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There has been considerable recent progress in designing new proteins using deep-
learning methods'®. Despite this progress, ageneral deep-learning framework for
protein design that enables solution of awide range of design challenges, including
denovo binder design and design of higher-order symmetric architectures, hasyet to
be described. Diffusion models'®* have had considerable success inimage and
language generative modelling but limited success when applied to protein modelling,
probably due to the complexity of proteinbackbone geometry and sequence-structure
relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction
network on protein structure denoising tasks, we obtain a generative model of protein
backbones that achieves outstanding performance on unconditional and topology-
constrained protein monomer design, protein binder design, symmetric oligomer
design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic
and metal-binding protein design. We demonstrate the power and generality of the
method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing
the structures and functions of hundreds of designed symmetric assemblies, metal-
binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the
cryogenicelectron microscopy structure of a designed binder in complex with influenza
haemagglutinin that is nearly identical to the design model. In amanner analogous to

networks that produce images from user-specified inputs, RFdiffusion enables the
design of diverse functional proteins from simple molecular specifications.

De novo protein design seeks to generate proteins with specified
structural and/or functional properties, for example, making a bind-
inginteraction witha given target'?, folding into a particular topology™
or containinga catalyticsite*. Denoising diffusion probabilistic models
(DDPMs), a powerful class of machine learning models recently dem-
onstrated to generate new photorealistic images in response to text
prompts*® have several properties well suited to protein design. First,
DDPMs generate highly diverse outputs, asthey are trained to denoise
data (forinstance,images or text) that have been corrupted with Gauss-
iannoise. By learning to stochastically reverse this corruption, diverse
outputs closely resembling the training data are generated. Second,
DDPMs canbe guided at each step of the iterative generation process
towards specific design objectives through provision of conditioning

information. Third, for almost all protein design applications itis neces-
sary to explicitly model three-dimensional (3D) structures; rotation-
ally equivariant DDPMs can do this in a global representation frame
independent manner. Recent work has adapted DDPMs for protein
monomer design by conditioning on small protein ‘motifs*° or onsec-
ondary structure and block-adjacency (‘fold’) information®. Although
promising, these attempts have shown limited success in generating
sequences that fold to the intended structures in silico®, probably due
to the limited ability of the denoising networks to generate realistic
protein backbones, and have not been tested experimentally.

We reasoned that improved diffusion models for protein design
couldbe developed by taking advantage of the deep understanding of
protein structure implicit in powerful structure prediction methods
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suchas AlphaFold2 (ref.17) (AF2) and RoseTTAFold™ (RF). RF has prop-
erties well suited for use in a protein design DDPM (Fig. 1a): it gener-
ates protein structures with high precision, operates onarigid-frame
representation of residues with rotational equivariance and has an
architecture enabling conditioning on design specifications at the
individual residue, inter-residue distance and orientation, and 3D
coordinate levels. In previous work, we fine-tuned RF to complete
protein backbones around input functional motifs in a single step
(RFin Inpainting*). Experimental characterization showed that the
method can scaffold a wide range of protein functional motifs with
atomic accuracy®, but the approach fails on minimalist site descrip-
tionsthat do not sufficiently constrain the overall fold and, because it
is deterministic, can produce only a limited diversity of designs for a
given problem. Wereasoned that by fine-tuning RF as the denoising net-
workinagenerative diffusion modelinstead, we could overcome both
problems: because the starting pointis random noise, each denoising
trajectoryyields a different solution, and because structureis built up
progressively through many denoisingiterations, little to no starting
structural information should be required. In this study, we used an
updated version of RF*® as the basis for the denoising network archi-
tecture (Supplementary Methods), but other equivariant structure
prediction networks (AF2 (ref.17), OmegaFold®°, ESMFold?) could in
principle be substituted into an analogous DDPM.

We construct a RF-based diffusion model, RFdiffusion, using the RF
frame representation that comprises a Ca coordinate and N-Ca-C rigid
orientation for each residue. We generate training inputs by noising
structures sampled from the Protein Data Bank (PDB) for up to 200
steps®. For translations, we perturb Ca coordinates with 3D Gaussian
noise. For residue orientations, we use Brownian motion on the mani-
fold of rotation matrices (building on refs. 23,24). To enable RFdiffusion
tolearntoreverse each step of the noising process, we train the model
by minimizing a mean-squared error (m.s.e.) loss between frame pre-
dictionsand the true proteinstructure (without alignment), averaged
acrossallresidues (Supplementary Methods). Thisloss drives denoising
trajectories to match the datadistribution at each timestep and hence
to converge onstructures of designable protein backbones (Extended
DataFig.2a). Them.s.e.contraststo theloss used in RF structure predic-
tion training (frame aligned point error or FAPE) in that, unlike FAPE,
m.s.e.lossisnotinvariant to the global reference frame and therefore
promotes continuity of the global coordinate frame between timesteps
(Supplementary Methods).

To generate anew proteinbackbone, wefirstinitialize randomresi-
due frames and RFdiffusion makes a denoised prediction. Eachresidue
frameis updated by taking astepin the direction of this prediction with
some noise added to generate the input to the next step. The nature
ofthe noise added and the size of this reverse step is chosen such that
the denoising process matches the distribution of the noising process
(Supplementary Methods and Extended Data Fig. 2a). RFdiffusion
initially seeks to match the full breadth of possible protein structures
compatible with the purely random frames with whichitisinitialized,
and hence the denoised structures do not initially seem protein-like
(Fig. 1c, left). However, through many such steps, the breadth of pos-
sible proteinstructures fromwhich the input could have arisen narrows
and RFdiffusion predictions come to closely resemble protein struc-
tures (Fig. Ic, right). We use the ProteinMPNN network' to subsequently
design sequences encoding these structures, typically sampling eight
sequences per design in line with previous work>'® (but see Supplemen-
tary Fig. 2a). We also considered simultaneously designing structure
and sequence within RFdiffusion, but given the excellent performance
of combining ProteinMPNN with the diffusion of structure alone, we
did not extensively explore this possibility.

Figure 1a highlights the similarities between RF structure predic-
tion and an RFdiffusion denoising step: in both cases, the networks
transform coordinates into a predicted structure, conditioned on
inputs to the model. In RF, sequence is the primary input, with extra
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structural information provided as templates and initial coordinates to
the model. In RFdiffusion, the primary inputis the noised coordinates
from the previous step. For specific design tasks, a range of auxiliary
conditioning information, including partial sequence, fold informa-
tion or fixed functional-motif coordinates can be provided (Fig.1b and
Supplementary Methods).

We explored two different strategies for training RFdiffusion:
(1) inamanner akin to ‘canonical’ diffusion models, with predictions
at each timestep independent of predictions at previous timesteps
(as in previous work>®**%), and (2) with self-conditioning®, in which
the model can condition on previous predictions between timesteps
(Fig.1a, bottom row and Supplementary Methods). The latter strategy
was inspired by the success of ‘recycling’ in AF2, whichis also central
to the more recent RF model used here (Supplementary Methods).
Self-conditioning within RFdiffusion notably improved performance
oninsilicobenchmarks encompassing both conditional and uncondi-
tional protein design tasks (Fig. 2e and Extended Data Fig.1e). Increased
coherence of predictions within self-conditioned trajectories may,
at least in part, explain these performance increases (Extended Data
Fig.1h). Fine-tuning RFdiffusion from pretrained RF weights was far
more successful than training for an equivalent length of time from
untrained weights (Extended Data Fig. 1f,g, also Supplementary Fig.1)
and the m.s.e. loss was also crucial for unconditional generation
(Extended Data Fig. 1d). For all in silico benchmarks in this paper, we
use the AF2 structure prediction network for validation and define an
insilico ‘success’as an RFdiffusion output for which the AF2 structure
predicted from asingle sequence is (1) of high confidence (mean pre-
dicted aligned error (pAE), less than five), (2) globally withina 2 A back-
boneroot mean-squared deviation (r.m.s.d.) of the designed structure
and (3) within 1A backbone r.m.s.d. on any scaffolded functional site
(Supplementary Methods). This measure of in silico success has been
found to correlate with experimental success*”* and is significantly
more stringent than template modelling (TM)-score-based metrics
used elsewhere>**?? (Supplementary Fig. 2¢,d).

Unconditional protein monomer generation

As shownin Fig.2a-cand Supplementary Fig. 3c,d, starting from ran-
dom noise, RFdiffusion can readily generate elaborate protein struc-
tures with little overall structural similarity to structures seen during
training, indicating considerable generalization beyond the PDB (see
Supplementary Table 1for a comparison of all designs in the paper to
the PDB). The designs are diverse (Supplementary Fig. 3a), spanning
awide range of alpha, beta and mixed alpha-beta topologies, with
AF2 and ESMFold (Fig. 2c, Extended Data Fig. 1b,c and Supplemen-
tary Fig. 2b) predictions very close to the design structure models for
de novo designs with as many as 600 residues. RFdiffusion generates
plausible structures for even very large proteins, but these are difficult
to validate in silico as they are probably generally beyond the single
sequence prediction capabilities of AF2 and ESMFold. The quality and
diversity of designs that are sampled areinherent to the model, and do
notdepend on any auxiliary conditioning input (for example, second-
ary structure information®). We experimentally characterized six of
the 300 amino acid designs and three of the 200 amino acid designs,
and found that they have circular dichroism spectra consistent with
the mixed alpha-beta topologies of the designs and are extremely
thermostable (Extended Data Fig. 3). Physics-based protein design
methodologies have struggled in unconstrained generation of diverse
protein monomers because of the difficulty of sampling on the very
large and rugged conformational landscape®, and overcoming this
limitation has been a primary test of deep-learning based protein
design approaches**#¢?”* RFdiffusion strongly outperforms (based
onthe AF2 success metric described above) Hallucination with RF, an
experimentally validated method using Monte Carlo search or gradient
descenttoidentify sequences predicted to fold into stable structures
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Fig.1|Protein designusing RFdiffusion. a, Diffusion models for proteinsare
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structures by reversing the corruption process throughiterative denoising
ofiinitially random noise X;into arealistic structure X, (top panel). The RF
structure prediction network (middle panel, left side) is fine-tuned with
minimal architectural changes into RFdiffusion (middle panel, right side); the
denoising network of aDDPMis also shown. In RF, the primaryinputto the
modelis the sequence. In RFdiffusion, the primary inputis diffused residue
frames (coordinates and orientations). In both cases, the model predicts final
3D coordinates (denoted X, in RFdiffusion). The bottom panel shows thatin
RFdiffusion, the model receivesits previous prediction as atemplate input
(‘self-conditioning’, Supplementary Met/l\'l[?lds). Ateachtimestep tofatrajectory
(typically 200 steps), RFdiffusion takes X, fromthe previousstep and X,and

(Fig. 2d). RFdiffusion generation is also more compute efficient than
unconstrained Hallucination with RF, and efficiency can be greatly
improved by taking larger steps atinference time and by truncating tra-
jectories early, whichis possible because RF predicts the final structure
ateachtimestep (Extended DataFig. 2b,c). Forexample, a1l00-residue

then predictsanupdated X, structure ()/(\(;). Thenext coordinateinput to

the model (X,_;) isgenerated by anoisy interpolation (interp) towards )7(:.

b, RFdiffusionis broadly applicable for protein design. RFdiffusion generates
proteinstructures either without further input (top row) or by conditioning on
(top tobottom): symmetry specifications; binding targets; protein functional
motifs or symmetric functional motifs. Ineach case random noise, along with
conditioning information, isinput to RFdiffusion, which iteratively refines
that noise untilafinal proteinstructureis designed. ¢, Anexample of an
unconditional design trajectory fora300-residue chain, depicting the input to
themodel (X,) and the corresponding)?Oprediction.At early timesteps (high¢),
)/(\Obears littleresemblance to a protein butis gradually refined into arealistic
proteinstructure.

protein can be generated in as little as 11 s on an NVIDIA RTX A4000
Graphical Processing Unit, in contrast to RF Hallucination, which takes
around 8.5 min.

Itis often desirable to be able to specify a protein fold during design
(suchastriose-phosphateisomerase (TIM) barrels or cavity-containing
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¢, Unconditional samples are closely repredicted by AF2 up toabout 400 amino
acids. d, RFdiffusionsignificantly outperforms Hallucination (with RF) at
unconditional monomer generation (two-proportion z-test of in silico success:
n=400designs per condition,z=9.5,P=1.6 x 10"%). Although Hallucination
successfully generates designs up to100 amino acidsinlength, insilico success
ratesrapidly deteriorate beyond thislength. e, Ablating pretraining (by starting
fromuntrained RF), RFdiffusion fine-tuning (that is, using original RF structure

NTF2s for small molecule binder and enzyme design®*), and thus we
further fine-tuned RFdiffusion to condition on secondary structure
and/or fold information, enabling rapid and accurate generation of
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prediction weights as the denoiser), self-conditioning or m.s.e. losses (by
training with FAPE) each notably decrease the performance of RFdiffusion.
r.m.s.d. betweendesign and AF2is shown, for the unconditional generation of
300 aminoacid proteins (Supplementary Methods). f, Two example 300 amino
acid proteins that expressed as soluble monomers. Designs (grey) overlaid with
AF2predictions (colours) are shown on the left, alongside circular dichroism
(CD) spectra (top) and melt curves (bottom) on the right. The designs are highly
thermostable. g, RFdiffusion can condition on fold information. Anexample
TIMbarrelis shown (bottom left), conditioned on the secondary structure and
blockadjacency of a previously designed TIM barrel, PDB 6WVS (top left).
Designs have very similar circular dichroism spectrato PDB 6WVS (top right)
and are highly thermostable (bottomright). See also Extended Data Fig. 3 for
further traces. Boxplots represent median + interquartile range; tails are
minimum and maximum excluding outliers (1.5x interquartile range).

diverse designs with the desired topologies (Fig. 2g and Extended Data
Fig. 4). Insilico success rates were 42.5 and 54.1% for TIM barrels and
NTF2 folds, respectively (Extended Data Fig. 4d), and experimental
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characterization of 11 TIM barrel designs indicated that at least eight
designs were soluble, thermostable and had circular dichroism spectra
consistent with the design model (Fig. 2g and Extended Data Fig. 4e,f).

Design of higher-order oligomers

Thereis considerable interest in designing symmetric oligomers, which
can serve as vaccine platforms®, delivery vehicles® and catalysts>®.
Cyclic oligomers have been designed using structure prediction net-
workswith an adaptation of Hallucination that searches for sequences
predicted to fold to the desired cyclic symmetry, but this approach
fails for higher-order dihedral, tetrahedral, octahedral and icosahedral
symmetries, probably in part because of the much lower representation
of suchstructures in the PDB’.

We set out to generalize RFdiffusion to create symmetric oligomeric
structures with any specified point group symmetry. Given a specifica-
tion of a point group symmetry for an oligomer with n chains, and the
monomer chain length, we generate random starting residue frames
for asingle monomer subunitasin the unconditional generation case,
and then generate n — 1 copies of this starting point arranged with the
specified point group symmetry. Because RFdiffusion is equivariant
(inherited from RF) with respect to rotation and relabelings of chains,
symmetry islargely maintained in the denoising predictions; we explic-
itly resymmetrize at each step but this changes the structures only
slightly (compare grey and coloured chains in Extended Data Fig. 5a
and Supplementary Methods). For octahedral and icosahedral archi-
tectures, we explicitly model only the smallest subset of monomers
required to generate the full assembly (for example, for icosahedra,
the subunits at the five-, three- and twofold symmetry axes) to reduce
the computational cost and memory footprint.

Despite not being trained on symmetric inputs, RFdiffusion is able
to generate symmetric oligomers with high in silico success rates
(Extended DataFig. 5b), particularly whenguided by an auxiliary inter-
andintrachain contact potential (Extended DataFig. 5c). Asillustrated
inFig.3 and Extended Data Fig. 5e, RFdiffusion designs are nearly indis-
tinguishable from AF2 predictions of the structures adopted by the
designed sequences, and many show little resemblance to previously
solved protein structures (Extended Data Fig. 5d and Supplementary
Table1). Several of the oligomeric topologies are not seen in the PDB,
including two-layer betabarrels (Fig. 3a, C10 symmetry) and complex
mixed alpha/beta topologies (Fig. 3a, C8 symmetry; closest TM align
inPDB 6BRP, 0.47, and PDB 6BRO, 0.43, respectively).

We selected 608 designs for experimental characterization and
found using size-exclusion chromatography (SEC) that at least 87
had oligomerization states closely consistent with the design mod-
els (within the 95% confidence interval, 126 designs within the 99%
confidence interval, as determined by SEC calibration curves; Sup-
plementary Figs. 4 and 5). We took advantage of the increased size
of these oligomers (compared to the smaller unconditional and
fold-conditioned monomers described above) and collected nega-
tive stainelectron microscopy (nsEM) data on a subset of these designs
across different symmetry groups. For most, distinct particles were
evident with shapes resembling the design models in both the raw
micrographs and subsequent two-dimensional (2D) classifications
(Fig. 3 and Extended Data Fig. 5f). nsEM characterization of a C3
design (HE0822) with 350 residue subunits (1,050 residues in total)
suggests that the actual structure is very close to the design, both
over the 350 residue subunits and the overall C3 architecture. 2D class
averages are clearly consistent with both top and side views of the
design model, and a3D reconstruction of the density has key features
consistent with the design, including the distinctive pinwheel shape
(Fig. 3b, top row). Electron microscopy 2D class averages of C5 and
Cé6 designs with more than 750 residues (HE0794, HEO789, HE0841)
were also consistent with the respective design models (Extended
DataFig. 5f).

RFdiffusion also generated cyclic oligomers with alpha and/or beta
barrel structures that resemble expanded TIM barrels and provide an
interesting comparison between innovation during natural evolution
andinnovation through deep learning. The TIM barrel fold, with eight
strands and eight helices, is one of the most abundant folds in nature™.
nsEM confirmed the structure of two RFdiffusion designed cyclic oli-
gomers, which considerably extend beyond this fold (Fig. 3b, bottom
rows). HE0626 is a C6 alpha-beta barrel composed of 18 strands and
18 helices,and HEO675 isa C8 octamer composed of aninner ring of 16
strands and anouter ring of 16 helices arranged locally in a very similar
repeating pattern to the TIMbarrel (1:1 helix:strand). For both HE0626
and HE0675 we obtained nsEM 3D reconstructions that are in agree-
ment with the computational design models. The HEO600 design is
alsoanalpha-betabarrel (Extended Data Fig. 5f), but has two strands
for every helix (24 strands and 12 helices in total) and hence is locally
differentfrom a TIM barrel. Whereas natural evolution has extensively
explored structural variations of the classic eight-strand or eight-helix
TIM barrel fold, RFdiffusion can more readily explore global changes
inbarrel curvature, enabling discovery of TIM barrel-like structures
with many more helices and strands.

RFdiffusion also readily generated structures with dihedral, tet-
rahedral and icosohedral symmetries (Fig. 3¢,d and Extended Data
Fig.5e,f). SEC characterizationindicated that 38 D2, seven D3 and three
D4 designs had the expected molecular weights (these have four, six
and eight chains, respectively) (Supplementary Fig. 5). Although the
D2 dihedrals are too small for nsEM, 2D class averages—and for some,
3D reconstructions of D3 and D4 designs—were congruent with the
overall topologies of the design models (Fig. 3c and Extended Data
Fig. 5f). Similarly, 3D reconstruction (Fig. 3c) and cryogenic electron
microscopy (cryo-EM) 2D class averages (Extended Data Fig. 5g and Sup-
plementary Fig. 6) of the D4 HE0537 closely match the design model,
recapitulating the roughly 45° offset between tetramic subunits. 2D
nsEM class averages for a12-chain tetrahedron (HE0964) were consist-
ent with the design model (Extended Data Fig. 5f). Forty-eight icosa-
hedra were selected for experimental validation, and one, HE0902, a
15 nm (diameter) highly porous assembly (Fig. 3d, left) was observedin
nsEM micrographs to form homogeneous particles. 2D class averages
and a3Dreconstruction very closely match the design model (Fig. 3d),
with triangular hubs arrayed around the empty C5 axes. Designs such
as HE0902 (and future similar large assemblies) should be useful as
new nanomaterials and vaccine scaffolds, with robust assembly and
(in the case of HE0902) the outward facing N and C termini offering
many possibilities for antigen display.

Functional-motifscaffolding

We next investigated the use of RFdiffusion for scaffolding protein
structural motifs that carry out binding and catalytic functions, in
which the role of the scaffold is to hold the motif in precisely the 3D
geometry needed for optimal function. In RFdiffusion, we input motifs
as 3D coordinates (including sequence and sidechains) both during
conditional training and inference, and build scaffolds that hold the
motif atomic coordinates in place. Many deep-learning methods
have been developed recently to address this problem, including
RF;,i Inpainting?, constrained Hallucination*and other DDPMs*$%. To
rigorously evaluate the performance of these methods in comparison
to RFdiffusion across abroad set of design challenges, we established
anin silico benchmark test (Supplementary Table 9) comprising 25
motif-scaffolding design problems addressed in six recent publications
encompassing several design methodologies*>?*3%4°, The challenges
span a broad range of motif's, including simple ‘inpainting’ problems,
viral epitopes, receptor traps, small molecule binding sites, binding
interfaces and enzyme active sites.

RFdiffusion solves 23 of the 25 benchmark problems, compared to
15 for Hallucination and 19 for RF,,;, Inpainting (Fig. 4a,b). For 19 out
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Fig. 3| Designand experimental characterization of symmetric oligomers.
a, RFdiffusion-generated assemblies overlaid with the AF2 structure
predictions based on the designed sequences; inall five cases they are nearly
indistinguishable (for the octahedron (bottom), the prediction was for the C3
substructure). Symmetries are indicated to the left of the design models.

b,c, Designed assemblies characterized by nsEM. Model symmetries are as
follows: cyclic, C3 (HE0822,350 amino acids (AA) per chain), C6 (HE0626,100
AAperchain)and C8 (HE0675, 60 AA per chain) (b); dihedral, D3 (HE0490, 80
AAperchain)and D4 (HE0537,100 AA per chain) (c). From left toright:

(1) symmetric design model, (2) AF2 prediction of design following sequence
designwith ProteinMPNN, (3) 2D class averages showing both top and side
views (scale bar, 60 A for all class averages) and (4) 3D reconstructions from

of 23 of the problems solved by RFdiffusion, the fraction of successful
designs is higher than either Hallucination or RF;,, Inpainting. The
excellent performance of RFdiffusion required no hyperparameter tun-
ing or external potentials; this contrasts with Hallucination, for which
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2D class averages

3D reconstruction

Representative

micrograph

classaverages with the design model fitinto the density map. The overall
shapesare consistent with the design models, and confirm theintended
oligomericstate.Asina, AF2 predictions of each design are nearly
indistinguishable from the design model (backbone r.m.s.d.s (A) for HE0822,
HE0626,HE0490,HE0675 and HE0537,are1.33,1.03,0.60,0.74 and 0.75,
respectively).d, nsEM characterization of anicosahedral particle (HE0902,
100 AA per chain). The design model, including the AF2 prediction of the C3
subunitare shownonthe left.nsEM dataare shown ontheright:ontop,a
representative micrographisshownalongside 2D class averages alongeach
symmetry axis (C3, C2and C5, from left to right) with the corresponding 3D
reconstruction map views shown directly below overlaid on the design model.

problem-specific optimization can be required. In 17 out of 23 of the
problems, RFdiffusion-generated successful solutions with higher in
silico success rates when noise was not added during the reverse diffu-
siontrajectories (see Extended DataFig. i for further discussion onthe
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Fig.4|Scaffolding of diverse functional sites with RFdiffusion. a, RFdiffusion
outperforms other methods across 25benchmark motif-scaffolding problems
collected fromsix recent publications (Supplementary Table 9). Inssilico
successis defined as AF2r.m.s.d. to design model less than 2 A, AF2r.m.s.d.to
the native functional motifless than1A and AF2 pAE less than five. One
hundred designs were generated per problem, with no previous optimization
onthebenchmark set (some optimization was necessary for Hallucination).
Supplementary Table 10 presents full results. Insilico success rates on the
problems are correlated between the methods, and RFdiffusion can still
struggle on challenging problemsin which all methods have low success.

b, Four examples of designs in which RFdiffusion significantly outperforms
existing methods. Teal, native motif; colours, AF2 prediction of a design.
Metrics (r.m.s.d. AF2 versus design/versus native motif (A), AF2 pAE): 5STRV
long,1.17/0.57;4.73; 6E6R long, 0.89/0.27, 4.56; 7MRX long, 0.84/0.82 4.32;
5TPN, 0.59/0.493.77. ¢, RFdiffusion can scaffold the p53 helix that binds MDM2

effect of noise ondesign quality, and Supplementary Fig. 8 for analysis
of design diversity). The ability of RFdiffusion to scaffold functional
motifs is not related to their presence in the RFdiffusion training set
(Supplementary Fig. 7).

(left) and makes extra contacts with the target (right, average 31% increased
surfacearea. Design was p53_design_89). Designs were generated withan
RFdiffusion model fine-tuned on complexes. d, BLImeasurements indicate
high-affinity binding to MDM2 (p53_design_89, 0.7 nM; p53_design_53,
0.5nM); the native affinity is 600 nM (ref. 42). e, Out of 95 designs, 55 showed
binding to MDM2 (more than 50% of maximum response). Thirty-two

of these were monomeric (Supplementary Fig.10h). f, After fine-tuning
(Supplementary Methods), RFdiffusion can scaffold enzyme active sites.
Anoxidoreductase example (EC1) isshown (PDB 1A4I); catalytic site (teal);
RFdiffusion output (grey, model; colours, AF2 prediction); zoom of active site.
AF2versus designbackboner.m.s.d. 0.88 A, AF2 versus design motif backbone
r.m.s.d.0.53 A, AF2 versus design motif full-atom r.m.s.d.1.05 A, AF2 pAE 4.47.
g, Insilicosuccess ratesonactivesites derived from EC1-5 (AF2 Motif r.m.s.d.
versus native: backbone less than1 A, backbone and sidechain atoms less than
1.5A,r.m.s.d. AF2versus designless than2 A, AF2 pAE less than 5).

One of the benchmark problems is the scaffolding of the p53 helix
that binds MDM2. Inhibiting this interaction through high-affinity
competitiveinhibition by scaffolding the p53 helix and making further
interactions with MDM2 is a promising therapeutic avenue*. Insilico
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success has been described elsewhere*, but experimental success
has not been reported. We used an RFdiffusion model fine-tuned on
protein complexes (Supplementary Methods) to generate 96 designs
scaffolding this helix. We scaffolded the p53 helix in the presence of
MDM2, so extra interactions could be designed by RFdiffusion and
experimentally identified 0.5 and 0.7 nM binders (Fig. 4c,d), three
orders of magnitude higher affinity than the reported 600 nM affinity
of the p53 peptide alone*’. The overall success rate was quite high: out
ofthe 96 designs, 55 showed some detectable binding at 10 uM (Fig. 4e
and Supplementary Fig.10h).

Scaffolding enzyme active sites

Agrand challenge in protein design is to scaffold minimal descriptions
of enzyme active sites comprising afew single amino acids. Whereas
someinsilico success has been reported previously*, a general solu-
tion that can readily produce high-quality, orthogonally validated
outputs remains elusive. Following fine-tuning on a task mimicking
this problem (Supplementary Methods), RFdiffusion was able to scaf-
fold enzyme active sites comprising many sidechain and backbone
functional groups with highaccuracy and insilico success rates across
arange of enzyme classes (Fig. 4f and Extended Data Fig. 6a-d; in
silico successrequired fine tuning). Although RFdiffusionis unable to
explicitly model bound small molecules at present (however, see our
conclusions), the substrate canbe implicitly modelled using an exter-
nal potential to guide the generation of ‘pockets’ around the active
site. Asademonstration, we scaffold aretroaldolase active site triad
while implicitly modelling the reaction substrate (Extended Data
Fig. 6e-h).

Symmetric functional-motif scaffolding

Severalimportant design challenges involve the scaffolding of several
copiesof afunctional motifin symmetric arrangements. For example,
many viral glycoproteins are trimeric and symmetry matched arrange-
ments of inhibitory domains can be extremely potent**¢, Conversely,
symmetric presentation of viral epitopesinanarrangement that mimics
the virus could induce new classes of neutralizing antibodies**%. To
explore this general direction, we sought to design trimeric multiva-
lent binders to the SARS-CoV-2 spike protein. In previous work, flex-
ible linkage of a binder to the ACE2 binding site (on the spike protein
receptor binding domain) to a trimerization domain yielded a
high-affinity inhibitor that had potent and broadly neutralizing anti-
viral activity in animal models*®. Ideally, however, symmetric fusions
tobinders would be rigid, so as to reduce the entropic cost of binding
while maintaining the avidity benefits from multivalency. We used
RFdiffusion to design C3-symmetric trimersthatrigidly hold three bind-
ing domains (the functional motif in this case) such that they exactly
match the ACE2 binding sites on the SARS-CoV-2 spike protein trimer.
The designs were confidently predicted by AF2 to both assemble as
C3-symmetric oligomers, and to scaffold the AHB2 SARS-CoV-2 binder
interface with high accuracy (Fig. 5a).

The ability to scaffold functional sites with any desired symmetry
opens up new approaches to designing metal-coordinating protein
assemblies***°, Divalent transition metal ions show distinct prefer-
ences for specific coordination geometries (for example, square planar,
tetrahedral and octahedral) with ion-specific optimal sidechain-metal
bondlengths. RFdiffusion provides ageneral route to building up sym-
metric protein assemblies around such sites, with the symmetry of
the assembly matching the symmetry of the coordination geometry.
As afirst test, we sought to design square-planar Ni*' binding sites.
We designed C4 protein assemblies with four central histidine imida-
zoles arranged in an ideal Ni**-binding site with square-planar coor-
dination geometry (Fig. 5b). Diverse designs starting from distinct
C4-symmetric histidine square-planar siteshad goodinsilico success
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with the histidine residues in near ideal geometries for coordinating
metal in the AF2-predicted structures (Supplementary Fig. 9).

We expressed and purified 44 designs in Escherichia coli, and found
that 37 had SEC chromatograms consistent with the intended oligo-
mericstate (Extended DataFig. 7b). Of the designs, 36 were tested for
Ni*" coordination by isothermal titration calorimetry, and 18 were found
to bind Ni** with dissociation constants ranging from low nanomolar
to low micromolar (Fig.5c,d and Extended Data Fig. 7a). The inflection
points in the wild-type isotherms indicate binding with the designed
stoichiometry, aoneto four ratio ofion to monomer. Although most of
the designed proteins showed exothermic metal coordination, inafew
cases binding was endothermic (Fig. 5d, left and Extended Data Fig. 7a:
NiB2.9,NiB2.10,NiB2.15and NiB2.23), suggesting that Ni** coordination
is entropically drivenin these assemblies. To confirm that Ni** binding
was indeed mediated by the scaffolded histidine 52, we mutated this
residue to alanine, which abolished or notably reduced binding in 17
out of 17 cases with successful expression (Extended Data Figs. 7a,c
and Fig. 5c,d; one mutant did not express). We structurally charac-
terized by nsEM a subset of the designs—NiB1.12, NiB1.15, NiB1.17 and
NiB1.20—that showed histidine-dependent binding. All four designs
showed clear fourfold symmetry both in the raw micrographs and in
2D class averages (Fig. 5c,d), with design NiB1.17 also clearly showing
twofold axis side views with a measured diameter approximating the
design model. A 3D reconstruction of NiB1.17 was in close agreement
with the design model (Fig. 5¢).

Design of protein-binding proteins

The design of high-affinity binders to target proteins is a grand chal-
lenge in protein design, with numerous therapeutic applications™. A
general method for de novo binder design from target structure infor-
mation alone using the physically based Rosettamethod was recently
described?, and subsequently, using ProteinMPNN for sequence design
and AF2 for design filtering was found to improve design success rates®.
However, experimental success rates were low, still requiring many
thousands of designs to be screened for each design campaign'?, and
the approach relied on prespecifying a particular set of protein scaf-
folds as the basis for the designs, inherently limiting the diversity and
shape complementarity of possible solutions™. To our knowledge, no
deep-learning method has yet demonstrated experimental general
success in designing completely de novo binders.

We reasoned that RFdiffusion might be able to address this chal-
lenge by directly generating binding proteins in the context of the
target. For many therapeutic applications, for example, blocking a
protein—protein interaction, it is desirable to bind to a particular site
onatarget protein. To enable this, we fine-tuned RFdiffusion on protein
complexstructures, providing afeature asinputindicating a subset of
the residues on the target chain (called ‘interface hotspots’) to which
the diffused chain binds (Fig. 6a and Extended Data Fig. 8a,b). For
design challenges in which a particular binder fold might be especially
compatible, we enabled coarse-grained control over binder scaffold
topology by fine-tuning an extra model to condition binder diffusion
onsecondary structure and block-adjacency information, inaddition
to conditioning on interface hotspots (Extended Data Fig. 8c,d and
Supplementary Methods).

To compare RFdiffusion to previous binder design methods, we
performed binder design campaigns against five targets: Influenza
A H1 Haemagglutinin (HA)*, Interleukin-7 Receptor-a (IL-7Ra)™?,
Programmed Death-Ligand 1 (PD-L1)*?, Insulin Receptor (InsR) and
Tropomyosin Receptor Kinase A (TrkA)?. We designed putative binders
to eachtarget, both withand without conditioning on compatible fold
information, with highinsilico success rates (Extended Data Fig. 8e,f).
Designs were filtered by AF2 confidence in the interface and mono-
mer structure®, and 95 were selected for each target for experimental
characterization.
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Fig. 5| Symmetric motifscaffolding with RFdiffusion. a, Design of
symmetric oligomers scaffolding the binding interface of ACE2 mimic AHB2
(left, teal) against the SARS-CoV-2 spike trimer (left, grey). Three AHB2 copies
areinput to RFdiffusion along with C3 noise (middle); output are C3-symmetric
oligomers holding the three AHB2 copies in place to engage all spike subunits.
AF2predictions (right) recapitulate the AHB2 structure with 0.6 Ar.m.s.d. over
the assymetricunitand 2.9 Ar.m.s.d. over the C3 assembly. b, Design of C4-
symmetric oligomers to scaffold a Ni** binding motif (left). Starting from
square-planar histidine rotamers within helical fragments (Supplementary
Methods), RFdiffusion generates a C4 oligomer scaffolding the binding domain
(middle). AF2 predictions (colour) agree closely with the design model (grey),
withbackboner.m.s.d.lessthan1.0 A (right).c,nsEM 2D class averages (scale
bar, 60 A) and 3D reconstruction density are consistent with the symmetry and

The designed binders were expressed in £. coli and purified, and
binding was assessed through single point biolayer interferometry
(BLI) screening at 10 pM binder concentration (Extended Data Fig. 8g).
The overall experimental success rate, defined as binding at or above
50% of the maximal response for the positive control, was 19% (this
is a conservative estimate as some designs that showed binding had
insufficient material to permit screening at 10 uM: Extended Data

structure of the NiB1.17 design model shown superimposed on the density in
ribbonrepresentation (top). Isothermal titration calorimetry binding isotherm
of design NiB1.17 (blue) indicates adissociation constantlessthan20 nM ata
metal:monomer stoichiometry of1:4. The H52A mutant isotherm (pink) ablates
binding, indicating scaffolded histidine residues are critical for metal binding.
d, Additional experimentally characterized Ni** binders NiB2.15 (left), NiB1.12
(middle) and NiB1.20 (right). Metal-coordinating sidechains in the design
models (top, teal) are closely recapitulated in the AF2 predictions (colours).

2D nsEM class averages (middle; scale bar, 60 A) are consistent with design
models. Bindingisotherms for wild-type (WT) and H52A mutant (bottom)
indicate Ni** binding mediated directly by the scaffolded histidines at the
designed stoichiometry. Note that for ITC plots, points represent single
measurements.

Fig. 8g); an increase of roughly two orders of magnitude over our
previous Rosetta-based method on the same targets (Fig. 6b). Bind-
ers were identified for all five targets, with fewer than 100 designs
tested per target compared to thousands in previous studies. Full
BLItitrations for a subset of the designs showed nanomolar affini-
ties with no further experimental optimization, including HA and
IL-7Ra binders with affinities of roughly 30 nM (Fig. 6¢). Binding
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Fig. 6 | De novo design of protein-binding proteins. a, RFdiffusion generates
proteinbinders givenatargetand specification of interface hotspotresidues.
b, De novobinders were designed to five protein targets; Influenza AH1HA,
IL-7Ra, InsR, PD-L1and TrkA and hits with BLI response greater than or equal to
50% of the positive control wereidentified for all targets. For IL-7Rq, InsR, PD-L1
and TrkA, RFdiffusion has successrates roughly two orders of magnitude
higher than the original design campaigns. We attribute one order of magnitude
to RFdiffusion, and thesecond to filtering with AF2 (estimated success rates for
previous campaignsif AF2filteringhad beenused: HA, 0%; IL-7Ra, 2.2%; InsR,
5.5%; PD-L1,3.7%; TrkA,1.5%). c, For IL-7Ra, InsR, PD-L1and TrkA, the highest
affinity binderis shown above aBLItitration series. Reported K values are
based onglobalkinetic fitting with fixed global R,,,,,. d, The highest affinity HA
binder,HA_20, binds witha K, of 28 nM. c,d, Yellow or orange, target or hotspot

interfaces were often highly distinct from interfaces to these tar-
gets in the PDB (Supplementary Figs. 11 and 12). To assess binder
specificity, six of the highest affinity IL-7Ra binders were assessed
by means of competition BLI, and all six competed for binding with
a structurally validated positive control binding to the same site
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rms.d. =063 A

residues; grey, design model; purple, AF2 prediction (r.m.s.d. AF2 versus
design). Binders:IL7Ra_55 (2.1A), InsulinR_30 (2.6 A), PDL1_77 (1.5 A), TrkA_88
(1.4 A) (left torightin c) and HA_20 (1.7 A) (d). e, Cryo-EM 2D class averages of
HA_20boundtoinfluenzaHA, strain A/USA:lowa/1943 HIN1 (scale bar,10 nm).
f,2.9 A cryo-EM 3D reconstruction of the complex viewed along two orthogonal
axes. HA_20 (purple) isbound to Hlalong the stem of all three subunits. g, The
cryo-EMstructure of the HA_20 binder in complex closely matches the design
model (r.m.s.d.to RFdiffusion design, 0.63 A; yellow, influenzaHA). h, Structure
ofthe HA_20 binder alone superimposed on the design model viewed along
two orthogonal axes. For cryo-EM panels, yellow, Influenza Hl map and/or
structure; grey, HA_20 binder design model; purple, HA_20 binder map or
structure.

(Supplementary Fig.10a; further workisrequired to fully characterize
proteome-wide specificity).

We solved the structure of the highest affinity Influenza binder,
HA_20, in complex with lowa43 HA using cryo-EM (Extended
Data Table 1). Raw electron micrographs revealed a well-folded HA



glycoprotein with clearly discernible side, top and tilted view orienta-
tions suspended in athin layer of vitreous ice (Extended Data Fig. 9a).
The2D class averages further show clear secondary structure elements
corresponding to both lowa43 HA (Extended Data Fig. 9b), as well as
the HA_20 binder bound to the stem (Fig 6e). The 3D heterogenous
refinement without symmetry revealed full occupancy of all three HA
stem epitopes by the HA_20 binder. A final non-uniform 3D refinement
reconstruction with C3symmetry yielded a2.9 A map of the HA/HA 20
protein-protein complex (Fig 6f) and corresponding 3D structure that
almost perfectly matches the computational design model (0.63 A,
Fig 6f,g; the sidechain interactions at the interface are very different
fromthe closest structure inthe PDB; Extended Data Fig. 9h). Over the
binder alone, the experimental structure deviates from the RFdiffusion
designby only 0.6 A (Fig. 6h). These results demonstrate the ability of
RFdiffusion to generate new proteins with atomiclevel accuracy, and to
precisely target functionally relevant sites on therapeutically important
proteins.

Discussion

RFdiffusion is a comprehensive improvement over current protein
design methods. RFdiffusion readily generates diverse uncondi-
tional designs up to 600 residues in length that are accurately pre-
dicted by AF2, far exceeding the complexity and accuracy achieved
by most previous methods (a recent Hallucination-based approach
also achieved high unconditional performance®). Half of our tested
unconditional designs express in a soluble way, and have circular
dichroism spectra consistent with the design models and high ther-
mostability. Despite their substantially increased complexity, the
ideality and stability of RFdiffusion designs is akin to that of de novo
protein designs generated using previous methods such as Rosetta.
RFdiffusion enables generation of higher-order architectures withany
desired symmetry, unlike Hallucination methods, which have so far
been limited to cyclicsymmetries. Electron microscopy confirmed that
the structures of these oligomers are very similar to the design mod-
els, whichin many cases show little global similarity to known protein
oligomers.

There has been recent progress in scaffolding protein functional
motifs using deep-learning methods (RF Hallucination, RF,;, Inpainting
and diffusion), but Hallucination is slow for large systems, Inpainting
fails when insufficient starting information is provided and previous
diffusion methods had low accuracy. RFdiffusion outperforms these
previous methods in the complexity of the motifs that can be scaf-
folded, the precision with which sidechains are positioned (for cataly-
sis and other functions), and the accuracy of motif recapitulation by
AF2.The design of MDM2 binding proteins with three orders of magni-
tude higher affinities than the scaffolded P53 motif demonstrates the
robustness of RFdiffusion motif scaffolding. Combining accurate motif
scaffolding with the design of symmetric assemblies enabled consist-
entand atomically precise positioning of sidechains to coordinate Ni**
ions across diverse tetrameric assemblies

Forbinder design fromtarget structural information alone, previous
work required testing tens of thousands of sequences™. RFdiffusion,
when combined with improved filtering? raises experimental success
rates by two orders of magnitude; high-affinity binders can be identi-
fied from dozens of designs, in many cases eliminating the require-
ment for slow and expensive high-throughput screening (at least for
the non-polar sites targeted here; further studies will be required
to assess success rates on more polar target sites and sites without
native binding partners). A high-resolution cryo-EM structure of one
ofthese designsin complex with influenza HA shows that RFdiffusion
candesign functional proteins with atomic accuracy. Vazquez Torres
etal.demonstrate the ability of RFdiffusion to design picomolar affin-
ity binders to flexible helical peptides™, further highlighting its use for
denovobinder design. Vazquez Torres et al. also show how RFdiffusion

canbe extended for protein model refinement by partial noising and
denoising, which enables tuneable sampling around a given input
structure. For peptide binder design, this enabled increases in affin-
ity of nearly three orders of magnitude without high-throughput
screening.

Thebreadthand complexity of problems solvable with RFdiffusion
andtherobustness and accuracy of the solutions far exceeds what has
been achieved previously. In a manner reminiscent of the generation
of images from text prompts, RFdiffusion makes possible, with mini-
mal specialist knowledge, the generation of functional proteins from
minimal molecular specifications (for example, high-affinity binders
toauser-specified target protein, and diverse protein assemblies from
user-specified symmetries).

The power and scope of RFdiffusion can be extended in several
directions. RF has recently been extended to nucleic acids and
protein-nucleic acid complexes®, which should enable RFdiffusion to
design nucleic acid binding proteins and perhaps folded RNA struc-
tures. Extension of RF to incorporate ligands should similarly enable
extension of RFdiffusion to explicitly model ligand atoms, and allow the
design of protein-ligand interactions. The ability to customize RFdif-
fusion to specific design challenges by addition of external potentials
and by fine-tuning (as illustrated here for catalytic site scaffolding,
binder-targeting and fold specification), along with continued improve-
mentsto the underlying methodology, should enable de novo protein
design toachievestill higher levels of complexity, to approachand, in
some cases, surpass what natural evolution has achieved.

Online content

Anymethods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competing interests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-023-06415-8.

1. Dauparas, J. et al. Robust deep learning-based protein sequence design using
ProteinMPNN. Science 378, 49-56 (2022).

2. Ferruz, N., Schmidt, S. & Hocker, B. ProtGPT2 is a deep unsupervised language model for
protein design. Nat. Commun. 13, 4348 (2022).

3.  Singer, J. M. et al. Large-scale design and refinement of stable proteins using
sequence-only models. PLoS ONE 17, e0265020 (2022).

4. Wang, J. et al. Scaffolding protein functional sites using deep learning. Science 377,
387-394 (2022).

5.  Trippe, B. L. et al. Diffusion probabilistic modeling of protein backbones in 3D for the
motif-scaffolding problem. in The Eleventh International Conference on Learning
Representations (2023).

6.  Anishchenko, I. et al. De novo protein design by deep network hallucination. Nature 600,
547-552 (2021).

7. Wicky, B. . M. et al. Hallucinating symmetric protein assemblies. Science 378, 56-61
(2022).

8. Anand, N. & Achim, T. Protein structure and sequence generation with equivariant
denoising diffusion probabilistic models. Preprint at https://doi.org/10.48550/arXiv.2205.
15019 (2022).

9. Luo, S. etal. Antigen-specific antibody design and optimization with diffusion-based
generative models. in Adv. Neural Information Processing Systems Vol. 35 (eds Koyejo,

S. etal.) 9754-9767 (Curran Associates, 2022).

10. Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N. & Ganguli, S. Deep unsupervised
learning using nonequilibrium thermodynamics. in Proc. 32nd International Conference
on Machine Learning Vol. 37 (eds Bach, Francis and Blei, David) 2256-2265 (PMLR, 2015).

1. Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. in Adv. Neural
Information Processing Systems Vol. 33 (eds Larochelle, H. et al.) 6840-6851 (Curran
Associates, 2020).

12. Cao, L. et al. Design of protein-binding proteins from the target structure alone. Nature
605, 551-560 (2022).

13.  Kuhlman, B. et al. Design of a novel globular protein fold with atomic-level accuracy.
Science 302, 1364-1368 (2003).

14. Ramesh, A. et al. Zero-shot text-to-image generation. in Proc. 38th International
Conference on Machine Learning Vol. 139 (eds Meila, M. & Zhang, T.) 8821-8831 (PMLR,
2021).

15.  Saharia, C. et al. Photorealistic text-to-image diffusion models with deep language
understanding. in Adv. Neural Information Processing Systems Vol. 35 (eds Koyejo, S. et al.)
36479-36494 (Curran Associates, 2022).

16.  Wu, K. E. et al. Protein structure generation via folding diffusion. Preprint at https://doi.
org/10.48550/arXiv.2209.15611 (2022).

17. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596,
583-589 (2021).

Nature | Vol 620 | 31 August 2023 | 1099


https://doi.org/10.1038/s41586-023-06415-8
https://doi.org/10.48550/arXiv.2205.15019
https://doi.org/10.48550/arXiv.2205.15019
https://doi.org/10.48550/arXiv.2209.15611
https://doi.org/10.48550/arXiv.2209.15611

Article

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track
neural network. Science 373, 871-876 (2021).

Watson, J. L., Bera, A., Juergens, D., Wang, J. & Baker, D. X-ray crystallographic validation
of design from this paper. Science 377, 387-394 (2022).

Wu, R. et al. High-resolution de novo structure prediction from primary sequence.
Preprint at https://doi.org/10.1101/2022.07.21.500999 (2022).

Lin, Z. et al. Language models of protein sequences at the scale of evolution enable
accurate structure prediction. Science 379, 1123-1130 (2023).

Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235-242 (2000).

De Bortoli, V. et al. Riemannian score-based generative modelling. in Adv. Neural
Information Processing Systems Vol. 35 (eds Koyejo, S. et al.) 2406-2422 (Curran
Associates, 2022).

Leach, A., Schmon, S. M., Degiacomi, M. T. & Willcocks, C. G. Denoising diffusion
probabilistic models on SO(3) for rotational alignment. In Proc. ICLR 2022 Workshop on
Geometrical and Topological Representation Learning (2022).

Chen, T., Zhang, R. & Hinton, G. Analog bits: generating discrete data using diffusion
models with self-conditioning. in The Eleventh International Conference on Learning
Representations (2023).

Bennett, N.R. et al. Improving de novo protein binder design with deep learning. Nat.
Commun. 14, 2625 (2023).

Anand, N. & Huang, P. Generative modeling for protein structures. in Adv. Neural
Information Processing Systems Vol. 31 (eds Bengio, S. et al.) (Curran Associates,

2018).

Ingraham, J. et al. Illuminating protein space with a programmable generative model.
Preprint at bioRxiv https://doi.org/10.1101/2022.12.01.518682 (2022).

Lee, J. S. &Kim, P. M. ProteinSGM: Score-based generative modeling for de novo protein
design. Preprint at bioRxiv https://doi.org/10.1101/2022.07.13.499967 (2022).

Onuchic, J. N., Luthey-Schulten, Z. & Wolynes, P. G. Theory of protein folding: the energy
landscape perspective. Annu. Rev. Phys. Chem. 48, 545-600 (1997).

Jendrusch, M., Korbel, J. O. & Sadiq, S. K. AlphaDesign: a de novo protein design
framework based on AlphaFold. Preprint at bioRxiv https://doi.org/10.1101/2021.10.11.
463937 (2021).

Basanta, B. et al. An enumerative algorithm for de novo design of proteins with diverse
pocket structures. Proc. Natl Acad. Sci. USA 117, 22135-22145 (2020).

Pan, X. et al. Expanding the space of protein geometries by computational design of
de novo fold families. Science 369, 1132-1136 (2020).

Marcandalli, J. et al. Induction of potent neutralizing antibody responses by a designed
protein nanoparticle vaccine for respiratory syncytial virus. Cell 176, 1420-1431.e17
(2019).

Butterfield, G. L. et al. Evolution of a designed protein assembly encapsulating its own
RNA genome. Nature 552, 415-420 (2017).

Goodsell, D. S. & Olson, A. J. Structural symmetry and protein function. Annu. Rev.
Biophys. Biomol. Struct. 29, 105-153 (2000).

Sterner, R. & Hocker, B. Catalytic versatility, stability, and evolution of the (Ba)g-barrel
enzyme fold. Chem. Rev. 105, 4038-4055 (2005).

Sesterhenn, F. et al. De novo protein design enables the precise induction of
RSV-neutralizing antibodies. Science 368, eaay5051(2020).

Yang, C. et al. Bottom-up de novo design of functional proteins with complex structural
features. Nat. Chem. Biol. 17, 492-500 (2021).

Glasgow, A. et al. Engineered ACE2 receptor traps potently neutralize SARS-CoV-2. Proc.
Natl Acad. Sci. USA 117, 28046-28055 (2020).

1100 | Nature | Vol 620 | 31 August 2023

41.  Chéne, P. Inhibiting the p53-MDM2 interaction: an important target for cancer therapy.
Nat. Rev. Cancer 3,102-109 (2003).

42. Kussie, P. H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor
transactivation domain. Science 274, 948-953 (1996).

43. Hunt, A. C. et al. Multivalent designed proteins neutralize SARS-CoV-2 variants of
concern and confer protection against infection in mice. Sci. Transl. Med. 14, eabn1252
(2022).

44. Silverman, J. et al. Multivalent avimer proteins evolved by exon shuffling of a family of
human receptor domains. Nat. Biotechnol. 23, 1556-1561(2005).

45. Detalle, L. et al. Generation and characterization of ALX-0171, a potent novel therapeutic
nanobody for the treatment of respiratory syncytial virus infection. Antimicrob. Agents
Chemother. 60, 6-13 (2016).

46. Strauch, E.-M. et al. Computational design of trimeric influenza-neutralizing proteins
targeting the hemagglutinin receptor binding site. Nat. Biotechnol. 35, 667-671
(2017).

47. Boyoglu-Barnum, S. et al. Quadrivalent influenza nanoparticle vaccines induce broad
protection. Nature 592, 623-628 (2021).

48. Walls, A. C. et al. Elicitation of potent neutralizing antibody responses by designed
protein nanoparticle vaccines for SARS-CoV-2. Cell 183, 1367-1382.€17 (2020).

49. Salgado, E. N., Lewis, R. A., Mossin, S., Rheingold, A. L. & Tezcan, F. A. Control of protein
oligomerization symmetry by metal coordination: C, and C; symmetrical assemblies
through Cu" and Ni" coordination. Inorg. Chem. 48, 2726-2728 (2009).

50. Salgado, E. N. et al. Metal templated design of protein interfaces. Proc. Natl Acad. Sci.
USA107,1827-1832 (2010).

51.  Quijano-Rubio, A., Ulge, U. Y., Walkey, C. D. & Silva, D.-A. The advent of de novo proteins
for cancer immunotherapy. Curr. Opin. Chem. Biol. 56, 119-128 (2020).

52. Chevalier, A. et al. Massively parallel de novo protein design for targeted therapeutics.
Nature 550, 74-79 (2017).

53. Frank, C. et al. Efficient and scalable de novo protein design using a relaxed sequence
space. Preprint at bioRxiv https://doi.org/10.1101/2023.02.24.529906 (2023).

54. Torres, S. V. et al. De novo design of high-affinity protein binders to bioactive helical
peptides. Preprint at bioRxiv https://doi.org/10.1101/2022.12.10.519862 (2022).

55. Baek, M., McHugh, R., Anishchenko, I., Baker, D. & DiMaio, F. Accurate prediction of
nucleic acid and protein-nucleic acid complexes using RoseTTAFoldNA. Preprint at
bioRxiv https://doi.org/10.1101/2022.09.09.507333 (2022).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution

oy 4.0 International License, which permits use, sharing, adaptation, distribution

and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023


https://doi.org/10.1101/2022.07.21.500999
https://doi.org/10.1101/2022.12.01.518682
https://doi.org/10.1101/2022.07.13.499967
https://doi.org/10.1101/2021.10.11.463937
https://doi.org/10.1101/2021.10.11.463937
https://doi.org/10.1101/2023.02.24.529906
https://doi.org/10.1101/2022.12.10.519862
https://doi.org/10.1101/2022.09.09.507333
http://creativecommons.org/licenses/by/4.0/

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Design structures, AF2 models and experimental measurements are
available at https://figshare.com/s/439fdd59488215753bc3. Cryo-EM
maps and corresponding atomic models for the InfluenzaHA binderin
Fig. 6d-hhave been deposited inthe PDB and the Electron Microscopy
DataBank under accession codes 8SK7 and EMDB-40557, respectively.
Electron microscopy data collected for the HE0537 oligomer are avail-
able at EMDB-40602.

Code availability

Code for running RFdiffusion has been released on GitHub, free for
academic, personal and commercial use at https://github.com/Rosetta-
Commons/RFdiffusion. Itis also available as a Google Colab notebook,
accessible through GitHub.

56. Yeh, A. H.-W. et al. De novo design of luciferases using deep learning. Nature 614,
774-780 (2023).

57. Ribeiro, A. J. M. et al. Mechanism and Catalytic Site Atlas (M-CSA): a database of enzyme
reaction mechanisms and active sites. Nucleic Acids Res. 46, D618-D623 (2018).

58. Leaver-Fay, A. et al. ROSETTAS3: an object-oriented software suite for the simulation and
design of macromolecules. Methods Enzymol. 487, 545-574 (2011).

Acknowledgements We thank N. Anand and D. Tischer for helpful discussions, and I. Kalvet
and Y. Kipnis for providing helpful Rosetta scripts. We thank A. Dosey for the provision of
purified influenza HA protein. We thank R. Wu, J. Mou, K. Choi, L. Wu and D. Blei for valuable
feedback during writing. We thank I. Haydon for help with graphics. We also thank L.
Goldschmidt and K. VanWormer, respectively, for maintaining the computational and wet
laboratory resources at the Institute for Protein Design. This work was supported by gifts from
Microsoft (D.J., M.B. and D.B.), Amgen (J.L.W.), the Audacious Project at the Institute for Protein

Design (B.LT., I.S., )., H.E. and D.B.), the Washington State General Operating Fund supporting
the Institute for Protein Design (PV. and I.S.), grant no. INV-010680 from the Bill and Melinda
Gates Foundation (W.B.A., D.J., JW. and D.B.), grant no. DE-SC0018940 MODO3 from the US
Department of Energy Office of Science (A.J.B. and D.B.), grant no. 5U19AG065156-02 from the
National Institute for Aging (S.VT. and D.B.), an EMBO long-term fellowship no. ALTF 139-2018
(B.I.M.W.), the Open Philanthropy Project Improving Protein Design Fund (R.J.R. and D.B.),

The Donald and Jo Anne Petersen Endowment for Accelerating Advancements in Alzheimer’s
Disease Research (N.R.B.), a Washington Research Foundation Fellowship (S.J.P.), a Human
Frontier Science Program Cross Disciplinary Fellowship (grant no. LTO00395/2020-C, L.F.M.),
an EMBO Non-Stipendiary Fellowship (grant no. ALTF 1047-2019, L.F.M.), the Defense Threat
Reduction Agency grant nos. HDTRA1-19-1-0003 (N.H. and D.B.) and HDTRA12210012 (F.D.),

the Institute for Protein Design Breakthrough Fund (A.C. and D.B.), an EMBO Postdoctoral
Fellowship (grant no. ALTF 292-2022, J.L.W.) and the Howard Hughes Medical Institute (A.C.,
W.S., R.J.R. and D.B.), an NSF-GRFP (J.Y.), an NSF Expeditions grant (no. 1918839, J., R.B. and
T.S.J.), the Machine Learning for Pharmaceutical Discovery and Synthesis consortium (J.Y., R.B.
and T.S.J.), the Abdul Latif Jameel Clinic for Machine Learning in Health (J.Y., R.B. and T.S.J.), the
DTRA Discovery of Medical Countermeasures Against New and Emerging threats program
(JY., R.B. and T.S.J.), EPSRC Prosperity Partnership grant no. EP/T005386/1 (E.M.) and the
DARPA Accelerated Molecular Discovery program and the Sanofi Computational Antibody
Design grant (J.Y., R.B. and T.S.J.). We thank Microsoft and AWS for generous gifts of cloud
computing resources.

Author contributions J.L.W., D.J., N.R.B., B.LT,, J.Y. and D.B. conceived the study. J.LW., D.J.,
N.R.B., W.A., B.LT. and J. trained RFdiffusion. B.LT. and JY., with assistance from V.D.B. and
E.M., extended diffusion to residue orientations. H.E.E., D.J., J.LW., N.R.B., N.H., W.S., PV. and
1.S. generated experimentally characterized designs. W.A., B.L.T, J.., D.J., J.L.W. and N.R.B.
generated computational designs. H.E.E., AJ.B., RJ.R,, L.FEM., B.AMW., S.J.P, N.H., AC., SVT,
J.LW. and B.LT. experimentally characterized designs. JW., A.L. and W.S. contributed
additional code. S.0. implemented RFdiffusion on Google Colab. M.B. and F.D. trained RF. D.B.,
T.S.J. and R.B. offered supervision throughout the project. J.LW., D.J., B.LT, N.R.B., J.Y., H.E. and
D.B. wrote the manuscript. All authors read and contributed to the manuscript. J.L.W. and D.J.
agree that the order of their respective names may be changed for personal pursuits to best
suit their own interests.

Competing interests The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at
https://doi.org/101038/s41586-023-06415-8.

Correspondence and requests for materials should be addressed to David Baker.

Peer review information Nature thanks Arne Elofsson, Giulia Palermo, Alex Pritzel and the
other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at http://www.nature.com/reprints.


https://figshare.com/s/439fdd59488215753bc3
https://doi.org/10.2210/pdb8SK7/pdb
http://www.ebi.ac.uk/pdbe/entry/emdb/40557
http://www.ebi.ac.uk/pdbe/entry/emdb/40602
https://github.com/RosettaCommons/RFdiffusion
https://github.com/RosettaCommons/RFdiffusion
https://doi.org/10.1038/s41586-023-06415-8
http://www.nature.com/reprints

Article

AlphaFold2 pAE of Designs (!) RMSD ESMFold vs Design (!)

30 T
2 o Zombn ? 30 [
w fe- T n + 5
< 90 || B2 == —~ LA Q
a 5 I L N
S 2 T < 20 DE% -
S5 °w m owm ow ow 8 220 amberof ino Ackts
e =
£ 10 “ 10
<
Sl = é .
0 0 e

100 200 300 400 600 800
Number of Amino Acids

1000 100 200 300 400 600 800 10

Number of Amino Acids

MSE Loss Outperforms FAPE Loss at Unconditional Design

RMSD AF2 vs Design ({) RMSD AF2 vs Design ({) Motif RMSD AF2 vs Native (1)

00

F

C

__Comparing AF2 and ESMFold
Length (AA)

(
&

20

10

RMSD ESMFold vs Design (A

0

RMSD AlphaFold2 vs Design (4)

RFdiffusion Benefits from
RoseTTAFold Pre-Training

30 10
20 L) 3 MSE 30 RMSD AlphaFold2 vs Design (!)
25| . BN FAPE 8 8
25
2 6 2 6
S S 20
& 4 / g, £
@ D, o 215 % %
=
7 =
. : - ;
0 0 s
70 100 200 300 0 2 4 6 8 10 0 2 4 6 8 10 é
MSE Loss MSE Loss L = 3 E, 2 z &
Unconditional (length) Motif Scaffolding 70 100 200 300 1PRW 5IUS STPN 6EXZ
Unconditional (length) Functional-site Scaffolding
E Mean AlphaFold2 pAE (1)
Self-Conditioning Improves RFdiffusion 25 = Random Noise
. N Outputs without Pre-Training
. RMSD AlphaFold2 vs Design (1) 200 Mean AlphaFold2 pAE (1) 20 m Outpilts with Pre-Training
EEE Without Self Conditioning w
5 17.5 =9 With Self Conditioning s
15.0 3
4 w <
2 ‘S12s £10
s, ~ s
23 12 100 =
2 C
5.0 0
1 é é 70 100 200 300 1PRW 5IUS STPN 6EXZ
25 Unconditional (length) Motif Scaffolding
0.0
® 770 100 200 300 IPRW S5UUs STPN 6EXZ 70 100 200 300 1PRW 5IUS STPN 6EXZ
Unconditional (length) Motif Scaffolding Unconditional (length) Motif Scaffolding
Self-Conditioning
G _ No Pre-Training . With Pre-Training ‘With Pre-Training, H Improves Denoising
With Self-Conditioning No Self-Conditioning With Self-Conditioning 50 Coherence
. T -
—— No Self-Conditioning ’
oy — With Self-Conditioning N
£2 g3 1s
© 0o
n'z L
© 5 ° Y
g'ﬁ Q 5 1.0
ISX]
m's g §
c
o% 4 § 0.5
B>
=2
0.0
0 100 200
Timestep
Number of TM cluster at TM 0.6
I RMSD AlphaFold2 vs Design ({) AlphaFold2 pAE of Designs (1) All designs (no filtering)
a Noise Scale
9
5 % 80 1.0
8 s 0.5
w °
= a ‘é - g 50 = 0.0
- N v
g3 g e g
2 < s
4 g2
: : : .U I
5
z |
0 2 0
70 100 200 300 1PRW 5IUS S5TPN 6EXZ 70 100 200 300 1PRW 5IUS STPN 6EXZ 70 100 200 300 1PRW 5IUS STPN 6EXZ

Unconditional (length) Motif Scaffolding Unconditional (length) Motif Scaffolding

Extended DataFig.1|See next page for caption.

Unconditional (length) Motif Scaffolding




Extended DataFig.1| Training ablations reveal determinants of RFdiffusion
success. A-C) RFdiffusion can generate high quality large unconditional
monomers. Designsare routinely accurately recapitulated by AF2 (see also
Fig.2c), with high confidence (A) for proteins up to approximately 400 amino
acidsinlength. B) Further orthogonal validation of designs by ESMFold.

C) Recapitulation of the design structure is often better with ESMFold
compared with AF2.For eachbackbone, the best of 8 ProteinMPNN sequences
isplotted, with points therefore paired by backbone rather than sequence.

D) Comparing RFdiffusion trained with MSE loss on Cacatoms and N-Ca-C
backbone frames (Methods 2.5), rather than with FAPE loss®". The MSE loss is
notinvariantto the global coordinate frame, unlike FAPE loss, and isrequired
forgood performance at unconditional generation (left, two-proportion z-test
ofinsilicosuccessrate,n =400 designs per condition, z=4.1, p=4.1e-5).For
motifscaffolding problems, where the ‘motif’ provides ameansto align the
global coordinate frame between timesteps, FAPE loss performs approximately
aswellas MSE loss, suggesting the L2 nature of MSE loss (as opposed to the L1
loss in FAPE) is not empirically critical for performance. E) Allowing the model
to conditiononits X, prediction at the previous timestep (see Supplementary
Methods2.4) improves designs. Designs with self-conditioning (pink) have
improved recapitulation by AF2 (left) and better AF2 confidence inthe
prediction (right). Two-proportion z-test of insilicosuccessrate,n=800
designs per conditionz=11.4, p = 6.1e-30.F) RFdiffusion leverages the
representations learned during RF pre-training. RFdiffusion fine-tuned from
pre-trained RF (pink) comprehensively outperforms a model trained for an
equivalentamount of time, from untrained weights (gray). For context,
sequences generated by ProteinMPNN on these output backbonesare little

better thansampling ProteinMPNN sequences from random Gaussian-sampled
coordinates (white). Two-proportion z-test of in silico successrate, pre-training
vs without pre-training (or vs random noise; both have zero successrate),
n=800designs per condition,z=23.0, p=3.1e-117.Note that the datain pinkin
D-Fisthesamedata, reproducedineach plot for clarity. G) The median (by AF2
r.m.s.d.vsdesign) 300 amino acid unconditional sample highlighting the
importance of self-conditioning and pre-training. Without pre-training
(atleast when trained with equivalent compute), RFdiffusion outputs bear little
resemblance to proteins (gray, left). Without self-conditioning, outputs show
characteristic proteinsecondary structures, but lack core-packing and ideality
(gray, middle). With pre-training and self-conditioning, proteins are diverse and
well-packed (pink, right). H) Greater coherence during unconditional denoising
may partly explain the effect of self-conditioning. Successive X, predictions are
more similar when the model can self-condition (lower r.m.s.d. between X,
predictions, pink curve). Data are aggregated from unconditional design
trajectories 0f100,200 and 300 residues. I) During the reverse (generation)
process, the noise added at each step canbe scaled (reduced). Reducing the
noisescaleimprovestheinsilico designsuccessrates (left, middle; two-
proportionz-testof insilicosuccessrate, n =800 designs per condition,
0vs0.5:2=1.7,p=0.09,0vs1:2=6.5,p = 6.8¢-11;0.5vs 1:2=4.8, p = 1.4e-6).
Thiscomes at the expense of diversity, with the number of unique clustersata
TM-score cutoff of 0.6 reduced when noiseis reduced (right). Note throughout
this figure the 6EXZ_long benchmarking problemis abbreviated to 6EXZ for
brevity. Boxplots represent median+IQR; tails: min/max excluding outliers
(+1.5xIQR).
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Extended DataFig. 2| RFdiffusion learns the distribution of the denoising
process, and inference efficiency can be improved. A) Analysis of simulated
forward (noising) and reverse (denoising) trajectories shows that the
distribution of Ca coordinates and residue orientations closely match,
demonstrating that RFdiffusion has learned the distribution of the denoising
processas desired. Left toright:i) average distance betweena Ca coordinate at
X.andits positionin X,; ii) average distance between a Ca coordinate at X, and
X.q; iii) average distance between adjacent Ca coordinates at X; iv) average
rotation distance between aresidue orientation at X,and X,; v) average rotation
distancebetween aresidue orientation at X, and X,,. B-C) While RFdiffusion is
trained to generate samples over 200 timesteps, in many cases, trajectories
canbeshortened toimprove computational efficiency. B) Larger steps can be
taken between timesteps atinference. Decreasing the number of timesteps
speedsupinference, and often does not decrease insilico success rates (left)

(forexample, onan NVIDIA A4000 GPU, 100 amino acid designs canbe
generated with15steps, in-~11s, with aninsilico success rate of over 60%). When
normalized for compute budget (center) itis often much more efficienttorun
more trajectories with fewer timesteps. This can be done without loss of
diversity insamples (right). For harder problems (e.g. unconditional 300 amino
acids), one must strike anintermediate number of total timesteps (e.g., T = 50)
for optimal compute efficiency. Note that for all other analysesin the paper,
200 inference steps were used, in line with how RFdiffusionis trained. C) An
alternative to taking larger stepsis to stop trajectories early (possible because
RFdiffusion predicts X, at every timestep). In many cases, trajectories canbe
stopped at timestep 50-75 withlittle effect on the final insilico success rate of
designs (left), and when normalized by compute budget (center), success rates
perunittimeare typically higher generating more designs with early-stopping.
Again, this can be done without asignificantloss in diversity (right).
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Extended DataFig. 3 |Unconditionally-generated designs are folded and
thermostable. A) Four 200 amino acid and fourteen 300 amino acid proteins
were tested for expression and stability. 9/18 designs expressed, with amajor
peakat the expected elution volume. Blue: 300 amino acid proteins; Purple:
200 aminoacid proteins. B) Colored AF2 predictions overlaid on gray design
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and circular dichroism melt curves (right) for all 9 designs passing expression
thresholds. Inall cases, proteins remain well folded even at 95 °C. Note that
dataon300aa_3and 300aa_8are duplicated from Fig. 2f, reproduced here

for clarity.
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Extended DataFig. 4 |See next page for caption.



Extended DataFig. 4 | RFdiffusion can condition onfold information to
generate specific, thermostable folds. A) 6WVSisa previously-described
denovodesigned TIMbarrel (left). A fine-tuned RFdiffusion model can condition
onlDand 2D inputsrepresenting this protein fold, specifically secondary
structure (middle, bottom) and block-adjacency information (middle, top)
(see Supplementary Methods 4.3.2). RFdiffusion then generates proteins that
closely recapitulate this course-grained fold information (right). B) Outputs
arediverse withrespectto each other. With this coarse-grained fold
specification, insilico successful designs are much more diverse (as quantified
by pairwise TM-scores) compared to diversity generated through simply
sampling many sequences for the original PDB backbone (6WVS). C) NTF2
folds are useful scaffolds for de novo enzyme design®, and can also be readily
generated with fold-conditioning in RFdiffusion. Designs are diverse and
closely recapitulated by AF2. D) Insilico success rates are high with fold-
conditioned diffusion. TIM barrels are generated withan AF2insilico success
rate of 42.5% (left bar, pink) within silico success incorporating both AF2

metricsand a TM-score vs 6WVS >0.5.NTF2 folds are generated withan AF2in
silico success rate of 54.1% (right bar, pink), with insilico successincorporating
both AF2 metricsand a TM-score vs PDB:1GY6>0.5. In silico success was
further validated with ESMFold (blue bars), where apLDDT >80 was used
asthe confidence metric for success. Gray: RFdiffusion design, colors: AF2
prediction.E) 11 TIM barrel designs were purified alongside the 6WVS positive
control. Tenof these express and elute predominantly as monomers (note that
the designs are approximately 4kDalarger than 6WVS). F) Eight designs
expressed sufficiently for analysis by circular dichroism. All designs are folded,
with circular dichroism spectra consistent with the designed structure
(middle), and similar to 6WVS. Designs were also all highly thermostable,

with CD melt analyses demonstrating designs were folded even at 95 °C (right).
Designs are showningray, with the AF2 predictions overlaidin colors (left).
Note thatdataon 6WVSand TIM_barrel_6 are duplicated from Fig.2g,
reproduced here for clarity.
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Extended DataFig.5|Symmetric oligomer design with RFdiffusion. A) Due
tothe (near-perfect - see Supplementary Methods 3.1) equivariance properties
of RFdiffusion, X, predictions from symmetricinputs are alsosymmetric, even
atvery early timepoints (and becoming increasingly symmetric through time;
r.m.s.d.vssymmetrized: t=2001.20 A; t=1500.40 A; t=500.06 A; t= 00.02A).
Gray: symmetrized (top left) subunit; colors: RFdiffusion X0 prediction.

B) Insilico success rates for symmetric oligomer designs of various cyclicand
dihedralsymmetries. Insilico success is defined here as the proportion of
designs for which AF2yields a prediction from asingle sequence that has mean
pLDDT >80 and backboner.m.s.d. over the oligomer between the design model
and AF2<2A.Note that16 sequences per RFdiffusion design were sampled.

C) Box plots of the distribution of backboner.m.s.d.sbetween AF2 and the
RFdiffusion design model with and without the use of external potentials during
thetrajectory. The external potentials used are the ‘inter-chain’ contact potential
(pushing chains together), as well as the ‘intra-chain’ contact potential (making
chains more globular). Using these potentials dramaticallyimprovesin silico

success (Two-proportion z-test of in silico success rate: n =100 designs per
condition, z=4.3, p=1.9¢-5). D) Designs are diverse with respect to the training
dataset (the PDB). While the monomers (typically 60-100 AA) show reasonable
alignment to the PDB (median 0.72), the whole oligomeric assemblies showed
little resemblance to the PDB (median 0.50). E) Additional examples of design
models (left) against AF2 predictions (right) for C3, C5, C12, and D4 symmetric
designs (the symmetries not displayed in Fig. 3) withbackboner.m.s.d.s (A)
against their AF2 predictions 0f 0.82,0.63,0.79,and 0.78 with total amino acids
750,900,960, 640.F) Additional nsEM data for symmetric designs. The model
isshownontheleftand the 2D class averages ontheright foreach design.

G) Two orthogonal side views of HEO537 by cryo-EM. Representative 2D class
averages fromthe cryo-EM dataare shown to theright of 2D projectionimages
ofthe computational design model (lowpass filtered to 8 A), which appear
nearly identical to the experimental data. Scale bars shown (white) are 60 A.
Boxplot represents median + IQR; tails: min/max excluding outliers (+1.5xIQR).
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Extended DataFig. 6 | External potentials for generating pockets around
substrate molecules. A-D) Exampleinsilico successful designs for enzyme
classes2-5 (ref.57,see also Fig.4). Native enzyme (PDB:1CWY, 1DE3,1P1X,1SNZ);
catalyticsite (teal); RFdiffusion output (gray: model, colors: AF2 prediction).
Metrics (AF2vs design backbone r.m.s.d., AF2 vs design motif backbone
r.m.s.d., AF2vs design motif full-atomr.m.s.d., AF2 pAE): EC2:0.93A,0.50 A,
1.29A,3.5,EC3:0.92A,0.60A,1.07A,4.59;EC4:0.93A,0.80A,1.03 A, 4.4 EC5:
0.78A,0.44A,1.14 A, 3.32. E-H) Implicit modeling of a substrate while
scaffoldingaretroaldolaseactivesite triad [TYR1051-LYS1083-TYR1180] from
PDB: 5AN7.E) The potential used to implicitly model the substrate, which has
botharepulsiveand attractive field (see Supplementary Methods 4.4). F) Left:
Kernel densities demonstrate that without using the external potential (pink),
designs often fallinto two failure modes: (1) no pocket, and (2) clashes with the
substrate. Right: clashes (substrate <3 Aofthebackbone) & pockets (noclash
and >16 Cawithin 3-8 A of substrate) withand without the potential. Two-
proportion z-test: n=71/51+/- potential; clashes z=-2.05, p = 0.02, pocket

z=-2.27,p=0.01.Eachdatapointrepresents adesign already passing the
stringentinsilico success metrics (AF2 motifr.m.s.d.< 1A, AF2backbone
r.m.s.d.<2A, AF2 pAE <5). Note that the potential and clash definition pertain
only tobackbone Caatoms, and do not currently include sidechain atoms.

G) Designs close to the labeled local maxima of the kernel density estimate.
Without the potential, the catalytic triad is predominantly (1) exposed on the
surfacewithnoresidues available to provide substrate stabilization or (2)
buriedinthe protein core, preventing substrate access. With the potential, the
catalytictriad is predominantly (3), partially buried inaconcave pocket with
shape complementary to the substrate. Backbone atoms within3 A of the
substrate areshowninred. H) Avariety of diverse designs with pockets made
using the potential, with no clashes between the substrate and the AF2-
predicted backbone. The functional form and parameters used for the pocket
potential are detailed in Supplementary Methods 4.4.In each case the substrate
issuperimposed onthe AF2 prediction of the catalytic triad.
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Extended DataFig. 7| Additional Ni** binding C4 oligomers. A) AF2
predictions of asubset of the experimentally verified Ni** binding oligomers,
with correspondingisothermaltitration calorimetry (ITC) bindingisotherms
for the wild-type (blue) and H52A mutant (pink) below. Note that these, with
Fig.5,encompassall of the experimentally validated outputs deriving from
unique RFdiffusion backbones. Wild-type dissociation constants are displayed
ineach plot. We observe amixture ofendothermic (NiB2.10, NiB2.23, NiB2.15)
and exothermicisotherms. For all cases displayed we observe no binding to the
ionfor H52A mutants, indicating the scaffolded histidine at position 52 is
critical forion binding. K, valuesin theisothermsindicate binding of theion

with the designed stoichiometry (1:4 Ni*":protein). Note that each backbone
depictedis fromaunique RFdiffusion sampling trajectory, and that models and
datafor designs NiB2.15, NiB1.12, NiB1.20 and NiB1.17 from Fig. 5 are duplicated
here for ease of viewing. B) Size exclusion chromatograms for elutions from the
44 purifications suggest the vast majority of designs are soluble and have the
correctoligomericstate. C) Size exclusion chromatograms for 20 H52A mutants
show that the mutants remain soluble and retain the intended oligomeric state.
Note thatonly 18 of these 20 had wild-type sequences that definitively bound
nickel.Note also that for ITC plots, points represent single measurements.
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Extended DataFig. 8| Targeted unconditional and fold-conditioned protein
binder design. A-B) The ability to specify where onatarget a designed binder
shouldbindis crucial. Specific “hotspot” residues canbeinput toafine-tuned
RFdiffusion model, and with these inputs, binders almost universally target
the correctsite. A) IL-7Ra (PDB: 3DI13) has two patches that are optimal for
binding, denoted Site1and Site 2 here. For eachsite, 100 designs were generated
(without fold-specification). B) Without guidance, designs typically target Site
1(leftbar, gray), with contact defined as Ca-Ca distance between binder and
hotspotreside <10 A. Specifying Site1 hotspot residuesincreases further the
efficiency with which Site lis targeted (left bar, pink). In contrast, specifying
theSite 2hotspotresidues can completely redirect RFdiffusion, allowing it

to efficiently target this site (right bar, pink). C-D) As well as conditioning
onhotspotresidue information, afine-tuned RFdiffusion model can also
condition oninput fold information (secondary structure and block-adjacency
information - see Supplementary Methods 4.5). This effectively allows the
specification ofa (forinstance, particularly compatible) fold that the binder
should adopt. C) Two examples showingbinders can be specified to adopt
eitheraferredoxin fold (left) or a particular helical bundle fold (right).

D) Quantification of the efficiency of fold-conditioning. Secondary structure
inputs were accurately respected (top, pink). Note that in this design target
and target site, RFdiffusion without fold-specification made generally helical

designs (right, gray bar). Block-adjacency inputs were also respected for
bothinput folds (bottom, pink). E) Reducing the noise added at each step of
inferenceimproves the quality of binders designed with RFdiffusion, both
withand without fold-conditioning. As an example, the distribution of AF2
interaction pAEs (known to indicate binding when pAE <10%) is shown for
bindersdesignedto PD-L1.Inboth cases, the proportion of designs with
interaction pAE<10is high (blue curve), and improved when the noiseis scaled
byafactor 0.5 (pink curve) or O (yellow curve). F) Full insilico success rates
forthe proteinbinders designedto five targets. In each case, the best fold-
conditioned results are shown (i.e. from the most target-compatible input fold),
and the success rates at each noise scale are separated. Inline with current best
practice®, we tested using Rosetta FastRelax** before designing the sequence
with ProteinMPNN, but found that this did not systematically improve designs.
Insilicosuccessis defined in line with current best practice?®: AF2 pLDDT of the
monomer >80, AF2interaction pAE <10, AF2r.m.s.d. monomer vs design<1A.
G) Experimentally-validated de novo proteinbinders were identified for all five
ofthe targets. Designs that bound at 10 uM during single point BLIscreening
witharesponse equal to or greater than 50% of the positive control were
considered binders. Concentration is denoted by hue for designs that were
screened at concentrations less than10 pM and thus may be false negatives.
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Extended DataFig. 9| Cryo-electron microscopy structure determination
of designed Influenza HA binder. A) Representative raw micrograph showing
ideal particle distribution and contrast. B) 2D Class averages of Influenza
H1+HA_20binder with clearly defined secondary structure elements and a full-
sampling of particle view angles (scale bar =10 nm). C) Cryo-EM local resolution
map calculated using an FSC value of 0.143 viewed along two different angles.
Local resolution estimates range from -2.3 A at the core of H1 to -3.4 Aalong the
periphery of the N-terminal helix of the HA_20binder. D) Cryo-EM structure of

the full HI+HA_20binder complex (purple: HA_20; yellow: H1; teal: glycans).
E) Global resolution estimation plot. F) Orientational distribution plot
demonstrating complete angular sampling. G) 3D abinitio (left) and 3D
heterogenous refinement (right - unsharpened) outputs, performedinthe
absence of applied symmetry, and showing clear density of the HA_20binder
boundtoallthree stem epitopes of the lowa43 HA glycoprotein trimer, inall
maps. H) The designed binder has topological similarity to 5VLI, a proteinin
the PDB, but binds with very differentinterface contacts.
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Extended Data Table 1| Cryo-EM data collection, refinement and validation statistics

HEO0537 HI1+HA 20
(EMDB-40602) (EMDB-40557)
(PDB 8SK7)

Data collection and processing
Magnification 36,000 105000
Voltage (kV) 200 300
Electron exposure (e—/A?) 65 64.273
Defocus range (um) -0.8: -2 0.7-1.8
Pixel size (A) 0.883 0.84
Symmetry imposed D4 C3
Initial particle images (no.) 184,703 2,396,954
Final particle images (no.) 36,827 308,846
Map resolution (A) 6.06 2.93

FSC threshold
Map resolution range (A) 5.8-8.47 2.2-3.4
Refinement
Initial model used (PDB code) 3LZG
Model resolution (A) 119.6

FSC threshold
Validation

MolProbity score 0.92

Clashscore 1.67

Poor rotamers (%) 6
Ramachandran plot

Favored (%) 98.72

Allowed (%) 1.28

Disallowed (%) 0.00
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AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XXX [ [0 XX ][]
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection RFdiffusion 1.0.0 (this study), ProteinMPNN, AlphaFold2, TMalign, Protein-Protein BLAST 2.11.0+, SerialEM
Data analysis Matplotlib 3.6.2, ScIPy 1.9.3, Seaborn 0.11.2, PyMOL 2.5.0, ForteBio Data Analysis Software Version 9.0.0.14, pycorn 0.19, CryoSparc v4.0.3,
Microcal PEAQ-ITC Analysis Software

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy
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Design structures, AlphaFold2 models and experimental measurements are available at https://figshare.com/s/439fdd59488215753bc3. Cryo-EM maps and
corresponding atomic models for the Influenza HA binder in Figure 6D-H have been deposited in the PDB and the Electron Microscopy Data Bank under accession




codes 85K7 and EMDB-40557, respectively. Electron microscopy data collected for the HEO537 oligomer is available at EMDB-40602. Cryo-EM data collection,
refinement and validation statistics are supplied in Extended Data Table 1.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or N/A
other socially relevant
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groupings

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences D Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Variable depending on analysis performed. Detailed in figure legends. Sample sizes were chosen prior to the experiment, and were decided
arbitrarily by the experimenter (rather than by statistical test), but were large enough to draw meaningful conclusions from the experiment.

Data exclusions  None
Replication Each dataset contains many (n reported in figure legends) independent measurements.
Randomization  N/A (all analysis was automated, so each datapoint was generated computationally under controlled and uniform settings)

Blinding N/A (all analysis was automated, so there was no user intervention that could have introduced bias)

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.
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Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.




Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.
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Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.
Timing and spatial scale | /ndicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which

the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your study.

Did the study involve field work? []ves [INo

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.q. latitude and longitude, elevation, water depth).
Access & import/export | Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,

the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.




Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies IXI D ChlIP-seq
Eukaryotic cell lines IXI D Flow cytometry
Palaeontology and archaeology g D MRI-based neuroimaging

Animals and other organisms
Clinical data
Dual use research of concern

Plants
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Antibodies

Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.
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Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines  pgme any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

D Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall




numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.
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Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes
[] Public health
[] National security

|:| Crops and/or livestock
|:| Ecosystems

XXXX X &

[ ] Any other significant area

Experiments of concern

Does the work involve any of these experiments of concern:
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Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

XXX XXX XX &
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Any other potentially harmful combination of experiments and agents

Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
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was applied.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

ChlP-seq

Data deposition
|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.
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Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.g. UCSC)

enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology
Replicates Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.
Antibodies Describe the antibodies used for the ChiIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and

lot number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files

used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChiP-seq data. For custom code that has been deposited into a community

repository, provide accession details.

Flow Cytometry

Plots
Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

D A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.
Instrument Identify the instrument used for data collection, specifying make and model number.
Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a

community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

D Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI D Used D Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain || ROI-based [ _| Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

(See Eklund et al. 2016)
Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a | Involved in the study

IXI D Functional and/or effective connectivity

IX’ |:| Graph analysis

IX’ |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
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Graph analysis subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis  Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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