence provided by the visual
stimulus. Hence any component of CP reflecting a top-down effect of bias will be smaller on
large-reward trials when the decision is more strongly driven by the actual stimulus and less
by the monkey'’s initial bias.

Our results provide three lines of evidence against the view that decision-related activity in
sensory reflects only the causal effect of neuronal noise on sensory decisions. First, the time-
course of the decision-related signal was incompatible with that predicted from the

behavioral data in the causal-only scheme. Second, larger rewards systematically improved
the animals’ behavior, but reduced CP, the opposite of the expectation from causal
explanations. Finally, CPs were associated with choice-dependent gain changes larger than
could be explained in the causal scheme. All three phenomena follow naturally from a top-
down scheme in which the animals’ perceptual state alters the response of sensory neurons.
An alternative explanation is that neurons which do not contribute to the decision show CP
because they are correlated with neurons that do contribute. Such a scheme, if sufficiently
rich, might explain the data without invoking a top-down mechanism (see supplementary
Discussion), but nonetheless abandons the principle that CP reflect only the causal effect of
sensory noise upon decisions. Given that the choice-dependent gain changes we observe are
characteristic of top-down mechanisms such as attention, our top-down scheme is the most
parsimonious.

Changes in neuronal gain may facilitate the decoding of neuronal populations by
appropriately weighting relevant neurdf<8. Implementing such a decoding mechanism at

the level of sensory neurons allows the brain extraordinary flexibility to perform sensory
decisions in different circumstances. Here we show that these gains vary with a subject’s
choice, within a fixed task. This gain change could implement a perceptual bias or
expectation (attending to “near” or “far”), and could also follow the formation of a decision.

It may serve to promote perceptual stability in the presence of ambf§urumisy sensory
signals. In either case, our data suggest that even simple sensory decisions involve top-down
mechanisms that entwine cognitive processes and the sensory representation in previously
unreported ways.
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Methods summary

Methods

All procedures were in agreement with the Public Health Service policy on the humane care
and use of laboratory animals and all protocols were approved by the Institute Animal Care
and Use Committee. We recorded extracellular activity from disparity selective single V2
units while two monkeysMacaca mulattaperformed disparity discrimination. Upon

fixation, a stimulus was presented for 2sec, followed by two choice targets. After a saccade
to the correct target, the monkeys received a liquid reward. Stimuli were dynamic random
dot patterns: a disparity-varying center (disparity changed randomly on each frame, 96Hz
framerate) and a surrounding annulus at 0°. The center disparity was chosen from a set of
evenly spaced disparity values centered around 0° (encompassing the preferred and null
disparity of each neuron). We introduced a detectable signal by increasing the probability of
occurrence for one disparity within some trials. These signal disparities approximately
matched each neuron’s preferred and null disparity. Signal trials served only to control
behavior: all analyses were restricted to trials with 0% signal added. Psychophysical kernels
were computed as the difference of the mean stimulus matrix preceding near- and far
choices, respectively. The average kernel was a weighted average of the kernel for each
experiment for which neuronal data were included. Choice-probabilities were obtained as
described previoushp, but corrected for the stimulus-induced component (Supplements).
For the sub-space analysis, the average response of each neuron following one frame of a
given disparity ¢;) was computed as a spike density functig(t)). We calculated the total
number of spikes elicited by one framedpés the sum of the overall mean number of
spikes/frame and the integral of the deviatio€) around this mean. Separate analyses

for all trials preceding a near choice (far choice) yield the subspace maps separated by
choice.

Task and reward-regimen

Recordings

Two monkeys were trained in a binary forced choice disparity-discrimination task (Fig. 1a).
They judged whether the central stimulus-region appeared in front or behind the surrounding
annulus. Trials started upon fixation (within 0.5° of a fixation marker), initiating a 2sec
stimulus presentation followed by the appearance of two choice targets (3° above and below
the fixation marker). If the monkeys indicated their decision by a saccade to the correct
choice target within 500ms of the stimulus disappearance, they received liquid rewards. If
the monkeys made correct choices on three consecutive trials, the reward on the fourth and
on all subsequent correct trials was approximately three times its normal size, until the
monkey made an error. After an error, the reward size was set back to its normal size.

We recorded extracellular activity from disparity selective single-units in these monkeys’

V2, as described previou$ly°. Both animals were implanted with scleral search coils in

both eyedl, head fixation posts and a recording chamber under general anesthesia. Positions
of both eyes (for 17/58 neurons for monkey 2 signals were available only for one eye) were
measured with a magnetic scleral search system (C-N-C Engineering) and digitized at
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Stimulus

800Hz. The monkeys viewed the stimuli on EIZO Flexscan F980 monitors in a Wheatstone
stereoscope configuration (89cm viewing distance). All procedures were in agreement with
the Public Health Service policy on the humane care and use of laboratory animals and all
protocols were approved by the Institute Animal Care and Use Committee.

All stimuli were circular dynamic random dot stereograms (RDS; 50% black and 50% white
dots of 99% contrast, dot-density generally 40%, dot size 0.09x0.09°). Each RDS had a
disparity-varying center (3-5° in diameter) and a 1-2° wide surrounding annulus at 0°
disparity (Fig. 1b). On each frame, all center dots had the same disparity, but this disparity
value changed randomly from frame to frame (96Hz frame-rate). For the condition with 0%
added signal, the disparity on each frame was drawn at random from a uniform distribution
of discrete, equally spaced disparities (symmetrical about 0° disparity, center Panel in Fig.
1c; encompassing the preferred and the null disparity of each neuron). Signal disparities
(always one near, one far disparity) approximately matched the preferred and null disparity
of the neuron. Disparity signal was introduced by increasing the probability of the signal
disparity on each frame (Fig. 1c).

Psychophysical reverse correlation

Only 0% added signal trials were included in the analysis. Each stimulus trial was
summarized by a two-dimensional matrix in which each row corresponds to one disparity,
and each column to one stimulus frame. For each column in this matrix, there is one entry
with a 1, corresponding to the disparity at this frame, and all other entries are 0. We then
computed the average matrix preceding the monkey’s near and far choice. For each of the
200 stimulus frames, the resulting values correspond to the probability with which each
disparity preceded a near choice or far choice, respectively. This yields a two-dimensional
(time x disparity) probability-distribution. The difference between the probability

distribution preceding near choices and far choices defined the psychophysical kernel for
each experiment. (Negative disparities are defined as near.) The kernel-shapes change little
between monkeys or as a function of the signal disparities (supplementary Fig. 2). We
therefore collapsed all the data into a single psychophysical kernel to maximize the temporal
resolution. The average psychophysical kernel (Fig. 2a) was obtained for all experiments for
which the simultaneously recorded neurons passed the inclusion criteria. Since the disparity
range was adjusted for each neuron, the psychophysical kernel for each experiment was
weighted by the number of disparity values included in this experiment (this ranged between
5-13 disparity values) and by the number of trials for this experiment. Only data for
disparity values [-0.4°, —0.3°..., 0.4°] were included in this average. As an estimate of the
amplitude of the psychophysical kernel we computed the inner product of the time-averaged
psychophysical kernel with the psychophysical kernel (temporally smoothed, 10ms boxcar)
at each 10ms bin, and normalized this inner product by its overall mean. Confidence
intervals for all measures were derived by resampling. All analyses were based on the linear
kernel of the psychophysical data. Consistency-analyses (see supplements) show that this
linear kernel provides an excellent description of the monkeys’ behavior. Further analyses
indicate that second-order interactions were negligible (see supplements).
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Sub-space analysis

The analysis is based on all 0% added signal trials. First, the average response of each
neuron following one frame of a given disparith) (vas computed as a spike density

function §(t)), smoothed by a 10ms-wide boxcar (colored solid lines in supplementary Fig.
3a). As an estimate of the impact of one frame of this dispa)terg the firing rate of the
neuron, we calculated the total number of spikg®licited by one frame af;. This metric
corresponds to the sum of the mean number of spikes/fiarhia¢k line in supplementary

Fig. 3a) and the integral of the deviationSgt) around this mean.

st [(Si(t) — )t

The disparity sub-space mag) (s plotted as a function of (supplementary Fig. 3b).

Performing this analysis separately for all trials preceding a null choice (preferred choice)
yields the subspace maps separated by choice (Fig. 3a,c). To quantify the choice-dependent
modulation in tuning, we plotted the responses on the null choice trials against those on the
preferred choice trials (Fig. 3b,d), and estimated (type Il regression) the slope (gain-change)
and the y-offset (additive change). Note that because the spike density function is a mean
rate calculated separately for each choice, variations in the disparity content of the stimulus
that are associated with choice will not produce differences in the subspace maps.

Analysis of choice-probabilities

Choice probabilities were obtained for all 0%-added signal trials as described predfusly
As the psychophysical kernel demonstrates, there are systematic differences in the stimuli
preceding the monkeys’ choices. CPs were corrected for this stimulus-induced component
(see supplementary methods).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 3.
Choice-dependent gain changesub-space maps for preferred (red), null (blue) choices

superimposed (neuron d1456). Dashed lines: 0° disparity, O spikes/firé&u#-choice
responses plotted against preferred-choice responses, yielding relative gain (slope, 1.84),
additive change (y-offset, —0.032 spikes/frame). Dashed lines: unity, 0 spikestfme.
Same format ag,b for neuron d1394 whose slope (1.18), y-offset (0.005 spikes/frame)
resemble the population-meaSlope and choice-probability are correlated. Filled, open
symbols: cells with, without significant choice-probability. Circles, squares: data for
monkey 1, 2. Dashed lines: 0.5 choice-probability, relative gainfafid.correlation

between y-offset and choice-probability (symbolg)a®ashed lines: 0.5 choice-

probability, 0 spikes/frame. Solid lineséif: median standard error for slope, y-offset.
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FIGURE 4.

Reward size affects behavior and choice-related sigidychophysical kernel as a

function of disparity and available reward (in occurrences/1000ms; n=6886 trials for large
reward, red line; n=10314 trials for small reward, blue line; averaged over the first and
second 1000ms of each trial in the left and right panel, respectively.). Improved performance
is mainly caused by a larger psychophysical kernel in the first (kernel difference p<0.001, by
resampling), not second half of the trials (difference h.€hoice-probability computed for

the first half of the trials was larger when a smaller reward was available (p<0.006, n=76).
Dashed line: unity.
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