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Spherical convolutional neural
networks can improve brain
microstructure estimation from
diffusion MRI data
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Diffusion magnetic resonance imaging is sensitive to the microstructural
properties of brain tissue. However, estimating clinically and scientifically
relevant microstructural properties from the measured signals remains a highly
challenging inverse problem that machine learning may help solve. This study
investigated if recently developed rotationally invariant spherical convolutional
neural networks can improve microstructural parameter estimation. We trained
a spherical convolutional neural network to predict the ground-truth parameter
values from efficiently simulated noisy data and applied the trained network to
imaging data acquired in a clinical setting to generate microstructural parameter
maps. Our network performed better than the spherical mean technique and
multi-layer perceptron, achieving higher prediction accuracy than the spherical
mean technique with less rotational variance than the multi-layer perceptron.
Although we focused on a constrained two-compartment model of neuronal
tissue, the network and training pipeline are generalizable and can be used to
estimate the parameters of any Gaussian compartment model. To highlight this,
we also trained the network to predict the parameters of a three-compartment
model that enables the estimation of apparent neural soma density using tensor-
valued diffusion encoding.

KEYWORDS

diffusion magnetic resonance imaging, geometric deep learning, microstructure,
spherical convolutional neural network, MRI

1 Introduction

Neuroimaging enables non-invasively measuring functional and structural properties
of the brain, and it is essential in modern neuroscience. Diffusion magnetic
resonance imaging (dMRI), the most commonly used imaging modality for quantifying
microstructural properties of the brain, measures displacements of water molecules at
the microscopic level and is thus sensitive to tissue microstructure. dMRI has been used
to localize microstructural alterations associated with, for example, learning (Sagi et al.,
2012), healthy development (Lebel et al., 2019), aging (Sullivan and Pfefferbaum, 2006),
neurodevelopmental disorders (Gibbard et al., 2018), and neurodegenerative diseases
(Zhang et al., 2009). However, accurately inferring clinically and scientifically relevant
properties of tissue microstructure (e.g., cell morphology or distribution of cell types)
from the measured signals remains a highly challenging inverse problem (Kiselev, 2017).
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Most dMRI data analysis methods are based on signal models
that express the measured signal as a function of parameters of
interest and can be fit to data by numerically minimizing an
objective function (Novikov et al., 2019). An essential requirement
for microstructural neuroimaging methods is low rotational
variance (i.e., estimated parameters should not depend on how
the subject’s head is oriented in the scanner). Furthermore, it is
often desirable for the parameter estimates to be independent of
the orientation distribution of the microscopic structures (e.g., an
estimate of axon density should not depend on whether the axons
are aligned or crossing). These two requirements are often achieved
by acquiring high-angular resolution diffusion imaging (HARDI)
data and averaging over the diffusion encoding directions, which is
referred to as “powder-averaging”, a term borrowed from the field
of solid-state nuclear magnetic resonance (NMR). The number of
acquisition directions required for a nearly rotationally invariant
powder-averaged signal depends on the properties of tissue
microstructure and diffusion encoding (Szczepankiewicz et al.,
2019a). Fitting models to powder-averaged signals is often referred
to as the “spherical mean technique” (SMT), a term introduced
by Kaden et al. (2016b). While powder-averaging enables the
estimation of various microstructural parameters (Jespersen et al.,
2013; Lasic et al., 2014; Kaden et al., 2016a,b; Szczepankiewicz et al.,
2016; Henriques et al., 2020; Palombo et al., 2020; Gyori et al.,
2021), a significant amount of information is lost during averaging.
Therefore, it may be beneficial to estimate the parameters directly
from full data without powder-averaging.

In recent years, microstructural parameter estimation using
machine learning (ML) has received significant attention as a
potential solution to issues with conventional fitting, such as
slow convergence, poor noise robustness, and terminating at local
minima (Golkov et al., 2016; Barbieri et al., 2020; Palombo et al.,
2020; de Almeida Martins et al., 2021; Elaldi et al., 2021; Gyori
et al., 2021, 2022; Karimi et al, 2021; Sedlar et al., 2021a,b;
Kerkeld et al, 2022). ML models can be trained to predict
microstructural parameter values from data using supervised or
self-supervised learning. In the context of dMRI, a particularly
promising development has been the invention of spherical
convolutional neural networks (SCNNs) (Cohen et al., 2018; Esteves
et al., 2018). SCNNs are SO(3)-equivariant (i.e., rotating the input
changes the output according to the same rotation) artificial neural
networks that perform spherical convolutions with learnable filters.
They theoretically enable rotationally invariant classification and
regression, making them potentially well-suited for predicting
microstructural parameters from dMRI data.

This study aimed to investigate if SCNNs can improve
microstructural parameter estimation. We focused on estimating
the parameters of a constrained two-compartment model by Kaden
et al. (2016a) regularly used in neuroscience to study human white
matter in vivo (Collins et al., 2019; Toescu et al., 2021; Voldsbekk
et al., 2021; Battocchio et al., 2022; Rahmanzadeh et al., 2022). An
sCNN implemented according to Esteves et al. (2018) was trained
to predict the neurite orientation distribution function (ODF) and
scalar parameters (neurite diffusivity and density) from dMRI data.
Training and testing were done using simulated data. The sSCNN
was compared to conventional fitting and a multi-layer perceptron
(MLP) in terms of accuracy and orientational variance. The trained
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model was then applied to MRI data acquired in a clinical setting to
generate microstructural maps. Furthermore, to highlight the fact
that the sSCNN and training pipeline are applicable to any Gaussian
compartment model, the network was trained to estimate the
parameters of a constrained three-compartment model by Gyori
et al. (2021) that enables the estimation of apparent neural soma
density using tensor-valued diffusion encoding (Topgaard, 2017).

2 Materials and methods

2.1 Spherical harmonics

Any square-integrable function on the sphere f:$> — C can
be expanded in the spherical harmonic basis:

b 1
f@=>"% fmym, (1)

1=0 m=—I

where x is a point on the unit sphere, b is the bandwidth of f, [ is
the degree, m is the order, fl’” is an expansion coefficient, and Ylm is
a spherical harmonic defined as

where 6 € [0,7] is the polar coordinate, ¢ € [0,27) is the
azimuthal coordinate, and P;" is the associated Legendre function.

The expansion coefficients are given by the spherical Fourier
transform (SFT):

= /S xR ). 3)

SET of a band-limited function can be computed exactly as a
finite sum using a sampling theorem (Driscoll and Healy, 1994).
Equation 1 is the inverse spherical Fourier transform (ISFT).

Since reconstructed dMRI signals are real-valued and
antipodally symmetric, we use the following basis:

0 if I is odd

V23(YM) ifm <0
m _ i 4
Si Y? ifm=0 @)

1
V2R(Y") ifm>0

Considering that diffusion encoding directions do not usually
follow a sampling theorem like the one by Driscoll and Healy
(1994) that enables SFT to be exactly computed as a finite sum, we
use least squares to compute the expansion coefficients: Indexing
j= %l(l + 1) + m assigns a unique index j to every pair [, m. Given

f sampled at points xj, X, stored in a column vector X,

e X”points
the values of the spherical harmonics sampled at the same points
are organized in a fipoints X Mcoefficients Matrix B where Bj; = S (x;).
-1 . . . .
(BTB) B'X gives a vector containing the expansion coefficients

minimizing the Frobenius norm (Brechbiihler et al., 1995).
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2.2 Spherical convolution

Convolution of a spherical signal f by a spherical filter h is
defined as

(f*h)(x)=/

dR f(Re&3)h(R™'x), (5)
SO(3)

where €3 is a unit vector aligned with the z-axis. If f and h are
band-limited, the above equation can be evaluated efficiently as a
pointwise product in the frequency domain (Driscoll and Healy,
1994). The spherical harmonic coefficients of the convoluted signal
y are

N AT A0
It =2m TR 1flmhl. (6)

Spherical convolution is equivariant to rotations (i.e., R(fxh) =
(Rf) x h for all R € SO(3)) and the filter is marginalized around the
z-axis (i.e, for every h, there exists a filter h, that is symmetric with

respect to the z-axis so that f *« h = f * h;).

2.3 Compartment models

Compartment models represent the dMRI signal as a sum of
signals coming from different microstructural environments (e.g.,
intra- and extra-axonal water). For details, see, for example, the
review by Jelescu and Budde (2017). Here, we focus on models with
non-exchanging Gaussian compartments following an ODF. The
signal measured along fi is expressed as a spherical convolution of
the ODF by a microstructural kernel response function K:

S(h) = f dR ODF(Ré&3)K(R™ '), (7)
SO(3)

where K is the microstructural kernel response function:

N
K() = S [Zﬁ exp(—b: D»} : (®)

i=1

where Sy is the signal without diffusion-weighting, N is the
number of compartments, f; is a signal fraction, b is the b-tensor
corresponding to n and a b-value equal to Tr(b), : denotes the
i1 Yi byDy) (Westin
et al., 2016), and D; is an axially symmetric diffusion tensor

generalized scalar product (b:D =

aligned with the z-axis representing Gaussian diffusion in the
compartment. The training pipeline presented in this paper is
applicable to any compartment model that can be expressed using
Equations 7 and 8. Given a different data generation method, the
SCNN can be trained to predict the parameters of non-Gaussian
models as well.

2.3.1 Two-compartment model

The so-called “standard model” of diffusion in white matter
consists of a one-dimensional compartment representing diffusion
inside neurites and a coaxial axially symmetric extra-cellular
compartment (Novikov et al., 2019). We focus on a constrained
version of the model by Kaden et al. (2016a) that enables model
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parameters to be estimated from powder-averaged data using the
SMT. The model contains two parameters: intra-neurite diffusivity
d and intra-neurite signal fraction f. Axial and radial diffusivities
of the extra-cellular compartment are d and (1 — f)d, respectively.
Inserting this into Equation 8 gives

000
000
00d

K(m) = So | fexp | —b:

1-fHd 0 0
+ (=flep|-b:| o a-pdoll]. ©
0 0 d

2.3.2 Spherical mean technique

Kaden et al. (2016b) observed that for a fixed b-value, the
spherical mean of the dMRI signal over the gradient directions
does not depend on the ODF. By exploiting this invariance, the
constrained two-compartment model can be fit to powder-averaged
data, denoted by Spa here, using the following signal equation
(Kaden et al., 2016a):

Jmerf («/ﬁ)
2Vbd

ﬁerf( bfd)

(1= fle-b=Nd
(1—1)e NCT

Spa =So0 | f

(10)

2.3.3 Three-compartment model

Palombo et al. (2020) added a spherical compartment
representing neural soma to the standard model to make it more
suitable for gray matter. We use a constrained three-compartment
model by Gyori et al. (2021) that uses tensor-valued diffusion
encoding to make apparent neural soma imaging more feasible
without high-performance gradient hardware. The model contains
four parameters: intra-neurite diffusivity d, intra-neurite signal
fraction f;, spherical compartment diffusivity dy;, and spherical
compartment signal fraction f.,. Axial and radial diffusivities of
the extra-cellular compartment are di(1 — f; — fsph)%fsph/ Usph ) and
di(l — fi — fsph)(%fsl’”fi)/ FspntA) | respectively. We omit explicitly
writing out the kernel signal equation to save space, but it is trivial
to construct from Equation 8.

2.4 Simulations

Simulated training data was generated by evaluating Equation 7
in the frequency domain according to Equation 6. The response
function values were evaluated along 3072 directions uniformly
distributed over the surface of the sphere according to the
hierarchical equal area isolatitude pixelisation (HEALPix) (Gorski
et al., 2005; Zonca et al.,, 2019) and expanded in the spherical
harmonics basis. Rician noise was added to the simulated signals:

SnoiSY =y (S + X)Z + Y2>

(11)
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FIGURE 1
Network for two-compartment model parameter prediction. The input is normalized two-shell data expanded using spherical harmonics up to
degree eight. The signals undergo spherical convolutions, non-linearities, and spectral pooling to produce the predicted orientation distribution
function. After the initial three convolutions, global mean pooling is applied in the signal domain, and the resulting arrays are concatenated to create
a nearly rotationally invariant feature vector passed on to the FCN that outputs the predicted scalar parameter.

TABLE 1 Mean squared error of the estimated two-compartment model
parameters on the test dataset.

Method ODF d (Lm?/ms) f

SCNN 2.76 - 1073 3.08- 1073 3231073
SCNN* 2.75-1073 3.07-1073 3231073
SMT 6.47-1073 10.92-1073 37.50 - 1073
MLP 2.71-1073 4.00-1073 3.70- 1073
MLP* 2.70 - 1073 4.00-1073 3.63-107°

Deep learning-based parameter estimation outperformed the spherical mean technique. The
asterisk (*) refers to models trained with randomly rotated training data. The lowest values
are highlighted in bold.

where S is the simulated signal without noise and X and Y are
sampled from a normal distribution with zero mean and standard
deviation of 1/SNR, where SNR is the signal-to-noise ratio. SNR
was matched to the mean SNR in the imaging experiments.

2.5 Network architecture

Our sCNN, visualized in Figure 1, consists of six spherical
convolution layers implemented according to Esteves et al. (2018)
without enforcing localized filters. The network takes the expansion
coefficients in the frequency domain as input and outputs the
estimated ODF and scalar model parameters. The number of input
channels is equal to the number of shells in data. Each spherical
convolution layer is followed by a leaky (slope is 0.1 for negative
values) rectified linear unit (ReLU) applied in the spatial domain.
The conversion between frequency and spatial domains is done
using the 3072 HEALPix directions. Spherical harmonics up to
degree 16 are used in the network because the non-linearity can
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increase signal bandwidth. Spectral pooling discards coefficients
of the highest degrees. After the initial three convolutions, global
mean pooling is applied in the spatial domain, and the resulting
arrays are concatenated and passed to the fully connected network
(FCN) that outputs the predicted scalar parameter. The FCN
consists of three hidden layers with 128 units each. The first two
layers of the FCN are followed by batch normalization (Toffe and
Szegedy, 2015) and a ReLU. The sCNN for estimating the two-
compartment model parameters has 78,258 trainable parameters.

2.6 Training

Training was done over 10° batches of simulated data
generated during training. Each batch contained signals from
500 microstructural configurations produced by random sampling
(d ~ U(0,3 pm?/ms) and f ~ U(0,1)). ODFs were sampled from
five volunteer scans. Validation and test datasets were constructed
similarly, except that they contained 10* and 10° microstructural
configurations, respectively, and the ODFs were sampled from
different volunteer scans. Training was performed twice: with and
without randomly rotating the ODFs. The ODFs in the validation
and test datasets were randomly rotated. ADAM (Kingma and
Ba, 2014) was the optimizer with an initial learning rate of 1073,
which was reduced by 90% after 50% and 75% into the training.
Mean squared error (MSE) was the loss function. ODF MSE was
calculated in the spatial domain.

2.7 Baseline methods

The sCNN was compared to the SMT and an MLP that
takes the normalized dMRI signals as inputs and outputs the

04 frontiersin.org


https://doi.org/10.3389/fnimg.2024.1349415
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org

Kerkela et al. 10.3389/fnimg.2024.1349415
sCNN SCNN* SMT MLP*
1 -0.1 1 L -0.1
(c) | |
N N N N N
0 0 0 |- 0.0 0 0 I-o.o
0 3 0 3 0 3 0 3 0 3
d (um?/ms) d (um?/ms) d (Lm?/ms) d (um?/ms) d (um?/ms)
sCNN SCNN* SMT MLP MLP*
I— 0.25 1 I— 0.25 1 l— 0.25 1 I— 0.25
k k ' k k .
0 |— 0.00 0 ‘ |— 0.00 0 |— 0.00 0 |— 0.00
0 3 0 3 0 3 0 3 0 3
d (um?/ms) d (um?/ms) d (um?/ms) d (um?%/ms) d (um?2/ms)
FIGURE 2
Mean squared error of the estimated two-compartment model parameters on the test dataset for different values of intra-neurite diffusivity (d) and
intra-neurite signal fraction (f). The first row (A—E) shows the results for d and the second row (F-J) shows the results for f. Deep learning-based
methods outperformed the spherical mean technique in all parts of the parameter space. The asterisk (") refers to models trained with randomly
rotated training data.

TABLE 2 Average standard deviation of the estimated two-compartment
model parameters over rotations of the input signals.

Method d (um?/ms) f

SCNN 0.23-107° 0.13-107°
SCNN* 0.18- 1073 0.09-1073
SMT 0.14-107° 0.25-1073
MLP 20.30-1073 14.40 - 1073
MLP* 17.23 1073 12.78 - 1073

The asterisk (*) refers to models trained with randomly rotated training data. The lowest
values are highlighted in bold.

spherical harmonic coefficients of the ODF and the model
parameters. The SMT parameter estimation and the subsequent
ODF estimation using the estimated microstructural kernel and
constrained spherical deconvolution (CSD) was done using Dmipy
(Fick et al, 2019). The MLP consisted of three hidden layers
with 512 nodes each. The hidden layers were followed by batch
normalization and a ReLU. The MLP had 614,447 trainable
parameters. It was trained like the sCNN, except ten times more
batches were used to account for the higher number of parameters
and ensure convergence.

2.8 Imaging data

The brains of eight healthy adult volunteers were scanned on
a Siemens Magnetom Prisma 3T (Siemens Healthcare, Erlangen,
Germany) at Great Ormond Street Hospital, London, United
Kingdom. Data was denoised (Veraart et al, 2016) using
MRtrix3 (Tournier et al., 2019) and distortion- and motion-
corrected using FSL (Jenkinson et al, 2012; Andersson and
Sotiropoulos, 2016). SNR was estimated in each voxel as the
inverse of the standard deviation of the normalized signals
without diffusion-weighting.

Frontiersin Neuroimaging

2.8.1 High-angular resolution diffusion imaging
Seven volunteers were scanned using a standard clinical
two-shell HARDI protocol with two non-zero b-values of 1
and 2.2 ms/um? with 60 directions over half a sphere each.
Other relevant scan parameters were the following: diffusion
time (A) = 28.7 ms; diffusion encoding time (3) = 16.7 ms;
echo time (TE) = 60 ms; repetition time (TR) = 3,050 ms;
field of view (FOV) = 220 x 220 ms; voxel size = 2 x 2 x
2 mm?3; slice gap = 0.2 mm; 66 slices; phase partial Fourier =
6/8; multiband acceleration factor = 2. Fourteen images were
acquired without diffusion-weighting, one of which had the
phase encoding direction reversed to be used to correct for
susceptibility-induced distortions. The total scan time was 7
minutes. Mean SNR in the brain was 50. Neurite ODFs were
estimated using multi-tissue CSD (Jeurissen et al., 2014) with

Imax = 8.

2.8.2 Tensor-valued diffusion imaging

One volunteer was scanned using a prototype spin echo
sequence that
(Szczepankiewicz et al, 2019a). Data was acquired using

enables tensor-valued diffusion encoding
numerically optimized (Sjolund et al, 2015) and Maxwell-
compensated (Szczepankiewicz et al., 2019b) gradient waveforms
encoding linear and planar b-tensors. The acquisitions with
linear b-tensors were performed with b-values of 0.5, 1, 2, 3.5,
and 5 ms/p,m2 with 12, 12, 20, 20, and 30 directions over half
a sphere, respectively. The acquisitions with planar b-tensors
were performed with b-values of 0.5, 1, and 2 ms/um2 with
12, 12, and 20 directions over half a sphere, respectively. Other
relevant scan parameters were the following: TE = 82 ms; TR =
4.2 s; FOV = 220 x 220 ms; voxel size = 2 x 2 x 2 mm?; slice
gap = 0.2 mm; 66 slices; phase partial Fourier = 6/8; multiband
acceleration factor = 2. Fourteen images were acquired without
diffusion-weighting, one of which had the phase encoding direction
reversed. The total scan time was 12 minutes. Mean SNR in the
brain was 29.
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maps and the fourth row (J—L) shows the differences between the intra-neurite signal fraction maps.
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3 Results

3.1 Two-compartment model

3.1.1 Prediction accuracy

MSE on the test dataset is reported in Table 1. The sCNN and
MLP outperformed the SMT in estimating the ODF and scalar
parameters. The sCNN predicted d and f the best while the MLP
was predicted the ODF marginally better than the sCNN. Both
the sCNN and MLP benefited slightly from randomly rotating the
training data. Figure 2 shows how prediction accuracy depends
on the values of d and f. The sCNN and MLP outperformed
the SMT in all parts of the parameter space. Although the
largest errors with the SMT occurred for values of d and f not

Frontiersin Neuroimaging

typically observed in the brain, ML-based approaches were more
accurate for values observed in the brain (i.e., d roughly between 1
and 2 wm?/ms).

3.1.2 Rotational variance

The rotational variance of the different methods was assessed by
generating signals from 10° random microstructural configurations
rotated over 729 rotations given by the SO(3) sampling theorem
by Kostelec and Rockmore (2008). No noise was added to the
signals to exclude the effects of noise. The average standard
deviation of the estimated parameters from the rotated data
are shown in Table2. The sCNN and SMT were much less
sensitive to rotations than the MLP. The SMT had the lowest
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FIGURE 4

Neurite orientation distribution functions overlaid on a map of intra-neurite signal fraction generated by the spherical convolutional neural network
trained with randomly rotating the training data. The color represents the principal direction, and the size is scaled according to neurite density. This
coronal slice shows the intersection of the corticospinal tract and the corpus callosum.

rotational variance for d, and the sCNN had the lowest rotational
variance for f. However, the SMT’s non-zero rotational variance
was driven by low values of d or f for which the fit is
unstable. For values typically observed in white matter, the SMT’s
estimates’ standard deviation was three orders of magnitude
smaller than the average. Data augmentation by rotating the
input signals improved prediction accuracy for both the sCNN
and MLP. However, the sCNN was much less rotationally
variant even without data augmentation than the MLP was with
data augmentation.

3.1.3 Application on real imaging data

Figure 3 shows parameter maps generated using the three
methods. The maps produced by the ML-based methods appear
less noisy. Overall, the SCNN estimated d to be greater than the
MLP (mean difference = 2.4 - 1072 umz/ms; std of difference
= 8.1 -1072 wm?/ms) and SMT (mean difference = 0.9 - 1072
}Lmz/ms; std of difference = 12.7 - 102 }Lmz/ms). However, in
the CSF the sCNN tended to estimate d to be less than the MLP
or SMT. Overall, the SCNN estimated f to be greater than the
MLP (mean difference = 0.5 - 107%; std of difference = 3.6 -
1072) and SMT (mean difference = 0.1 - 107; std of difference =
4.5 - 1072) while exhibiting a similar yet lesser tissue-dependent
pattern as d. Figure4 shows example ODFs generated by the
trained sCNN.
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3.2 Three-compartment model

To highlight the fact that the network and training pipeline
are applicable to any Gaussian compartment models, the sCNN
was trained to predict the three-compartment model parameters
the same way as with the two-compartment model. Informed by
the two-compartment model results, the network was trained with
randomly rotated training data. d; ~ U(0, 3 um?/ms), f; ~ U(0, 1),
dgpn ~ U(0, max(d;, 0.5 wm?/ms)), and S ~ U(0,1 — fi). The
upper limit of dg,, was chosen to correspond to a sphere with
a diameter of 25 pm using the Monte Carlo simulator Disimpy
(Kerkeld etal., 2020). Figure 5 shows maps that the SCNN generated
from preprocessed dMRI data.

4 Discussion

The primary purpose of this study was to investigate whether
sCNNs can improve microstructural parameter estimation from
noisy dMRI data, focusing on a constrained two-compartment
model widely used in neuroscience research to study human white
matter in vivo. The sCNN demonstrated superior accuracy with
similar rotational variance compared to the SMT, and exhibited
similar accuracy but considerably lower rotational variance than
the MLP that had significantly more trainable parameters. Our
results show that sCNNs can offer substantial benefits over
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FIGURE 5

Axial slices of the intra-neurite diffusivity (A), spherical compartment diffusivity (B), intra-neurite signal fraction (C), and spherical compartment signal
fraction (D) maps generated by the spherical convolutional neural network trained with randomly rotating the training data

simpler artificial neural network architectures for ML-based
microstructural parameter estimation from dMRI data.

We focused on comparing neural network architectures with
a fixed training strategy, using the SMT as a baseline. Previous
research by Gyori et al. (2022) has highlighted the significant impact
of training data distribution on neural network predictions, which
affects the performance of our sSCNN when applied to real imaging
data. We are aware of this limitation, and in future work, we aim
to optimize the training data distribution. Another relevant key
takeaway from the work by Gyori et al. (2022) is that at low SNR,
ML-based parameter estimation can suffer from high bias, which
manifests as maps that appear exceedingly smooth. Moreover, it is
important to note the general limitation of microstructural models
that deviations from model assumptions can lead to inaccuracies
(Lampinen et al., 2017; Henriques et al., 2019; Kerkel et al., 2021).

When it comes to training the sCNN, while it is crucial to
sample the space of possible ODFs as exhaustively as possible
during training, the MLP training requirements are even more
demanding since its rotational variance can only be reduced
through learning. Changes in b-values or the angular resolution of
shells will necessitate retraining our network. Technically, the same
network could be used as long as the b-values remain consistent,
but the spherical harmonics expansion would vary with different
angular resolutions (i.e., the number of b-vectors).

To the best of our knowledge, sCNNs have been used
to analyze dMRI data only a few times prior to this. Sedlar
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et al. (2021a) trained an sCNN to predict ’neurite orientation
dispersion and density imaging' (NODDI) (Zhang et al., 2012)
parameters from subsampled data, and Goodwin-Allcock et al.
(2022) showed that sCNNs can improve the robustness of
diffusion tensor estimation from data with just a few directions.
SCNNs have also been used to estimate ODFs (Elaldi et al.,
2021; Sedlar et al., 2021b). However, this study differs from the
aforementioned studies in two important ways. First, our network
and simulations were developed to estimate both the ODF and
scalar parameters of any Gaussian compartment model. Second,
we carefully compared the SCNN to the SMT, a commonly used
and nearly rotationally invariant conventional fitting method, thus
warranting a comparison with sSCNN. Although we implemented
spherical convolution layers as described by Esteves et al.
(2018), other architectures also exist and warrant investigation
in the context of microstructural parameter estimation. For
example, the sSCNNs by Cohen et al. (2018) use cross-correlation
and can learn non-zonal (i.e., not symmetric with respect to
the z-axis) filters, Kondor et al. (2018) developed efficient
quadratic nonlinearities in the spherical harmonics domain,
and the graph-based sCNN by Perraudin et al. (2019) is
suitable for spherical data with very high angular resolution.
Besides optimizing network architecture, future studies should
also focus on optimizing hyperparameters and especially on
carefully assessing the effects of and optimizing the training
data distribution.
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