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Advances in DNA sequencing and machine learning are providing insights into
protein sequences and structures on an enormous scale'. However, the energetics
driving folding are invisible in these structures and remain largely unknown?. The
hidden thermodynamics of folding can drive disease®*, shape protein evolution>”’
and guide protein engineering®°, and new approaches are needed to reveal these
thermodynamics for every sequence and structure. Here we present cDNA display
proteolysis, amethod for measuring thermodynamic folding stability for up to
900,000 protein domains in aone-week experiment. From 1.8 million measurements
intotal, we curated a set of around 776,000 high-quality folding stabilities covering
all single amino acid variants and selected double mutants of 331 natural and 148

de novo designed protein domains 40-72 amino acids in length. Using this extensive
dataset, we quantified (1) environmental factors influencing amino acid fitness,

(2) thermodynamic couplings (including unexpected interactions) between protein
sites, and (3) the global divergence between evolutionary amino acid usage and
protein folding stability. We also examined how our approach could identify stability
determinantsin designed proteins and evaluate design methods. The cDNA display
proteolysis method is fast, accurate and uniquely scalable, and promises to reveal the

quantitative rules for how amino acid sequences encode folding stability.

Protein sequences vary by more than ten orders of magnitude in ther-
modynamic folding stability? (the ratio of unfolded to folded molecules
atequilibrium). Evensingle point mutations that alter stability can have
profound effects on health and disease**, pharmaceutical develop-
ment®'°and protein evolution®”. Thousands of point mutants have
beenindividually studied over decades to quantify the determinants of
stability", but these studies highlight a challenge: similar mutations can
have widely varying effects in different protein contexts, and these sub-
tleties remain difficult to predict despite substantial effort'>*, In fact,
even asdeep learning models have achieved transformative accuracy
atprotein structure prediction’, progress in modelling folding stabil-
ity has arguably stalled"". New high-throughput experiments have
the potential to transform our understanding of stability by quantify-
ing the effects of mutations across a vast number of protein contexts,
revealing new biophysical insights and empowering modern machine
learning methods.

Here we introduce cDNA display proteolysis, a powerful high-
throughput stability assay, and use it to produce a large dataset of
776,298 folding stability measurements. This method combines the
strengths of cell-free molecular biology and next-generation sequenc-
ing and requires no on-site equipment larger than a quantitative PCR

(qPCR) instrument. Assaying one library (up to 900,000 sequences
in our experiments) requires one week and reagents costing about
US$2,000, excluding the cost of DNA synthesis and sequencing.
Compared with mass spectrometry-based high-throughput stability
assays'®”, cDNA display proteolysis achieves a100-fold larger scale and
caneasily be applied to study mutational libraries that pose difficulties
for proteomics. Compared withthe previous yeast display proteolysis
method'®, cDNA display proteolysis resolves awider dynamic range of
stability and is more reproducible even at a 50-fold larger experimental
scale. Large-scale proteolysis data have already had a key role in the
development of machine learning methods for protein design and
protein biophysics'®?°. The cDNA display proteolysis method massively
expands this capability and has the potential to expand our knowledge
of stability to the scale of all known small domains.

The dataset of 776,298 absolute folding stabilities is unique in size
and character. Current thermodynamic databases contain a skewed
assortment of mutations measured under many varied conditions™.
By contrast, this new dataset comprehensively measures all single
mutants for 331 natural domains and 148 designed proteins—including
single deletions and twoinsertions at each position—all underidentical
conditions. Our dataset also includes comprehensive double mutations
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at 559 site pairs spread across 190 domains (a total of 210,118 double
mutants). We used this unique dataset to investigate how individual
amino acids and pairs of amino acids contribute to folding stability as
well as how selection for stability interacts with other selective pres-
sures in natural protein domains. We also explored how our unique
scale of data can be applied in protein design.

The cDNA display proteolysis method

Proteases typically cleave unfolded proteins more quickly than folded
ones, and proteolysis assays have long been used to measure folding
stability* and select for proteins with high stability?>**. We developed
cDNA display proteolysis to efficiently measure folding stability using
next-generation sequencing, following similar principles to the yeast
display proteolysis method™. Each experiment begins with a DNA
library. We used synthetic DNA oligonucleotide pools in which each
oligonucleotide encodes one test protein. The DNA library is tran-
scribed and translated using cell-free cDNA display**, whichisbased on
mRNA display®?, resulting in proteins thatare covalently attached to
their cDNA at the C terminus. We thenincubate the protein-cDNA com-
plexes with different concentrations of protease, quench thereactions,
and pull down the proteins using an N-terminal PA tag (Fig. 1a). Intact
(protease-resistant) proteins remain attached to their C-terminal cDNA.
We thendetermine therelative amounts of all proteinsin the surviving
pool at each protease concentration by deep sequencing (Fig. 1c). To
control for effects of protease specificity, we perform separate experi-
ments with two orthogonal proteases: trypsin (targeting basic amino
acids) and chymotrypsin (targeting aromatic amino acids).
Weinferred the protease stability of all sequences from our sequenc-
ing counts using a Bayesian model of the experimental procedure. We
modelled protease cleavage using single turnover kinetics?*® (Fig. 1b,
equations (1) to (3)) because we assume that the enzyme is in excess
over all substrates (up to about 20 pM of substrate? versus at least
141 pM of protease). To parameterize the model, we used a universal
kqnax (Maximum cleavage rate) for all sequences (Extended Data Fig. 1)
and used our sequencing data to infer a unique K, (the protease con-
centration at whichthe cleavagerateis half of k,,,; Fig. 1d and Methods)
for each sequence. The inferred K, values were consistent between 2
replicates of the proteolysis procedure (R=0.97 for trypsin and 0.99
for chymotrypsin for around 84% of sequences in a pool of 806,640
sequences after filtering based on confidence and dynamic range).
Toinfer eachsequence’s thermodynamic folding stability (for unfold-
ing at pH 7.4 and 298 K (room temperature); hereafter referred to as
AG), weused akinetic model that separately considers idealized folded
(F) and unfolded (U) states (Fig. 1b, equation (4)). We model both states
using the same single-turnover equations as before (Fig. 1b, equation
(3)) withseparate K, protease concentrations for each state (K, - and
Ksou) and auniversal, shared k,,,,. We assume that cleavage in the folded
state occurs exclusively in the constant regions of the construct such
as the N-terminal PA tag, so we use an identical K, ; for all sequences.
By contrast, K, reflects an individual sequence’s unique protease
susceptibility in the unfolded state, which depends on its potential
cleavage sites (Fig. 1e). We inferred K, for each sequence using a
position-specific scoring matrix model parameterized using meas-
urements from 64,238 scrambled sequences that are likely to be fully
unfolded (Extended Data Fig.2 and Methods). Inferringa unique Ky, , for
eachsequence accounts for differences in unfolded state susceptibility
between sequences, but any cleavage from folded or partially-folded
states cannot be corrected by this model. Finally, we assume that fold-
ing, unfolding and enzyme binding are allin rapid equilibrium relative
tocleavage, implying thatKy, , K50 and the overall K5, can be approxi-
mated by the enzyme-substrate equilibrium dissociation constants
(Fig.1b, equation (6)). Although these approximations will not be uni-
versally accurate, they are often valid for small domains and facilitate
consistent analysis of all sequences. With these approximations, we

candetermine the AG for asequence fromits experimentally measured
Ky, its inferred K, and the universal K, ¢ (Fig. 1b, equations (5) and
(7) and Fig. 1e; derivation in Supplementary information).

Our model has notable limitations. First, stability (AG) willbe under-
estimated if significant cleavage occurs inside the test domain from
folded or partially folded states (that is, without global unfolding).
Second, stability can be over- or under-estimated depending on the
accuracy of Kso, (independent measurements with trypsin and chy-
motrypsin help correct this). Third, AG values become unreliable if
Kso approaches K ¢ or Ko, (Fig. 1e). Owing to these limitations, we
developed data quality filters to remove unreliable AG estimates (see
below). After filtering, the AG values inferred by the model were con-
sistent between our independent experiments with trypsin and chy-
motrypsin (R =0.94; Fig. 1f). For most analyses, we combined trypsin
and chymotrypsin datainto a single overall AG estimate (Methods).

High-throughput data are accurate

Our cDNA display proteolysis measurements are highly consistent with
published studies using purified protein samples for 1,188 variants of
10 proteins (Fig.1gand Supplementary Fig. 1for more details on GB1%).
All Pearson correlations are above 0.75. Our measurements for these
sequences were all performed in libraries of 244,000-900,000 total
sequences. Several sets of mutants show systematic offsets (y-intercept
values) between literature values and our measurements. We attrib-
ute these offsets to temperature differences between our conditions
and the published experiments, and the offsets are correlated with
temperature (except for NTL9 (Protein Data Bank (PDB) ID: 2HBB);
Extended Data Fig. 3; see Supplementary Table 1 for all experimental
conditions and references). The consistency between our cDNA display
proteolysis results and traditional experiments establishes that (1) small
domains like these are cleaved mainly in the globally unfolded state,
(2) our method canreliably measure these cleavage rates on a massive
scale, and (3) our unfolded state model can remove protease-specific
effects to infer accurate quantitative folding stabilities.

Mutational scanning of diverse domains

To systematically examine how individual residues influence folding
stability, we used cDNA display proteolysis to measure stability for all
single substitutions, deletions and Gly and Alainsertions in 983 natural
and designed domains (wild-type sequences). We selected our natural
domainsto cover nearly all the small (less than 72 amino acids) mono-
mericdomainsin the PDB that were suitable for our assay (Methods). To
minimize any cleavage from the folded state, we used AlphaFold mod-
els of each domain to remove unstructured terminal segments from
each sequence. Our designed domains included (1) previous Rosetta
designs with aaa, afpa, Bapp, and BRaB topologies®® (40 to 43
aminoacids), (2) new BBaa proteins designed using Rosetta (47 amino
acids), and (3) new domains designed by trRosetta hallucination®-*
(46 to 69 amino acids). Note that the structures of these designs have
not been validated experimentally. Our 983 wild-type sequences also
include 121 ‘destabilized wild-type backgrounds’ designed to resolve
the effects of mutants on highly stable domains (Extended Data Fig. 4).
We collected these data using four giant synthetic DNA oligonucleotide
libraries and obtained K, values for 2,520,337 sequences; 1,841,285 of
these measurements are included here. K, values were reproducible
across libraries (Extended Data Fig. 5).

Deep mutational scanning of hundreds of domains revealed several
overall patterns. The largest fraction of these domains showed clear,
biophysically reasonable sequence-stability relationships that were
consistent betweenindependent experiments with trypsinand chymo-
trypsin. However, other domains were completely unfolded, too stable
to resolve or produced inconsistent results between the proteases
(Fig.2b). To construct areliable dataset of AG and AAG measurements

Nature | Vol 620 | 10 August 2023 | 435



Article

(2) Protein—cDNA complex
synthesis using cDNA display
Up to 900,000

PA tag
cDNA
unique sequences -
:
. \5 7(23 %

a (1) DNA oligo pool synthesis

B

(4) Pull down

(3) Cleavage by protease intact proteins + cDNA

g |
%

PA

tag antibody .
Magnetic beads

b E+8 = ES — E+P {1 'T:+E =R Kook - SIE _UI+F)E U+ ©
50~ "d T TIT= = =

Survival = <2NA ik, x 1) @) U+E = UE — E+P [ES] [UE] + [FE] (UKo, + [FVKso

CDNAmi(ia\ ops
1/Ky, - 1/K,
Kinax [E] u] M W= sor (g
oo maxrT = | 5 =
Kobs = Kyo + [E] ® AG =-RTIn ( ] ) ®) [F] 1/Ksou = 1/Kso
K
c e 10p oF f -

— FYN SH3 WT ‘ S~ | 1776298
2°[ s < i § af rFe
© Q\Q L.

£8 —F19P s 2 o %
3 = —_ ©
8o 4r E 3 st g8
o € 2 = ©c 2F
5 2 z g §<
=Q
8% 2 ] oS
i 2r . g 2 338
g s © £ £ E ol 4
? E o £ of <= SH3 variants z @
[} O - 5] .
£ o have similar Ky, |,
-2 0 -2 0 2 0 2 4
log,[trypsin (uM)] log,[trypsin (uM)] 109[Ks50 (MM)] AG (kcal mol™; trypsin experiments)
Protein G B1 domain (1PGA) NTL9 (2HBB) THO1 SAP domain 2WQG) PIN1 WW domain (2M8l) YAP65 WW domain (1K9Q)
n=2826 25°C n=46 25°C T n=28 10°C - n=62 40 °C n=7 50/60 °C
64 r=081 " edr=09 r=095 s r=084 . r=093
™ b=-07 b=20 b=14 t 29 b=-1.1 21 p=-22
[
> 4 3‘1
2 4 | 2 4 §
4 : o
Q v ) 6
§ 2 " : o 0
%) e i f
3 2 0 : v §
g 04 %\
8 o . ; ; 0 . . ; ) . . 2 T T 2 : :
k] 0 2 4 6 0 2 4 6 2 4 0 2 4 0 2 4
-g Villin headpiece subdomain HP35 (1VII) BBL (2WAV) HYPA FF domain (1UZC) ADA2h activation domain (106X) FYN SH3 domain (1SHF)
= n=13  25°C . %n=29 10°C 41n=47  10°C, - 61n=21 25°C 61n=108 25°C
E 671r=096 r=0.91 r=0.85 g r=0.76 P r=0.75
= b=03 b=05 o b=08 & b=-03 e b=-0.1
= 2 X Xy 41 e 44 e
g 41 - #
o 27 J ]
g 0 2
0 - ,"( L
. . . . . . 0 . 04— . . . .
0 2 4 6 0 2 4 0 2 4 0 2 2 4 6

AG (kcal mol~'; cDNA display proteolysis at 22 °C)

Fig.1| cDNA display enables massively parallel measurement of protein
folding stability.a, ADNA oligonucleotide (oligo) library is expressed using
cell-free cDNA display, producing proteins withan N-terminal 14-amino-acid PA
tagand C-terminal covalentlinkage to cDNA. After protease challenge, magnetic
beadswithanti-PA antibodies pulldown proteins by their N termini. Sequencing
the cDNA thatis pulled down with the intact proteins enables quantification of
thedistribution of intact proteins. b, Athermodynamic model of proteolysis.
(1) Protease enzymes (E) and protein substrates (S) forman ES complex to
produce cleaved protein products (P). We model the cleavage as afirst-order
reaction (2) according to single-turnover kinetics (3). (4) Proteins are normally
cleavedinthe unfolded (U) state but can also be cleaved in the folded (F) state
by cleaving the PA tag. We determine AG using each sequence’s measured K,
apredicted sequence-specific K5, for the unfolded state (K, ), and auniversal
Ko for the folded state (K, ;) (5-7). Ky, dissociation constant. k., observed rate
constant.c, Eachhuman FYN SH3 variant sequence isshownasagrey line
tracking its sequencing counts (fraction of the total library) relative to the
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pre-selection library. Four variants are highlighted in colour. WT, wild type.

d, Inferred survival of uncleaved protein for four sequences from cat different
protease concentrations (dots); lines show the global fit from the kinetic model.
Vertical lines show inferred K5, concentrations (one-half maximal cleavage
rate, not 50% total cleavage). e, Relationship between K5, and AG for different
values of K ;. SH3 variants (coloured circles) all have similar K, ,and fall on
nearly the same AG versus K, line (black). Sequences with more cut sites have
lower Ko, and higher AG estimates for any K, (grey line). f, Consistency of
AGestimatesbetweenindependent trypsin and chymotrypsinexperiments
after quality filters (dataset 2), highlighting proteins shownin c.g, Our high-
throughput AG measurements agree with published data from purified
samples for mutants of the indicated domains (PDB IDs are in parentheses).
Dashed linesshowy=x+b (intercept). Grey points indicate missing reference
datafor the Bldomain of protein G¥. Plots indicate number of points (n), Pearson
correlation (r),y-intercept (b) and the temperatures used for purified protein
experiments (Supplementary Table 1). Insets show structural models.
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2and3.Datasets1,2and 3 are defined in Extended Data Table 1. ML, machine
learning.b, Classification of mutational scanning results for each wild-type
(WT)sequence. Each wild type sequenceisincludedinonly onegroup even
when that wild-type meets multiple criteria (for example, botha poorslope
andinconsistentintercept between trypsinand chymotrypsin (T-C)). ¢, Wild-
typestructures classified as GO inb grouped into domain families. The 11
most common domain types are shown; additional classificationshownin
SupplementaryFig. 3. d, Mutational scanning results for the U-box domain of
human E4B ubiquitin ligase (PDBID: 3L1X) (top) and chromo domain of the
chromobox protein homologue 7 (PDB ID: 2K1B) (bottom). Left, domain
structures coloured by the average AAG at each position; darker blue indicates
that mutants are more destabilizing. Middle, heat maps show AG for
substitutions, deletions and Gly and Alainsertions at each residue, with PDB
numberingattop and our one-indexed numbering at bottom. White indicates

N-terminal domain of Escherichia coli
arginine repressor (1AOY)
-

r6_831_TrROS

wild-type stability, and red and blue indicate stabilizing and destabilizing
mutations, respectively. Black dots indicate wild-type amino acids, red slashes
indicate missing dataand cornerslashesindicate lower confidence AG estimates
(95% confidence interval > 0.5 kcal mol™), including AG estimates near the
edges of the dynamic range. Red boxes highlight the S$23-D42 hydrogen bond
inthe U-box domain of human E4B ubiquitin ligase and the R10-W32 cation-mt
interactionin the chromo domain of the chromobox proteinhomologue 7.
AGvalues were fitted to trypsin and chymotrypsin data together (Methods).
Right, AGvaluesindependently determined using assays with trypsin (x axis)
and chymotrypsin (yaxis). Multiple codon variants of the wild-type sequence
areshowninred, reliable AGvalues areinblue, and less reliable AG estimates
areingrey. Theblack dashed line showsy = x. Plots show the number of reliable
points and the Pearson rvalue for the blue (reliable) points. e, Structures of five
other domainsinour datasets, presented asind. The two designed structures
are AlphaFold models.
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from folded domains, we filtered the mutational scans on the basis of
the consistency of the trypsin and chymotrypsin AG estimates and
other criteria designed to remove domains showing cleavage from
folded or partially folded states (Supplementary Fig.2 and Methods).
Many domains that showed evidence of cleavage from folded states
had cleavable sites near the terminiorin flexible loop regions. Indeed,
four of our deep mutational scans use modified wild-type backgrounds
in which folded state cleavage sites (identified in earlier mutational
scans) had been removed (Extended Data Fig. 6a-c). However, other
domains withlongloops appeared fully cooperative, without evidence
of cleavage of the folded state (Extended Data Fig. 6d). Along with
susceptibility to cleavage of folded or partially-folded states, other
domains taken from the PDB failed in our assay for a variety of rea-
sons, including poor cell-free expression (category G2), structures
that were probably stabilized by crystal contacts (PDB ID: 2CUW and
2FGG), missing N-C cyclizationincompatible with cDNA display (PDB
ID:1E68 and 2MP8), poor stability at room temperature (PDBID:2C0S
and 2LGN), and large numbers of cysteine residues (category G9). Our
final quality-filtered datasets are shown in Extended Data Table 1and
Supplementary Fig. 3.

Mutational scanning results are shown for seven domains in
Fig. 2d,e. Like all mutational scans that passed filtering, these exam-
ples show a strong consistency between independent AG measure-
ments with trypsinand chymotrypsin (Pearson correlation 0.94 + 0.04
(median + s.d.) for 478 domains in dataset 2). The most critical sites
(those where mutations are highly destabilizing) are located in the
hydrophobic core. However, our data also reveal many other critical
interactions, such asaside chain hydrogen bond between S23 and D42
in the U-box domain of human E4B ubiquitin ligase and a cation-1t
interaction between R10 and W32in the chromodomain of human chro-
mobox protein homologue 7 (residues have been renumbered based
on the exact sequence included in our experiments). These unique
stabilizing interactions reveal the rich biophysical diversity found in
our systematic exploration of stability across hundreds of domains.

Global trends in amino acid fitness

We first sought to define the major sources of variation between protein
sites thatinfluence the relative stabilities of all 20 amino acids at that
site. To this end, we performed principal component analysis using
325,132 AG measurements at 17,093 sites in 365 domains (dataset 3).
Each principal component expresses specific properties of a site that
determine which amino acids are stabilizing or destabilizing. Based
on the loadings of the amino acids onto each principal component
(Fig. 3a), we interpreted the first four components to reflect whether
asiteisstabilized by hydrophobic amino acids (principal component1
(PC1); 31% of the total variance explained by this principal component),
helix-favouring amino acids (PC2;15%), aliphatic versus aromatic amino
acids (PC3;12%), and positive versus negative charges (PC4; 7%). The
fifth principal component (6%) was more complex: at one extreme were
small amino acids that could be buried in dense environments, along
with basic amino acids that can‘snorkel’ their charged moieties to the
surface even when partially buried. At the other extreme were acidic
amino acids that are energetically costly to bury. We interpreted this
component to reflect volumetric properties of buried sites that are
orthogonaltothe properties captured by PC1. These interpretations are
also consistent with the structural environments at each site (Fig. 3b).
Figure 3cillustrates the first five principal components at all sites in
the C-terminal domain of the transcription factor NusG. Sites with
positive principal component values (pink) are stabilized by amino
acids with positive loadings on that component (Fig. 3a). Visualizing
these principal components on this NusG domain highlights the hydro-
phobiccore (PC1), differing regions of the core that favour aromatic or
aliphaticresidues (PC3), sites stabilized by acidic or basic residues (PC4)
and a critical location for a small amino acid (PC5). These structural
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characteristics (and the meanings of the principal components) can
alsobeseenby directly comparing the principal component valuesto
the mutational scanning stability data (Fig. 3d).

Whereas the first principal components capture the main sources
of variation betweensites, the other components capture more subtle
factors thatstillinfluence stability. We found that these later principal
components capture agreater amount of the total variance for natural
protein domains compared to designed proteins, although the differ-
ence between natural domains and Rosetta designs is slight (Fig. 3e).
Thisindicates that the amino acid environmentsinnatural domains are
on average more complex than those in our set of designed proteins;
more subtle contributions to stability have alargerrole. Sitesin natural
domains also have greater total variance in stability between differ-
ent amino acids (Fig. 3f), although we note that our natural domains
arelarger onaverage than our designed domains: 57 + 10 amino acids
versus 44 + 3 amino acids. Finally, we found that the subtle effects cap-
tured by the later principal components still stabilize wild-type amino
acids. Across all sites, the median AAG is —0.59 kcal mol™, indicating
that the wild type is typically more stable than an alternative amino
acid. However, the first five principal components can only explain
0.36 kcal mol™ (approximately 61%) of this stability difference; the
remainder is attributable to the other components (Extended Data
Fig. 7a). This indicates that the remaining components capture addi-
tional biophysical effects that contribute to the compatibility between
wild-type amino acids and their environments, especially for natural
domains (Extended Data Fig. 7b).

Large-scale thermodynamic coupling data

Next, we examined how side chain interactions between amino acid
pairs affect stability. We constructed comprehensive substitutions
(20 x 20 amino acids) of 559 amino acid pairs from 190 natural domains
and designs and measured stability for all sequences by cDNA display
proteolysis. We selected pairs that were suggested to form energetically
important hydrogen bonds in our mutational scanning data as well
as other pairs forming close contacts (Fig. 4a; Methods). To quantify
the interactions between side chains, we built an additive model for
each amino acid pair with 40 parameters that capture the independ-
ent stability contributions of each amino acid in each position. The
deviations from these models quantify the ‘thermodynamic coupling’
between specific amino acids®. Among our curated set of wild-type
pairs, couplings were typically 0.5-1.0 kcal mol™ in magnitude, with
some greater than 2 kcal mol™ (Fig. 4b). Among all sequences tested
(wild-type or mutant pairs), pairs with opposite charges and cysteine
pairs tended to have positive (favourable) couplings, whereas pairs
with the same charge and acidic-aromatic-aliphatic pairs tended to
have negative couplings (Fig. 4c). Average couplings are lower than
wild-type couplings because the side chain orientations and environ-
ment surrounding wild-type pairs will typically be optimized for that
pair. Still, our datarecapitulate expected patterns of side chaininterac-
tions, provide a wealth of data for training machine learning models,
andidentify awide range of noteworthy interactions for further study.

Several notable pairs are highlighted in Fig. 4d-f. In an OB-fold
domain from Shewanella oneidensis, we found strong thermodynamic
coupling between two unrelated pairs of amino acids: the wild-type
Tyr-Glu pairand amutant Lys-Trp pair that may form a cation-minter-
action (thermodynamic couplings of 1.6 + 0.2and 1.4 + 0.2 kcal mol ™,
respectively (mean + s.d. from calculating the coupling using boot-
strap resampling of the around 400 amino acid combinations); Fig. 4d
and Supplementary Fig. 4a). In the a-spectrin SH3 domain, our com-
prehensive double mutant scanning of Y10 and Y52 uncovered the
highly stable, tightly coupled double mutant YIOH/Y52K (coupling
of 2.5 + 0.4 kcal mol™ for His-Lys versus 1.0 + 0.2 kcal mol™ for the
wild-type pair; Fig. 4e and Supplementary Fig. 4b). AlphaFold mod-
elling predicts that this double mutant introduces a new hydrogen
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Fig. 3| Environmental factors that determine amino acid stabilitiesata
position. a, Principal components (PC1-PC5) of the stability datashowing the
dominant trends for which amino acids are stabilizing or destabilizing at asite.
Welabel each component with abiophysicalinterpretation and show the
percentage of total variance explained by that component. Principal component
analysis was performed using 20 features (AG with each amino acid variant) and
17,093 observations (sites in 365 domains). 325,132 AG measurements total.

b, Relationships between the principal component values (xaxis) for all 17,093
sites and environmental properties of those sites from the modelled 3D
structure (yaxis). Coloured lines show each environmental feature averaged
overawindow of 0.5 principal component units. Contacts indicate contact
counts atthose sites (Methods), counting all possible contacts (PCland PC5),
only contacts to aromatic or aliphaticamino acids (PC3) or only contacts to
acidicorbasicaminoacids (PC4). ¢, Structures of the C-terminal domain of NusG
(PDBID: 2MI6) with sites coloured by the value of PC1-PCS5. Positive sites are

bonding network to replace the original Tyr-Tyr interaction. We also
identified an unexpected thermodynamic coupling between an amino
acid pair lacking a direct side chain interaction. In the SH3 domain of
Myo3, mutations at K24 are destabilizing even though the side chain
makes no clear interactions. To investigate interactions of K24, we
quantified thermodynamic couplings to nearby Y9 (0.0 + 0.1 kcal mol™)
and D10 (1.0 + 0.2 kcal mol™) (Fig. 4fand Supplementary Fig. 4c). The
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d, Mutational scanning results for NusG ordered by the value of PCl1at each site
(notsequence order). The first five principal components at each site are
shown at the top, coloured blue (negative) to pink (positive). The stability effects
ofeach substitution are shown at the bottom, coloured blue (destabilizing) to
red (stabilizing). Several positions with large (positive or negative) principal
component values are highlighted to show the correspondence between
principal component values and specific mutational stability patterns fromc.
e, Cumulative fraction of the total variance explained by the principal
components, for separate principal componentanalyses of natural domains
(blue), Rosetta designs (orange) and hallucination designs (green). Error bars
show thes.d.frombootstrap resampling (n=1,000) of the mutational scans
butaretoosmallto observe.f,Relationship between wild-type stability and
variance (s.d.)inthe AAG dataateachsite, coloured asine. Lines show

LOWESS fits.

unexpected K24-D10 coupling—between two side chains that appear
tonotinteract—highlights the difficulty of inferring energeticinterac-
tions from structural data alone and suggests a possible longer-ranged
ionicinteraction.

We alsoinvestigated thermodynamic couplings within 36 different
3-residue networks. For each triplet, we measured stability for all pos-
sible single and double substitutions in both the wild-type background
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Fig. 4| Quantification of thermodynamic coupling between amino acid

pairs. a,b, Categorization of 559 pairs of amino acids in 190 domains selected

show the observed stability minus the expected stability from the additive
model; uncertainties show the s.d. from computing the couplings using 1,000

for exhaustive double mutant analysis (210,000 AG measurements in total)

(a) and thermodynamic couplings of wild-type amino acid pairs according to
our additive model (b). Inbox plots, the centre line is the median, box limits
delineate top and bottom quartiles and whiskers represent 1.5x the
interquartilerange (n =559 intotal). ¢, Average thermodynamic couplings (left)
and fraction of pairs with positive (middle) or negative (right) couplings stronger

bootstrapped samples ofthe 400 double mutants. f, Thermodynamic coupling
withoutavisible sidechaininteractionin the MYO3 SH3 domain D10-K24
(D1131-K1145in PDBID 2BTT). Sub-panels as ind, with the magnified view of the
wild-type structure of Y9, D10 and K24 shown on theright. g, Thermodynamic
coupling mediated by athirdamino acid in the ) domain of HSJ1a: Y3-R60-D64
(Y5-R62-D66in PDBID 2LGW). Left, the AlphaFold-modelled structure of the

than 0.5kcal mol™forallamino acid combinations (wild type and mutant).
d,e, Thermodynamic coupling for N-terminal OB-domain of SO1732 (PDBID:

2KCM) Y8-E38 (d) and a-spectrin SH3 domain (PDB ID: 1QKX) Y10-Y52 (Y15-Y57

inthe PDBstructure) (e). Left, domain structures showing the two mutated
positions. Second from left, stabilities (AG) of all pairs at the two mutated
positions. Second fromright, agreement between stabilities from the additive
model (xaxis) and the observed stabilities (y axis, wild-type pair showninred).
Right, structural models of mutant pairs with strong couplings. Couplings
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HSJ1a) domain with three interacting amino acids. Scatter plots show the
stabilities of double mutantsin the additive model (xaxis) and experimental
data (yaxis) inthe wild-type background (blue) and with the third residue
replaced by Ala (orange). Right, the thermodynamic coupling for each pair of
wild-type amino acids in the wild-type (blue) and the Ala-substituted (orange)
backgrounds (error barsrepresent the s.d. frombootstrap resampling
(n=1,000) asind).Substituting any of the three amino acids for Ala eliminates
the couplingbetween the other two.



and the background in which the third amino acid was replaced by
alanine (400 mutants x 3 pairs x 2 backgrounds = 2,400 mutants in
total foreachtriplet). As before, we modelled each set of 400 mutants
(thatis, one residue pairinone background) using 40 single-amino-acid
parameters (we did not globally model all 2,400 mutants together).
One notable triplet is found in the ] domain of HSJ1a, where R60 and
D64 both interact with the hydroxyl group on Y3 (Fig. 4g, left). We
observe strong couplings (more than 1.5 kcal mol™) between each pair
of 2 out of the 3 amino acids. However, when any of the 3 amino acids
ismutated to alanine, the coupling between the remaining two amino
acids becomes much weaker (less than 0.5 kcal mol™; Fig. 4g, middle
and right and Supplementary Fig. 4d). These results reveal a strong
third-order coupling: the interaction between two amino acids is medi-
ated by a third amino acid.

This strong three-way coupling is noteworthy because the interac-
tions do not appear in the deposited NMR ensemble (PDB ID: 2LGW;
Extended Data Fig. 8a,b). The NMR ensemble for 2LGW positions Y5
(Y3 in our numbering) away from the helix containing R62 and D66,
making the interaction network impossible. However, the AlphaFold-
predicted structure shown in Fig. 4g (the highest confidence model
out of five predictions) does include these interactions, which are also
seeninother)-domain crystal structures from Caenorhabditis elegans
(PDBID:20CH) and Plasmodium falciparum (PDBID: 6RZY). The strong
couplings that we identify support the AlphaFold model and suggest
the deposited ensemble is missing conserved interactions that formin
HSJ1a, perhaps owing to the specific experimental conditions used. This
exampleillustrates how large-scale folding stability measurements can
reveal the thermodynamic effects of a critical interaction even when
thatinteractionis not presentinthe deposited NMR structure. Notably,
AlphaFolditself does not always predict this network either, depending
on the specific linkers used (Extended Data Fig. 8d,e).

The scale of cDNA display proteolysis makes it straightforward to
characterize unique cases such as these, which can serve as stringent
tests for models of folding stability. Strong third-order couplings like
this example also present aspecial challenge for computational models
that calculate stabilities by summing interaction energies between pairs
of residues using a single reference structure. Deep learning models
that implicitly represent conformational landscapes® may be more
promising, but training these models using large-scale thermodynamic
measurements will be essential to achieve their potential.

Influence of stability on evolution

Next, we examined how selection for stability influences protein
sequence evolution in concert with other evolutionary mechanisms.
Itiswell known that proteins contain specific functional residues that
are commonly deleterious to stability***. However, the challenge of
measuring stability has made it difficult to experimentally distinguish
selection for stability from other selective pressures on aglobal level**
8 To examine the strength of selection for stability, we created asimple
classification model to predict the wild-type amino acid at any site in
anatural protein based on the folding stabilities of all substitution
variants at that site (excluding Cys) (Fig. 5a). The model contains two
parts: (1) ashared weight function that converts absolute stabilities of
protein variants into relative probabilities of those amino acids, and
(2) amino-acid specific offsets that shift amino acid probabilities by a
constant amount at all sites. We fit the parameters of the shared weight
function (aflexible monotonically increasing function) and the offsets
together using stability data for wild-type sequences and substitution
variants at 5,214 sites in 90 non-redundant natural proteins (99,156 AG
measurements in all; Fig. 5a). Our simple model fits the data well by
three criteria: (1) it correctly produces the overall frequencies of the
19 (non-Cys) amino acids (Fig. 5b), (2) the predicted amino acid prob-
abilities are correctly calibrated across the full range of probability
(Supplementary Fig. 5), and (3) the model performs similarly well on

the training set and on a held-out testing set consisting of 758 sites in
11 domains with no similarity to the training set (Fig. 5e).

The model parameters reveal the strength of selection for stability
across this diverse set of domains from many organisms. Within the
main range of our data (folding stabilities from 1.5 to 4 kcal mol™),
amino acid probabilities increase approximately linearly with increased
stability, with a1kcal mol™ stability difference between protein vari-
ants indicating an approximately 9.2-fold difference in sequence
likelihood (Fig. 5¢). The slope is steeper in the low-stability region
(AG <1kcal mol™), indicating stronger selection for stability. How-
ever, our 90-protein training set includes only 2 wild-type sequences
with AG <1kcal mol™, and this may bias this result. The global offsets
to eachamino acid’s probability (Fig. 5d) are different from the empiri-
cal amino acid frequencies (Fig. 5b) and indicate the probabilities of
each amino acid under conditions in which all sequence variants are
equally stable. The offsets span a 32-fold range: the most likely amino
acid (Glu) is 32-fold more likely to occur (21%/273%) than the least likely
amino acid (Trp) when sequence variants with these amino acids at
the same site are equally stable (Fig. 5d). This probability difference
corresponds to a stability difference of -1.6 kcal mol™ (Fig. 5¢); that
is, Trp and Glu would be equally likely at a site if the Trp variant were
1.6 kcal mol™ more stable than the Glu variant. Assuming equal stabili-
ties, the most likely amino acids are the charged amino acids Glu, Asp,
and Lys, suggesting selection for solubility, whereas the least likely
amino acids are the nonpolar aromatic amino acids Trp, Phe and Tyr,
along with Met. These offsets provide a quantitative ‘favourability’
metricincorporatingall non-stability evolutionary influences on amino
acid composition, including selection foramino acid synthesis cost®,
codon usage*’, avoiding oxidation-prone amino acids, net charge and
function. These offsets also highlight that biophysical models and
protein design methods trained to reproduce native protein sequences
will not consistently optimize folding stability; Fig. 5d quantifies the
amount by which specific amino acids are over- or underrepresented
insmall domains compared to their effects on stability. Notably, these
offsets are similar to findings from an independent analysis of global
discrepancies between variant effect data and sequence-likelihood
modelling*.

Properties of functional residues

Selection for function also causes protein sequences to diverge from
the variants with the highest stability sequence. Previous studies®**’
used this principle toidentify functional sites based on the difference
between evolutionary conservation and predicted effects on stability.
We expanded this strategy to use experimental stability measurements
and examined the properties of functional sites on a large scale. We
identified functional sites in 104 diverse protein domains by com-
paring each site’s average AAG of substitutions with its normalized
GEMME* score, a measure of sensitivity to mutations inferred from
multiple sequence alignments (Extended Data Fig. 9a and Methods).
High sensitivity generally indicates high evolutionary conservation.
Sites where wild-type amino acids are critical for stability (more nega-
tive average AAG, rightward) tend to be more sensitive to mutation
(upward) and vice versa. We defined all sites in the upper left region
(where the site is sensitive to mutations yet unimportant for stability,
9% intotal) to be ‘functional’sites. This classification correctly identi-
fies key binding residues in the chromodomain of HP1 and the SH3
domain of BBC1 (Extended Data Fig. 9b,c, full data in Supplementary
Fig. 6). Across all104 domains, Gly, Asp and the bulky amino acids (Trp,
Arg and Tyr) were frequently classified as functional (Extended Data
Fig.9d), and the fraction of functional sites ranged from O to approxi-
mately 25% (Extended Data Fig. 9e). The domains with the highest frac-
tion of functional sites were the nucleic acid binding domains Sso7d
(PDB ID: 1JIC) and ribosomal protein S19 (PDB ID: 1QKH; Extended
DataFig. 9f).
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acidinto probabilities of those amino acids occurring (green). The probability
foreachaminoacidis further modified by a constant amino acid-specific offset
(orange). The model was parameterized using 99,156 AG measurements (5,214
sitesin 90 non-redundant natural domains). b, Predicted and observed amino
acid frequencies according to the classifier model after fitting. Amino acid
frequencies were calculated for 5,214 sites. ¢, The weighting function from the
classifier model after fitting (green). Grey lines show the weighting function
after amino acid-specific offsets for Gluand Trp. Intheregion between1.5and
4 kcal mol™, the function has an approximately constant slope whereby a

Our original criteria classify nearly all buried sites as non-functional;
the mutational sensitivity at these sitesis attributed to the destabiliz-
ing effects of hydrophilic substitutions. To identify buried functional
sites, we modified our criteria by considering only substitutions to
nonpolar amino acids (Extended Data Fig. 9g). With this approach,
most functional sites are still on the surface, but some are found in
the core (Extended Data Fig. 9h).In the DUF1471domain of Salmonella
typhimurium yahO, GEMME’s evolutionary model indicates that the
buried A64 is sensitive to nonpolar substitutions, but our data show
that substitutions to Tyr or Phe increase folding stability (Extended
DataFig. 9i). This suggests that A64 isimportant for function, perhaps
by maintaining the overall protein shape. Similarly, in the N-terminal
domain of human FK506-binding protein 3, GEMME’s model indicates
that the buried L55is sensitive to nonpolar substitutions, but our data
show that substitutions to lle, Val or Phe have no effect on stability
(Extended Data Fig. 9j). Again, this suggests that L55 is important for
functionand thatsubstitutions at L55may allosterically modulate the
domain’s DNA binding activity. This is consistent with NMR experi-
ments that show a chemical shift perturbation at L55 in response to
DNAbinding, even though the residue is buried beneath the surface*
(Extended Data Fig. 9j). The other chemical shift perturbations are
mainly found in the functional residues on the surface. These results
highlight unusual cases where buried sites are conserved for function
instead of stability.
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Perplexity; lower is better

1kcal mol™?increase in stability leads to a 9.2-fold increase in amino acid
probability (indicated by adotted line). d, Relative offsets for 19 amino acids
fromthe classifier model after fitting. Error bars show the s.d. of the model
posterior (n=25). Atsites where AGy, = AGy,, valineis around 11 times (=2°/2"
morelikely to be the wild-type amino acid. e, The sequence recovery rate (left)
and perplexity (right) for predicting wild-type amino acids using several
models: anullmodel thatignores stability and always predicts amino acids at
their observed frequencies, our classifier model without amino acid-specific
offsets, and our full classifier model. Similar performance of the classifier
modelonatrainingset of 5,214 positions (light purple) and a testing set of 758
positions (dark purple) indicates that the model is not overfitted. Error bars
shows.d.frombootstrap resampling (n=1,000).

3.5)

Large-scale data to guide design

The unique scale of cDNA display proteolysis creates new opportunities
forimproving protein design. Here, we examined three applications:
(1) characterizing the stability determinants of highly polar designs,
(2) identifying stabilizing mutations, and (3) benchmarking the pro-
tein design tool PROSS*. The hydrophobic effect is considered the
dominant force in protein folding? and previous studies of designed
miniproteins have emphasized the importance of nonpolar burial®*,
We hypothesized that mutational scanning of high-stability, highly
polar designs could reveal alternative routes to high stability while
minimizing hydrophobicity-induced aggregation. Although the muta-
tional scanning patterns for highly polar designs were not obviously
different from other designs, we identified several designs that pos-
sessed exceptionally strong polar interactions (large dots in Extended
DataFig.10a).In Extended Data Fig.10b, we highlight stabilizing polar
networks and a cation-Tt interaction in these unusual designs (see
Supplementary Fig. 7 for full mutational scanning results). The aver-
age AAG for substitutions at these polar sites ranged from -0.20 to
-1.33 kcal mol™, corresponding to the top 63 to 1.5 percentile for all
3,694 polarsitesin 145 designs. Our massive dataset made it possible to
identify theserare highly stabilizing interactions. Notably, the second
hydrogen bond network in EHEE_rd2_0152 is also found in two other
more hydrophobic designs. However, the network is less sensitive to
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Fig. 6 | Application of large-scale data to proteindesign. a, Stabilizing
mutations (AAG >1kcal mol™) foundin natural domains, Rosetta designs and
hallucination designs, broken down by mutation type. NP, non-polar; P, polar;
ins, insertion; del, deletion. Data are from 448,788 mutants in 412 domains.

b, Two examples of stabilizing mutations found by our assay, along with the
distribution of AAG values for these mutation types. The highlighted
mutations are indicated by vertical bars. Full mutational scanning results are
showninSupplementary Fig. 8. The structure of HHH_rd1_0598is a design
model reported previously', not an experimental structure. ¢, Stabilities of
test domains before (xaxis) and after (y axis) redesign by PROSS**. The dashed
blacklinerepresentsy=x.Largedotsindicate examples shownind.Right, the
distribution of AG change following PROSS redesign. Forty per cent of domains
are stabilized by more than1kcal mol™” by the tool. d, AlphaFold models of
domains redesigned by PROSS, withmutated amino acidsin green. PDBID and
the changeinstability are showninbrackets.

substitution in those designs, highlighting how the overall protein
environment mediates the effects of substitutions even on the protein
surface (Extended Data Fig.10c-e).

We next examined how our approach could identify stabilizing
mutations. Predicting and designing stabilizing mutations is a major
goal of protein modelling, but prediction accuracy remains low™. In
part, thisis because stabilizing mutants are rare in current databases"
(outside of reverting a destabilizing mutant), limiting the dataavailable
for improving modelling. Our large-scale approach revealed 2,600
mutations that increase folding stability by at least 1 kcal mol™. The
fraction of stabilizing mutations was approximately 0.2% to 0.6% for
different protein types (Fig. 6a). Stabilizing mutations were enriched
at functional sites (23% of the stabilizing mutations from 8% of sites
classified as functional). Notably, our set includes 112 examples of
stabilizing insertions and deletions. Figure 6b shows two exam-
ples of different classes of stabilizing mutations from our dataset
(Supplementary Fig. 8).

Finally, we applied our method to evaluate PROSS*, an automated
method for increasing folding stability using structural modelling
and evolutionary data. We tested 727 PROSS designs for 172 protein
domains with wild-type AG < 4 kcal mol™. Unlike previous studies*, our
mutational scanning data enabled us to examine theisolated effect of
every individual substitution in each design. The average increase in
stability from PROSS was 0.6 + 1.0 kcal mol™ (mean +s.d.) (Fig. 6¢). As
intended, PROSS avoided mutations at functional positions: only 2% of
PROSS-designed mutations were at functional sites, compared with 9%
of sites classified as functional (defined in Extended Data Fig. 9a). Two
example designs are shown in Fig. 6d. Larger numbers of mutations

typicallyled tolargerincreasesinstability (Extended Data Fig.11a), as
theorized previously™. Our mutational scanning data showed that the
average effect of a single designed mutation was 0.2 + 0.5 kcal mol™
(Extended DataFig.11b). On average, the stabilization from PROSS was
comparableinsize to the best single designed mutation, and smaller
than the two best mutations added together (Extended Data Fig. 11c).
Evaluating individual designed mutations by direct comparisons to
mutational scanning data provides anovel approach for systematically
improving design methods.

Discussion

The cDNA display proteolysis method massively expands the scale of
folding stability experiments. Nonetheless, the method currently has
notable limitations. First, our assay is limited to proteins that express
and fold in the cell-free environment and are compatible with cDNA
display. Owing to the very low concentration of each library member,
proteins that are stabilized in complexes are probably unsuitable for
this assay. Second, because we digest proteins under native condi-
tions, our inferred thermodynamic stabilities are only accurate when
(1) folding is fully cooperative (no segments get cleaved without global
unfolding*®), (2) folding is at equilibrium during the assay (no kinetic
stability or spurious stability owing to aggregation), (3) K, is accu-
rately inferred (Fig. 1c), (4) cleavage leads to dissociation of the cDNA
(minimal disulfide or other crosslinking that could retain the C terminus
after proteolysis), and (5) cleavage rates fall within the measurable
range of the assay, which currently limits the dynamic range to around
5 kcal mol™ (Fig. 1c). Many domains—particularly larger protein struc-
tures—do not satisfy these conditions. Our mutational scanning data
often suggested cases of non-cooperativity or aggregation, but these
potential artefacts can beinvisible when assayingindividual sequences
without mutational scanning. Furthermore, cleavage from folded states
may be undetectable even with mutational scanning data if both pro-
teases are equally affected and the cleavage is not overly sensitive to
any individual mutation. Combining cDNA display proteolysis with
chemical denaturation (pulse proteolysis*) may overcome some of
these obstacles and enable mega-scale analysis of less cooperative
and/or higher stability proteins. Advances in DNA synthesis**® will
also make it possible to expand cDNA display proteolysis beyond the
largest domains studied here (72 amino acids). Finally, multiplexed
measurements and automated data processing have the potential to
introduceinaccuracies, although we worked to exclude unreliable data.
For notableindividual results, examining the raw data can be helpful,
and weincluded all data and code to regenerate all fits.

Despite these limitations, the unique scale of cDNA display proteoly-
sis opens completely new possibilities for studying protein stability.
By comprehensively measuring single mutants across nearly all small
structuresin the Protein Data Bank, we quantified several global trends:
trendsinaminoacid fitness at differentsites, trendsin the effects of sin-
gleand double mutants, and trends in how stability influences sequence
evolution. Alongside these trends, our analysis uncovered hundreds of
exceptional cases that would be challenging to identify by smaller-scale
methods. These include mutations with extreme effects, sites with
unusual stability landscapes, and pair interactions with unusually
strong thermodynamic couplings. The thermodynamic couplings
that we identified in the ] domain of human HSJ1a (Fig. 4g)—which
was not presentinthe deposited NMR structure—highlight how large-
scale stability assays can complement other methods for revealing
structural details in solution. Beyond studying stability, cDNA dis-
play proteolysis will have other applications, including assaying
designed proteins onamassive scale to systematically improve design
methods™®?%** and to dissect the relationships between folding sta-
bility and function®.

Achieving an accurate, quantitative understanding of protein sta-
bility and its sequence dependence has long been a central goal in
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biophysics. We envision millions of cDNA display proteolysis measure-
ments forming the foundation for a new generation of deep learning
models that predict absolute folding stabilities and effects of muta-
tions. Breakthroughsinstructure prediction powered by deep learning
have demonstrated the power of these modelsin protein science, but
collecting sufficient thermodynamic data has always been a major
obstacle. Owing tothe scale and efficiency of cDNA display proteolysis,
the main limit to measuring stability for millions of small domains is
the cost of DNA synthesis and sequencing—both of which are rapidly
decreasing. The size and diversity of the protein sequence space creates
enormous challenges for biology and protein design. cDNA display
proteolysis offers a powerful approach for large-scale mapping of fold-
ing stability across this space.
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Methods

Selection of natural proteins for mutational scanning

We first collected all monomeric proteins in the PDB in the 30-100
aminoacidlengthrangeinJune 2021. We next excluded structures that
had only a single helix, contained other molecules (for example, pro-
teins, nucleic acids or metals), were annotated to have DNAse, RNAse
or protease inhibition activity, orincluded more than four cystines. We
thenremoved redundant sequences (aminoacid sequence distance <2).
We then predicted the structures of these PDB sequences using
AlphaFold (even though the PDB structures were known), and used
the AlphaFold models to trim amino acids from the N- and C termini
that had a low number of contacts with any other residues. Finally,
we selected domains with up to 72 amino acids after excluding N- or
C-terminal flexible loops.

EEHH design method

EEHH protein design was performed in three steps: (1) backbone
construction, (2) sequence design, (3) selection of designs for deep
mutational analysis. Backbone construction (the de novo creation of a
compact, three-dimensional backbone with a pre-specified secondary
structure) was performed using ablueprint-based approach described
previously**2, All blueprints are included as Blueprints_for EEHH.zip
inSource data.

Hallucination design method

We used a TrRosetta hallucination protocol described previously in
the previous reports®>? and available at https://github.com/gjoni/
trDesign/tree/master/02-GD to unconditionally generate protein
backbones and sequences with lengths ranging from 46 to 69 amino
acids by maximizing the Kullback-Leibler divergence between the
predicted and background distance/angle distributions. Predicted
distograms and anglegrams were used to obtain 3D structures of
these models as described in the TrRosetta paper®. We selected the
best designs according to the predicted distogram and 3D structure
match.

DNA oligonucleotide library construction
All sequences were reverse-translated and codon-optimized using
DNAworks2.0%*. Sequences were optimized using E. coli codon frequen-
cies because we used an in vitro translation kit derived from E. coli.
Oligonucleotide libraries encoding amino acid sequences of Library
1were purchased from Agilent Technologies.

Library 1. We selected -250 designed proteins and ~-50 natural proteins
that are shorter than 45 amino acids. Then, we created amino acid
sequences for deep mutational scanning followed by padding by Gly,
Ala and Ser amino acids so that all sequences have 44 amino acids.
The totalnumber of sequences is ~244,000 sequences Purchased from
Agilent Technologies, length 230 nt.

Library 2. We selected ~350 natural proteins that have PDB structures
thatareinamonomer state and have 72 or less amino acids after remov-
ing Nand C-terminal linkers. Then, we created amino acid sequences
for deep mutational scanning followed by padding by Gly, Alaand Ser
aminoacids sothat all sequences have 72 amino acids. The total number
of sequencesis~650,000 sequences. This library alsoincludes scramble
sequences to construct unfolded state model. Purchased from Twist
Bioscience, length 250 nt.

Library 3. We selected ~150 designed proteins and created amino acid
sequences for deep mutational scanning of the proteins. We also in-
cluded comprehensive deletion and Gly or Alainsertion of all wild-type
proteinsincludedinLibraryland Libary2.Additionally, amino acid se-
quences for comprehensive double mutant analysis on polar amino acid

pairs were also included. The total number of sequences is ~840,000
sequences. Purchased from Twist Bioscience, length 250 nt.

Library 4. Amino acid sequences for exhaustive double mutant analysis
onamino acid pairs located in close proximity were included. We also
include overlapped sequencesto calibrate effective protease concen-
tration and to check consistency between libraries. The total number of
sequences is-900,000 sequences. Purchased from Twist Bioscience,
length300 nt.

DNA and mRNA preparation for cDNA display proteolysis
method

Oligonucleotide libraries were amplified by PCR using KOD PCR
Master Mix (Toyobo) to add T7 promoter, PA tag to an N-terminal,
and Histag to an C-terminal of the proteins. The number of cycles was
chosen based on a test qPCR run to avoid overamplification using
SsoAdvanced Universal SYBR Green Supermix (Bio-Rad). The PCR
product was gel extracted to isolate the expected length product.
Thenweused T7-Scribe Standard RNAIVT Kit (Cellscript) to synthesize
mRNA using the DNA fragment as a template.

Preparation of protein-cDNA complex
We followed the protocol essentially as describe
fications, described below.

d**55 with some modi-

Photo-crosslinking between mRNA and the puromycin linker. We
prepared the photocrosslinking reaction solution (usually at 40 pl
scale) using 100 mM NaCl, 20 mM Tris-HCI (pH 7.5), 1 uM cnvK linker
(EME),1pM mRNA. The solution was incubated at 95 °C for 5min, then
slowly cooled down to 45 °C (0.1°C s™) using athermal cycler. Then the
solution including the duplex was irradiated with UV light at 365 nm
usinga 6 WHandheld lamp (Thermofisher) for 15 min. At 40 pl scale (40
pmol cnvK linker and 40 pmol mRNA total), this produces crosslinked
mRNA sufficient for 48 proteolysis reactions.

Invitro translation and reverse transcription. We used the PUREfrex
2.0 (GeneFrontier) translation system according to the manufacturer
protocol. We typically used a 160 pl total reaction including 40 pl of
the mRNA-cnvK linker duplex product from Step 1and RiboLock RNase
Inhibitor (Thermofisher). We incubated the reaction at 37 °C for 2 h.
After the incubation, 500 mM EDTA (16 pl for a160 pl reaction) was
added to the sample to dissociate ribosomes. Then, an equal amount
(160 plfora160 plreaction) of 2x binding/washing buffer (20 mM Tris
pH7.5,2mMEDTA, 2MNacCl, 0.2% Tween) was added. The solution was
added to Dynabeads MyOne Streptavidin C1 (Thermofisher, 200 pl
for 40 pmol mRNA) to pull down the protein-mRNA complex andincu-
bated at room temperature for 20 min. Before use, streptavidin beads
were pre-washed with (1) 100 mM NaOH, 50 mM NaCl, then (2) 100 mM
NaCl to remove any RNase activity. After streptavidin pull-down, the
beads were washed by 1x binding/washing buffer once and rinsed
twice by TBS (10 mM Tris-HCI pH7.5, 100 mM NacCl), and we added
reverse transcription solution (PrimeScript RT Reagent Kit; Takara)
onto the beads with protein mRNA complex, and incubated the beads
at37°Cfor30 min.

Purification of protein-cDNA complex. After the reverse transcrip-
tion, the protein-cDNA complex was eluted with His-binding buffer
(30 mM Tris pH7.4,0.5NaCl, 0.05% Tween) with RNase T1 (Thermofish-
er)usuallyin400 plscale. The eluent was added to His Mag Sepharose
Ni (Cytiva) (800 pl for 40 pmol starting mRNA) and incubated at room
temperature for 30 min. Then the complex was eluted by His-binding
buffer with 400 mM imidazole (usually 400 pl) and the eluent was
buffer-exchanged to PBS by Zeba Spin Desalting Column (Thermofisher).
Then the complex was snap-frozen with liquid nitrogen and stored
at —80 °C until the following protease assay. When starting from
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40 pmol cnvK linker and 40 pmol mRNA for step 2, we would typically
finish this step with 400 pl of protein-cDNA complex divided into
4 frozen tubes (100 pl each) for four sets of 12 protease experiments
(48 conditions total).

Protease assay on protein—-cDNA complex

Proteolysis reactions were performed in two ‘replicates’ of 12 condi-
tions each (11 protease concentrationsinathreefold dilution series and
one condition with no protease). Replicate 1 used amaximum protease
concentration of 25 puMand replicate 2 used 43.3 uM (25 x 3% uM). For
onereplicate (12 reactions), we started from ~25 pl complex, diluted this
in PBS up to 240 pl, then added 20 pl to each of the 12 Protein LoBind
tubes used for that replicate. Each reaction contained protein-cDNA
complex equivalent to 0.83 pmol starting cnvK linker and 0.83 pmol
startingmRNA. To starteach reaction, we added 40 pl of protease solu-
tionto eachtube. After 5 min protease digestion at room temperature,
we added 200 pl chilled 2% BSA in PBS to quench the reaction, then
the solution was added to 40 pl Dynabeads Protein G (Thermofisher)
preincubated with anti-PA tag (Wako; Clone number: NZ-1;1 ug antibody
per 30 pl beads), and incubated at 4 °C for 1 h. Then the beads were
washed by washing buffer (PBS including 800 mM NaCland 1% Triton)
three times and rinsed by PBS three times, thenthe complex was eluted
with 50 pl PBS including 250 pg mI™ PA peptide (Wako) and 200 pg mI™
BSA (Thermofisher). Trypsin experiments used Trypsin-EDTA (0.25%)
with phenol red (Thermo Fisher Scientific) for consistency with
ref. 18 and chymotrypsin experiments used a-chymotrypsin from
bovine pancreas (Sigma).

qPCR analysis of cDNA display proteolysis results onindividual
proteins

The cDNA amount for each specific sequence in the eluents was quanti-
fied by qPCR using SsoAdvanced Universal SYBR Green Supermix and
specific primers for each sequence. The qPCR was performed using
CFX96 Touch Real-Time PCR Detection System (Bio-Rad), and the
qPCR cycles were determined by the CFX Maestro Software (Bio-Rad).
Extended Data Fig. 1.

Next-generation sequencing sample preparation

For DNA library analysis, one-half volume (25 pl) of the eluted cDNA of
the complex was amplified by PCR using SsoAdvanced Universal SYBR
Green Supermix (BioRad) to add P5 and P7 NGS adapter sequences.
The number of cycles was chosen based on a test qPCR run using the
same PCR reagents to avoid overamplification. The DNA fragment
length and concentration were confirmed by 4200 TapeStation System
(Agilent), then the samples were analysed by NovaSeq 6000 System
(Illumina).

Processing of next-generation sequencing data

Eachlibrary in asequencing run was identified via a unique 6- or 8-bp
barcode. Following sequencing, reads were paired using the PEAR pro-
gram®® then the adapter sequences were moved by Cutadapt®. Reads
were considered counts for a sequence if the read perfectly matched
the ordered sequences at the nucleotide level.

Overall strategy for inferring Ky, and AG from sequencing data
We used Bayesianinferencetoinfer Ks,and AG values for all sequences
inour library. This analysis uses two main models. The first model is
called the ‘K;,model’ and infers each sequence’s K5, values based on the
sequencing count data. The second modelis called the ‘unfolded state
model’ and predicts each sequence’s unfolded state Ky, value (K,
based onits sequence. Both models are implemented in Python 3.9
using the Numpyro package®® version 0.80. In Supplementary Notes,
we describe the structure of each model and the procedure for fitting
eachmodel. Our scripts toreproduce the complete fitting process are
provided in the Source Data.

Replicate analysis of K,

Instead of sampling K, values using 24 samples per protease at one time
as described in step 5 above, we sampled K, values using one experi-
ment set (thatis, 12 samples) and obtained K, for trypsin replicates 1
and 2, and chymotrypsin replicates 1and 2. Note that we still used the
calibrated protease concentrations to improve consistency between
replicates. The replicates were conducted on different days using the
same preparation of the protein-cDNA complex.

Data for purified protein experiments
The data on purified proteins shown in Fig. 1g was taken from
refs.29,59-71.

Data quality filtering and classification of datasets1-3

Our data (Fig. 2) werefiltered for quality in three stages. First, our Bayes-
ianprocedure produces confidence intervals for K, and AG estimates,
producinga quality estimate for eachindividual measurement. Second,
we evaluated the quality of each full mutational scan, classified these
into categories, and removed the low quality categories from our main
analysis (below). Third, we filtered our mutational scanning data to
remove mutants that showed evidence of causing cleavage from the
folded state or intermolecular disulfide cross-linking.

Analysis of Bayesian confidence intervals. Nearly all low-confidence
AG estimates result from stabilities that are outside the main dynam-
ic range of the assay (-1to 5 kcal mol™). This is due to the very steep
slope of AGwithrespecttoKs,inthisrange (see Fig.1e).Forall figures,
we clip all AG estimates to the range of —1to 5 kcal mol™ before fur-
ther analysis. In the table of all data, the ‘dG_ML’ column categorizes
sequences as ‘<—1"and ‘>5’if the 95% confidence interval is fully out-
side the range. Of the sequences with AG estimates between -1 and
5kcal mol™, the median sequence had a95% confidence interval width of
0.14 kcal mol™, and 99.9% of sequences had confidence intervals
smaller than 0.96 kcal mol™. Although a very small fraction of AG
estimates were low confidence (that is, had a wide confidence inter-
val), we still included these sequences in all analyses. Note that these
confidence intervals only reflect the model’s uncertainty stemming
from the finite deep sequencing counts; other uncertainties (such
as uncertainty in K, y, K50, protease concentrations, the validity of
the kinetic model, and so on) are not reflected in these confidence
intervals.

Classification of mutational scans. All mutational scanning data were
classified into12 groups (0 to 11) according to the protocol in Extended
DataFig. 8. Groups 0 and 1containthe mutational scans that passed all
quality filters. Domainsin group 0 have wild-type AG values below 4.75
kcal mol™ so that stabilizing mutations can still fall within the cDNA
proteolysis assay’s dynamic range. Group 1 contains the remaining
high-quality domains. Groups 2-11 contain mutational scans that failed
one or more quality filters. Allmutational scans areincluded in only one
group, so amutational scan classified as ‘group 5’ (for poor correlation
betweenindependent trypsin and chymotrypsin results) might also fail
otherfilters (such as having a poor slope or intercept between trypsin
and chymotrypsin results).

Below, we define each group, along with ashort explanation of pos-
sible causes.

Group O: Passing all quality filters.

Group 1: Passing all quality filters, but wild-type AG > 4.75 kcal mol ™,
so stabilizing mutants may not be resolved compared to the wild type.

Group 2: Poor expression in the assay, based on low counts in
next-generation sequencing.

Group 3: The wild-type protein is too unstable to see sequence-
stability relationships. This may be due to a truly unstable wild-type
sequence or due to rapid cleavage of some segment in the folded state.



Group 4: The wild-type stability (AG) is inconsistent. We often
observed this for high stability proteins in our first library where the
wild-type stability exceeded the dynamic range of the assay.

Group 5: Poor correlation between trypsin experiment and chymo-
trypsin experiments. This can suggest that one or both proteases are
not probing global unfolding, leading to different mutational patterns
between the proteases.

Group 6: Poor slope between trypsin experiment and chymotrypsin
experiments. This can suggest that some cleavage is occurring from
folded state(s) for one or both proteases. If cleavage can occur from
the folded state for one protease, the modelled Ky, will be different
fromthetrueKj,, creatingaslope between theinferred AG values and
the true AGvalues (see Fig. 1e).

Group 7: Too many stabilizing mutants. In a typical well-folded
domain, most mutations are neutral, so a very large fraction of stabi-
lizing mutations suggests the wild-type AG may not have been meas-
ured accurately. Furthermore, when the large majority of hydrophobic
substitutions at surface sites are stabilizing, this suggests the domain
may be stabilized by non-specific intermolecular interactions. For these
reasons, we removed domains showing these patterns.

Groups 8 and 9: Includes multiple cysteines with proper folding
(G8) or misfolding (G9). Disulfide linkages have the potential to dis-
rupt our assay by preventing the C-terminal cDNA from dissociating
from the protein N terminus even after the protein is proteolysed. In
general, we found that proteins with >1 Cys performed poorly in our
assay and many of these proteins are found in groups 2-7. Owing to
theseresults, we decided to remove the remaining proteins with >1Cys
(group 9). However, two proteins appeared to produce good results.
Although we chose not to include these proteins in our main analysis,
they have been separated into group 8 (high-quality datafrom proteins
with >1Cys).

Group 10: Poor intercept between trypsin experiment and chy-
motrypsin experiments. A poor intercept indicates that our trypsin
and chymotrypsin experiments cannot agree on where AG =0 is for
the overall mutational scan. This depends on the unfolded model for
each protease (the inference of K, , for each protease). Because the
two proteases did not agree on the AG values for these sequences,
the AG values are likely less reliable than those in group 0 and group
1. However, AAG values for this group are still consistent across both
proteases.

Group 11: Probably cleavable in folded states. In many cases, excessive
cleavage fromthe folded state or partially folded states will lead to low
wild-type stability (G3), poor correlation between the proteases (G5),
or a poor slope (G6). However, we saw some evidence of folded state
cleavage even in mutational scans that passed these filtering criteria.
Specifically, we observed cases where mutating out awild-type cut site
led toincreased protease resistance (higher K,) and apparently higher
stability (AG) to one specific protease but not the other (for example,
R16in Extended Data Fig. 6a,b). Thisincrease in apparent stability for
just one protease suggests that either the site can be cleaved from
folded state(s) for that protease, or removing the cut site is decreas-
ing unfolded state susceptibility (K, ) in a way that is not properly
accounted for by our model. Because these conditions lower the reli-
ability of our AG estimates, we removed these mutational scans from
analysis. The code to perform this filtering is provided (Data_quality _
filtering_script.ipynb).

Removal of individual mutants that may disrupt the assay. In the
previous stage, we filtered out entire domains; here, we filtered out
datafromindividual mutantsin domains that otherwise passed filtering
(thatis, werein group O or group 1). We focused on two specific types
of mutations that could disrupt our assay. First, we filtered out data
whereintroducing new cleavage sitesinto poorly structured regions of
aproteinresulted in apparent destabilization. Because these mutants
are located in poorly structured sites, the apparent destabilization

may result from cleavage from folded or partially folded states. These
mutants were identified based on (1) apparent destabilization from
introducing the new cleavage site, and (2) a low variance in stability
between the other amino acids, which indicates a poorly structured
region of the protein where cleavage might occur in the folded state.
Second, wefiltered out data where introducing Cys mutants into poor-
ly structured regions of a protein resulted in apparent stabilization.
Again, because these mutants are located in poorly structured sites,
the apparent stabilization may result from the formation of inter- or
intramolecular disulfide linkages that prevent the dissociation of the
C-terminal cDNA following protease cleavage. The code to performthis
filteringis provided (Data_quality filtering_script.ipynb).

All sequences in dataset 2 and dataset 3 are included in Tsuboy-
ama2023_Dataset2_Dataset3_20230416.csv. All sequences in this file
have aninferred AG estimate, but only sequencesin dataset 3 haveatab-
ulated AAG estimate. Of course, one can calculate AAG for the remain-
ing sequencesindataset 2, but these AAG values will be biased toward
destabilizing mutations because stabilizing mutations would typically
beindistinguishable from the wild-type stability. Note that datasets 2
and 3include a very small number of sequences with low-quality data
(wide confidenceintervals) because these sequences come from muta-
tional scans that are high quality overall. Although these tables include
all K5y, AG and AAG data (for dataset 3), low-quality data (including
mutant data filtered in Stage 3) have been filtered out and replaced
by a - symbol in the columns labelled * ML’ (for machine learning).

Principal component analysis

We performed principal component analysis to determine the factors
influencing stability of different amino acids (Fig. 3). To this end, we
used 17,093 sites in the 365 domains that are classified as GO in the
above. All folding stability data were clipped between from -1 and
5 kcal mol™ because the folding stability outside the dynamic range
isnotreliable, and then the average of the stability for 20 amino acids
for each site was subtracted from the data. Using the data, we per-
formed principal components analysis using the scikit-learn library
implemented in Python 3.

Side chain contacts and burial analysis

Burial values and contact counts (Fig. 3b and Extended Data Fig. 9h)
were computed based on AlphaFold models’ of all sequences using the
includedscript Burial_side_chain_contact_Fig3 Figé.ipynbbased onBio.
PDB”? and BioPython”. The calculation is based on the Rosetta ‘side-
chain_neighbors’ LayerDesign method previously reported™. In brief,
tocalculate theburial or contacts of residue X, we added up the number
ofresiduesinacone projecting out 9 A away from the Cp atom on resi-
due X in the direction of the residue X Ca-C vector. ‘Burial’ (Fig. 6h)
indicatesthe number of Caatoms inthe cone. Contact counts (Fig.3d)
each count different atomsinside the cone: ‘side chain contact count’
(Fig.3d) counts all Cp atoms; ‘aromatic side chain contact count’ counts
all CE2 atoms of Phe, Tyr, and Trp; ‘acidic side chain contact count’
counts all Glu OE1 and Asp OD1 atoms; and ‘Basic side chain contact
count’ counts allLys NZ and Arg NE atoms.

Secondary structure determination
Using the DSSP algorithm™”, we obtained secondary structure infor-
mation based on AlphaFold models (Fig. 3b).

Selection method of site pairs for double mutational analysis

Double mutants (Fig. 4) were selected for analysis in two ways. First,
we manually selected polar interactions where either amino acid
appeared important for stability in single mutational analysis. These
pairs were mainly included in library 3. Second, we used the program
confind”®” toidentify interacting residues. All confind pairs with nota-
ble interactions such as polar interactions and cation-m interactions
wereselected, along with arandomly chosen subset of more common
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interactionssuchashydrophobicinteractions. These pairswereincluded
inlibrary 4.

Thermodynamic coupling analysis
The thermodynamic coupling model and the procedure for fitting the
model (Fig. 4) are described in Supplementary Notes.

Wild-type amino acid prediction model
The wild-type sequence prediction model (Fig. 5) and the procedure
for fitting the model are described in Supplementary Notes.

GEMME analysis

To calculate the normalized averaged GEMME score, which represents
the sensitivity of awild-type amino acid to substitutionsinferred from
evolutionary information (AAE in the previous reports®¢*), we ran
GEMME* on each natural amino acid sequence using the default param-
eters. We computed asingle score for each site by averaging the scores
ofthe19 amino acids (except Cys), and then standardized each domain
individually (subtracted the domain’s meanand divided by the domain’s
standard deviation) so that the site scores withinadomain had amean
of zero and a standard deviation of one. Finally, we flip the sign of the
score so that positive valuesimply high susceptibility to mutations (that
is, very negative raw GEMME scores for non-wild-type amino acids). We
define this standardized score for each site as the normalized GEMME
score. Tobuild the input multiple sequence alignments, we performed
fiveiterations of the profile HMM homology search tool Jackhmmer”®”
against the UniRef100 database of non-redundant proteins® using
the EVcouplings framework®'. We used the default bitscore threshold
of 0.5 bit per residue.

Structural modelling by AlphaFold

For most of the structural analysis, we used structural models pre-
dicted by AlphaFold'. We ran AlphaFold using default parameters and
chose the model with the highest pLDDT score for each sequence.
For designed sequences, we skipped a step for generating multiple
sequence alignment.

Statistics and reproducibility

We did not use statistical tests here. We did not perform multiple experi-
ments under exactly the same conditions, but we used two different
proteases and two different protease concentration sets to confirm
reproducibility. Inaddition, we also confirmed that the same amino acid
sequences show consistent K, values in different libraries (Extended
DataFig.5).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Alldataareavailableinthe maintext, the extended datafiguresortables,
oravailable for download at https://doi.org/10.5281/zen0d0.7992926.

Code availability

The code for the analyses can be found at https://github.com/
Rocklin-Lab/cdna-display-proteolysis-pipeline.
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Extended DataFig.1|Single turnover modelfitting on qPCR data. (a) Totest
the single turnover model, we performed cDNA display proteolysis onamixture
of eight mini protein sequences with diverse folding stability and quantified
thesurvivingamount ofeachcDNA using qPCR. We theneach curveoneata
time by Bayesianinference using the single turnover kinetics modelin Fig. 1b.
Wesampledk,,,*tand K, for eachsequence. Dots represent the observed cDNA
amount quantified by qPCR and lines show the two-parameter fits. (b) Posterior
distributions of k., *t and K, for eight proteins were shown. WhereasKs,
values vary between different proteins, k.., *t values (indicating saturation at
high protease concentrations) were either constant or unconstrained by the
data. (c) Based on the analysis (b), we fixed k.., *t at 10°% and re-sampled K, for
each protein. Dotsrepresent the observed cDNA amount quantified by gPCR
(sameasin (a)) lines show the one-parameter fits. (d) Posterior distributions of
Kso. For trypsin, the K5, values for the two most stable proteins (orange and blue)
could notbe defined because they were too stable and outside of the dynamic
range of this proteolysis assay.
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Extended DataFig.2|Unfolded state model parameters and goodness

of fit. (a) Fit parameters for the unfolded state model position-specific scoring
matrix (PSSM) for trypsin. The mean of all coefficients (-0.4) was subtracted
fromthevaluesinthe figure toaid visualization. Positive values indicate

faster proteolysis and lower predicted K, , values. By using different prior
distribution widths for different rows during fitting, we guided the strongest
rate determinantsinto the center row of each matrix, which we label “P1” (the
assay cannot actually identify the specific location of cutting). Overall, the
heatmap resembles similar data as previously reported™® and is consistent with
known trypsin specificity determinants, including the preference for R/Kat P1,
theinhibitory effect of P, and the unfavorability of D and E*. (b) 2D-histogram
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showing the overallagreement between the trypsin model (predicted Ko,
y-axis) and the data (experimental K, x-axis). Only scrambled sequences with
inferred AG < 0.5 kcal/mol (where we can assume Ky, = K5, ;) are shown (53,949
outof 64,238 total sequences usedintraining). The Pearsonr valueis shown.
(c) Overall distribution of inferred AG of all scramble sequences. The vertical
line represents 0.5 kcal/mol, whichis athreshold usedin (b). (d, e) As above, for
chymotrypsin. Asinour previous report'®, the coefficients resemble established
features of chymotrypsin specificity, including the preference for F/Y/W
followed by M/L at P1, the inhibitory effect of Pat P3, P1’,and P2’,and the
general unfavorability of D and E®*8¢, The mean of all coefficients (-0.5) was
subtracted from the valuesinthe figure to aid visualization.
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Offset between cDNA display proteolysis
measurements and previously
published folding stabilities (Fig. 1G)

2 A e 2HBB
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Extended DataFig. 3 |Relationship between offsetin Fig. 1g and assay
temperature. Previous studies shownin Fig.1gused diverse conditions
including buffer, pH, ionstrength, and temperature (see Supplementary
Table1)**°7', However, our measurements were all conducted in PBS at room
temperature (approximately 22 °C). Ingeneral, the offsets observed in Fig.1g
arecorrelated tothetemperatures used in the previous studies, suggesting
that the assay temperature is the main cause of the offsets. The red line
representsabest fitline. The x-intercept (21.7 °C) is close to our assay condition
(approximately 22 °C). 2HBB (the N-terminal domain of Ribosomal Protein L9)
and 2WQG (SAP domain from Thol) were notincluded in the linear fit. 2HBB is
anoutlier; thismay owe toits zinc-binding activity or to differences between
the measured sequences (our construct lacks three C-terminal amino acids
presentinthe previous study). 2WQG s close to the fit line but was removed
becausethe previousliterature used the L31W background as ‘wild-type’; this
mutation stabilizes the protein by 0.49 kcal/mol®°.
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Extended DataFig. 4 |Heat maps for astable domain (Ubiquitin; 1lUBQ)
and its destabilizing mutants. (a) Mutational scanning results for human
erythrocytic ubiquitin (IUBQ) and its destabilizing mutant backgrounds
(I3Aand L67S). Heat maps show the AG of wild-type ubiquitin (top), ubiquitin
I13A (middle-top), ubiquitin L67S (middle-bottom), and the difference (AAG)
between two mutant backgrounds (bottom) for substitutions, deletions,
and Gly and Alainsertions ateachresidue. Inthe three AG heat maps, white
represents the folding stability of the wild-type and red/blue indicates
stabilizing/destabilizing mutations. Black dots indicate the background

(wild-type or mutant) aminoacid, red slashes indicate missing data, and

black corner slashesindicate lower confidence AG estimates, (95% confidence
interval > 0.5 kcal/mol), including AG estimates near the edges of the dynamic
range. (b) Consistency between mutant stabilities measuredin the I3A
background (x-axis) and L67S (y-axis) background. The plotis annotated with
the number of points and the Pearsonr value. (c) Ubiquitin structure highlighting
the mutant points (I3 and L67) and the residues with a different effect on stability
between two mutational backgrounds.
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Extended DataFig. 5| Consistency of K;, measurements across libraries.
(aand b) To examine the consistency between K, (LM) values measuredin
differentlibraries, we included identical sequences (potentially with different
paddingat the termini) in multiplelibraries. For each pair of libraries with
overlapping sequences, we show the K, values for those sequencesinboth
libraries for trypsin (a) and chymotrypsin (b). The top row shows raw K, values

foroverlapping sequencesineachlibrary; the second row shows the difference
inKjy, estimates plotted against the Ks,in one of the libraries. The red diagonal
lineshows Y=XinthetoprowandY =0 (i.e.identical K, estimates) in the bottom
row. Blue/orange vertical lines show K, ¢; all Ko values above K ¢ are treated
asequivalent. Each plotis annotated at the top-left with the total number of
overlapping sequences and Pearsonr-value between the libraries.
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Extended DataFig. 6 | Domains withand without evidence of cleavage

from the folded state. (a) Mutational scanning results for 2L3X, which
includes trypsin cleavagesitesin the loop region. Left: Heat maps show the AG
measurements fromindependent trypsin (top) and chymotrypsin challenges
(bottom) for substitutions, deletions, and Gly and Alainsertions at eachresidue,
with our one-indexed numbering at the bottom. Black dots indicate the wild-
type aminoacid, red slashes indicate missing data, and black corner slashes
indicate lower confidence AG estimates, (95% confidenceinterval > 0.5 kcal/
mol), including AG estimates near the edges of the dynamic range. The colored
boxes highlight the flexible loop region. Right: Comparison of independent
trypsinand chymotrypsin AG measurements. Multiple codon variants of the
wild-typesequenceareshowninred, reliable AG valuesinblue, and less reliable
AG estimates (same as above) ingray. The black dashed linerepresents Y =X.

The dotsshowareverse ‘L’ shape because trypsin can cleave the loop even from
thefolded state, lowering the apparent stability for the wild-type and all high-
stability variants. (b) 2L3X structure highlighting argininesintheloop region
(R14 and R16). (c) Same as (a) for 2L3X after removing the trypsin-cleavable sites
(R14 and R16) from the loop. In this deep mutational scanning, we observed
higher consistency between trypsin and chymotrypsin challenges because we
removedsites that could be cleaved in the folded state. (d) Top: Four example
domains with long protease-cleavable loops that do not show evidence of folded
state cleavage. Bottom: Agreement between mutant AG valuesindependently
determined using assays with trypsin (x-axis) and chymotrypsin (y-axis), asin
(a). The consistency between the two proteases indicates thatboth proteases
are measuring global unfolding, unlike the examplein (a).
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eachdistribution (n=17,093). (b) Asin (a), grouped by domain types (natural
domains, Rosetta designs, and hallucination designs). Center line, box limit,
and whiskers represent median, upper and lower quartiles, and1.5x interquartile
range of each distribution (n=17,093 in total).
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J Domain of HSJ1a Y3-R60-D64 (Y5-R62-D66 in 2LGW)

NMR structure AlphaFold prediction
b c
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Extended DataFig. 8 | Comparison of AlphaFold modeland NMR structure display) (c), the construct with linkers for cDNA display proteolysis (d), and
forJ domain of HSJ1a Structure of ) domainin HSJ1a (2LGW). We show the exactsequence used for NMR (e). In (f), we overlay the first state of the NMR
NMRstructure of all states stacked (a) and the first state (b), and AlphaFold ensemble (cyan) with the AlphaFold structure (orange) of the minimal
predicted structures for the minimum construct (the variable segmentincDNA  construct.
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Extended DataFig. 9| Properties of functional sites across diverse
domains. (a) Therelationship between wild-type stability (average AAG for
substitutions) and evolutionary-based sensitivity to substitutions (normalized
averaged GEMME score). All sites above the orange dashed line are highly
conserved but unimportant for stability; we define these as “functional sites”.
(b) Asin (a), highlighting positionsin the HP1chromo domain (2M2L; green)
and the BBC1SH3 domain (ITGO; red). (c) Structures of HP1chromo domain
and BBC1SH3 domain (gray) and their ligands (light blue). Functional sites are
showninorange. Ligand positions were modeled based on PDB structures
1KNA (for HP1) and 2LCS (for the SH3 domain). (d) Amino acids are ranked by
the percentage of positions where that wild-type amino acid is classified as
functional, for positionsin 104 non-redundant natural domains. (e) The
percentage of functional residues in each of the 104 non-redundant domains.
(f) Structures of the two domains with the highest percentages of functional
residues. Nucleicacidsinteracting with each of the structures areshownin
lightblue and functional residues are shownin orange. The Sso7d-DNA
complexis the crystal structure 1BNZ; the S19-RNA complex is modeled
based onthe 4V5Y structure. (g) Asin (a), except only considering nonpolar

Average AAG (kcal/mol)
(hydrophobic substitutions)

AAG (kcal/mol)

substitutions for calculating AAG and normalized averaged GEMME score.

(h) Thedistributions of burial (side chain contacts) for all sites (blue), sites
where the wild-type amino acid is unimportant for stability (average AAG<1
kcal/mol) (green), and functional sites (orange). Functional sites are generally
located on the surface of the protein. Two unusual buried functional residues
are highlighted. (i) Structure of the DUF1471 domain of yahO (2MA4) with
functionalssitesin orange and the unusual buried functional site A64 in red.
Ala64 is highly conserved yet the domain is stabilized by substitutions to Tyr or
Phe (positive AAG, x-axis). However, Tyr and Phe are rarely found in evolution
(low GEMME score, y-axis). (j) Left: Structure of the N-terminal domain of
FK506-binding protein 3 (2KFV) with functional sitesin orange and the unusual
buried functionalsite L55(L78 in PDB numbering) inred. Middle: Residues
with chemical shift perturbationsinresponse to DNA binding*}; L55 shows a
perturbation despite not contacting DNA. Right: L55is conserved (high GEMME
score, y-axis) butrelatively unimportant for stability (low average AAG, x-axis).
Substitutionto Phe, Val, or lle is thermodynamically neutral (AAG near zero)
buttheseamino acids are rarely found in evolution (low GEMME score).
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Extended DataFig.10| Analysis of stable yet less hydrophobic designs

and notable hydrogen bond networks. (a) Relationship between
hydrophobicity (calculated based on the previous report®) and folding
stability (AG) for designed proteins'®. Examples from (b) are shown as large
dots. (b) For three proteins with high folding stability and low hydrophobicity,
we highlight critical hydrophilicinteractions stabilizing these proteins. Gray
density plots show the average AAG of substitutions at 3,858 polar sitesin 151
designed domains. Colored vertical bars show the values for the highlighted
positions. These three proteins feature polaramino acids where the average
AAG of substitutions is unusually destabilizing (> top 5%ile). For HHH_rd1_0756,
K22isshownasaredline; theinteracting W32is considered nonpolar and not
shown. Full mutational scanning results are shown in Supplementary Fig. 7. All
threestructures are design models reported previously'®, not experimental
structures. (c) Asin (a), highlighting EHEE_rd2_0152 (from (b)) and two other

designswith the same hydrogenbond network. (d) Average AAG of substitutions
at3,715polarsitesin144 designed domains. The colored vertical bars indicate
the values for thesites related to the 2nd hydrogen bond network shownin

(b) for EHEE_rd2_0152. (e) Relationship between AAG in EHEE_rd2_0152 andin
the other designs EHEE_rd2_0372 or EHEE_rd2_0191for E11, R14, and E18. At E11,
substitutions to the 19 other amino acids have smaller effectsin EHEE_rd2_0372
(blue) and EHEE_rd2_0191 (orange) compared toin EHEE_rd2_0152 (e.g. all points
areabove the dashed Y=Xline). However, the points are ordered similarly; i.e.
therank ordering of the 19 other amino acid variantsin stability is similar
between the three designs. For R14 and E18, substitutionsin EHEE_rd2_372
(blue) have similar effect sizes to EHEE_rd2_0152, but substitutionsin EHEE_
rd2_0191 (orange) have smaller effects. Again, the rank ordering of the amino
acid variants by stability is similar across the three designs.
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Extended DataFig.11| Global analysis of PROSS designs. (a) All 727 PROSS
designs grouped according to the number of amino acid substitutionsineach
design. Top: the number of designs with each different number of substitutions.
Bottom: the distribution of design results for each group. AAGindicates the
stability of the PROSS design (AG) minus the stability of the original wild-type
sequence; positive AAG indicates the design stabilized the domain. Center line,
box limit, whiskers, and dots represent median, upper and lower quartiles, 1.5x
interquartilerange, and outliers of each distribution (n =727 in total). (b) AAG
distributions for allamino acid substitutions in wild-type domains used as
input to PROSS (blue), allamino acid substitutions at sites modified in PROSS
designs (orange), and all PROSS-designed substitutions (green). AllAAG
measurementsare in the original wild-type background; positive AAG indicates

Sum of AAG of the two most stabilizing
mutations designed by PROSS (kcal/mol)

stabilizing substitutions. (c) Relationship between AAG of PROSS designs and
AAG of the most stabilizing mutations designed by PROSS. At left, we compare
PROSS designs to the single most stabilizing mutation (in the original wild-type
background) out of all the substitutions in the PROSS design. Atright, we
compare PROSS designs to the sum of the two most stabilizing mutations (each
measured individually in the original wild-type background without considering
thermodynamic coupling). The density plots show the distribution of PROSS
designs that were better (positive) or worse (negative) than the single best
mutation (left) or sum of the two best mutations (right). Two-thirds of designs
arebetter thanthebestsingle designed mutation, although the differenceis
small. Likewise, two-thirds of designs are worse than the additive effect of the
two best designed mutations (assuming no thermodynamic coupling).
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Extended Data Table 1| Number of sequences and sequence groups for our datasets

o # of total # of sequence # of
Dataset name Description Sequence group
sequences groups sequences
Single a.a. mut. 983 wild-types | 1,046,752
. 725 pairs
Double +triple |/ 1 iding 36 | 416,274
a.a. mut. .
triples)
Dataset #1 All data (no filtering) 1,841,285 Scrambles for
- 68,427
unfolded model
Rocklin 5017 rd1- ) 36.707
Others - 273,125
Single a.a. mut. | 478 wild-types 566,180
Dataset #2 All data for AG 776,298
Double a.a. mut. 559 pairs 210,118
Single a.a. mut. 412 wild-types 448,788
Dataset #3 All data for AAG‘(.W.T <4.75 kcal/mol 607,839
to detect stabilizing mutations)
Double a.a. mut. 496 pairs 159,051
Dataset #4 Dataset #3 after removing . .
(For Fig. 3) modified/variant WTs 325,132 Single a.a. mut. 365 wild-types 325,132
Dataset #5 Non-redundant natural domains (for . .
(For Fig. 5) amino acid classification model) 113,572 Single a.a. mut. 104 wild-types 113,572
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Sample size The data is large-scale screening and the data was automatically processed through the pipeline. There is no need to pre-define the sample
size.

Data exclusions  We excluded some data with low reliability in analysis (95% confidence interval >0.5 for K50, >0.66 for AG). We described the detail in
captions or method section.

Replication The reproducibility of cDNA display proteolysis was checked in Sl Fig2
Randomization  The data is large-scale screening and the data was automatically processed through the pipeline. There is no need to randomize the data.

Blinding The data is large-scale screening and the data was automatically processed through the pipeline. There is no need to blind the data.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChiIP-seq
Eukaryotic cell lines g |:| Flow cytometry
Palaeontology and archaeology g |:| MRI-based neuroimaging

Animals and other organisms

Clinical data
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Antibodies

Antibodies used PA-tag antibody (NZ-1 FUJIFILM Wako Chemicals)

Validation PA-tag antibody was validated in Fuijii et al. Protein Expression and Purification 2014 https://doi.org/10.1016/j.pep.2014.01.009




