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The recovery of European freshwater 
biodiversity has come to a halt

Owing to a long history of anthropogenic pressures, freshwater ecosystems are 

among the most vulnerable to biodiversity loss1. Mitigation measures, including 

wastewater treatment and hydromorphological restoration, have aimed to improve 

environmental quality and foster the recovery of freshwater biodiversity2. Here, using 

1,816 time series of freshwater invertebrate communities collected across 22 

European countries between 1968 and 2020, we quantifed temporal trends in 

taxonomic and functional diversity and their responses to environmental pressures 

and gradients. We observed overall increases in taxon richness (0.73% per year), 

functional richness (2.4% per year) and abundance (1.17% per year). However, these 

increases primarily occurred before the 2010s, and have since plateaued. Freshwater 

communities downstream of dams, urban areas and cropland were less likely to 

experience recovery. Communities at sites with faster rates of warming had fewer 

gains in taxon richness, functional richness and abundance. Although biodiversity 

gains in the 1990s and 2000s probably refect the efectiveness of water-quality 

improvements and restoration projects, the decelerating trajectory in the 2010s 

suggests that the current measures ofer diminishing returns. Given new and 

persistent pressures on freshwater ecosystems, including emerging pollutants, 

climate change and the spread of invasive species, we call for additional mitigation to 

revive the recovery of freshwater biodiversity.

Freshwater ecosystems are biodiversity hotspots and provide vital 

ecosystem services, including drinking water, food, energy and rec-

reation. However, humans have degraded freshwaters for centuries, 

with impacts sharply increasing after World War II during the great 

acceleration3. Freshwaters are exposed to anthropogenic pressures 

from agricultural and urban land uses over whole catchments, accu-

mulating pollutants, including phosphorus, organic-rich effluents, fine 

sediments, pesticides and emergent pollutants (such as nanoplastics 

and pharmaceuticals)4,5. Furthermore, freshwaters have been degraded 

by hydromorphological alterations, water extraction, invasive spe-

cies and climate change6,7. In response to legislation such as the US 

Clean Water Act (1972) and the EU Water Framework Directive (2000), 

key countermeasures designed to improve water quality and restore 

freshwater habitats were implemented, including better wastewater 

treatment and controls on the emission of airborne pollutants. These 

actions resulted in considerable declines in organic pollution and 

acidification beginning around 19808. Over the past 50 years, such 

mitigation measures have resulted in quantifiable improvements in 

freshwater biodiversity in some locations9, yet the number and impacts 

of stressors threatening freshwater ecosystems continues to increase 

worldwide and the biological quality of rivers remains poor globally10,11.

Freshwater invertebrates are a phylogenetically and ecologically 

diverse group that contribute to critical ecosystem processes, includ-

ing decomposing organic matter, filtering water, providing energy to 

higher trophic levels, and transporting nutrients and energy between 

aquatic and terrestrial ecosystems12,13. Moreover, freshwater inverte-

brates have long been a cornerstone of water-quality monitoring. The 

biological traits of freshwater invertebrates are well characterized, 

enabling the assessment of functional diversity4the range of functional 

traits of the organisms in a given ecosystem144an important facet of 

biodiversity that can be used as a proxy for ecosystem functioning15,16. 

However, trajectories of taxonomic and functional diversity have rarely 

been investigated simultaneously at larger spatial and temporal scales. 

Determining the trajectories of taxonomic and functional change could 

inform the development of evidence-based management strategies 

that address stressors through mitigation, restoration and conserva-

tion. Furthermore, how temporal changes in biodiversity manifest 

across large spatial scales and vary among taxonomic groups remains 

equivocal17319. Examining whole ecological groups representative of 

a particular ecosystem (for example, freshwater invertebrate com-

munities in river ecosystems) may help to clarify discrepancies across 

studies and identify key drivers of temporal change.

Here we analysed pan-European patterns and drivers of multidecadal 

trends in abundance and taxonomic and functional diversity of inverte-

brate communities using a comprehensive dataset of 1,816 time series 

collected in riverine systems in 22 European countries between 1968 

and 2020 (Fig. 1). The dataset comprises 714,698 observations of 2,648 

taxa in 26,668 samples. The time series span a mean of 19.2)years with an 

average of 14.9 sampling years (minimum 8)years, maximum 32)years). 

We address two research questions: (1) how abundance, taxonomic 

diversity and functional diversity of freshwater invertebrate communi-

ties have changed over the past five decades in European streams and 

rivers; and (2) what environmental factors have driven these changes. 

Given that Europe-wide management has resulted in improvements in 

water quality2,20, we hypothesize that abundance, taxonomic diversity 

and functional diversity have increased, consistent with a recovery.  
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We further hypothesize that freshwater invertebrate community recov-

ery was strongest around the end of the previous century after the 

onset of concerted efforts to mitigate stressor impacts and restore 

ecosystems, but has slowed in recent years owing to diminishing returns 

on these actions in addition to remaining and new pressures including 

climate change, land-use intensification and emerging pollutants. We 

assessed evidence for negative impacts of multiple human pressures, 

including dams, urban areas and cropland, and increasing tempera-

tures, while accounting for subcatchment characteristics (such as 

elevation and stream size). We used hierarchical Bayesian models to 

estimate trends and identify drivers of change in abundance and taxo-

nomic and functional diversity of Europe9s freshwater invertebrate 

communities, while accounting for temporal autocorrelation, sampling 

date and sampling variation across studies and countries.

Recovery of Europe’s freshwater invertebrate 
communities

Across all time series, taxon richness increased by 0.73% per year, 

whereas abundance increased by 1.17% per year between 1968 and 

2020 (Fig. 2a,b), substantiating previous documentation of a recov-

ery process18,21,22. The probabilities of trends derived from posterior 

distributions (that is, the probability of the mean trend being above or 

below zero) revealed 0.99 and 0.91 probabilities of a mean increase in 

taxon richness and abundance, respectively. Despite these net-positive 

trends, taxon richness declined at 30% of sites and abundance declined 

at 39% of sites. Abundance trends for EPT taxa (mayflies, stoneflies and 

caddisflies4an indicator group of water quality23) and insects increased 

(EPT, +2.38% per year, 0.97 probability; insects, +1.53% per year, 0.95 

probability) at higher net rates than the overall trends. EPT richness 

(+0.45% per year, 0.82 probability) and insect richness (+0.71% per 

year, 0.99 probability) trends increased, but at net rates lower than 

the overall trends (Extended Data Fig. 1).

Freshwater ecosystems are frequently invaded by non-native spe-

cies7. We therefore examined whether changes in abundance and 

richness were driven by these taxa. Non-native species comprised an 

average of 4.9% of the species and 8.9% of the individuals at the 1,299 

sites for which the taxonomic resolution allowed detection. Thus, native 

species dominated most communities (with 99.9% of sites comprising 

>50% native species). When considering only native taxa, trends in rich-

ness (+0.64% per year, 0.98 probability) and abundance (+0.26% per 

year, 0.61 probability) remained positive, but less so than overall net 

trends (Fig. 2 and Extended Data Fig. 1). For sites at which non-native 

species were detected (898 out of 1,299 sites), non-native species rich-

ness (+3.97% per year, 0.99 probability) and abundance (+3.9% per year, 

0.95 probability) increased sharply (Extended Data Fig. 1).

Functional diversity, which describes the value and range of functional 

traits of the organisms in a given ecosystem14 (Supplementary Table 4), 

also increased over the 53-year study period. Functional richness, which 

quantifies the functional space filled by a community, increased on aver-

age by 2.4% per year (0.99 probability of increase; Fig. 2e). Functional 

redundancy4a measure of overlap in functional trait space4had no 

strong trend (+0.03% per year, 0.64 probability of increase; Fig. 2f). By 

contrast, functional evenness declined (20.22% per year, 0.96 probability 

of decrease; Fig. 2g), as did taxonomic evenness (20.54% per year, 0.99 

probability; Fig. 2c). Similarly, functional temporal turnover (20.32% per 

year, 0.97 probability; Fig. 2h) and taxonomic temporal turnover declined 

(20.2% per year, 0.87 probability; Fig. 2d). Together, these results suggest 

that functional diversity trends largely paralleled those of taxonomic 

diversity. Model estimates and raw distributions of trends for additional 

taxonomic and functional metrics are shown in Extended Data Fig. 2.

Gains in species richness have come to a halt

While overall net trends provide an overview across the entire study 

period and enable comparison with other long-term biodiversity 
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Fig. 1 | Timeline and data distribution. a, A timeline of major stressors (above 

the line) and environmental legislation (below the line) affecting Europe9s 

freshwater ecosystems (citations are provided in Supplementary Table 1).  

UN/ECE LTRAP,  United Nations Economic Commission for Europe Long-Range 

Transboundary Air Pollution. b, The sampling sites (points) and the rate of 

temporal change in taxon richness of freshwater invertebrate communities 

(colour of points) across 22 European countries (black). c, The distribution of 

sampling sites over time and countries. 8Other9 includes countries with fewer 

than 50 sampling sites.
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studies17,19,24, they may mask important shorter-term temporal fluc-

tuations in trends. Thus, to provide more nuanced, complementary 

trend information, we used a ten-year moving-window approach to 

examine the trajectories of freshwater invertebrate community change 

over time. Nonlinear trajectories were expected due to temporal varia-

tion in pressures and the implementation of mitigation measures25. To 

improve spatial representativity and comparability across years, only 

years with at least 250 sites from at least 8 countries were included, 

corresponding to the period of 1990 to 2020.

Although trends in taxon richness were generally positive, indicat-

ing increases in local richness through time, this effect became weaker 

over the decades (mean change in trends)=)28.8% per year, 95% credible 

interval (CI) range: 213.6% to 23.8% per year). Trends in taxon richness 

started declining around 2010 and then levelled off, reaching an aver-

age of net zero around 2013 (Fig. 3a), indicating an end to the preced-

ing recovery period. When considering only the dominant pattern 

as measured by the proportion of positive trends, the proportion of 

sites with increasing taxon richness declined after windows centred on 

the early 2000s (Fig. 3e). Functional richness trends were more vari-

able, with the highest trends evident for windows centred on 2000 and 

2010, and near net zero trends after 2010 (Fig. 3c). Functional richness 

trends had an overall tendency to decline (mean change in trends of 

functional richness)=)25.9% per year, 95% CI range: 212% to +0.1% per 

year). Temporal changes in the proportion of sites with positive func-

tional richness trends were similar to those reported for taxon richness 

(Fig. 3e,g). Trends in abundance (Fig. 3b,f) and functional redundancy 

(Fig. 3d,h) changed little over time (that is, CIs overlapped with zero 

in an analysis of the change in trend estimates over time), although 

abundance trends tended to decline from windows centred on 2010 

until the end of the study period.

Although similar trends in taxonomic and functional metrics were 

expected due to functional variation being constrained by taxon rich-

ness, functional diversity can be more responsive to environmental 

gradients26. However, changes in functional diversity have rarely 

been quantified in large-scale investigations of temporal change in 

biodiversity27,28. A switch from primarily positive trends in functional 

richness in the late 1990s and early 2000s to near-zero trends start-

ing around 2012 (Fig. 3c) may suggest no further improvements in 

ecosystem functioning. The concurrent limited change in functional 

redundancy (Fig. 3d) indicates that the increase in functional richness 

provided new traits to these communities rather than adding traits 

that were already present. Both taxonomic and functional trends in 

evenness and turnover remained near zero or slightly negative over 

time (Extended Data Fig. 3).

Environmental drivers of biodiversity change

Identifying the natural and anthropogenic drivers of biotic change is 

critical to inform effective management strategies. Here we show that 

climate, dam impacts, and the percentage of upstream urban areas and 

cropland (both sources of pollution and causes of habitat degrada-

tion) can all be linked to trends in taxonomic and functional metrics 

representing Europe9s freshwater invertebrate communities (Fig. 4 

and Extended Data Figs. 4 and 5).

Climate strongly influenced freshwater invertebrate communities 

(Fig. 4). Overall, sites experienced a net increase in air temperature of 

+0.037)°C per year)±)0.0007 s.e.m. (with 94% of sites warming) and a 

slight net increase in precipitation of +0.49)mm per year)±)0.12 s.e.m. 

(with 57% of sites getting wetter) over the studied intervals. Sites in 

areas with higher mean air temperatures were more likely to gain taxa 

(Fig. 4) compared with those in cooler areas. This may indicate that 

climate warming has not yet reached critical values for many European 

freshwater invertebrates, consistent with previous predictions for 

ectotherms in temperate regions29,30. Alternatively, lower recovery 

rates for biotic communities in cooler areas could reflect the less severe 

degradation of northern sites before recovery started. By contrast, 

more warming over time had negative biodiversity outcomes, with 

negative effects on long-term trends of taxon richness, abundance and 

functional richness (Fig. 4). Mean precipitation had a positive effect 

on long-term trends of functional richness but a negative effect on 

long-term trends of abundance and functional redundancy, indicating 

the addition of functionally unique taxa at wet sites. However, greater 

increases in precipitation over time had a negative effect on long-term 

trends of both taxonomic and functional richness (Fig. 4). Precipitation 

can influence invertebrate communities and their functioning by alter-

ing flow regimes (and therefore water quality and temperature through 

changes in runoff, discharge and dilution) and food availability6.

Biodiversity trends were generally lower at sites downstream of dams 

and in catchments with a high percentage of urban areas or cropland. 

High dam impacts (that is, those in systems connected to more dams 

and/or closer to dams) had negative effects on long-term trends in 

taxon richness, abundance, functional richness and functional redun-

dancy (Fig. 4). Dams increase sediment loads, reduce longitudinal 

connectivity, and change river flow and temperature regimes31333.  

By contrast, high dam impacts had a positive effect on long-term trends 

of both taxonomic and functional evenness, suggesting that domi-

nant species declined in abundance in communities downstream of 

dams, whereas richness losses were more pronounced for rare spe-

cies. Furthermore, increases in functional evenness, accompanied 

by decreases in functional richness and redundancy, could reflect 

selection for a subset of traits that confer tolerance of the conditions 

downstream of dams, including altered resource availability and hydro-

morphological homogenization. A greater percentage of upstream 

cropland had a negative effect on long-term trends in taxonomic and 

functional richness and abundance. Cropland frequently contributes 

to nutrient-enriched runoff, leaving primarily tolerant taxa34. A greater 

percentage of upstream urban areas had negative effects on taxon 

richness long-term trends (Fig. 4), but positive effects on non-native 

richness long-term trends (Extended Data Fig. 5a), suggesting losses of 

rare and sensitive native species. Biodiversity trends varied little with 

stream characteristics, although sites at higher elevations had lower 

gains in functional richness, potentially due to rising temperatures (as 

evidenced by a weak positive correlation between temperature trends 
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and elevation; r)=)0.15)35. Larger rivers became relatively more prone to 

invasion by non-native species36 (Extended Data Figs. 638).

Reviving the recovery

Using a comprehensive Europe-wide dataset, we document the recov-

ery of freshwater invertebrate communities over the past 53 years. The 

taxon richness gains observed across 70% (1,269 out of 1,816) of time 

series are concurrent with widespread implementation of mitigation 

measures8, particularly improvements in wastewater treatment moti-

vated by the EU Urban Waste Water Directive from 1991. However, gains 

in taxon richness started to decelerate around 2010, which may indicate 

that progress towards recovery has come to a halt at many sites, while 

remaining sites may reflect either predominant recovery or ongoing 

degradation towards the end of the study period. Most of our sites are 

monitored under the EU Water Framework Directive (WFD) and 60% of 

WFD-monitored rivers still do not reach 8good ecological status937. Even 

at 8good9 sites, considerable recovery could be needed to reach 8high 

ecological status9, suggesting that improvements documented here 

represent only a partial recovery of European freshwater ecosystems.

Regardless of the reason for the deceleration, the impacts to Europe9s 

rivers caused by ongoing pressures remain extensive and severe37,38. 

Although our observational data prevent confirmation of the underly-

ing causal processes, our interpretation of the overall recovery being 

a response to improving water quality aligns with the conclusions of 

other studies of European freshwater invertebrate time series9,39. Nega-

tive effects of poor water quality on biodiversity are supported by our 

findings that freshwater invertebrate communities downstream of 

dams, urban areas and cropland were less likely to experience biodi-

versity recovery. Urban areas produce the majority of micropollutants, 

are hubs of non-native species invasions (Extended Data Fig. 5a) and 

generate high-nutrient inputs, whereas croplands are sources of fine 

sediment40, pesticides and nutrient-laden runoff41, and greatly con-

tribute to river salinization42. Most European rivers bear a substantial 

legacy of human impacts on their hydromorphology8,38, with urban 

areas being the most affected, despite considerable river restoration 

in recent decades43. The positive effects of higher mean temperatures 

on long-term trends in invertebrate richness probably reflect the 

lower initial degradation in northern European countries. This may 

also reflect the relatively cool temperatures in European countries, 

whereas decreases in invertebrate richness are currently expected 

in freshwaters of warmer bioregions, such as tropical regions, which 

are not represented in our study44. However, the negative effects on 

long-term trends of taxon richness, abundance and functional richness 

in communities experiencing greater rates of warming are worrying. 

These effects are likely to worsen as temperatures continue to rise 

and as climatic extremes including summer droughts and heatwaves 

become more common45.

Considering that environmental legislation and policy have insuffi-

ciently addressed ongoing and emerging stressors8, the stalled recovery 

M
e
a
n

 s
it
e
 t

re
n

d

(p
e
rc

e
n

ta
g

e
 c

h
a
n

g
e
 p

e
r 

y
e
a
r)

P
ro

p
o

rt
io

n
 o

f 
s
it
e
s
 w

it
h

 p
o

s
it
iv

e
 t

re
n

d
s

1995 2000 2005 2010 2015

−1

0

1

2

3

1995 2000 2005 2010 2015

0.3

0.4

0.5

0.6

0.7

0.8

Mean year of moving window

1995 2000 2005 2010 2015

−10

−5

0

5

1995 2000 2005 2010 2015

0.3

0.4

0.5

0.6

0.7

0.8

Mean year of moving window

1995 2000 2005 2010 2015

−4

−2

0

2

4

6

8

10

1995 2000 2005 2010 2015

0.3

0.4

0.5

0.6

0.7

0.8

Mean year of moving window

1995 2000 2005 2010 2015

−0.5

0

0.5

1.0

1.5

1995 2000 2005 2010 2015

0.3

0.4

0.5

0.6

0.7

0.8

Mean year of moving window

a b c d

e f g h

Abundance Functional richness Functional redundancyTaxon richness

Abundance Functional richness Functional redundancyTaxon richness

Fig. 3 | Temporal fluctuations in trend estimates using a moving window.  

a3h, Modelled trend estimates from moving windows of taxon richness (a), 

abundance (b), functional richness (c) and functional redundancy (d), and  

the proportion of sites with positive trend estimates of taxon richness (e), 

abundance (f), functional richness (g) and functional redundancy (h). Trend 

estimates were calculated from Bayesian mixed-effects models of trends from 

at least 250 time series with at least 6 years of data from at least 8 countries 

within 10-year moving windows (totalling 21,495 time-series segments). The 

proportions are based on whether site-level trend estimates of these 

time-series were above zero or not. For trend estimates in a3d, blue and red 

areas indicate the overall positive (>0) and negative (<0) mean trend estimates 

for the given 10-year window, respectively, and the grey polygons indicate the 
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is unsurprising. Further management actions to revive the recovery 

should target sites at greater risk of biodiversity decline, such as those 

downstream of urban areas, cropland and dams, while maintaining and 

strengthening protection of the least impacted systems that are refuges 

of biodiversity. Specifically, substantial, catchment-scale changes in 

land management must go beyond current legislative requirements 

and achieve greater reductions in water extraction and inputs of pol-

lutants including fine sediments, pesticides and fertilizers. Substantial 

investment is needed to upgrade sewage networks and improve waste-

water treatment plants to better manage stormwater overflow and 

more effectively remove micropollutants, nutrients, salts and other 

contaminants46. Adopting a catchment-scale approach that consid-

ers barriers to dispersal47 can further enhance the effectiveness of 

management, conservation and restoration practices32,48. Additional 

hydromorphological restoration efforts are required to reconnect 

rivers and floodplains to improve ecosystem functioning, prevent 

destructive floods, and adapt riverine systems to future climatic and 

hydrological regimes. Finally, standardized, large-scale and long-term 

biodiversity monitoring, paired with parallel environmental data col-

lection49,50, should be prioritized to effectively characterize temporal 

changes in biodiversity and environmental drivers and identify sites 

at high risk51.

Current large-scale measures to address biodiversity loss remain rare, 

especially for invertebrates. This in part reflects our understanding of 

biodiversity change, which is limited by unknown historical baseline 

conditions and complex variation in interacting anthropogenic stress-

ors. Insufficient baseline data present challenges both for characteriza-

tion of biodiversity trends and ecological status of communities, and 

evaluation of tolerable levels and effects of stressors52. Data on the state 

of freshwater communities both before and during the great accelera-

tion are largely lacking, making it unclear when freshwater degradation 

peaked. Long-term data from the UK suggest freshwater invertebrate 

biodiversity was lowest at the start of the 1990s53, but our pre-1990s 

data are insufficient to determine whether this pattern is Europe-wide 

(Fig. 1c). Moreover, comparison with unimpacted 8reference9 communi-

ties, a standard practice in freshwater ecology, is becoming increasingly 

challenging due to the emergence of new communities54 resulting 

from climate change, non-native species invasions and other pres-

sures55. Progress towards biodiversity goals needs to recognize these 

changing pressures through flexible strategies to protect and foster 

Earth9s remaining biodiversity. We call for adaptive environmental 

management that recognizes conservation and restoration objectives 

as shifting targets that can be modified to adapt to global change and 

maximize the protection of biodiversity.
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not necessarily positive trends, compared with sites with lower values of the 

driver. For example, trends in taxon richness were higher at sites with higher 

maximum mean temperatures (tmax mean) but lower at sites with higher rates of 

temperature increase (tmax sl.; b). The bars around the estimates indicate 80%, 

90% and 95% CIs. The grey horizontal lines separate the three environmental 

driver groups: climate, dams and land use. Estimates of stream characteristics 

(stream order, flow accumulation, elevation and slope) are shown in Extended 

Data Fig. 6.
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Methods

Time series

We assembled a database of time series of riverine invertebrate com-

munities following a data call targeting European ecologists and envi-

ronmental managers. We included only time series that (1) included 

abundance estimates; (2) documented whole freshwater invertebrate 

communities (including all sampled macroinvertebrates, for example, 

Coleoptera, Crustacea, Diptera, Ephemeroptera, Hirudinea, Mollusca, 

Odonata, Oligochaeta, Plecoptera, Trichoptera, Tricladida); (3) identi-

fied most taxa to family, genus or species; (4) had g8 sampling years 

(not necessarily consecutive); (5) used the same sampling method 

and taxonomic resolution throughout the sampling period; and  

(6) had consistent sampling effort per site (for example, the number 

of samples or area sampled) in all years.

Only one sampling event per year was included for each time series, 

where a sampling event was defined as the sample or samples collected 

within a single day. For time series with multiple sampling seasons 

within or among years, we included only one sampling season (defined 

as three consecutive months), preferentially using the season with 

the longest time series. No time series had multiple sampling events 

per season. Sensitivity analyses indicated limited effects of season 

on trend estimates (Extended Data Fig. 10). We removed taxa that are 

not freshwater invertebrates, including terrestrial and semi-aquatic 

taxa, and vertebrates, in addition to freshwater invertebrates that were 

recorded inconsistently owing to their small size (such as mites, cope-

pods and cladocerans).

Between 13 and 516 taxa were sampled per site across all sampling 

years. Communities from 42% of sites were identified to species, 30% 

were identified to mixed (species-to-family) taxonomic levels and 28% 

were identified primarily to family. In total, 2,648 taxa from 959 genera, 

212 families and 47 groups (primarily orders) were recorded. We list 

time-series locations, durations and characteristics in Supplementary 

Table 2 and list the number of sites sampled per year and country in 

Supplementary Table 3.

Our compiled time series represent different stream types and stream 

orders from a large geographical area of Europe. Data were collected 

for purposes including research projects and regulatory biomonitor-

ing, although detailed information on the purpose is unavailable for 

some time series. These data were not selected randomly but were 

collected from available studies that met our six criteria. As these data 

were collected from sites exposed to varying and unquantified levels of 

anthropogenic impacts, we cannot rule out biases arising from unequal 

representation of sites exposed to different impact levels from severely 

impacted to least impacted.

Community metrics

We calculated taxonomic and functional diversity metrics representing 

freshwater invertebrate communities across sites and over time. We 

also examined different community subsets: native and non-native 

species, and insects and EPT taxa (Ephemeroptera, Plecoptera, Trichop-

tera, that is, mayflies, stoneflies, caddisflies, grouped as an indicator 

of water quality56).

Taxonomic diversity. We calculated total abundance, taxon richness, 

Shannon9s diversity, Shannon9s evenness, rarefied richness (calculated 

on the basis of standardized numbers of individuals) and temporal 

turnover for each site and year. As sampling effort was standardized 

within time series before metric calculation, individual-based rarefied 

richness was used to estimate the number of taxa per given number of 

individuals, based on the lowest number of individuals per sampling 

year in each time series17. We calculated temporal turnover as the ratio 

of taxa gained or lost to the total number of taxa present between two 

timepoints using the R package codyn57. All other taxonomic metrics 

were calculated using the R package vegan58.

Functional diversity. Traits were extracted from the European data-

bases freshwaterecology.info (v.7.0)59 and DISPERSE60. First, we down-

loaded trait data for all taxa. We considered biological traits that influ-

ence both a taxon9s response to and its effects on its environment61,62.  

Specifically, we compiled data on 10 biological traits (with 53 trait mo-

dalities): respiration type, resistance form, dispersal type, aquatic 

stage, life cycle duration, reproduction type, maximum potential body 

size, wing form, propensity to drift and feeding type60,63. For taxa with 

multiple aquatic life stages (primarily beetles), whenever available 

from the trait databases, functional roles were assigned for each life 

stage, otherwise adult traits were used. We included only traits for 

which information was available for >85% of all taxa. All traits were 

fuzzy coded across multiple modalities depending on the informa-

tion available; for example, the trait 8maximum potential body size9 

contains seven modalities ranging from f0.25)cm to >8)cm. Within each 

trait, we scaled affinities to different component modalities between 

0 and 1 (summing to 1 across modalities for each taxon), so that each 

taxon was assigned an affinity score for each modality64, to recognize 

potential trait plasticity.

We took the following steps to fill in gaps due to missing trait data. 

First, when trait data were not available at the original identification 

level (15.9% trait coverage across taxa), we used genus-level trait data, 

resulting in 48.2% coverage. Genus-level trait data are generally suf-

ficient to represent most interspecific variation among freshwater 

invertebrates and thus taxon responses to environmental variability61. 

Next, when genus-level trait data were not available for taxa identified to 

genus, we replaced missing values in trait modalities with the median of 

trait profiles of all species within a genus from the full taxon list, result-

ing in 61.3% coverage. For taxa identified to family level with no available 

data for a given trait, we replaced missing values in trait modalities with 

the median value of trait profiles of all genera within a family, result-

ing in 90.5% coverage across all taxa. The lack of accurate phylogenies 

for many invertebrate taxa, low trait coverage at the species level and 

mixed taxonomic resolution across sampling sites prevented the use 

of other gap-filling approaches, but taxonomic aggregation generally 

aligns well with expert trait assignments65.

We analysed functional diversity separately for each site by calculat-

ing six distance-based metrics chosen to describe multiple facets of 

community niche space and to align with taxonomic diversity met-

rics: functional richness, functional redundancy, functional even-

ness, functional turnover, functional divergence and Rao9s quadratic 

entropy (definitions and citations are provided in Supplementary 

Table 4). All functional metrics except for functional redundancy 

and turnover were calculated using the dbFD function in the R pack-

age FD66. In calculations of functional richness and divergence, we 

used six principal coordinate analysis axes (the dbFD 8m9 argument), 

according to current recommendations67. To enable calculation of 

functional turnover, we calculated community-weighted means of 

each functional trait category weighted by taxa abundance, then 

calculated turnover of the community-weighted means using the R 

package codyn, as for taxonomic temporal turnover57,68. We calculated 

abundance-weighted functional redundancy using the uniqueness 

function in the R package adiv69. We calculated redundancy accord-

ing to a previous report70: community uniqueness (U) was calculated 

as quadratic diversity divided by Simpson diversity and functional 

redundancy was calculated as 1)2)U. The trait input matrix was based 

on Euclidean distances bound between 0 and 1 and the tolerance 

threshold was 1028.

Non-native species. Non-native species were defined as introduced 

species (that is, those present due to human activities, not natural range 

expansion) at the country level (for example, a species native to Bulgaria 

could be non-native in the UK). To identify non-native species, we used 

two databases: DAISIE71 and the Global Alien First Record Database 
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(GAFRD) (v.2)72,73. DAISIE contains non-native species in addition to 

native species defined as invasive because they cause economic loss 

(that is, pest species). GAFRD includes only non-native species but 

is limited to species and countries for which the approximate year 

of introduction is known. From each database, we first extracted all 

species listed for each European country in our dataset. We deter-

mined each species9 country of origin using the Global Biodiversity 

Information Facility74 or peer-reviewed publications, both to eliminate 

native species listed in DAISIE and to check whether species listed as 

non-native in one European country were also non-native elsewhere 

(for example, a North American species marked as non-native in  

Germany in GAFRD would be non-native in all European countries in which  

it occurred).

In total, we identified 61 non-native species. The initial analysis 

of native and non-native species was restricted to the 1,299 sites at 

which taxa were identified to species or a mixed taxonomic resolu-

tion; we excluded the remaining 517 sites due to the coarse (pri-

marily family level) taxonomic resolution, which does not allow for 

reliable identification of non-native species. Estimates of trends in 

non-native species richness and abundance were restricted to the 

898 (of 1,299) sites at which non-native species were recorded. The 

two most abundant non-native species were the New Zealand mud 

snail, Potamopyrgus antipodarum (g1 individual present in g1 year 

at 81% of sites) and the North American bladder snail, Physella acuta  

(34% of sites).

Stream characteristics and environmental predictors

Stream network. We used the MERIT Hydro75 digital elevation model 

(DEM) to delineate the high-resolution Hydrography90m stream net-

work76. To achieve a high spatial accuracy, we used an upstream con-

tributing area of 0.05)km2 as the stream channel initialization threshold 

using the r.watershed and r.stream.extract modules in GRASS GIS77. 

We next calculated the subcatchments for each segment of the stream 

network, that is, the area contributing laterally to a given stream reach 

between two nodes, using the r.basins module. Coordinates indicating 

a site9s location did not always occur in the delineated stream network 

due to spatial inaccuracy of either the DEM or the coordinates. To en-

sure that point occurrences matched the DEM-derived stream network 

and therefore the network topology, we first identified the subcatch-

ment in which each point occurrence was located, then moved all points 

to the corresponding stream segments using the v.net module within 

the given subcatchment. From each point, we calculated the network 

(as the fish swims) distance (km) using the v.net.distance module, and 

the Euclidean (as the crow flies) distance to all other point occurrences 

using the v.distance module. The distance was set to NA when sites 

were located in different drainage basins, and therefore not connected 

through the network.

Environmental predictors. We calculated stream topographical and 

topological predictors using the MERIT Hydro DEM76. Using the r.univar 

module in GRASS GIS, we computed the average elevation (m), elevation 

difference between the site and the upstream subcatchment (m), slope 

and the upstream contributing area (or flow accumulation, km2) for 

each subcatchment. To create a proxy for dam impacts, we calculated 

the network distance between each site and each upstream dam using 

the Global Reservoir and Dam Database (v.1.3)78. For dam impact score 

calculations, see Supplementary equation (1).

We extracted monthly climatic predictors from the TerraClimate 

dataset79 for 196732020, which covered all sites and years. For each site, 

we identified the sampling month and computed the mean monthly 

climatic value for the corresponding subcatchment. We calculated 

climatic predictors of cumulative annual precipitation (mm) and 

maximum monthly temperature (°C) for each 12)month period pre-

ceding the mean sampling month at each site. Trend values in pre-

cipitation and maximum temperature over the period covered by each 

time series were calculated using Bayesian models fitted using the R 

package brms80. These models were similar to those used to calculate 

site-level biodiversity metric trends, in which a trend was estimated as 

the coefficient of a continuous year effect. The TerraClimate dataset 

is associated with uncertainties in areas of complex terrain, but our 

large number of sampling sites, relatively good station coverage and 

the low physiographical complexity of most site locations should have 

minimized error in our analyses.

We calculated the proportion of land cover categories in each sub-

catchment using the ESA CCI Land Cover time series81 for each year from 

1992 to 2018. Land cover data were available for 92% of analysed site 

and year combinations and for 99% of sites. We computed the entire 

upstream catchment for each point occurrence using the r.water.out-

let module and calculated the percentage cover of each land cover 

category within this area. The areas of cropland and urban land were 

calculated as the percentage of the upstream area averaged across the 

sampled years at each site.

A list of the stream characteristics and environmental drivers, their 

units and sources is provided in Supplementary Table 5.

Statistical analysis

Trend analysis. Temporal trends in each taxonomic (abundance, 

richness, Shannon9s diversity, Shannon9s evenness, individual-based 

rarefied richness and temporal turnover), functional (redundancy, rich-

ness, evenness, turnover, divergence and Rao9s quadratic entropy) and 

community subset (taxon richness and abundance of native species, 

non-native species, EPT taxa and insects only) metric were assessed us-

ing a two-step approach. First, we calculated site-level trends for each 

metric using Bayesian linear models fitted using the R package brms80. 

In these models, a biodiversity metric was the response variable and 

year was the continuous predictor variable of which the coefficient 

represented the temporal trend estimate.

The form of the model was: bf(BiodiversityMetric)~)cYear)+)ar(time)

=)iYear,)p)=)1, cov)=)TRUE)).

Fixed-year variables were centred to improve model convergence 

(cYear) and year in the temporal autocorrelation term was included as 

a count with the first year of sampling considered year 1 (iYear). The 

models accounted for any residual temporal autocorrelation using an 

ar(1) term82 and included day of year as an additional predictor when 

variation in sampling dates at a site was >30)days.

The form of the model was: bf(BiodiversityMetric)~)cday_of_

year)+)cYear)+)ar(time)=)iYear, p)=)1, cov)=)TRUE)).

The models assumed normally distributed errors, which were 

checked visually using histograms. Taxonomic evenness, functional 

richness, total abundance and subset abundance (non-native, native, 

EPT and insect abundance) were log10-transformed, and functional 

divergence was squared to meet the normality assumption.

We ran linear mixed-effects models (LMM) in the brms package to 

synthesize site-level data and estimate overall mean trends. The LMM 

included site-level trend estimates as the response, and an overall inter-

cept and two random effects (country and study identity) as predictors. 

These random effects accounted for data heterogeneity due to unequal 

numbers of sites among studies and countries. Site-level trends were 

normally distributed; we therefore assumed normal errors. Site-level 

trends were combined in a meta-analysis model to estimate the mean 

trend across studies, including the uncertainty (represented by the 

s.d.) of the trend estimates, using brms80.

The form of the model was: brm(estimate|se(sd_trend_esti-

mate))~)1)+)(1|study_id))+)(1|country), data)=)response_stan, iter)=)5000, 

inits)=)0, chains)=)4, prior)=)c(set_prior(<normal(0,3)=, class)=)<Inter-

cept=)), control)=)list(adapt_delta)=)0.90, max_treedepth)=)12)).

For each response metric, we calculated the proportion of the pos-

terior distribution of the mean trend estimate (that is, the overall LMM 

intercept) above or below zero, that is, the probability of an increasing 

or decreasing mean trend.



In Bayesian models, we mostly used default brms settings, includ-

ing four chains, which were run for 5,000 iterations (50% burn-in). We 

used default priors except for trend estimates, for which we selected 

a narrower prior to diminish the influence of biologically unrealistic 

trend estimates. Specifically, we used normally distributed priors with 

a mean of zero and an s.d. of 10 (for site-level trends) or 3 (for mean 

site-level trends). We compared our meta-analysis model of trends with 

and without including the uncertainty of site-level trend estimates. 

To optimize model fit, unweighted models were used for non-native 

and EPT abundance, and for EPT taxon richness. Functional turnover 

was fitted using beta models as values were bound between 0 and 1. 

The percentage change per year was calculated by back-transforming 

model estimates. Back-transformation calculations varied according to 

the originally modelled transformations of response variables (see the 

8equationsToPercChangePerYr.xlsx9 file in the 8plots/Fig2_DensityPlots9 

folder at https://github.com/Ewelti/EuroAquaticMacroInverts). We 

further tested a one-stage synthesis approach in which mean trends 

were estimated in one large mixed-effect model of the observed data, 

including random intercepts and slopes. Overall, these models pro-

duced similar trend results (see figure 16 in the 8Online Figures.docx9 

file in the 8plots9 folder at https://github.com/Ewelti/EuroAquatic-

MacroInverts).

Moving-window analysis. To assess how estimates of trends in abun-

dance and taxonomic and functional diversity changed over time, we 

used a moving-window approach. We used a similar two-stage process 

as described above. For each year of the analysis, we calculated trends 

within a ten-year window in which all time series with g6 sampling 

years and from g8 countries were included. A ten-year window was 

chosen according to current recommendations regarding times-series 

length83,84 and six was chosen as the number of sampling years cover-

ing >50% of each ten-year period. This analysis was restricted to the 

period between a first moving window from 1990 to 1999, in which 

any time series with g6 sampling years was included, to a final window 

from 2011 to 2020. After estimating site-level trends centred on each 

year of the moving window, we ran a Bayesian LMM for each year to 

estimate the overall mean trends across sites in that time period. These 

models followed the same form as used to calculate trend estimates, 

containing the predictor variables of trends including an error term to 

account for uncertainty, an overall intercept, and study identity and 

country as random effects (see the equation in the 8Trend analysis9 

section).

To test for an overall linear change in the trajectory of moving-window 

trends, we modelled the effect of year on moving-window trend esti-

mates using brms80.

The form of the model was: brm(MovingWindowTrend|se(sd_trend_

estimate))~)year, data)=)moving_window_trends, iter)=)5000, inits)=)0, 

chains)=)4, prior)=)c(set_prior(<normal(0,3)=, class)=)<Intercept=)), con-

trol)=)list(adapt_delta)=)0.90, max_treedepth)=)12)).

These models identified a linear decline in trends in taxon richness 

and a tendency for decline in functional richness trends over time (see 

figure 21 in the 8Online Figures.docx9 file in the 8plots9 folder at https://

github.com/Ewelti/EuroAquaticMacroInverts).

We examined the proportion of sites with positive trends and how 

this proportion changed through time for our key biodiversity met-

rics of taxon richness, abundance, functional richness and functional 

redundancy. To do this, we used site-level moving-window trends and 

estimated the proportion of sites with positive trends in each year. 

We repeated this calculation for each posterior draw to propagate 

through site-level uncertainty to the overall mean proportion and 

estimated 80%, 90% and 95% CIs. To ensure this proportion was not 

driven by studies with especially large numbers of sampling sites, we 

weighted each site by the inverse of the number of sites in each study. 

This complements the moving-window analysis by examining whether 

the emerging mean trends are typical of site-level patterns. This analysis 

was based only on trend direction and not trend magnitude and was 

therefore less affected by any noise contributed by studies with trends 

at the extremes.

An important caveat of the moving-window analysis is that differ-

ent sites are included in different moving windows. Supplementary 

Table 6 lists the number of sites per window in each country. Although 

we accounted for the heterogeneity of site distribution across studies 

and countries within years, models cannot correct for the changing 

number of sampled sites across years. We cannot fully discount the 

possibility that biases in the characteristics of sites sampled across 

time affected trajectory results. We therefore conducted two additional 

moving-window analyses to investigate this, the first limited to sites 

with long-term data and the second limited to sites with species-level 

taxonomic resolution. The first additional analysis initially included 

only sites with g20 sampling years between 199032020, although 

moving windows with start years of 1990 and 1991 were excluded as 

they included <200 sites. This analysis included 308 sites from 8 coun-

tries. The second analysis included sites with species-level taxonomic 

data and windows covering 199032020 with >200 sites, resulting in win-

dows from 199432003 to 201132020. The species-level moving-window 

analysis included 717 sites from 14 countries. Apart from the sites 

included, models were identical to our original moving-window analy-

ses described above. These alternative moving-window analyses found 

similar declines in the trend of taxon richness over time (see figures 

22325 in the 8Online Figures.docx9 file in the 8plots9 folder at https://

github.com/Ewelti/EuroAquaticMacroInverts).

Analysis of environmental predictors. We assessed responses of 

biodiversity metrics to climate (both the mean and the trend over 

the time series9 durations) and upstream land cover (as the annual 

mean cover value during the sampling period), dam impact score and 

subcatchment characteristics (Supplementary Table 5). We did not 

include upstream land-use trends as most sites exhibited low variation: 

cropland cover changed by a mean of 20.002% per year)±)0.11 s.e.m., 

with no change detected at 634 sites; urban cover changed by 2.48% 

per year)±)0.14 s.e.m., but with no change detected at 803 sites. To ex-

amine relationships between environmental drivers and biodiversity 

trends, we modelled trend estimates using an LMM, incorporating 

trend errors as for the calculation of the overall trend, including all 

predictor variables as fixed effects, and study identity and country 

as random effects.

The form of the model was: brm(estimate|se(sd))~)Precip-

Trend)+)TempTrend)+)PrecipMean)+)TempMean)+)StreamOrder)+)Accu-

mulation)+)Elevation)+)Slope)+)Urban)+)Crop)+)DamScore)+)(1|study_

id))+)(1|country),)=)response_stan, iter)=)5000, chains)=)4, prior)=)prior1, 

control)=)list(adapt_delta)=)0.90, max_treedepth)=)12)).

We ran models using the R package brms80. We standardized pre-

dictor variables to unit s.d. to facilitate comparison of their relative 

importance. We used regularizing horseshoe priors on environmental 

covariates that pull unimportant covariate effects towards zero to 

avoid overfitting. Our analysis of drivers focused on site-level variation 

in long-term trends, and not temporal variation in short-term trends 

examined in the moving-window analysis. Thus, our driver analysis 

cannot be used to understand recent changes in trends. To further 

examine whether biodiversity trends were positive or negative across 

the range of driver values, we used R package marginaleffects85 to visual-

ize responses to drivers while holding other driver covariates at their 

median. Predicted trends complement the effects on trends shown in 

Fig. 4 (see figures 28334 in the 8Online Figures.docx9 file in the 8plots9 

folder at https://github.com/Ewelti/EuroAquaticMacroInverts).

Model checking. All models run to quantify biodiversity trends and 

responses to drivers were evaluated by plotting the posterior samples 

to confirm chain convergence, examining R-hat values (<1.1)86 and es-

timating Pareto shape parameters using the argument pareto_k_table 
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in the R package loo87. For trend models and across the 20 examined 

biodiversity metrics, an average of 99.5% of the 1,816 sites had shape 

parameter estimates of k)<)0.7 (a threshold for good model perfor-

mance). For environmental driver models, an average of 99% of the 

1,816 sites had shape parameter estimates of k)<)0.7.

Sensitivity analysis. To check the robustness of our results to analyti-

cal decisions, we ran multiple sensitivity analyses for all biodiversity 

metrics. We tested the effects on trend estimates of (1) taxonomic reso-

lution, by rerunning meta-analysis models with resolution (family, 

mixed, and species) as an additional fixed factor; (2) sampling season, 

by rerunning meta-analysis models (described in the 8Trend analysis9 

section) with season (winter, spring, summer and fall) as an additional 

fixed factor; and (3) country, using a jackknife resampling analysis in 

which the meta-analysis was rerun after sequentially removing coun-

tries. Models were otherwise similar to those presented above. Scripts 

for sensitivity analyses are available at GitHub (https://github.com/

Ewelti/EuroAquaticMacroInverts (HPC_Sensitivity_analysis.R and 

HPC_Meta_analysis_country_jackknife).

Some caution is advised when inferring conclusions from a dataset 

including different levels of taxonomic resolution or different seasons. 

However, intra-site sampling was consistently within one season or 

taxonomic resolution, so intra-site trends were not affected by these 

differences. Neither taxonomic resolution nor season had strong direc-

tional effects on trend estimates, with error bars generally overlapping. 

Patterns across taxonomic resolutions and sampling seasons were gen-

erally similar to those presented in Fig. 2 (Extended Data Figs. 9 and 10). 

Trends of taxonomic richness were robust to one-country removal but 

abundance trends became more strongly positive on removal of data 

from some countries, suggesting geographical variability in abundance 

trends (see figure 17 in the 8Online Figures.docx9 file in the 8plots9 folder 

at https://github.com/Ewelti/EuroAquaticMacroInverts).

We analysed the effect of the number of sampling years in a time 

series on observed trends using simple linear regression. The num-

ber of sampling years did not affect trend estimates of taxon richness 

(R2)<)0.001), abundance (R2)<)0.001), functional richness (R2)=)0.004) or 

functional redundancy (R2)<)0.001) (see figure 14 in the 8Online Figures.

docx9 file in the 8plots9 folder at https://github.com/Ewelti/EuroAquat-

icMacroInverts).

Reporting summary

Further information on research design is available in the Nature Port-

folio Reporting Summary linked to this article.

Data availability

All data needed to reproduce analyses including metadata, site char-

acteristics and values of each metric (for example, species richness, 

functional richness) for each site and year are available at Figshare 

(https://doi.org/10.6084/m9.figshare.22227841). Biodiversity compo-

sition data are available at GitHub (https://github.com/Ewelti/EuroA-

quaticMacroInverts/raw-data).

Code availability

Annotated R code is available at GitHub (https://github.com/Ewelti/

EuroAquaticMacroInverts).
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Extended Data Fig. 1 | Trend estimates for community subsets. Overall 

estimates and distributions of trends in a, non-native species richness,  

b, non-native abundance, c, native taxon richness, d, native abundance,  

e, Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxon richness, f, EPT 

abundance, g, insect taxon richness, and h, insect abundance. Bars around 

estimates indicate 80%, 90%, and 95% credible intervals. Trend estimates for 

native taxa (c, d) are restricted to the 1,299 sites at which taxa were identified to 

species or a mixed taxonomic resolution. Trend estimates for non-native 

species (a, b) are restricted to the 898 (of 1,299) sites at which non-native 

species were detected. Incorporating the remaining 394 (30.1%) of the 1,299 

sites (i.e. those with no detected non-native species) as having trends = 0 

resulted in an average increase of 2.75% y21 in richness and 2.79% y21 in 

abundance.



Extended Data Fig. 2 | Trend estimates for additional biodiversity metrics. 

Overall estimates and distributions of trends in a, Shannon9s diversity,  

b, rarefied taxon richness, c, functional divergence, and d, Rao9s quadratic 

entropy (n)=)1,816 biologically independent sites for all metrics). Bars around 

estimates indicate 80%, 90%, and 95% credible intervals.
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Extended Data Fig. 3 | Moving window trends for additional biodiversity 

metrics. Estimated trends in a, Shannon9s evenness, b, taxonomic turnover,  

c, functional evenness, and d, functional temporal turnover. Estimates were 

calculated from Bayesian mixed-effects models of trends from g250 time 

series with g6 years of data from g8 countries within 10-year moving windows. 

Grey polygons indicate 80, 90, and 95% credible intervals.



Extended Data Fig. 4 | Estimated effects of environmental drivers on 

temporal trends in additional biodiversity metrics. Estimated effects of the 

mean (tmax mean) and trend (tmax sl. [slope]) of annual maximum temperature, 

mean (ppt mean) and trend (ppt sl.) of annual precipitation, dam impacts 

(dam), and the percentage of the upstream catchment covered by urban areas 

and cropland on temporal trends in a, Shannon9s diversity, b, rarefied taxon 

richness, c, functional (func.) divergence, and d, Rao9s quadratic entropy (Q) 

(n)=)1,816 biologically independent sites for all metrics). Bars around estimates 

indicate 80%, 90%, and 95% credible intervals. Grey, horizontal lines separate 

the three environmental driver groups: climate, dams, and land use.
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Extended Data Fig. 5 | Estimated effects of environmental drivers on 

biodiversity metrics representing community subsets. Estimated effects  

of the mean (tmax mean) and trend (tmax sl. [slope]) of annual maximum 

temperature, mean (ppt mean) and trend (ppt sl. [slope]) of annual precipitation, 

dam impacts (dam), and the percentage of the upstream catchment covered by 

urban areas and cropland on temporal trends in a, non-native species richness, 

b, native taxon richness, c, EPT richness, d, insect richness, e, non-native 

abundance, f, native abundance, g, EPT abundance, and h, insect abundance. 

Trend estimates for native taxa (b, f) are restricted to 1,299 sites at which taxa 

were identified to species or a mixed taxonomic resolution. Trend estimates  

for non-native species (a, e) are restricted to the 898 (of 1,299) sites at which 

non-native species were detected. Bars around estimates indicate 80%, 90%,  

and 95% credible intervals. Bars around estimates indicate 80%, 90%, and 95% 

credible intervals. Grey, horizontal lines separate the three environmental driver 

groups: climate, hydrology, and land use.



Extended Data Fig. 6 | Estimated effects of stream characteristics on 

biodiversity metrics. Estimated effects of slope, elevation, flow accumulation 

(accum.) and Strahler stream order (str. order) on temporal trends in a, taxon 

richness, b, abundance, c, evenness, d, turnover, and functional (func.)  

e, richness, f, redundancy, g, evenness, and h, turnover (n = 1,816 biologically 

independent sites for all metrics). Bars around estimates indicate 80%, 90%, 

and 95% credible intervals.
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Extended Data Fig. 7 | Estimated effects of stream characteristics on 

additional biodiversity metrics. Estimated effects of stream characteristics 

of slope, elevation, flow accumulation (accum.) and Strahler stream order (str. 

order) on temporal trends in a, Shannon9s diversity, b, rarefied taxon richness, 

c, functional (func.) divergence, and d, Rao9s quadratic entropy (n = 1,816 

biologically independent sites for all metrics). Bars around estimates indicate 

80%, 90%, and 95% credible intervals.



Extended Data Fig. 8 | Estimated effects of stream characteristics on 

taxon richness and abundance of taxa subsets. Estimated effects of slope, 

elevation, flow accumulation (accum.) and Strahler stream order (str. order) on 

temporal trends in a, non-native species richness, b, native taxon richness,  

c, EPT richness, d, insect richness, e, non-native abundance, f, native abundance, 

g, EPT abundance, and h, insect abundance. Trend estimates for native taxa (b, f) 

are restricted to 1,299 sites at which taxa were identified to species or a mixed 

taxonomic resolution. Trend estimates for non-native species (a, e) are 

restricted to the 898 (of 1,299) sites at which non-native species were detected. 

Bars around estimates indicate 80%, 90%, and 95% credible intervals.
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Extended Data Fig. 9 | Sensitivity of biodiversity metric responses to 

taxonomic identification level. Error bars represent 95% credible intervals. 

Overlapping error bars indicate comparable trend estimates for analyses at 

species (n)=)762), genus/mixed (n)=)537) and family (n)=)517) taxonomic levels; 

Func., functional; Est., estimated trend.



Extended Data Fig. 10 | Sensitivity of biodiversity metric responses to 

sampling season. Error bars represent 95% credible intervals. The largest 

differences between seasons were found for winter, which likely reflects the 

low number of sites sampled in this season (winter n)=)5, spring n)=)623, summer 

n)=)473, fall n)=)715). Func. refers to functional; Est. refers to trend estimates.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No software was used in data collection.

Data analysis Annotated R (ver. 4.2.2); all scripts are available at GitHub: https://github.com/Ewelti/EuroAquaticMacroInverts

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Metadata, site characteristics, and trend estimates are available on GitHub: https://github.com/Ewelti/EuroAquaticMacroInverts. Raw biodiversity data will be made 

available in the same GitHub repository and to the BioTime database following acceptance and a six-month embargo.
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Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Does not apply to our study

Reporting on race, ethnicity, or 

other socially relevant 

groupings

Does not apply to our study

Population characteristics Does not apply to our study

Recruitment Does not apply to our study

Ethics oversight Does not apply to our study

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description The study is a meta-analysis of 1,816 time series of freshwater macroinvertebrate communities to examine biodiversity trends over 

time and across Europe. Overall estimates of slopes of biodiversity metrics were calculated using a Bayesian hierarchical model (2-

step model). Step 1 involved calculating individual slopes for each time series. Step 2 involved an calculating overall estimate and an 

overall intercept and two random effects (country and study identity) as predictors.

Research sample Data were collected from previous studies and assembled from a data call.

Sampling strategy No sample-size calculation was preformed. Time series were included in analyses when they met selection criteria, resulting in a 

collection of 1,816 time series.

Data collection Data were assembled from a data call to European ecologists and environmental managers. Peter Haase put out the data call and 

Ellen Welti assembled data from data providers.

Timing and spatial scale All of the 1,816 time series contain annual sampling of a minimum of 8 years of data. All time series combined span the period of 

1968-2020.

Data exclusions All time series obtained in the data call were included if they met the pre-selected criteria of: 1) inclusion of abundance estimates, 2) 

surveyed whole freshwater invertebrate communities (not restricted to certain taxonomic groups, such as insects), 3) identified most 

major taxa to family, genus or species, 4) had a minimum of eight sampling years (not necessarily consecutive), 5) had no changes in 

sampling method or taxonomic resolution during the sampling period, and 6) had consistent sampling effort per site (e.g. number of 

samples or area of river sampled) across years. 

Reproducibility No new experiments were performed in this meta-analysis. All code, meta-data, and slope estimates are provided on Github: https://

github.com/Ewelti/EuroAquaticMacroInverts

Randomization The study is a meta-analysis of pre-collected time series data, and does not including new experimental designs requiring 

randomization. When testing for overall estimates of change in biodiversity metrics over time, study and country were included in 

models as random effects.

Blinding Blinding was not relevant to this study.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals The study did not involve laboratory organisms.

Wild animals Data include time series from previous studies of field collections of freshwater macroinvertebrates. Macroinvertebrates were killed 

to identify specimens in these studies. Details are provided in the Methods and Supplemental Tables.

Reporting on sex Does not apply to our study.

Field-collected samples Data include time series from previous studies of field collections of freshwater macroinvertebrates. Macroinvertebrates were killed 

to identify specimens in these studies. Details are provided in the Methods and Supplemental Tables.

Ethics oversight No ethical approval or guidance was required as data were collected only from previous studies.

Note that full information on the approval of the study protocol must also be provided in the manuscript.


