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Owingto along history of anthropogenic pressures, freshwater ecosystems are
among the most vulnerable to biodiversity loss'. Mitigation measures, including
wastewater treatment and hydromorphological restoration, have aimed toimprove
environmental quality and foster the recovery of freshwater biodiversity?. Here, using
1,816 time series of freshwater invertebrate communities collected across 22
European countries between 1968 and 2020, we quantified temporal trends in
taxonomic and functional diversity and their responses to environmental pressures

and gradients. We observed overallincreases in taxon richness (0.73% per year),
functional richness (2.4% per year) and abundance (1.17% per year). However, these
increases primarily occurred before the 2010s, and have since plateaued. Freshwater
communities downstream of dams, urban areas and cropland were less likely to
experience recovery. Communities at sites with faster rates of warming had fewer
gainsintaxonrichness, functional richness and abundance. Although biodiversity
gainsinthe1990s and 2000s probably reflect the effectiveness of water-quality
improvements and restoration projects, the decelerating trajectory in the 2010s
suggests that the current measures offer diminishing returns. Given new and
persistent pressures on freshwater ecosystems, including emerging pollutants,
climate change and the spread of invasive species, we call for additional mitigation to
revive the recovery of freshwater biodiversity.

Freshwater ecosystems are biodiversity hotspots and provide vital
ecosystem services, including drinking water, food, energy and rec-
reation. However, humans have degraded freshwaters for centuries,
with impacts sharply increasing after World War Il during the great
acceleration®. Freshwaters are exposed to anthropogenic pressures
from agricultural and urban land uses over whole catchments, accu-
mulating pollutants, including phosphorus, organic-rich effluents, fine
sediments, pesticides and emergent pollutants (such as nanoplastics
and pharmaceuticals)*’. Furthermore, freshwaters have been degraded
by hydromorphological alterations, water extraction, invasive spe-
cies and climate change®’. In response to legislation such as the US
Clean Water Act (1972) and the EU Water Framework Directive (2000),
key countermeasures designed to improve water quality and restore
freshwater habitats were implemented, including better wastewater
treatment and controls on the emission of airborne pollutants. These
actions resulted in considerable declines in organic pollution and
acidification beginning around 19808. Over the past 50 years, such
mitigation measures have resulted in quantifiable improvements in
freshwater biodiversity in somelocations’®, yet the number and impacts
of stressors threatening freshwater ecosystems continues toincrease
worldwide and the biological quality of rivers remains poor globally".

Freshwater invertebrates are a phylogenetically and ecologically
diverse group that contribute to critical ecosystem processes, includ-
ing decomposing organic matter, filtering water, providing energy to
higher trophiclevels, and transporting nutrients and energy between
aquatic and terrestrial ecosystems'>"®>. Moreover, freshwater inverte-
brates have longbeen a cornerstone of water-quality monitoring. The
biological traits of freshwater invertebrates are well characterized,

enabling the assessment of functional diversity—the range of functional
traits of the organisms in a given ecosystem'*—an important facet of
biodiversity that can be used as a proxy for ecosystem functioning'>*¢.
However, trajectories of taxonomic and functional diversity have rarely
beeninvestigated simultaneously at larger spatial and temporal scales.
Determining the trajectories of taxonomic and functional change could
inform the development of evidence-based management strategies
that address stressors through mitigation, restoration and conserva-
tion. Furthermore, how temporal changes in biodiversity manifest
across large spatial scales and vary among taxonomic groups remains
equivocal”?, Examining whole ecological groups representative of
a particular ecosystem (for example, freshwater invertebrate com-
munitiesinriver ecosystems) may help to clarify discrepancies across
studies and identify key drivers of temporal change.

Here we analysed pan-European patterns and drivers of multidecadal
trendsinabundance and taxonomic and functional diversity of inverte-
brate communities using acomprehensive dataset of 1,816 time series
collected inriverine systems in 22 European countries between 1968
and 2020 (Fig.1). The dataset comprises 714,698 observations of 2,648
taxain26,668 samples. The time series span amean o0f19.2 years with an
average of 14.9 sampling years (minimum 8 years, maximum 32 years).
We address two research questions: (1) how abundance, taxonomic
diversity and functional diversity of freshwater invertebrate communi-
ties have changed over the past five decades in European streams and
rivers; and (2) what environmental factors have driven these changes.
Giventhat Europe-wide management has resulted inimprovementsin
water quality>*°, we hypothesize that abundance, taxonomic diversity
and functional diversity have increased, consistent with arecovery.

A list of authors and their affiliations appears at the end of the paper.
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Fig.1|Timeline and datadistribution. a, A timeline of major stressors (above
theline) and environmental legislation (below the line) affecting Europe’s
freshwater ecosystems (citations are provided in Supplementary Table1).
UN/ECELTRAP, United Nations Economic Commission for Europe Long-Range
Transboundary Air Pollution. b, The sampling sites (points) and the rate of

We further hypothesize that freshwater invertebrate community recov-
ery was strongest around the end of the previous century after the
onset of concerted efforts to mitigate stressor impacts and restore
ecosystems, but has slowed inrecent years owing to diminishing returns
ontheseactionsinadditiontoremainingand new pressuresincluding
climate change, land-use intensification and emerging pollutants. We
assessed evidence for negative impacts of multiple human pressures,
including dams, urban areas and cropland, and increasing tempera-
tures, while accounting for subcatchment characteristics (such as
elevation and stream size). We used hierarchical Bayesian models to
estimate trends and identify drivers of change in abundance and taxo-
nomic and functional diversity of Europe’s freshwater invertebrate
communities, while accounting for temporal autocorrelation, sampling
date and sampling variation across studies and countries.

Recovery of Europe’s freshwater invertebrate
communities

Across all time series, taxon richness increased by 0.73% per year,
whereas abundance increased by 1.17% per year between 1968 and
2020 (Fig. 2a,b), substantiating previous documentation of a recov-
ery process'®*?2, The probabilities of trends derived from posterior
distributions (that s, the probability of the mean trend being above or
below zero) revealed 0.99 and 0.91 probabilities of ameanincreasein
taxonrichness and abundance, respectively. Despite these net-positive
trends, taxon richness declined at 30% of sites and abundance declined
at39% of sites. Abundance trends for EPT taxa (mayflies, stoneflies and
caddisflies—an indicator group of water quality?®) and insects increased
(EPT, +2.38% per year, 0.97 probability; insects, +1.53% per year, 0.95
probability) at higher net rates than the overall trends. EPT richness
(+0.45% per year, 0.82 probability) and insect richness (+0.71% per
year, 0.99 probability) trends increased, but at net rates lower than
the overall trends (Extended Data Fig. 1).
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temporal changein taxonrichness of freshwater invertebrate communities
(colour of points) across 22 European countries (black). ¢, The distribution of
sampling sites over time and countries. ‘Other’ includes countries with fewer
than50 samplingsites.

Freshwater ecosystems are frequently invaded by non-native spe-
cies’. We therefore examined whether changes in abundance and
richness were driven by these taxa. Non-native species comprised an
average of 4.9% of the species and 8.9% of the individuals at the 1,299
sites for which the taxonomic resolution allowed detection. Thus, native
species dominated most communities (with 99.9% of sites comprising
>50% native species). When considering only native taxa, trendsinrich-
ness (+0.64% per year, 0.98 probability) and abundance (+0.26% per
year, 0.61 probability) remained positive, but less so than overall net
trends (Fig. 2 and Extended Data Fig. 1). For sites at which non-native
species were detected (898 out 0f 1,299 sites), non-native species rich-
ness (+3.97% per year, 0.99 probability) and abundance (+3.9% per year,
0.95 probability) increased sharply (Extended Data Fig. 1).

Functional diversity, which describes the value and range of functional
traits of the organismsin agiven ecosystem™ (Supplementary Table 4),
alsoincreased over the 53-year study period. Functional richness, which
quantifies the functional space filled by acommunity, increased on aver-
age by 2.4% per year (0.99 probability of increase; Fig. 2e). Functional
redundancy—a measure of overlap in functional trait space—had no
strong trend (+0.03% per year, 0.64 probability of increase; Fig. 2f). By
contrast, functional evenness declined (-0.22% per year, 0.96 probability
of decrease; Fig. 2g), as did taxonomic evenness (—0.54% per year, 0.99
probability; Fig. 2c). Similarly, functional temporal turnover (-0.32% per
year, 0.97 probability; Fig. 2h) and taxonomic temporal turnover declined
(-0.2% per year, 0.87 probability; Fig. 2d). Together, these results suggest
that functional diversity trends largely paralleled those of taxonomic
diversity. Model estimates and raw distributions of trends for additional
taxonomic and functional metrics are shown in Extended Data Fig. 2.

Gains inspecies richness have come to a halt

While overall net trends provide an overview across the entire study
period and enable comparison with other long-term biodiversity
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Fig.2|Averages and distributions of trends in taxonomic and functional
diversity metrics. a-h, Overall meta-analysis estimates and distributions of
site-level trends for taxonomic metrics of taxon richness (a), abundance (b),
Shannon’s evenness (c) and turnover (d), and functional metrics of richness (e),
redundancy (f), evenness (g) and turnover (h) across all 1,816 sites. The black
error bars and text on each panel show the mean estimates (percentage change
peryear). Theerrorbarsindicate the 80%,90% and 95% Cls.

studies™®?*, they may mask important shorter-term temporal fluc-
tuations in trends. Thus, to provide more nuanced, complementary
trend information, we used a ten-year moving-window approach to
examine the trajectories of freshwater invertebrate community change
over time. Nonlinear trajectories were expected due to temporal varia-
tioninpressures and the implementation of mitigation measures®. To
improve spatial representativity and comparability across years, only
years with at least 250 sites from at least 8 countries were included,
correspondingto the period 0f1990 t0 2020.

Although trends in taxon richness were generally positive, indicat-
ingincreasesinlocal richness through time, this effect became weaker
over the decades (mean changein trends = —8.8% per year, 95% credible
interval (CI) range: -13.6% to —3.8% per year). Trends in taxon richness
started declining around 2010 and then levelled off, reaching an aver-
age of net zero around 2013 (Fig. 3a), indicating an end to the preced-
ing recovery period. When considering only the dominant pattern
as measured by the proportion of positive trends, the proportion of
sites withincreasing taxonrichness declined after windows centred on
the early 2000s (Fig. 3e). Functional richness trends were more vari-
able, with the highest trends evident for windows centred on2000 and
2010, and near net zero trends after 2010 (Fig. 3¢). Functional richness
trends had an overall tendency to decline (mean change in trends of
functional richness = -5.9% per year, 95% Cl range: -12% to +0.1% per
year). Temporal changes in the proportion of sites with positive func-
tional richness trends were similar to those reported for taxonrichness
(Fig.3e,g). Trendsin abundance (Fig. 3b,f) and functional redundancy
(Fig. 3d,h) changed little over time (that is, CIs overlapped with zero
in an analysis of the change in trend estimates over time), although
abundance trends tended to decline from windows centred on 2010
until the end of the study period.

Although similar trends in taxonomic and functional metrics were
expected due to functional variation being constrained by taxonrich-
ness, functional diversity can be more responsive to environmental
gradients?. However, changes in functional diversity have rarely
been quantified in large-scale investigations of temporal change in
biodiversity??%. A switch from primarily positive trends in functional
richness in the late 1990s and early 2000s to near-zero trends start-
ing around 2012 (Fig. 3c) may suggest no further improvements in
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ecosystem functioning. The concurrent limited change in functional
redundancy (Fig. 3d) indicates that the increase in functional richness
provided new traits to these communities rather than adding traits
that were already present. Both taxonomic and functional trends in
evenness and turnover remained near zero or slightly negative over
time (Extended Data Fig. 3).

Environmental drivers of biodiversity change

Identifying the natural and anthropogenic drivers of biotic change is
critical toinform effective management strategies. Here we show that
climate, damimpacts, and the percentage of upstreamurban areas and
cropland (both sources of pollution and causes of habitat degrada-
tion) can all be linked to trends in taxonomic and functional metrics
representing Europe’s freshwater invertebrate communities (Fig. 4
and Extended Data Figs. 4 and 5).

Climate strongly influenced freshwater invertebrate communities
(Fig. 4). Overall, sites experienced a netincrease in air temperature of
+0.037 °C per year + 0.0007 s.e.m. (with 94% of sites warming) and a
slight netincrease in precipitation of +0.49 mm per year + 0.12s.e.m.
(with 57% of sites getting wetter) over the studied intervals. Sites in
areas with higher mean air temperatures were more likely to gain taxa
(Fig. 4) compared with those in cooler areas. This may indicate that
climate warming has not yet reached critical values for many European
freshwater invertebrates, consistent with previous predictions for
ectotherms in temperate regions?>°. Alternatively, lower recovery
rates for bioticcommunitiesin cooler areas could reflect the less severe
degradation of northern sites before recovery started. By contrast,
more warming over time had negative biodiversity outcomes, with
negative effects onlong-term trends of taxon richness, abundance and
functional richness (Fig. 4). Mean precipitation had a positive effect
on long-term trends of functional richness but a negative effect on
long-termtrends of abundance and functional redundancy, indicating
the addition of functionally unique taxa at wet sites. However, greater
increasesin precipitation over time had anegative effect onlong-term
trends of both taxonomic and functional richness (Fig. 4). Precipitation
caninfluenceinvertebrate communities and their functioning by alter-
ing flow regimes (and therefore water quality and temperature through
changes in runoff, discharge and dilution) and food availability®.

Biodiversity trends were generally lower at sites downstream of dams
and in catchments with a high percentage of urban areas or cropland.
High dam impacts (that is, those in systems connected to more dams
and/or closer to dams) had negative effects on long-term trends in
taxonrichness, abundance, functional richness and functional redun-
dancy (Fig. 4). Dams increase sediment loads, reduce longitudinal
connectivity, and change river flow and temperature regimes® 3,
By contrast, high damimpacts had apositive effect on long-term trends
of both taxonomic and functional evenness, suggesting that domi-
nant species declined in abundance in communities downstream of
dams, whereas richness losses were more pronounced for rare spe-
cies. Furthermore, increases in functional evenness, accompanied
by decreases in functional richness and redundancy, could reflect
selection for a subset of traits that confer tolerance of the conditions
downstream of dams, including altered resource availability and hydro-
morphological homogenization. A greater percentage of upstream
cropland had a negative effect on long-term trends in taxonomic and
functional richness and abundance. Cropland frequently contributes
to nutrient-enriched runoff, leaving primarily tolerant taxa*. A greater
percentage of upstream urban areas had negative effects on taxon
richness long-term trends (Fig. 4), but positive effects on non-native
richness long-termtrends (Extended Data Fig. 5a), suggesting losses of
rare and sensitive native species. Biodiversity trends varied little with
stream characteristics, although sites at higher elevations had lower
gainsin functional richness, potentially due to rising temperatures (as
evidenced by aweak positive correlation between temperature trends
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the proportion of sites with positive trend estimates of taxon richness (e),
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estimates were calculated from Bayesian mixed-effects models of trends from
atleast 250 time series with at least 6 years of data from at least 8 countries
within10-year moving windows (totalling 21,495 time-series segments). The

and elevation; r= 0.15)*. Larger rivers became relatively more prone to
invasion by non-native species® (Extended Data Figs. 6-8).

Reviving the recovery

Using acomprehensive Europe-wide dataset, we document the recov-
ery of freshwater invertebrate communities over the past 53 years. The
taxon richness gains observed across 70% (1,269 out of 1,816) of time
series are concurrent with widespread implementation of mitigation
measures®, particularly improvements in wastewater treatment moti-
vated by the EU Urban Waste Water Directive from1991. However, gains
intaxonrichnessstarted to decelerate around 2010, which may indicate
that progress towards recovery has come to a halt at many sites, while
remaining sites may reflect either predominant recovery or ongoing
degradation towards the end of the study period. Most of our sites are
monitored under the EU Water Framework Directive (WFD) and 60% of
WFD-monitored rivers still do not reach ‘good ecological status’. Even
at ‘good’ sites, considerable recovery could be needed to reach ‘high
ecological status’, suggesting that improvements documented here
represent only apartial recovery of European freshwater ecosystems.

Regardless of the reason for the deceleration, theimpactsto Europe’s
rivers caused by ongoing pressures remain extensive and severe®?$,
Although our observational data prevent confirmation of the underly-
ing causal processes, our interpretation of the overall recovery being
aresponse to improving water quality aligns with the conclusions of
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proportions are based on whether site-level trend estimates of these
time-series were above zero or not. For trend estimates ina-d, blue and red
areasindicate the overall positive (>0) and negative (<0) mean trend estimates
forthe given10-year window, respectively, and the grey polygonsindicate the
80%,90% and 95% Cls. For site proportionsine-h, blueandred areasindicate a
larger proportion of positive (>50% of sites) and negative (<50% of sites)
site-level trend estimates for the given 10-year window, respectively, and the
grey polygonsindicate 80%,90% and 95% Cls.

otherstudies of European freshwater invertebrate time series®. Nega-
tive effects of poor water quality on biodiversity are supported by our
findings that freshwater invertebrate communities downstream of
dams, urban areas and cropland were less likely to experience biodi-
versity recovery. Urban areas produce the majority of micropollutants,
are hubs of non-native species invasions (Extended Data Fig. 5a) and
generate high-nutrient inputs, whereas croplands are sources of fine
sediment*’, pesticides and nutrient-laden runoff*, and greatly con-
tribute toriver salinization*2. Most European rivers bear a substantial
legacy of human impacts on their hydromorphology®3#, with urban
areas being the most affected, despite considerable river restoration
inrecent decades*. The positive effects of higher mean temperatures
on long-term trends in invertebrate richness probably reflect the
lower initial degradation in northern European countries. This may
alsoreflect the relatively cool temperatures in European countries,
whereas decreases in invertebrate richness are currently expected
in freshwaters of warmer bioregions, such as tropical regions, which
are not represented in our study*. However, the negative effects on
long-term trends of taxon richness, abundance and functional richness
in communities experiencing greater rates of warming are worrying.
These effects are likely to worsen as temperatures continue to rise
and as climatic extremes including summer droughts and heatwaves
become more common®,

Considering that environmental legislation and policy have insuffi-
ciently addressed ongoing and emerging stressors®, the stalled recovery
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Fig.4|Estimated effects of environmental drivers onbiodiversity trends. a-
h, Estimated effects of the mean (¢,,,, mean) and trend (¢,,,, slope (sl.)) of annual
maximum monthly mean temperatures, mean (ppt mean) and trend (pptsl.) of
the annual cumulative precipitation, the damimpactscore (dam) and the
percentage of the upstream catchment covered by urban areas and cropland on
site-levellong-termtrend estimates for taxon richness (a), abundance (b),
evenness (c) and turnover (d), and functional richness (e), redundancy (f),
evenness (g) and turnover (h). n=1,816 biologically independent sites for all
metrics. Positive and negative estimates are showninblueandred, respectively.
For climatic drivers, mean values refer to mean long-term values at each site
andrepresent geographical variation; trends were calculated by regressing
annual mean values against year, using the coefficient as an estimate of climatic

is unsurprising. Further management actions to revive the recovery
should target sites at greater risk of biodiversity decline, such as those
downstream of urban areas, cropland and dams, while maintaining and
strengthening protection of the least impacted systems that are refuges
of biodiversity. Specifically, substantial, catchment-scale changes in
land management must go beyond current legislative requirements
and achieve greater reductions in water extraction and inputs of pol-
lutantsincluding fine sediments, pesticides and fertilizers. Substantial
investment is needed to upgrade sewage networks and improve waste-
water treatment plants to better manage stormwater overflow and
more effectively remove micropollutants, nutrients, salts and other
contaminants*. Adopting a catchment-scale approach that consid-
ers barriers to dispersal* can further enhance the effectiveness of
management, conservation and restoration practices***%, Additional
hydromorphological restoration efforts are required to reconnect
rivers and floodplains to improve ecosystem functioning, prevent
destructive floods, and adapt riverine systems to future climatic and
hydrological regimes. Finally, standardized, large-scale and long-term
biodiversity monitoring, paired with parallel environmental data col-
lection**°, should be prioritized to effectively characterize temporal
changes in biodiversity and environmental drivers and identify sites
at high risk®.

Current large-scale measures to address biodiversity loss remainrare,
especially forinvertebrates. This in part reflects our understanding of
biodiversity change, which is limited by unknown historical baseline
conditions and complex variationininteracting anthropogenic stress-
ors. Insufficient baseline data present challenges both for characteriza-
tion of biodiversity trends and ecological status of communities, and
evaluation of tolerable levels and effects of stressors®2, Data on the state
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trend and represent temporal variation. Allresponse variables are site-level
trends (thatis, changein biodiversity metric over time) and all covariates were
standardized to units of s.d. before analysis. A positive coefficient means that
sites with higher values of the driver tended to have higher trends, although
not necessarily positive trends, compared with sites with lower values of the
driver. Forexample, trends in taxonrichness were higher at sites with higher
maximum mean temperatures (¢,,, mean) but lower at sites with higher rates of
temperatureincrease (., sl.;b). The bars around the estimates indicate 80%,
90% and 95% Cls. The grey horizontal lines separate the three environmental
driver groups: climate, dams and land use. Estimates of stream characteristics
(streamorder, flow accumulation, elevation and slope) are shown in Extended
DataFig. 6.

of freshwater communities both before and during the great accelera-
tion arelargely lacking, making it unclear when freshwater degradation
peaked. Long-term data from the UK suggest freshwater invertebrate
biodiversity was lowest at the start of the 1990s%, but our pre-1990s
dataareinsufficient to determine whether this patternis Europe-wide
(Fig.1c). Moreover, comparison with unimpacted ‘reference’communi-
ties, astandard practicein freshwater ecology, is becomingincreasingly
challenging due to the emergence of new communities® resulting
from climate change, non-native species invasions and other pres-
sures®. Progress towards biodiversity goals needs to recognize these
changing pressures through flexible strategies to protect and foster
Earth’s remaining biodiversity. We call for adaptive environmental
management that recognizes conservation and restoration objectives
asshifting targets that can be modified to adapt to global change and
maximize the protection of biodiversity.
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Methods

Timeseries

We assembled a database of time series of riverine invertebrate com-
munities following a data call targeting European ecologists and envi-
ronmental managers. We included only time series that (1) included
abundance estimates; (2) documented whole freshwater invertebrate
communities (including all sampled macroinvertebrates, for example,
Coleoptera, Crustacea, Diptera, Ephemeroptera, Hirudinea, Mollusca,
Odonata, Oligochaeta, Plecoptera, Trichoptera, Tricladida); (3) identi-
fied most taxa to family, genus or species; (4) had >8 sampling years
(not necessarily consecutive); (5) used the same sampling method
and taxonomic resolution throughout the sampling period; and
(6) had consistent sampling effort per site (for example, the number
of samples or area sampled) in all years.

Only one sampling event per year was included for each time series,
where asampling event was defined as the sample or samples collected
within a single day. For time series with multiple sampling seasons
within oramongyears, weincluded only one sampling season (defined
as three consecutive months), preferentially using the season with
the longest time series. No time series had multiple sampling events
per season. Sensitivity analyses indicated limited effects of season
ontrend estimates (Extended Data Fig. 10). We removed taxa that are
not freshwater invertebrates, including terrestrial and semi-aquatic
taxa, and vertebrates, inaddition to freshwater invertebrates that were
recorded inconsistently owing to their small size (such as mites, cope-
pods and cladocerans).

Between 13 and 516 taxa were sampled per site across all sampling
years. Communities from 42% of sites were identified to species, 30%
were identified to mixed (species-to-family) taxonomic levels and 28%
were identified primarily to family. In total, 2,648 taxa from 959 genera,
212 families and 47 groups (primarily orders) were recorded. We list
time-series locations, durations and characteristicsin Supplementary
Table 2 and list the number of sites sampled per year and country in
Supplementary Table 3.

Our compiledtimeseries represent different stream types and stream
orders from alarge geographical area of Europe. Data were collected
for purposesincluding research projects and regulatory biomonitor-
ing, although detailed information on the purpose is unavailable for
some time series. These data were not selected randomly but were
collected fromavailable studies that met our six criteria. As these data
were collected from ssites exposed to varying and unquantified levels of
anthropogenicimpacts, we cannot rule out biases arising from unequal
representation of sites exposed to differentimpactlevels fromseverely
impacted to leastimpacted.

Community metrics

We calculated taxonomic and functional diversity metrics representing
freshwater invertebrate communities across sites and over time. We
also examined different community subsets: native and non-native
species, and insects and EPT taxa (Ephemeroptera, Plecoptera, Trichop-
tera, that is, mayflies, stoneflies, caddisflies, grouped as an indicator
of water quality*®).

Taxonomic diversity. We calculated total abundance, taxonrichness,
Shannon’s diversity, Shannon’s evenness, rarefied richness (calculated
on the basis of standardized numbers of individuals) and temporal
turnover for each site and year. As sampling effort was standardized
within time series before metric calculation, individual-based rarefied
richness was used to estimate the number of taxa per given number of
individuals, based on the lowest number of individuals per sampling
yearineachtime series”. We calculated temporal turnover as the ratio
oftaxagained or lost to the total number of taxa present between two
timepoints using the R package codyn®’. All other taxonomic metrics
were calculated using the R package vegan®s,

Functional diversity. Traits were extracted from the European data-
bases freshwaterecology.info (v.7.0)* and DISPERSE®®, First, we down-
loaded trait data for all taxa. We considered biological traits that influ-
ence both a taxon’s response to and its effects on its environment®,
Specifically, we compiled dataon 10 biological traits (with 53 trait mo-
dalities): respiration type, resistance form, dispersal type, aquatic
stage, life cycle duration, reproduction type, maximum potential body
size, wing form, propensity to drift and feeding type®®®*. For taxawith
multiple aquatic life stages (primarily beetles), whenever available
from the trait databases, functional roles were assigned for each life
stage, otherwise adult traits were used. We included only traits for
which information was available for >85% of all taxa. All traits were
fuzzy coded across multiple modalities depending on the informa-
tion available; for example, the trait ‘maximum potential body size’
contains seven modalities ranging from <0.25 cmto >8 cm. Withineach
trait, we scaled affinities to different component modalities between
0 and 1 (summing to 1 across modalities for each taxon), so that each
taxon was assigned an affinity score for each modality®*, to recognize
potential trait plasticity.

We took the following steps to fill in gaps due to missing trait data.
First, when trait data were not available at the original identification
level (15.9% trait coverage across taxa), we used genus-level trait data,
resulting in 48.2% coverage. Genus-level trait data are generally suf-
ficient to represent most interspecific variation among freshwater
invertebrates and thus taxon responses to environmental variability®".
Next, when genus-level trait data were not available for taxaidentified to
genus, we replaced missing valuesin trait modalities with the median of
trait profiles of all species withina genus from the full taxon list, result-
ingin 61.3% coverage. For taxaidentified to family level with no available
dataforagiventrait, we replaced missing values in trait modalities with
the median value of trait profiles of all genera within a family, result-
ingin 90.5% coverage across all taxa. The lack of accurate phylogenies
for many invertebrate taxa, low trait coverage at the species level and
mixed taxonomic resolution across sampling sites prevented the use
of other gap-filling approaches, but taxonomic aggregation generally
aligns well with expert trait assignments®.

We analysed functional diversity separately for each site by calculat-
ing six distance-based metrics chosen to describe multiple facets of
community niche space and to align with taxonomic diversity met-
rics: functional richness, functional redundancy, functional even-
ness, functional turnover, functional divergence and Rao’s quadratic
entropy (definitions and citations are provided in Supplementary
Table 4). All functional metrics except for functional redundancy
and turnover were calculated using the dbFD functionin the R pack-
age FD®. In calculations of functional richness and divergence, we
used six principal coordinate analysis axes (the dbFD ‘m’ argument),
according to current recommendations®. To enable calculation of
functional turnover, we calculated community-weighted means of
each functional trait category weighted by taxa abundance, then
calculated turnover of the community-weighted means using the R
package codyn, as for taxonomic temporal turnover™®, We calculated
abundance-weighted functional redundancy using the uniqueness
function in the R package adiv®. We calculated redundancy accord-
ing toa previous report’’: community uniqueness (U) was calculated
as quadratic diversity divided by Simpson diversity and functional
redundancy was calculated as1- U. The traitinput matrix was based
on Euclidean distances bound between 0 and 1 and the tolerance
threshold was 1078,

Non-native species. Non-native species were defined as introduced
species (thatis, those present due to human activities, not natural range
expansion) at the country level (for example, a species native to Bulgaria
could be non-native in the UK). Toidentify non-native species, we used
two databases: DAISIE” and the Global Alien First Record Database
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(GAFRD) (v.2)">”%, DAISIE contains non-native species in addition to
native species defined as invasive because they cause economic loss
(that is, pest species). GAFRD includes only non-native species but
is limited to species and countries for which the approximate year
of introduction is known. From each database, we first extracted all
species listed for each European country in our dataset. We deter-
mined each species’ country of origin using the Global Biodiversity
Information Facility” or peer-reviewed publications, both to eliminate
native species listed in DAISIE and to check whether species listed as
non-native in one European country were also non-native elsewhere
(for example, a North American species marked as non-native in
GermanyinGAFRDwouldbenon-nativeinall Europeancountriesinwhich
itoccurred).

In total, we identified 61 non-native species. The initial analysis
of native and non-native species was restricted to the 1,299 sites at
which taxa were identified to species or a mixed taxonomic resolu-
tion; we excluded the remaining 517 sites due to the coarse (pri-
marily family level) taxonomic resolution, which does not allow for
reliable identification of non-native species. Estimates of trends in
non-native species richness and abundance were restricted to the
898 (0f1,299) sites at which non-native species were recorded. The
two most abundant non-native species were the New Zealand mud
snail, Potamopyrgus antipodarum (=1 individual present in >1 year
at 81% of sites) and the North American bladder snail, Physella acuta
(34% of sites).

Stream characteristics and environmental predictors

Stream network. We used the MERIT Hydro” digital elevation model
(DEM) todelineate the high-resolution Hydrography90m stream net-
work™. To achieve a high spatial accuracy, we used an upstream con-
tributing area of 0.05 km?as the stream channel initialization threshold
using the r.watershed and r.stream.extract modules in GRASS GIS”’.
We next calculated the subcatchments for each segment of the stream
network, thatis, the area contributing laterally toagiven streamreach
between two nodes, using the r.basins module. Coordinates indicating
asite’slocation did not always occurinthe delineated stream network
due to spatial inaccuracy of either the DEM or the coordinates. To en-
sure that point occurrences matched the DEM-derived stream network
and therefore the network topology, we first identified the subcatch-
mentinwhicheach point occurrence was located, then moved all points
to the corresponding stream segments using the v.net module within
the given subcatchment. From each point, we calculated the network
(asthefish swims) distance (km) using the v.net.distance module, and
the Euclidean (as the crow flies) distance to all other point occurrences
using the v.distance module. The distance was set to NA when sites
were located in different drainage basins, and therefore not connected
through the network.

Environmental predictors. We calculated stream topographical and
topological predictors using the MERIT Hydro DEM”, Using the r.univar
modulein GRASS GIS, we computed the average elevation (m), elevation
difference between the site and the upstream subcatchment (m), slope
and the upstream contributing area (or flow accumulation, km?) for
each subcatchment. To create a proxy for damimpacts, we calculated
the network distance between each site and each upstream damusing
the Global Reservoir and Dam Database (v.1.3)’®. For dam impact score
calculations, see Supplementary equation (1).

We extracted monthly climatic predictors from the TerraClimate
dataset” for1967-2020, which covered all sites and years. For eachsite,
we identified the sampling month and computed the mean monthly
climatic value for the corresponding subcatchment. We calculated
climatic predictors of cumulative annual precipitation (mm) and
maximum monthly temperature (°C) for each 12 month period pre-
ceding the mean sampling month at each site. Trend values in pre-
cipitationand maximum temperature over the period covered by each

time series were calculated using Bayesian models fitted using the R
package brms®’. These models were similar to those used to calculate
site-level biodiversity metric trends, inwhichatrend was estimated as
the coefficient of a continuous year effect. The TerraClimate dataset
is associated with uncertainties in areas of complex terrain, but our
large number of sampling sites, relatively good station coverage and
the low physiographical complexity of most site locations should have
minimized error in our analyses.

We calculated the proportion of land cover categories in each sub-
catchment using the ESA CCILand Cover time series® for each year from
1992 t0 2018. Land cover data were available for 92% of analysed site
and year combinations and for 99% of sites. We computed the entire
upstream catchment for each point occurrence using the r.water.out-
let module and calculated the percentage cover of each land cover
category within this area. The areas of cropland and urban land were
calculated as the percentage of the upstream area averaged across the
sampled years at each site.

Alistof the stream characteristics and environmental drivers, their
units and sources is provided in Supplementary Table 5.

Statistical analysis

Trend analysis. Temporal trends in each taxonomic (abundance,
richness, Shannon’s diversity, Shannon’s evenness, individual-based
rarefied richness and temporal turnover), functional (redundancy, rich-
ness, evenness, turnover, divergence and Rao’s quadratic entropy) and
community subset (taxon richness and abundance of native species,
non-native species, EPT taxaand insects only) metric were assessed us-
ingatwo-step approach. First, we calculated site-level trends for each
metric using Bayesian linear models fitted using the R package brms®.
In these models, a biodiversity metric was the response variable and
year was the continuous predictor variable of which the coefficient
represented the temporal trend estimate.

The form of the model was: bf(BiodiversityMetric ~ cYear + ar(time
=iYear,p=1,cov=TRUE)).

Fixed-year variables were centred to improve model convergence
(cYear) and year inthe temporal autocorrelation termwas included as
a count with the first year of sampling considered year 1 (iYear). The
models accounted for any residual temporal autocorrelation using an
ar(1) term® and included day of year as an additional predictor when
variation in sampling dates at a site was >30 days.

The form of the model was: bf(BiodiversityMetric ~ cday_of_
year +cYear +ar(time =iYear, p =1, cov = TRUE)).

The models assumed normally distributed errors, which were
checked visually using histograms. Taxonomic evenness, functional
richness, total abundance and subset abundance (non-native, native,
EPT and insect abundance) were log,,-transformed, and functional
divergence was squared to meet the normality assumption.

We ran linear mixed-effects models (LMM) in the brms package to
synthesize site-level data and estimate overall mean trends. The LMM
includedsite-level trend estimates as the response, and an overallinter-
ceptand two random effects (country and study identity) as predictors.
These randomeffects accounted for data heterogeneity due to unequal
numbers of sites among studies and countries. Site-level trends were
normally distributed; we therefore assumed normal errors. Site-level
trends were combined in a meta-analysis model to estimate the mean
trend across studies, including the uncertainty (represented by the
s.d.) of the trend estimates, using brms®°.

The form of the model was: brm(estimate|se(sd_trend_esti-
mate) ~1+ (1/study_id) + (1|country), data = response_stan, iter = 5000,
inits = 0, chains = 4, prior = c(set_prior(“normal(0,3)”, class = “Inter-
cept”)), control = list(adapt_delta = 0.90, max_treedepth =12)).

For each response metric, we calculated the proportion of the pos-
terior distribution of the mean trend estimate (that s, the overall LMM
intercept) above or below zero, that is, the probability of anincreasing
or decreasing mean trend.



In Bayesian models, we mostly used default brms settings, includ-
ing four chains, which were run for 5,000 iterations (50% burn-in). We
used default priors except for trend estimates, for which we selected
anarrower prior to diminish the influence of biologically unrealistic
trend estimates. Specifically, we used normally distributed priors with
amean of zero and an s.d. of 10 (for site-level trends) or 3 (for mean
site-level trends). We compared our meta-analysis model of trends with
and without including the uncertainty of site-level trend estimates.
To optimize model fit, unweighted models were used for non-native
and EPT abundance, and for EPT taxon richness. Functional turnover
was fitted using beta models as values were bound between 0 and 1.
The percentage change per year was calculated by back-transforming
model estimates. Back-transformation calculations varied according to
the originally modelled transformations of response variables (see the
‘equationsToPercChangePerYr.xIsx’ file in the ‘plots/Fig2_DensityPlots’
folder at https://github.com/Ewelti/EuroAquaticMacrolnverts). We
further tested a one-stage synthesis approach in which mean trends
were estimated in one large mixed-effect model of the observed data,
including random intercepts and slopes. Overall, these models pro-
duced similar trend results (see figure 16 in the ‘Online Figures.docx’
filein the ‘plots’ folder at https://github.com/Ewelti/EuroAquatic-
Macrolnverts).

Moving-window analysis. To assess how estimates of trends in abun-
dance and taxonomic and functional diversity changed over time, we
used amoving-window approach. We used a similar two-stage process
asdescribed above. For each year of the analysis, we calculated trends
within a ten-year window in which all time series with >6 sampling
years and from =8 countries were included. A ten-year window was
chosenaccording to currentrecommendations regarding times-series
length®>#* and six was chosen as the number of sampling years cover-
ing >50% of each ten-year period. This analysis was restricted to the
period between a first moving window from 1990 to 1999, in which
any time series with =6 sampling years wasincluded, to a final window
from 2011to 2020. After estimating site-level trends centred on each
year of the moving window, we ran a Bayesian LMM for each year to
estimate the overallmeantrends across sitesin that time period. These
models followed the same form as used to calculate trend estimates,
containing the predictor variables of trends including an error term to
account for uncertainty, an overallintercept, and study identity and
country as random effects (see the equation in the ‘Trend analysis’
section).

Totestforanoveralllinear changein the trajectory of moving-window
trends, we modelled the effect of year on moving-window trend esti-
mates using brms®°,

The form of the model was: brm(MovingWindowTrend|se(sd_trend_
estimate) ~ year, data = moving_window_trends, iter = 5000, inits = 0,
chains =4, prior = c(set_prior(“normal(0,3)”, class = “Intercept”)), con-
trol =list(adapt_delta = 0.90, max_treedepth =12)).

These modelsidentified alinear declinein trends in taxon richness
and atendency for declinein functional richness trends over time (see
figure2linthe ‘Online Figures.docx’ filein the ‘plots’ folder at https://
github.com/Ewelti/EuroAquaticMacrolnverts).

We examined the proportion of sites with positive trends and how
this proportion changed through time for our key biodiversity met-
rics of taxonrichness, abundance, functional richness and functional
redundancy. To do this, we used site-level moving-window trends and
estimated the proportion of sites with positive trends in each year.
We repeated this calculation for each posterior draw to propagate
through site-level uncertainty to the overall mean proportion and
estimated 80%, 90% and 95% Cls. To ensure this proportion was not
driven by studies with especially large numbers of sampling sites, we
weighted each site by the inverse of the number of sites in each study.
This complements the moving-window analysis by examining whether
the emerging mean trends are typical of site-level patterns. This analysis

was based only on trend direction and not trend magnitude and was
therefore less affected by any noise contributed by studies with trends
atthe extremes.

Animportant caveat of the moving-window analysis is that differ-
ent sites are included in different moving windows. Supplementary
Table 6 lists the number of sites per window in each country. Although
we accounted for the heterogeneity of site distribution across studies
and countries within years, models cannot correct for the changing
number of sampled sites across years. We cannot fully discount the
possibility that biases in the characteristics of sites sampled across
time affected trajectory results. We therefore conducted two additional
moving-window analyses to investigate this, the first limited to sites
with long-term data and the second limited to sites with species-level
taxonomic resolution. The first additional analysis initially included
only sites with 220 sampling years between 1990-2020, although
moving windows with start years of 1990 and 1991 were excluded as
theyincluded <200 sites. This analysis included 308 sites from 8 coun-
tries. The second analysisincluded sites with species-level taxonomic
dataand windows covering1990-2020 with >200 sites, resulting in win-
dows from1994-2003 t0 2011-2020. The species-level moving-window
analysis included 717 sites from 14 countries. Apart from the sites
included, models were identical to our original moving-window analy-
ses described above. These alternative moving-window analyses found
similar declines in the trend of taxon richness over time (see figures
22-25inthe ‘Online Figures.docx’ file in the ‘plots’ folder at https://
github.com/Ewelti/EuroAquaticMacrolnverts).

Analysis of environmental predictors. We assessed responses of
biodiversity metrics to climate (both the mean and the trend over
the time series’ durations) and upstream land cover (as the annual
mean cover value during the sampling period), damimpact score and
subcatchment characteristics (Supplementary Table 5). We did not
include upstream land-use trends as most sites exhibited low variation:
cropland cover changed by a mean of -0.002% per year + 0.11s.e.m.,
with no change detected at 634 sites; urban cover changed by 2.48%
peryear + 0.14 s.e.m., but withno change detected at 803 sites. To ex-
aminerelationships between environmental drivers and biodiversity
trends, we modelled trend estimates using an LMM, incorporating
trend errors as for the calculation of the overall trend, including all
predictor variables as fixed effects, and study identity and country
as random effects.

The form of the model was: brm(estimate|se(sd) ~ Precip-
Trend + TempTrend + PrecipMean + TempMean + StreamOrder + Accu-
mulation + Elevation + Slope + Urban + Crop + DamScore + (1|study_
id) + (1lcountry), = response_stan, iter = 5000, chains = 4, prior = prior1,
control = list(adapt_delta = 0.90, max_treedepth =12)).

We ran models using the R package brms®°. We standardized pre-
dictor variables to unit s.d. to facilitate comparison of their relative
importance. We used regularizing horseshoe priors on environmental
covariates that pull unimportant covariate effects towards zero to
avoid overfitting. Our analysis of drivers focused on site-level variation
inlong-term trends, and not temporal variation in short-term trends
examined in the moving-window analysis. Thus, our driver analysis
cannot be used to understand recent changes in trends. To further
examine whether biodiversity trends were positive or negative across
therange of driver values, we used R package marginaleffects® to visual-
izeresponses to drivers while holding other driver covariates at their
median. Predicted trends complement the effects on trends shownin
Fig. 4 (see figures 28-34 in the ‘Online Figures.docx’ file in the ‘plots’
folder at https://github.com/Ewelti/EuroAquaticMacrolnverts).

Model checking. All models run to quantify biodiversity trends and
responses to drivers were evaluated by plotting the posterior samples
to confirm chain convergence, examining R-hat values (<1.1)* and es-
timating Pareto shape parameters using the argument pareto_k_table
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in the R package 100¥. For trend models and across the 20 examined
biodiversity metrics, an average of 99.5% of the 1,816 sites had shape
parameter estimates of k < 0.7 (a threshold for good model perfor-
mance). For environmental driver models, an average of 99% of the
1,816 sites had shape parameter estimates of k < 0.7.

Sensitivity analysis. To check the robustness of our results to analyti-
cal decisions, we ran multiple sensitivity analyses for all biodiversity
metrics. We tested the effects on trend estimates of (1) taxonomic reso-
lution, by rerunning meta-analysis models with resolution (family,
mixed, and species) as an additional fixed factor; (2) sampling season,
by rerunning meta-analysis models (described in the ‘Trend analysis’
section) with season (winter, spring, summer and fall) as an additional
fixed factor; and (3) country, using a jackknife resampling analysis in
which the meta-analysis was rerun after sequentially removing coun-
tries. Models were otherwise similar to those presented above. Scripts
for sensitivity analyses are available at GitHub (https://github.com/
Ewelti/EuroAquaticMacrolnverts (HPC_Sensitivity_analysis.R and
HPC_Meta_analysis_country_jackknife).

Some cautionis advised wheninferring conclusions from a dataset
including different levels of taxonomic resolution or different seasons.
However, intra-site sampling was consistently within one season or
taxonomic resolution, so intra-site trends were not affected by these
differences. Neither taxonomic resolution nor season had strong direc-
tional effects on trend estimates, with error bars generally overlapping.
Patterns across taxonomic resolutions and sampling seasons were gen-
erally similar tothose presentedin Fig. 2 (Extended Data Figs. 9 and 10).
Trends of taxonomic richness were robust to one-country removal but
abundance trends became more strongly positive on removal of data
from some countries, suggesting geographical variability inabundance
trends (see figure17 inthe ‘Online Figures.docx’ filein the ‘plots’ folder
at https://github.com/Ewelti/EuroAquaticMacrolnverts).

We analysed the effect of the number of sampling years in atime
series on observed trends using simple linear regression. The num-
ber of sampling years did not affect trend estimates of taxon richness
(R*<0.001), abundance (R* < 0.001), functional richness (R* = 0.004) or
functional redundancy (R*< 0.001) (see figure 14 in the ‘Online Figures.
docx fileinthe ‘plots’ folder at https://github.com/Ewelti/EuroAquat-
icMacrolnverts).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All data needed to reproduce analyses including metadata, site char-
acteristics and values of each metric (for example, species richness,
functional richness) for each site and year are available at Figshare
(https://doi.org/10.6084/m9.figshare.22227841). Biodiversity compo-
sition data are available at GitHub (https://github.com/Ewelti/EuroA-
quaticMacrolnverts/raw-data).

Code availability

Annotated R code is available at GitHub (https://github.com/Ewelti/
EuroAquaticMacrolnverts).
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Extended DataFig.1| Trend estimates for community subsets. Overall
estimates and distributions of trends ina, non-native speciesrichness,

b, non-native abundance, ¢, native taxon richness, d, native abundance,

e, Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxonrichness, f, EPT
abundance, g, insect taxonrichness, and h, insect abundance. Bars around
estimatesindicate 80%,90%, and 95% credible intervals. Trend estimates for
native taxa(c, d) arerestricted to the 1,299 sites at which taxa were identified to
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speciesoramixed taxonomic resolution. Trend estimates for non-native
species (a,b) arerestricted to the 898 (0f1,299) sites at which non-native
species were detected. Incorporating the remaining 394 (30.1%) of the 1,299
sites (i.e. those with no detected non-native species) as having trends =0
resultedinan averageincrease of 2.75% y 'inrichnessand 2.79% y'in
abundance.
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Extended DataFig.2 | Trend estimates for additional biodiversity metrics. entropy (n=1,816 biologically independent sites for all metrics). Bars around
Overall estimates and distributions of trendsina, Shannon’s diversity, estimatesindicate 80%,90%,and 95% credible intervals.

b, rarefied taxonrichness, ¢, functional divergence, and d, Rao’s quadratic
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Grey polygonsindicate 80,90,and 95% credible intervals.
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Extended DataFig. 4 | Estimated effects of environmental driverson
temporal trends in additional biodiversity metrics. Estimated effects of the
mean (tmax mean) and trend (tmax sl. [slope]) of annual maximum temperature,
mean (ppt mean) and trend (pptsl.) of annual precipitation, damimpacts
(dam), and the percentage of the upstream catchment covered by urban areas

and cropland on temporal trendsina, Shannon’s diversity, b, rarefied taxon
richness, ¢, functional (func.) divergence,and d, Rao’s quadratic entropy (Q)
(n=1,816 biologically independent sites for all metrics). Bars around estimates
indicate 80%, 90%, and 95% credible intervals. Grey, horizontal lines separate
the threeenvironmental driver groups: climate, dams, and land use.
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Extended DataFig. 5| Estimated effects of environmental drivers on
biodiversity metricsrepresenting community subsets. Estimated effects
ofthemean (tmax mean) and trend (tmax sl. [slope]) of annual maximum
temperature, mean (ppt mean) and trend (ppt sl. [slope]) of annual precipitation,
damimpacts (dam), and the percentage of the upstream catchment covered by
urbanareas and cropland ontemporal trendsina, non-native species richness,
b, nativetaxonrichness, ¢, EPTrichness, d, insectrichness, e, non-native
abundance, f, native abundance, g, EPT abundance, and h, insect abundance.

Trend estimates for native taxa (b, f) arerestricted to 1,299 sites at which taxa
wereidentified to species or amixed taxonomicresolution. Trend estimates
fornon-native species (a, e) arerestricted tothe 898 (0f1,299) sites at which
non-native species were detected. Bars around estimates indicate 80%, 90%,

and 95% credibleintervals. Bars around estimates indicate 80%, 90%, and 95%
credibleintervals. Grey, horizontal lines separate the three environmental driver
groups: climate, hydrology, and land use.
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Extended DataFig. 7| Estimated effects of stream characteristicson ¢, functional (func.) divergence,and d, Rao’s quadratic entropy (n=1,816
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of slope, elevation, flow accumulation (accum.) and Strahler stream order (str. 80%,90%,and 95% credible intervals.
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Extended DataFig. 8 | Estimated effects of stream characteristics on
taxonrichness and abundance of taxa subsets. Estimated effects of slope,
elevation, flow accumulation (accum.) and Strahler stream order (str. order) on
temporal trendsina, non-native species richness, b, native taxonrichness,

¢, EPTrichness, d, insectrichness, e, non-native abundance, f, native abundance,

g, EPTabundance, and h, insect abundance. Trend estimates for native taxa (b, f)
arerestricted to 1,299 sites at which taxa were identified to species or amixed
taxonomic resolution. Trend estimates for non-native species (a, e) are
restricted to the 898 (0f1,299) sites at which non-native species were detected.
Barsaround estimates indicate 80%, 90%, and 95% credible intervals.
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Overlappingerror barsindicate comparable trend estimates for analyses at
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Extended DataFig.10|Sensitivity of biodiversity metricresponses to
sampling season. Error bars represent 95% credible intervals. The largest
differences between seasons were found for winter, which likely reflects the

low number of sites sampled in this season (winter n =5, spring n = 623, summer
n =473, falln=715). Func. refers to functional; Est. refers to trend estimates.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No software was used in data collection.

Data analysis Annotated R (ver. 4.2.2); all scripts are available at GitHub: https://github.com/Ewelti/EuroAquaticMacrolnverts

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Metadata, site characteristics, and trend estimates are available on GitHub: https://github.com/Ewelti/EuroAquaticMacrolnverts. Raw biodiversity data will be made
available in the same GitHub repository and to the BioTime database following acceptance and a six-month embargo.
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Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Does not apply to our study

Reporting on race, ethnicity, or  Does not apply to our study
other socially relevant

groupings

Population characteristics Does not apply to our study
Recruitment Does not apply to our study
Ethics oversight Does not apply to our study
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Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description The study is a meta-analysis of 1,816 time series of freshwater macroinvertebrate communities to examine biodiversity trends over
time and across Europe. Overall estimates of slopes of biodiversity metrics were calculated using a Bayesian hierarchical model (2-
step model). Step 1 involved calculating individual slopes for each time series. Step 2 involved an calculating overall estimate and an
overall intercept and two random effects (country and study identity) as predictors.

Research sample Data were collected from previous studies and assembled from a data call.

Sampling strategy No sample-size calculation was preformed. Time series were included in analyses when they met selection criteria, resulting in a
collection of 1,816 time series.

Data collection Data were assembled from a data call to European ecologists and environmental managers. Peter Haase put out the data call and
Ellen Welti assembled data from data providers.

Timing and spatial scale  All of the 1,816 time series contain annual sampling of a minimum of 8 years of data. All time series combined span the period of
1968-2020.

Data exclusions All time series obtained in the data call were included if they met the pre-selected criteria of: 1) inclusion of abundance estimates, 2)
surveyed whole freshwater invertebrate communities (not restricted to certain taxonomic groups, such as insects), 3) identified most
major taxa to family, genus or species, 4) had a minimum of eight sampling years (not necessarily consecutive), 5) had no changes in
sampling method or taxonomic resolution during the sampling period, and 6) had consistent sampling effort per site (e.g. number of
samples or area of river sampled) across years.

Reproducibility No new experiments were performed in this meta-analysis. All code, meta-data, and slope estimates are provided on Github: https://
github.com/Ewelti/EuroAquaticMacrolnverts

Randomization The study is a meta-analysis of pre-collected time series data, and does not including new experimental designs requiring
randomization. When testing for overall estimates of change in biodiversity metrics over time, study and country were included in

models as random effects.

Blinding Blinding was not relevant to this study.

Did the study involve field work? []ves X No
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Reporting for specific materials, systems and methods




We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies X[ ] chip-seq
Eukaryotic cell lines |Z| |:| Flow cytometry
Palaeontology and archaeology |Z| |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern

XNXXOXXX s
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Plants

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals The study did not involve laboratory organisms.

Wild animals Data include time series from previous studies of field collections of freshwater macroinvertebrates. Macroinvertebrates were killed
to identify specimens in these studies. Details are provided in the Methods and Supplemental Tables.

Reporting on sex Does not apply to our study.

Field-collected samples  Data include time series from previous studies of field collections of freshwater macroinvertebrates. Macroinvertebrates were killed
to identify specimens in these studies. Details are provided in the Methods and Supplemental Tables.

Ethics oversight No ethical approval or guidance was required as data were collected only from previous studies.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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