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Mimicking efferent nerves using a
graphdiyne-based artificial synapse with multiple
ion diffusion dynamics
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Jialiang Xu 1✉ & Wentao Xu 1✉

A graphdiyne-based artificial synapse (GAS), exhibiting intrinsic short-term plasticity, has

been proposed to mimic biological signal transmission behavior. The impulse response of the

GAS has been reduced to several millivolts with competitive femtowatt-level consumption,

exceeding the biological level by orders of magnitude. Most importantly, the GAS is capable

of parallelly processing signals transmitted from multiple pre-neurons and therefore realizing

dynamic logic and spatiotemporal rules. It is also found that the GAS is thermally stable (at

353 K) and environmentally stable (in a relative humidity up to 35%). Our artificial efferent

nerve, connecting the GAS with artificial muscles, has been demonstrated to complete the

information integration of pre-neurons and the information output of motor neurons, which is

advantageous for coalescing multiple sensory feedbacks and reacting to events. Our synaptic

element has potential applications in bioinspired peripheral nervous systems of soft elec-

tronics, neurorobotics, and biohybrid systems of brain–computer interfaces.
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C
omplex human nervous systems, which have the advan-
tages of being highly compact, parallel, and reliable, are
gaining increasing attention in various fields, such as

neuromorphic computing, bioinspired sensorimotor systems,
brain–machine interfaces, and prosthetics1–10. Somatosensory
nerves transfer signals through synaptic connections to achieve a
variety of perceptions, memories, and motion outputs with dif-
ferent depths11–14. Therefore, the imitation of synapses as
building blocks for neural processing is of crucial importance for
constructing efficient artificial sensorimotor systems, biohybrid
systems, and neuromorphic chips15–24. For emulating synaptic
behavior, a variety of structures, such as metal/insulator/
metal (MIM)-stack switches25–29, electrolyte/semiconductor
heterojunctions30,31, and multiterminal transistors32–36, have
been employed to realize signal transmission. Among them, the
configurations featuring ion migration can opportunely facilitate
the emulation of biological sensory/motor neurons by neuro-
morphic synapses in bioinspired ionotronic systems and biohy-
brid systems9,18,19,37. However, exploration of the working
principle of new materials and responsivity of devices, such as the
thermal stability and environmental stability, is still imperative
for achieving biomimetic functionalities.

Highly conjugated π-extended graphdiyne (GDY) has emerged
as a new carbon allotrope37–39 that serves to enable efficient
batteries40, catalysts41, solar cells42, nonlinear optics43, electronic
devices44, and biomedical applications45–47 owing to its remark-
able optoelectronic properties and biocompatibility45,48–53. In
particular, the interesting network of GDY with moderate trian-
gular pores and sp-hybridized carbon atoms provides storage sites
and rapid diffusion channels for alkali metal ions and even per-
chlorate ions49–51,54. Meanwhile, the relatively low diffusion
barrier for ions in GDY contributes to its surface adsorption and
interlayer insertion55–57. These intriguing ion shuttle character-
istics inspire a new idea of constructing GDY-based artificial
synapses (GASs) for mimicking synaptic cleft information
transmission, which is promising for plasticity-mediated signal
processing and transmission in biohybrid systems and artificial
sensorimotor systems.

Inspired by biological motor neurons, an integrated ionic
artificial efferent nerve can be constructed to mimic the real-time
processing and manipulation of signals. Here, for the first time, a
junction-type GAS is proposed by coupling a GDY film with
solid-state electrolytes to emulate multiple short-term plasticity
such as postsynaptic current, paired-pulse facilitation (PPF), and
dynamic filtering, with outstanding pulse responsiveness and
femtowatt-level energy consumption. The GASs can retain good
ion diffusion dynamics under relatively high temperature
(~353 K) and humidity (~35%). Attempts to exploit the short-
term plasticity of GDY in a bioinspired analogous efferent nerve
demonstrate real-time information integration, parallel proces-
sing capabilities, and signal transduction and actuation and
therefore pave the way for future bioinspired ionotronic sensor-
imotor systems.

Results
General concept. Imitating the principle of the biological
synaptic cleft, a GAS with a junction structure of electrolyte/GDY
was fabricated to emulate the essential plasticity (Fig. 1). Com-
munication between cells hinges on the propagation of action
potentials along axons (Fig. 1a), and sodium ions (Na+) even-
tually flow into the postsynaptic membrane with the flow of
calcium ions (Ca2+) when the action potential reaches the front
of the junction (Fig. 1b). Electrolytes with lithium (Li+) and Na+

are exploited to prepare GASs, referred to as Li-GAS and Na-
GAS, respectively. When a set of positive pulses (several millivolts

to several volts) are applied to the top of the artificial synapse
(Fig. 1c), the alkali metal ions (Li+ and Na+) are forced to
migrate to the gap and accumulate on the surface or even insert
into the interlayer, coinciding with the charging process of
rechargeable batteries (Fig. 1d)54. The investigation of the kinetics
of ions at the interface facilitates the modulation of the synaptic
response. Furthermore, signal integration and transduction can
be realized by connecting several inputs of the GAS with artificial
muscles and outputting the action response of different curva-
tures on artificial efferent neurons.

Fabrication and operation of GASs. Two-dimensional (2D)
GDY is produced from the catalytic coupling reaction of its
precursor hexakis[(trimethylsilyl)ethynyl]benzene (HEB-TMS)
through the liquid/liquid interfacial protocol (Supplementary
Fig. 1a)38,39. An atomic force microscopy (AFM) image of the as-
prepared GDY reveals its 2D nanoflake morphology with a
thickness of approximately 3.3 nm (Fig. 2a). Layered structures
with highly wrinkled nanosheets of GDY are observed under
scanning electron microscopy (SEM, Supplementary Fig. 1b).
Transmission electron microscopy (TEM) images (Fig. 2b, c) of a
GDY nanoflake clearly demonstrate its lattice fringes with a
spacing of approximately 0.45 nm, indicating the high crystal-
linity of the prepared GDY samples43. The selected area electron
diffraction (SAED) pattern further illustrates the good crystal-
linity of the fabricated GDY (Fig. 2d). The high-resolution X-ray
photoelectron spectroscopy (XPS) spectra show the deconvoluted
C 1 s peaks with major contributions from C≡ C and C= C
species, indicating the sp- and sp2-hybridized carbon atoms of
GDY (Fig. 2e). The proportion of sp/sp2 carbon close to 1.5 is also
consistent with the chemical composition of GDY. The presence
of sp carbon is also demonstrated by the Raman spectrum
(Fig. 2f), in which the characteristic bands at 1932 and 2131 cm−1

deriving from the vibration of the conjugated diyne linkage are
clearly present58. A flat film of GDY is obtained by spin-coating
its suspended dispersion in N,N-dimethylformamide (DMF)
(Supplementary Fig. 1c, 1d), with a thickness of approximately
400 nm (Supplementary Fig. 1e).

To illustrate the dynamics of the migration of anions and
cations, ten current–voltage (I–V) sweeps were performed for Li-
GAS and Na-GAS (Fig. 2g, h). An obvious negative differential
resistance (NDR) phenomenon is observed in Li-GAS (Fig. 2g),
which is probably due to the migration of Li+ to the surface and
plane of GDY. In this way, an electrochemical doping process
occurs. However, two groups of NDRs appear in the I–V curve of
Na-GAS, of which the NDR at the low potential (<2 V) is more
pronounced (Fig. 2h). The obvious NDR in Na-GAS might be
caused by the large internal field formed by the interface ions59.
In the positive sweep range, Li+ cations are doped in GDY, and
anions gradually accumulate at the interface, forming an internal
field. The intensity of this internal field will temporarily exceed
the applied electric field, manifesting as an NDR phenomenon
and a dedoping process. As the scanning window becomes
narrower, the NDR phenomenon disappears, manifesting the
effect of the interface pseudocapacitance (Supplementary Fig. 2a,
d). The first eight I–V sweeps for Li-GAS show good reversibility
in the low voltage range (Supplementary Fig. 2e, f). The response
of Na-GAS in the low voltage range is repeatable after the first few
sweeps (Supplementary Fig. 2g, h). Therefore, positive and
negative pulses with different amplitudes could have an effect on
the synaptic weight under the action of the interfacial capacitance
and electrochemical doping from the analysis of the I–V curves.
The current response range of Li-GAS is larger, which is also a
reflection of the fact that GDY has a better storage capacity for
Li+ ions.
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Short-term plasticity and ultrasensitivity of the GASs. Synaptic
plasticity is modulated by presynaptic action potentials, which
can trigger Ca2+ influx and release excitatory or inhibitory neu-
rotransmitters to strengthen or weaken information transmission.
Presynaptic pulses with different amplitudes, durations, fre-
quencies, and numbers are processed by the synaptic device to
output different types of current signals, which is spike-
dependent plasticity. In our synaptic devices, Li- and Na-GASs,
varying degrees of short-term enhancement are demonstrated.
Under the same presynaptic pulse (+2 V, 440 ms), it is easier for
Li+ ions to be activated and to migrate in the corresponding
synaptic device (Fig. 3a) due to their smaller ion radius and lower
diffusion barrier40,60. GDY can store more Li+ ions, and thus, Li-
GAS exhibits a greater synaptic weight, which is consistent with
the charge capacity of GDY regarding Li and Na ion storage40.
With the gradual increase in the pulse amplitude (from 0.5 to 4
V) for Li-GAS and Na-GAS, the peak value of the postsynaptic
current increases stepwise from sub-nA to tens of nanoamps,
which is typical spike-voltage-dependent plasticity (Fig. 3a)61.
This plasticity can also be observed under the action of negative
pulses (Supplementary Fig. 3a). Under a single positive or nega-
tive pulse stimulus, the surge current decays to the level of ± 0.2
nA in a short time (<6 s), showing obvious bidirectional short-
term plasticity of the GASs (Supplementary Fig. 3b, c). Successive
pulse stimulation in a short interval (�t < 3 s) produces paired
current peaks of different heights (A1 and A2). As the time
interval increases, the PPF effect (A2/A1×100%) becomes weaker
(Fig. 3b), which may result from the rapid diffusion of ions
provided by the large pores of the GDY network. At the same
pulse interval, Na-GAS exhibits a higher facilitation index than
Li-GAS. The facilitation index under negative pulses is relatively
low, which might be attributed to the volatile effect required for
short-term plasticity.

Negative pulse sequences with different frequencies have an
effect on the peak postsynaptic current. The higher the pulse rate
is, the more obvious the gain (A10/A1×100%) (Fig. 3c),

demonstrating typical spike-rate-dependent plasticity (SRDP)62.
This short-term enhanced plasticity enables the GASs to act as a
dynamic filter for information transmission32. It is obvious that
Li-GAS shows better dynamic filtering (Fig. 3d), which is
consistent with the previous PPF effect (Supplementary Fig. 4a
and 4b). As the number and duration of pulses increase, the
current gain becomes less pronounced during the charging
process, and the current decay is still fast during the discharging
process (Supplementary Fig. 4c–f). The reason for this rapid
discharge process could be attributed to ion migration or
interface depolarization30. Such a rapid volatile process is
important for real-time imaging applications through the
construction of a synaptic array (Fig. 3e). If the letters G, D,
and Y are input into the array (9 × 9), then the 81-pixel image
formed by the array can be refreshed in a short time due to the
exemplary short-term plasticity of the synaptic unit. When
continuous nonidentical negative pulses are applied, the current
peaks triggered by pulses of the same amplitude are of equal
height, and repeatable short-term plasticity is observed (Fig. 3f).
The pulses with different amplitudes correspond well to the
different discharge current peaks, which further indicates the
good stability and repeatability of the GASs in comparison with
solution-processed reduced graphene oxide63. Only 0.22 s is
required to encode the postsynaptic current triggered by the
presynaptic pulses of different amplitudes into a pattern with
obvious contrasts (Supplementary Fig. 5a, b). Such a rapid
deintercalation of ions should be attributed to the triangular
macroporous structure of the GDY network55,57.

Moreover, when 10 and 15 consecutive negative pulses (−3.5
and −5 V) are applied to Li-GAS, the peak current increases and
then quickly declines within a few seconds after removing the
pulse (Supplementary Fig. 5c). As the pulse amplitude gradually
weakens to the range of 80–20 mV (Fig. 3g), plasticity can still be
emulated (Fig. 3g). Such ion diffusion dynamics also occur in Na-
GAS under lower operating voltages (≤20mV), resulting in
remarkable pulse sensitivity (Fig. 3g). The average power

Fig. 1 Schematic illustration of GASs. a Signal transmission between neurons. b Ion flows in the synaptic cleft. c Junction-type GAS. d Dynamic diffusion

process of ions between GDY layers.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21319-9 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1068 | https://doi.org/10.1038/s41467-021-21319-9 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


consumed by a single synaptic event is 16.7 fW (Supplementary
Fig. 5d)3,4,64, which is orders of magnitude lower than the
biological level and the most competitive value thus far among
the two-terminal devices (Supplementary Table 1). The sensitivity
to presynaptic pulses, ultralow power consumption, and sig-
nificant volatility are integral to constructing a bioinspired ionic
sensory/motor system.

Electronic characteristics and thermal and environmental sta-
bility of the GASs. To better understand the diffusion behavior of
alkali metal ions in the GDY network, first-principles calculations
are carried out using the Vienna ab initio simulation package
(VASP) at the Perdew–Burke–Ernzerhof (PBE)-generalized gra-
dient approximation (GGA) level (see <Methods= for details)65.
After being fully optimized, the lattice parameters of GDY are
a= b= 9.46 Å (Supplementary Fig. 6a). The band structure and
partial density of states (PDOS) are calculated, demonstrating a
bandgap of ~0.50 eV, which is in line with the literature and
suggests the intrinsic semiconductor character of GDY (Supple-
mentary Fig. 6b, c). Such results are similar to those reported for
arsenicated triphenylene-graphdiyne and single-layer C12N2 (0.47
and 0.50 eV, respectively)66,67. When Li or Na ions are adsorbed
on the delocalized π-conjugated surface of GDY, two possible
adsorption points could be chosen, namely, the center of the
benzene ring (A) or above the large triangular pore (B) (Sup-
plementary Fig. 6d)66–68. The total energies of Li or Na ion

adsorption on GDY at the A and B sites are calculated to be
−154.69 and −155.22 eV for Li and −154.11 and −155.13 eV for
Na, respectively. Thus, the B site is the most stable site for the
adsorption of both Li and Na and is taken in the following cal-
culations. The optimized structure of Li-adsorbed GDY (Li-GDY)
is shown in Fig. 4a. The band structure (Fig. 4b) and PDOS of Li-
GDY (Fig. 4c) show no obvious change from those of intrinsic
GDY. However, the Fermi level of Li-GDY moves upward to the
conduction band, showing an enhancement of the electrical
conductivity in comparison with GDY. Additionally, the band
structure (Fig. 4e) and PDOS of Na-adsorbed GDY (Na-GDY)
(Fig. 4f) show no obvious change from those of GDY, with the
Fermi level moving upward to the conduction band.

The calculation of the charge density difference (�ρ) of Li-
GDY (Supplementary Fig. 6e), defined as �ρ= ρLi-GDY - ρLi -
ρGDY, in which ρLi-GDY, ρLi, and ρGDY represent the charge density
values of Li-GDY, pristine Li atoms and pristine GDY,
respectively, suggests an electron net increase around the GDY
structure and an electron net decrease around the Li atom,
demonstrating a transfer of electrons from the Li atom to GDY.
Similar electron transfer is observed for Na-GDY (Supplementary
Fig. 6e). To explore the dynamics of Li and Na ions in their GAS
synaptic devices, we calculate the diffusion energy barriers for a
single Li or Na ion from the most stable adsorption point in GDY
to the most stable adsorption site at the adjacent positions. The
diffusion barriers for a single Li or Na atom diffusing at the
surface of GDY are calculated to be 0.54 and 0.72 eV for Li-GDY

Fig. 2 Characterizations of GDY and GASs. a AFM image, b TEM image (scale bar: 200 nm), c high-resolution TEM image (scale bar: 5 nm), d SAED

pattern (scale bar: 5 1/nm), e high-resolution XPS C 1 s spectra, and f Raman spectrum of GDY. g, h I–V curves measured in sweep cycles of 0 to 5 V and 0

to −5 V for Li-GAS and Na-GAS, respectively. Inset: Schematic illustrations of ion dynamic diffusion under positive and negative pulses.
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and Na-GDY, respectively (Fig. 4g, h). The larger diffusion
barrier of Na-GDY than of Li-GDY well explains the experi-
mental fact that Li+ ions migrate easier in the corresponding GAS
synaptic device. Interestingly, the reported boron-GDY has a
lower Li+ diffusion barrier when Li+ is on top of the boron atom
and can accommodate multiple light-metal dopants (Li, Na, K,
Ca)69,70.

The thermal and environmental stability of the fabricated
devices is experimentally studied. Temperature and humidity
have major influences on the I–V curve displayed by the devices
(Fig. 4I, j; Supplementary Fig. 7). As the heat treatment
temperature of the device rises to 353 K, an inconspicuous bulge
in the I–V curve at ~2.05 V (Fig. 4i, Supplementary Fig. 7a-7c)
becomes increasingly acute. The current window displayed by the
device does not change much, and the curve is relatively stable.
The current window displayed by the device gradually changes as
the ambient humidity increases, and the curve is still stable at a
humidity up to 35% (Fig. 4j, Supplementary Fig. 7d–7f). Li-GAS

is more sensitive to environmental temperature and humidity
(Fig. 4k). After undergoing specific thermal stability (heating
temperature: ≤ 353 K) and environmental stability (relative
humidity: ≤ 65%) tests, the electrolyte film on the two devices
is not severely damaged (Supplementary Fig. 8), demonstrating
the reliable stability of the prepared devices.

Integration, parallel processing, and artificial efferent neuron
actuation of the GASs. Electrolyte-based devices can convert
biological ionic/chemical signals into electrical signals, and
therefore, attractive dendritic integration can be realized15. Mul-
tiple input signals applied to the top of the GAS will be integrated
and output at the bottom (Fig. 5a). First, the rules of spatio-
temporal learning of two synapses are emulated. The two synapses
exhibit synaptic connections with different strengths under dif-
ferent amplitude pulse stimulation of Li-GAS and Na-GAS
(Fig. 5b). When the two synapses act simultaneously, the

Fig. 3 Short-term plasticity in Li- and Na-GASs. a Peak value of the postsynaptic current with different positive pulse amplitudes in Li-GAS and Na-GAS,

respectively. Inset: Postsynaptic current triggered by a single spike in Li-GAS. b PPF behavior emulated by two consecutive positive pulses (+1 V) in Li-GAS

and Na-GAS. Inset: Postsynaptic currents triggered by two spikes in Na-GAS. c Postsynaptic current at different frequencies in Li-GAS. d Gain of

postsynaptic currents (SRDP index; A10/A1×100%) plotted as a function of presynaptic spike rate in Li-GAS (-3 V) and Na-GAS (-2 V). e Real-time

storage and transformation of letters G, D, and Y. f Postsynaptic current triggered by a nonidentical negative pulse sequence in Li-GAS. g Impulse

responsivity at the millivolt level and corresponding power consumption in Li-GAS and Na-GAS. Inset: Postsynaptic currents triggered by a series of

positive presynaptic spikes with voltage amplitudes from 8 to 20mV in Na-GAS.
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nonlinear increase in the output is prominent. When one of the
two synapses is triggered earlier than the other (�T < 0) by less
than 4 s, the output postsynaptic current gradually increases to
340% and 250% of the initial output of Li-GAS and Na-GAS
(Supplementary Fig. 9a), respectively. Through the input of mul-
tiple pre-neurons, interesting temporal features of dendritic con-
nections are observed. This also shows that the synergy of multiple
synapses (synapse 1 and synapse 2) can significantly enhance the
synaptic weight compared to different numbers of repeated sti-
mulations applied to a single synapse (Fig. 5c). In this way, the
gain obtained by parallel processing of multiple synapses is much
higher than that obtained with a single synapse under spike-
dependent plasticity. Distributing the weight to single synaptic
units is the essence of parallel processing. The shared information
transmission by multiple synapses better resembles biological
information integration than transmission by single synapses.

Similarly, the gain of the postsynaptic current triggered by pre-
synaptic pulses of different durations for a single synapse is still
not as significant as the gain obtained by the integration of mul-
tiple synapses (Fig. 5d). Therefore, logic operations can be realized
according to the different gains of one synapse and two synapses
at different durations (Supplementary Fig. 9b). Meanwhile, mod-
ulation of the neural responses can be mimicked under the
synergy of two synapses. Then, shunting inhibition, a mechanism
for regulating the neural response, can be achieved by applying
excitatory and inhibitory stimulations (positive and negative
pulses) to the two synapses (Fig. 5e). With the gradual increase in
a presynaptic inhibitory pulse, the postsynaptic current gradually
weakens until it disappears. This suggests that the output can be
both magnified and reduced during information integration.

Parallel processing of neuromorphic biological signals is of
crucial importance in the novel computational paradigm15. It

Fig. 4 Density functional theory calculations and stability of Li- and Na-GASs. a Top and side views of the optimized structure of Li-GDY. b Band

structure of Li-GDY. c PDOS of Li-GDY. The Fermi level is set to zero. d Top and side views of the optimized structure of Na-GDY. e Band structure of Na-

GDY. f PDOS of Na-GDY. The Fermi level is set to zero. Diffusion pathways and corresponding diffusion energy profiles of a single g Li or h Na ion. The red

arrows represent the diffusion directions. I–V curves of Li-GAS in a sweep cycle of −5 to 5 V measured i after heat (for 10 min at each temperature from 30

to 80 °C) and j humidity (for an hour at each relative humidity from 15% to 65%) treatment. k Current value of the devices after treatment in different

environments. The current value at a certain voltage (+4 and +5 V for Na-GAS and Li-GAS, respectively) is obtained from the I–V curve for the first cycle

of the two devices under different processing conditions.
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remains a challenge for synaptic units to perform real-time
parallel processing of external perception information (light and
temperature) transmitted by multiple sensory neurons and to
make artificial efferent nerves respond differently to the

integrated information (Fig. 5f). Here, impulse stimuli of different
frequencies are applied to the top electrode of the GAS as
perceptual information from the outside, and artificial muscles
are connected to the bottom electrode of the GAS through a

Fig. 5 Dendritic integration function in Li- and Na-GASs. a Schematic illustration of spatiotemporal neural networks in the GASs. b Synaptic weight

(current) triggered by a single pulse and a pair of spatiotemporally correlated pulses in Li-GAS and Na-GAS. c Synaptic weight (current peak value)

obtained under different numbers of applied pulses (N= 10, 20, and 30) in Li-GAS and Na-GAS. d Postsynaptic current obtained under different durations

of applied spikes in Li-GAS. e Postsynaptic currents triggered by a pair of presynaptic (excitatory and inhibitory) pulses for emulating the shunting

inhibition function. Schematic illustration of f a biological sensorimotor nerve and g an artificial efferent nerve, coupling GAS processing elements with

artificial muscles, to transduce signals from receptors to motor neurons. h Postsynaptic current triggered by two presynaptic inputs at 0.48 Hz from within

the same time period to at different time periods. i Digital images of the actuator flexion under 0.8 Hz pulse sequences for single and double synapses. The

scale bar corresponds to 2 cm.
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circuit to construct artificial efferent neurons (Fig. 5g). Initially,
under a single frequency (0.48 Hz) input, the currents generated
by two independent synaptic units are similar, and their overall
outcome is equal to the peak current of the two synapses in the
same time period (Fig. 5h). If the two synapses can simulta-
neously receive signals provided by peripheral devices in the same
time period, then the signal reflected in the post-neuron is the
superposition of the signals obtained by the two independent
synapses. The effect of integrating multiple inputs and accumu-
lating outputs is significantly higher than that of a single synapse.
The results obtained under low-frequency inputs (0.48 and 0.8
Hz; 0.344 and 0.60 Hz) are consistent, which means that the
output results of multiple presynaptic pulses in the same time
period are accumulated in parallel (Supplementary Fig. 10).
Meanwhile, the peak shape of the post-neuronal signal can clearly
reflect the time period during which the two synapses receive
signals of different frequencies from the peripheral unit, and the
frequencies of the presynaptic pulses can be inferred from the
different peak-to-valley spacings (Supplementary Fig. 10e). As the
pulse frequency increases from 2.34 to 5.60 Hz, the postsynaptic
current gradually increases, and good parallel processing
capabilities and short-term plasticity can be maintained (Supple-
mentary Fig. 11). Hence, the GAS can identify the frequency of
presynaptic pulses to a certain extent to infer and analyze the
sensory information transmitted from afferent nerves. Finally,
artificial efferent nerves are constructed to implement the
integrated output of multiple synaptic inputs (Supplementary
Fig. 12). With only one input terminal, the generated output
signal reaches the motor neuron via the efferent nerve to trigger
artificial muscle bending (Fig. 5i). When two sets of inputs are
applied, the signals are processed in parallel and output by the
GAS and finally transmitted along the efferent nerve to drive the
artificial muscle to produce greater bending. Multiple external
inputs are integrated into the GAS, and the cumulative output
drives the artificial muscle. Such a GAS element can process in
parallel and integrate the received signals in real time, and can be
combined with a multifunctional actuator to sense or control
objects, and can be coupled with a variety of receivers to
sensitively reflect external environmental information1,12,71.

Discussion
Inspired by somatosensory nerves, we have designed and
demonstrated the first graphdiyne-based artificial synapse com-
ponents with parallel processing and information integration
capabilities. Benefiting from the special working mechanism of
ion migration and good electron transport properties, the GAS
exhibits essential short-term synaptic behavior, which is con-
ducive to its application in intelligent mechanotransduction sys-
tems and biohybrid systems. Furthermore, the GAS exhibits an
ultralow voltage response and sub-biological power consumption,
which is competitive with other two-terminal resistive switches
(e.g., memristors), but a dilemma remains in the large-scale
preparation of single- and multilayer GDY. At the same time, the
GAS can withstand certain heat and humidity conditions. As an
exceptional parallel processing unit, the GAS can identify the
frequency (≤5.6 Hz) of presynaptic inputs to a certain extent
based on the postsynaptic current to infer and analyze the sensory
information transmitted from afferent nerves. By connecting the
GAS and artificial motor neurons, artificial efferent nerves are
constructed to drive artificial muscles to bend. The GAS can
process multiple sets of inputs in parallel and integrate the output
to control the degree of bending of artificial muscles. In addition,
GDY has outstanding biological activity due to its active acetylene
unit, which has already emerged in the fields of biosensing, drug
delivery, and living micromotors46,72,73. Hence, GDY can be

viably coupled with biological presynaptic neurons due to its
biocompatibility to form a bioartificial hybrid system to complete
spike transmission and plasticity processing9. A functional bio-
hybrid GDY system, a bioelectrochemical signal input terminal
and a neuromorphic GAS output terminal can be conceived to
demonstrate the regulation of synaptic weights in neuromorphic-
based prosthetics. Furthermore, it may be more interesting to
construct an all-GDY efferent nerve by combining our GAS and
GDY-based artificial muscles in the future74. Therefore, with the
implementation of real-time parallel processing, integration and
actuation, the artificial synapse has the potential to be a key
processing element in artificial sensorimotor nerves and biohy-
brid systems of soft electronics, neurorobotics, smart prostheses,
and brain–computer interfaces.

Methods
Fabrication and characterization of multilayer GDY films. HEB-TMS (8 mg)
was added to 120 mL of degassed dichloromethane and stirred for 10 min. Then,
100 ¿L of tetrabutylammonium fluoride (1M in THF, 100 ¿mol) was injected. The
mixture was stirred for another 15 min under an argon atmosphere in the dark.
The subsequent reaction could be carried out without purification. The multilayer
graphdiyne film was prepared via a liquid/liquid interfacial reaction. Under an
argon atmosphere at room temperature, 10 mL of HEB in dichloromethane (0.1
mM) was added to a glass cylinder. Next, 12 mL of deionized water was added to
form a layer between the two separate phases. Then, 8 mL of mixture solution
consisting of 0.01M copper acetate and 0.25M pyridine was dropped slowly into
the aqueous phase. The system was kept undisturbed for more than 24 h, and a
brown film could be observed at the interface. The reagent was removed from the
glass cylinder, and the film could be collected, filtered through a nylon membrane
with a 100-nm pore size and washed with HCl (1M, 10 mL) and pure water (10
mL). The morphology of the as-prepared GDY was characterized by SEM using a
QUANTA FEG 450 field-emission microscope. TEM images were obtained using
an FEI Talos F200X microscope. The crystal features of GDY were characterized by
high-resolution TEM (JEM-2800), and the thickness of GDY and the surface of
electrolytes were characterized by AFM (Bruker, DIMENSION ICON). The Raman
spectrum of GDY was obtained using a high-resolution confocal Raman micro-
scope (TEO, SR-500I-A) at 532 nm excitation. XPS was conducted with a Thermo
Scientific ESCALAB 250Xi instrument.

Fabrication of Li-GDY and Na-GDY synaptic devices and electrical mea-

surements. A doped Si substrate was cleaned by sonication in deionized water,
acetone and 2-propanol, boiled in 2-propanol, and then treated with ultraviolet
ozone. GDY (5 mg) was placed in DMF (10mL) and dispersed ultrasonically for
10 min. The resulting GDY dispersion (80 ¿L) was spin-coated at 800 rpm on the
treated substrate and annealed at 80 °C for 20 min. Lithium-ion and sodium-ion
solid polymer electrolytes (Li-SPE and Na-SPE) were obtained by mixing and
stirring PEO powder (0.8 g) with the corresponding perchlorate (0.1 g) in acet-
onitrile (10 mL). The two electrolytes were spin-coated on the GDY film, and the
devices were annealed at 90 °C in a nitrogen-filled glove box for 20 min, after which
Au-dot electrodes were subsequently deposited to obtain Li-GAS and Na-GAS. All
electrical measurements were performed using a Keithley 4200A semiconductor
parameter analyzer in a nitrogen-filled glove box with moisture and oxygen con-
tents of less than 0.1 ppm. To test the thermal and humidity stability, the device
was placed in an environment with different temperatures and humidities, and
then, the device was placed in a glove box for electrical testing. The device was
heated from 30 to 80 °C at an interval of 10 °C, and the time for each heat
treatment was 10 min. The relative humidity in the environmental treatment of the
device ranged from 15% to 65%, and the time for each humidity treatment was 1 h.

Fabrication of the electrolyte layer and actuator. The electrolyte layer was
fabricated by dissolving poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-
HFP) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) in 2 mL of
DMF at 60 °C for 1 day to obtain a uniform solution. A glass mold was used to
prepare the electrolyte layer by solution casting in a N2 atmosphere for 1 day at
room temperature, and then, the electrolyte layer was obtained by peeling it from
the glass. The electrolyte layer was sandwiched by carbon nanotube (CNT) elec-
trodes, which were pressed at 70 °C for 2 min to fabricate the actuator. Subse-
quently, the as-prepared actuator was aged under reduced pressure at room
temperature for one day and then cut into strips of the same dimensions (20 × 2
mm2) for further measurements.

Construction of the synaptic device-amplifier circuit-polymer actuator sys-

tem. To operate the actuator, we introduced an operational amplifier to output the
desired voltage. The bottom electrode of the synaptic device was connected to the
amplifier circuit to convert currents to output voltages such that the actuator could
be operated. One end of the bottom electrode of the synaptic device was coated
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with silver paste and dried in air. Copper wires were used for connection. The
amplifier circuit amplified the input voltage by 250,000 times to reach the working
voltage of the actuator of ~ 3 V.

First-principles calculations. We performed density functional theory (DFT)
simulations using the Vienna ab initio simulation package (VASP) with the
exchange and correlation functionals of the PBE form and the generalized gradient
approximation (GGA). The energy cutoff was 520 eV. For geometry optimization,
convergences of 10−4 eV for energy and 0.02 eV Å−1 for force were applied. For
electronic calculations, a convergence of 10-6 eV for energy was applied. The k-
point mesh was sampled by the Monkhorst–Pack method with a separation of 0.02
Å−1. The vacuum space in the vertical direction was set to above 20 Å to avoid
periodic images. The climbing image nudged elastic band (CiNEB) method was
applied to calculate the ion diffusion. We built a 2 × 2 supercell of GDY (18 C
atoms in total) to avoid Li/Na interactions in different supercells.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available within the paper and its
Supplementary Information files. Additional data and files are available from the
corresponding author upon reasonable request. Source data are provided with this paper.
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