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Mitochondrial DNA (mtDNA) is a maternally inherited, high-copy-number genome
required for oxidative phosphorylation'. Heteroplasmy refers to the presence of a
mixture of mtDNA allelesinanindividual and has been associated with disease and
ageing. Mechanisms underlying common variationin human heteroplasmy, and the
influence of the nuclear genome on this variation, remain insufficiently explored. Here
we quantify mtDNA copy number (mtCN) and heteroplasmy using blood-derived
whole-genome sequences from 274,832 individuals and perform genome-wide
association studies to identify associated nuclear loci. Following blood cell composition
correction, we find that mtCN declines linearly with age and is associated with variants
at 92 nuclearloci. We observe that nearly everyone harbours heteroplasmic mtDNA
variants obeying two principles: (1) heteroplasmic single nucleotide variants tend to
arise somatically and accumulate sharply after the age of 70 years, whereas (2)
heteroplasmic indels are maternally inherited as mixtures with relative levels associated
with 42 nuclear lociinvolved in mtDNA replication, maintenance and novel pathways.
These loci may act by conferring areplicative advantage to certain mtDNA alleles. Asan
illustrative example, we identify a length variant carried by more than 50% of humans at
position chrM:302 within a G-quadruplex previously proposed to mediate mtDNA
transcription/replication switching®*. We find that this variant exerts cis-acting genetic

control over mtDNA abundance and s itself associated in-trans with nuclear loci
encoding machinery for this regulatory switch. Our study suggests that common
variationin the nuclear genome canshape variationin mtCN and heteroplasmy
dynamics across the human population.

Human mitochondria contain a tiny, high-copy-number circular
genome (mitochondrial DNA (mtDNA)). Sequencing of the human
mtDNA in1981 (ref. 1) revealed that it encodes 13 core protein compo-
nents of the oxidative phosphorylation system, as well as 2 ribosomal
RNAs and 22 transfer RNAs required for their expression. Tissues can
contain tens to thousands of copies of mtDNA per cell, depending on
cell type. Variants in mtDNA can be maternally transmitted or arise
somatically, and, whenthey co-exist with wild-type molecules, leadtoa
state called heteroplasmy. Notably, more than 99% of the mitochondrial
proteome, including all proteins required for mtDNA maintenance,
replication and transcription, is encoded by the nuclear DNA (nucDNA)
and imported* into the organelle.

Defectsin mtDNA are associated with aspectrum of human diseases.
Since thefirstidentification of pathogenic mtDNA mutations®®, scores
of maternally inherited syndromes have been reported’. Mendelian
forms of mitochondrial disease producing mtDNA deletion or deple-
tion were later identified and mapped to nuclear genes involved in
mtDNA replication, maintenance and nucleotide balance®'°. More

subtle declines in mtDNA copy number (mtCN) and an accumulation
of somatic mtDNA mutations have both long been associated with age-
ing and age-associated disease'"'>. Mutations in mtDNA accumulate in
many cancers and inasmallsubset are even considered to be ‘drivers’
of tumorigenesis®.

The dynamics of heteroplasmy are complex and presumed to be
shaped by mutation, drift and selection. The mtDNA mutation rate
has been reported as 10-100x higher than for the nucDNA™, with the
non-coding region (NCR) containing three hypervariable regions
thought to be mutational hotspots®”. The high copy number, elevated
substitution rate and lack of recombination have made mtDNA NCR
variants a valuable genetic tool in forensics and anthropology, even
leading to the African mitochondrial ‘Eve’ hypothesis'®”. Heteroplasmy
canvary across siblings, attributed to germline bottleneck effects, and
between cell types and tissues, thought to be due to random segrega-
tionand selection’"”. Detailed mechanisms underlying heteroplasmy
dynamicsinhumans remain obscure, although mouse studies® predict
arole for nuclear genetics.
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Here, we characterize the spectrum of mtCN and heteroplasmy
across approximately 300,000 individuals spanning 6 ancestry
groupsin the UK Biobank (UKB) and AllofUs (AoU). We find that blood
mtCN declines with age, is influenced by blood cell composition and
isunder the control of numerous nuclear geneticloci. We then turnto
mtDNA variation, finding that about 1in 192 individuals carries 1of 10
well-known pathogenic mtDNA variants. We characterize the landscape
of mtDNA variation across this population and find that nearly every
human harbours heteroplasmic mtDNA variants. Whereas heteroplas-
mic mtDNA single nucleotide variants (SNVs) tend to be somaticin
origin and to accumulate with age, we find that heteroplasmic indels
tend to be quantitatively maternally inherited, with their relative levels
influenced by nuclear genetic variation. These loci provide insights
into the mechanisms by which the mitochondrial and nuclear genomes
genetically interact to maintain mtDNA homeostasis.

Calling mtCN and variants

We developed mtSwirl, a scalable pipeline for calling mtDNA variants
and copy number fromwhole-genome sequencing (WGS) data (Methods
and Supplementary Note 1). We extended a pipeline used to analyse
mtDNA variation in gnomAD?, now constructing self-reference
sequences for each sample using homoplasmic and homozygous calls
onthe mtDNA and reference nucDNA regions of mtDNA origin (NUMTSs;
Extended Data Fig. 1a). mtSwirl shows improved mtDNA coverage,
particularly among African haplogroups (Extended Data Fig. 1b-e),
and reduced variant calls at very low heteroplasmy (Extended Data
Fig.1f), indicating reduced ancestry-and NUMT-specific mis-mapping.
We observe high concordance of heteroplasmy estimates with the pre-
vious method used in gnomAD (R = 0.996 for heteroplasmy > 0.05),
withhomoplasmies showing allele fractions now closer to1, suggesting
reduced NUMT artefact® (Extended Data Fig. 1g). We used mtSwirl to
quantify mtDNA traits across 274,832 individuals of diverse ancestry
across UKB and AoU (Extended Data Fig. 2 and Supplementary Table1),
generating more than7,800,000 mtDNA variant calls across all samples.

Determinants of variation in human mtCN

We began by identifying covariates of blood mtCN (mtCN,,,,) in UKB,
observingastronginfluence of blood cell composition (R* = 23%; Fig. 1a)
as previously reported®*? (Extended Data Fig. 3c). We identified sev-
eral more unexpected covariates including time of day, month of year
and fasting duration (R? = 2.5%; Fig. 1a and Extended Data Fig. 3e-j).
Following adjustment for all identified covariates (Methods and Sup-
plementary Notes 2 and 3), we found that covariate-adjusted mtCN
(whichwe term mtCN, ;) was unimodal in UKB across 178,134 subjects
with an average of 61.66 copies per diploid nuclear genome (Extended
DataFig.3d). We observed alinear decline in mtCN, 4 with age (Fig. 1c)
of approximately 2% per decade among both males and females.

We next assessed the degree to which variation in mtCN,; is under
nuclear genetic control. Our genome-wide association study (GWAS)
identified 92 linkage disequilibrium (LD)-independent nucDNA associa-
tionsignals across 46 loci (Fig. 1d) after cross-ancestry meta-analysis,
withan estimated SNP-heritability of approximately 4% (Methods). By
contrast, mtDNA haplogroup explained less than 0.5% of the variance
in mtCN,;, with only a few associations of small magnitude observed
(Extended Data Fig. 4a,b). Thirty-three nuclear loci showed variants
with a posterior inclusion probability (PIP) of 0.1 or greater after
fine-mapping (Methods); 11 of these had protein-altering variants in
the 95% credible set (CS) at PIP > 0.1 (Fig. 1e) and 7 showed expression
quantitative trait locus (eQTL) colocalization with the assigned gene
atPIP > 0.1, including TFAM, MFN2, NDUFV3 and RRM1. Eight loci con-
tained genes implicated in disorders of mtDNA maintenance, six of
which harboured variants with PIP > 0.1. Prioritized genes (Methods)
encoded proteins that participate inthe mtDNA nucleoid and replisome
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(TFAM, POLG2, TWINKLE, TOPIMT, LONPI), nucleotide metabolism
(RRM1, RRM2B, DGUOK, AK3, SLC25A5) and mitochondrial fusion
(MFN1, MFN2). The PNP-APEX1 locus was notable as these adjacent
genes encode proteins in nucleotide metabolism and mtDNA repair,
neither of which has been implicated in mtCN control. Fine map-
ping implicated both genes, even identifying a missense variant in
APEXI at PIP > 0.9 (Extended Data Fig. 5a). Several more loci included
mitochondrial proteins with no previous links to mtDNA (SLC25A10,
MCAT, NDUFV3). Telomerase (TERT) is in the vicinity of onelocus; how-
ever, fine mapping did not provide further evidence for its causality
(Supplementary Table 3).

We also performed a gene-based rare variant association study
(RVAS) for mtCN,4;in UKB (Methods and Supplementary Table 7). In
several instances we find convergence with our GWAS, including asso-
ciations with ultra-rare (minor allele frequency (MAF) < 0.0001) mis-
sense or loss of function (LoF) variationin TWNK and TFAM (Extended
DataFig.5c). RVAS provided clarity to other GWAS loci with uncertain
gene assignments (for example, highlighting TOP3Ain alocus contain-
ingseveral genes; Fig.1d) and identified several associations with genes
notidentified by GWAS. For instance, we found associations with the
burden of rare protein-altering variation in genes previously linked to
Mendelian mtDNA deletion or depletion disease (OMA1, SAMHDI), as
well as associations with genes unlinked to mitochondria (for example,
MILRI) (Extended Data Fig. 5d).

We next tested mtCN,; for heritability enrichment in genes associ-
ated with organelles or organs using stratified LD-score regression®* 2
(S-LDSC; Methods). The most significant organelle enrichment was seen
for the mitochondrion (Extended Data Fig. 4c). Across organs, skeletal
muscle and whole blood were top scoring (Extended Data Fig. 4d).
Wholeblood enrichment is expected given the sampling site, but skel-
etalmuscle enrichment was unexpected and may be due to shared pat-
terns of gene expression between blood and muscle, or could indicate
non-cell autonomous control of blood mtCN.

Blood composition influences bulk mtCN

Although many previous studies have reported associations between
lowblood mtCN and common diseases” >°, we could not replicate these
resultsusing mtCN, 4 in UKB for type 2 diabetes, myocardial infarction,
stroke, hypertension or dementia (Fig. 1f). When we repeated this analy-
sis using mtCN,,,, thatis, without adjusting for blood composition, we
could recover these earlier associations (Fig. If). We extended these
analyses to 24 more common diseases, finding that, in total, 20 showed
significantly increased risk with reduced mtCN,,,; after correction
for blood cell composition, the inverse correlations disappeared for
all traits except osteoarthritis (Extended Data Fig. 3k). Associations
with four cardiovascular disease traits even changed direction with
mtCN,, now showing a positive correlation with increased risk. In all
five cases, Mendelian randomization did not support a causal role for
mtCN,,,, or mtCN,; after correcting for multiple tests (Extended Data
Fig. 6). Eventhe oft-reported elevated mtCN in females® appears to be
largely driven by blood composition (Fig. 1b,c). Our GWAS analyses also
underscore the confounding effects of blood compositionin previous
work. Using mtCN,;, we could replicate (at P < 5 x 107°) 70 of the 96 previ-
ously reported mtCN GWAS loci®?, with 37 at genome-wide significance
(GWS) (Methods). Using mtCN,,,,, we could recover 12 more loci from
this previous study at GWS including loci containing HBS1L-MYOB, C2,
HLA,GSDMCand CD226, which arelinked toblood cell types and inflam-
mation (Extended Data Fig. 4f). By contrast, associations near TFAM,
awell-known mtCN-controlling gene®, encouragingly strengthen by
about 40 orders of magnitude following blood composition adjustment.

It has long been known that inflammation is associated with car-
diometabolic disease*; indeed, elevationsininflammatory blood cell
indices predict elevated risk for 26 of 29 tested diseases in UKB (Fig. 1f
and Extended Data Fig. 31). Bidirectional Mendelian randomization



Extended Data Fig. 4h).

SNP effect size, neutrophils

Fig.1| Geneticand phenotypic determinants of mtCN in UKB. a, Variance
explained in mtCN by correctionmodels. b,c, Mean mtCN,,,, (b) and mtCN,; (c)
asafunctionofage and geneticsex. Forband c, mtCNis copies per diploid
nuclear genome, error bars are mean +1s.e.m.,and totaln=178,129 and
164,798, respectively.d, GWAS Manhattan plot from UKB cross-ancestry
meta-analysis. Labelled genes were obtained using fine-mapping, rare variant
evidenceor nearest gene.Red genes encode mitochondrial proteins or are
implicated in mtDNA disease; *gene at GWS for the Cauchy Pvalue from RVAS;
fCSvariants proximal to the gene with PIP > 0.1; *CS with PIP > 0.9; ‘¢’, coding
variantin the CS; underline, eQTL colocalization PIP > 0.1. Asterisks above
peaksonchr19and21correspond to GP6 and RUNX], respectively. e, Variants

showed that effect size loci at GWS for neutrophil count were strongly
positively correlated with corresponding mtCN,,,, effect sizes (Fig. 1g),
whereasthe converse did not convincingly hold (Extended DataFig. 4g),
suggesting that changes in blood cell composition cause mtCN,,,
changesrather thanthe reverse. Importantly, neutrophil count effect
sizes did not predict corresponding mtCN,; effect sizes (Fig. 1h and

The most parsimonious explanation for our observations is that
previously reported associations between low blood mtCN and elevated
commondisease risk are, in many cases, secondary to blood composi-
tion changes. For the few associations that survive blood composition
corrections (Extended DataFig. 3k), other mechanisms may beinvolved.
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inthe 95% CSwith PIP > 0.1 causing a protein-altering change. f, Standardized
odds ratios for log mtCN,,,,, log mtCN,4 and major blood composition
phenotypesinpredictingrisk of selected common diseases in UKB. Inset
numbers are two-sided raw Pvalues with Bonferroni Pvalue cut-off = 0.0025;
error barsare 95% confidence intervals (95% Cls) around odds ratios (ORs);
samplesizesarein Supplementary Table 8. HTN, hypertension; MI, myocardial
infarction; T2D, type 2 diabetes. g,h, Correlations between effect sizes for lead
SNPs detected at GWS for neutrophil count between neutrophil countand
mtCN,,,, (P=4.4x107°) (g) and mtCN,; (P=0.511) (h). Error barsrepresent1s.e.,
dottedlineis weighted least squares regressionline, inset corresponds to
regression Pvalue. AF, allele frequency.

Indeed, Mendelian randomization suggests reverse causation or shows
high heterogeneity for these traits, arguing against simple forward
causal relationships in these instances (Extended Data Fig. 6).

Nuclear control over mtDNA 7S coverage

We next aimed to use variation in sequencing coverage across the
16,569 bases of the mtDNA to dissect specific molecular mechanisms
of mtDNA replication. We observe a coverage dip by over 50% in the
major NCR of the mtDNA (Fig. 2a), which contains the light strand pro-
moter (LSP), three conserved sequence blocks (CSBs), the heavy strand
origin of replication (O,) and the D-loop, which contains a stable third
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Fig.2|Nuclear genetic control of relative mtDNA coverage in the NCR.
a,Mean UKB mtDNA per-base coverage. Dropdown highlights coverage
depressioninthe mtDNANCR. Arrows refer to mtDNA replication products:
red dashed arrow, RNA primer; black dashed arrow, transient DNA ‘flap’; black
solid arrow, replicated mtDNA. Grey ribbonis+1s.d. CSB, conserved sequence
box.b, Two-dimensional (2D) histogram showing mtDNA coverage in the DNA
flap region versus RNA primer region. Red lineis linear fit, from which the
residualis used asa‘coverage discrepancy’. The distribution of these residuals
isshowninthelower panel.c, GWAS Manhattan plot of the discrepancy of mtDNA
coverageinthe DNA flap region versus RNA primer region (seeb).d, 2D
histogram showing mtDNA coverage in the DNA flap region versus 7S DNA

strand of DNA (7S DNA) (Extended DataFig. 7). Itis believed that mtDNA
replicationrequires an ‘RNA primer’ which forms from the termination
of LSP-initiated transcriptionat CSBII (red dashed arrow, Fig.2ainset).
Primed mtDNA synthesis begins at CSBII, with the nascent DNA between
CSBIland O, formingatransient ‘DNA flap’ (black dashed arrow, Fig.2a
inset). Further replication can either continue to full-length or be ter-
minated prematurely to produce the persistent 7S DNA (black solid
arrow, Fig, 2a inset; see also ref. 35). In theory, we expect the highest
local WGS coverage in the persistently triple-stranded 7S DNA, lower
coverageinthetransiently triple-stranded DNA flap region and lowest
coverage in the RNA primer region. This is what we observe (Fig. 2a).
We hypothesized that genetic variationin nuclear-encoded mtDNA
replication machinery might influence the tendency of replication
intermediatesinthe NCRto persist. To attempt to quantify these inter-
mediates, we computed the discordance in coverage between these
threeregionsacrossindividualsin UKB (that s, residuals; Fig.2b,d and
Methods). Upon performing GWAS and cross-ancestry meta-analysis
for these traits, we find that nuclear genetic variants near MGMEI associ-
atewith the degree of coverage discordance between the RNA primer
and the DNA flap (Fig. 2c), whereas variants near TFAM, POLG, MCAT and
MGMEI associate with the discordance between 7S DNA and the DNA
flap (Fig. 2e). All four genes encode mitochondrial-localized proteins,
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region.Asinb, redlineislinear fit,and the residual isshown as adensity in the
lower panel. e, GWAS Manhattan plot of the discrepancy of mtDNA coverage in
the DNAflapregionversus 7S DNAregion (see d). Red genes are mitochondria-
relevant; *gene with Cauchy Pvalue at GWS from RVAS; 'CS variants proximal to
the genewith PIP > 0.1; *proximal CS variants with PIP > 0.9; ‘c’, missense variant
identified inthe CS; underline, eQTL colocalization with PIP > 0.1.f, Structure of
MGME1 (5ZYV from RSCB under CCO license; https://doi.org/10.2210/pdb5zyv/
pdb) withbound single-stranded DNA indark blue, the 3,; helixin pink and the
T265alphacarbonasaredsphere.Inset shows the hydrogenbond between
T265and1262.

and MGME1 and POLG work in concert to resolve flap intermediates
(that is, the DNA flap) through exonuclease activity during mtDNA
replication®. Missense variants in POLG, MGMEI and MCAT all show
PIP > 0.1 after fine-mapping, and the highest PIP variant at the MGME1
locus causes p.Thr265lle, whichis in the MGME1 exonuclease domain
(Fig. 2f). We also identify a variant causing p.Ala303Gly in MCAT, which
has no previous connection to mtDNA maintenance and encodes a
component of mitochondrial type Il fatty acid synthase. RVAS identified
further associations between the levels of missense or LoF variation
in novel genes and the 7S DNA and DNA flap coverage discordance,
including OMAI (Supplementary Table 7).

Phenotypes caused by pathogenic mtDNA mutations

We next considered mtDNA sequence variation in UKB (Methods),
with an initial focus on well-established, disease-associated mtDNA
variants. We began by assessing the carrier rates for ten common
pathogenic mtDNA variants associated with maternally inherited
diseases, including Leber’s hereditary optic neuropathy; mitochon-
drial encephalomyopathy, lactic acidosis and stroke-like episodes
(MELAS); and aminoglycoside-induced ototoxicity (Fig. 3). We find
thatapproximately1in192individualsin UKB carries at least one of the


https://www.wwpdb.org/pdb?id=pdb_5ZYV
https://doi.org/10.2210/pdb5zyv/pdb
https://doi.org/10.2210/pdb5zyv/pdb

UKB carrier n Triglycerides Haemoglobin A, Auditory threshold Visual impairment
AlIOT — chrM:1555:A,G 453 R e 3 R 1o L] o 4
LHON — chrM:14484:T,C 163 et 1 ey o —e—| i
LHON — chrM:11778:G,A 104 R B g —o— el —eti ——
MELAS — chrM:3243:A,G 54 - g — —— — ——
MERRF — chrM:8344:A,G 18 et e E —_— ——
LHON — chrM:3460:G,A 15 R ——
AIOT — chrM:7445:A,G 8 -
LS — chrM:14459:G,A 2 E
LS/NARP — chrM:8993:T,G 1 R
LS/MELAS — chrM:13513:G,A 0 R
B QO OO O D @ o o o O o O oD O X »
Ay 1in192 V0 ot AP PP PP P W @ B R @ | I
Heteroplasmy Variant carrier mean
-o- FDRQ<0.1 -e- Notsignificant n -10 ¢ 100 e 400

Fig. 3| Carrier frequencies and intermediate phenotypes for pathogenic
mtDNA mutations assessed in UKB. Carrier frequencies for ten pathogenic
mutationsin UKB, with heteroplasmy distributions plotted asjittered points
and annotations corresponding to canonically associated disease(s). Panels
showmeantriglyceride levels, haemoglobin A,., auditory threshold (by means
of speech-recognition threshold test) and visualimpairment (logMAR, by
means of vision test) among mtDNA variant carriers. Point size corresponds to

ten pathogenic mtDNA variants, in agreement witha previous estimate
of1in 200 (ref. 37).

An open question is whether individuals carrying rare pathogenic
mtDNA variants in the population exhibit intermediate disease
phenotypes. We can now address this thanks to the rich phenotyp-
ing in UKB. We tested four phenotypes traditionally associated with
these mtDNA variants: haemoglobin A,. (chrM:3243:A,G), triglyc-
eride levels (chrM:3243:A,G), hearing impairment (chrM:1555:A,G,
chrM:3243:A,G, chrM:7445:A,G) and visualimpairment (chrM:3460:G,A,
chrM:11778:G,A, chrM:14484:T,C, chrM:14459:G,A). Individuals carrying
the chrM:3243:A,G variant show elevated haemoglobin A, elevated
triglycerides, and hearing and visionimpairment (Fig. 3 and Methods)
relative to individuals carrying none of these ten mtDNA variants.
Owing to their low frequency of detection in the UKB sample, we do
not have the statistical power to exclude the presence of more subtle
intermediate phenotypes among the other tested variants.

mtDNA variation across 253,583 people

Next, we more broadly examined the entire spectrum of homoplasmic
and heteroplasmic mtDNA variation. Our analysis across UKB and AoU
yields the largest database of mtDNA SNVs and indels to date to our
knowledge (Fig. 4a). Consistent with earlier gnomAD analyses®, we find
that the number of homoplasmies per individual is closely related to
haplogroup, with haplogroup H (closest to GRCh38 reference) show-
ing the fewest and haplogroup LO showing the most (Extended Data
Fig.8a). Aggregate heteroplasmy distributions were highly consistent
between UKB and AoU (Extended Data Fig. 8d), and most individu-
als carried 0-1 heteroplasmic SNVs and 0-2 heteroplasmic indels
(Extended Data Fig. 8e). The hypervariable regions of the mtDNA,
found in the NCR, contain an elevated heteroplasmic SNV rate and
most heteroplasmicindel variants (Fig. 4a). Heteroplasmicindels pri-
marily arise near poly-C stretches (for example, chrM:302, chrM:567,
chrM:955, chrM:16182) in the non-protein-coding mtDNA, whereas
coding mtDNA shows a low indel rate despite the presence of many
poly-C tracts (Fig. 4a), consistent with negative selection. We tested
the most common heteroplasmies in UKB for association with risk of
29 common diseases (Methods) and found no evidence of association,
although sample sizes were limited (Extended Data Fig. 8g).

Heteroplasmy transmission and age accrual

We next investigated the patterns of transmission and age-dependence
for mtDNA heteroplasmies. For analysis of age, we focused on AoU given

number of carriers with available phenotype data (n); only points with more
than10 measurements are shown. Vertical lines represent trait means among
individuals not carrying any of the ten variants. Error bars, +1s.e.m. AIOT,
aminoglycoside-induced ototoxicity; LHON, Leber’s hereditary optic
neuropathy; MERRF, myoclonic epilepsy withragged red fibres; LS, Leigh
syndrome; NARP, neuropathy, ataxia, retinitis pigmentosa; FDR, false
discoveryrate.

the broader age range of participants (20-90 versus 40-70 for UKB).
Although heteroplasmic SNVs tend to accumulate with age (particularly
after age 70), this was not the case for indel heteroplasmies (Fig. 4b).
Using siblings and parent-offspring pairs in UKB (Methods), we found
that nearly all heteroplasmic indels were quantitatively maternally
transmitted and shared between siblings, whereas most heteroplasmic
SNVswere not (Fig. 4c). We also analysed WGS from 602 trios from the
1000 Genomes Project (1000G), finding a similar pattern (Fig. 4d).
Unlike UKB blood samples, 1000G samples underwent Epstein-Barr
virus transformation to create cell lines before WGS***, implying that
the maintenance of these heteroplasmic indels is robust and can be
quantitatively maintained through both maternal transmission and cell
culture, albeit withsome added variance (Fig.4d). The robust maternal
transmission and stability across age leads us to conclude that most
indel heteroplasmies are inherited as mixtures; by contrast, for het-
eroplasmic SNVs, the typical lack of transmission and accumulation
with age strongly suggest that they typically arise by means of somatic
mutagenesis. In contrast to earlier reports*’, we find no evidence of
paternal transmission (Fig. 4c,d). Over 80% of heteroplasmic SNVs
were transitions, which showed asharpincreasein frequencyinolder
age, consistent with the somatic mtDNA mutational spectrum seen
in ageing brains*.. Curiously, we observed a decline in heteroplasmic
transversionsin older individuals (Extended Data Fig. 8f).

Nuclear GWASs for mtDNA heteroplasmy

We thensought to determine the extent to which mtDNA heteroplasmy
is influenced by nuclear genetic loci. To our knowledge, nuclear loci
influencingindividual mtDNA heteroplasmies have never been identi-
fiedinhumans. Giventhat most common heteroplasmies showed mater-
nal transmission (Extended Data Fig. 9), we restricted to individuals
carrying each heteroplasmy and performed GWAS with the hetero-
plasmy level as a quantitative trait (Fig. 4e and Extended Data Fig. 8h).

Weidentified 42 LD-independent associations across 39 heteroplas-
mies after cross-ancestry meta-analysis of UKB GWASs (Supplementary
Note 7). Our results revealed a shared nuclear genetic architecture
for heteroplasmies across mtDNA sites, with 9 of 20 unique nuclear
loci associated with more than one heteroplasmic variant (Fig. 4f
and Extended Data Fig. 10a). Cross-mtDNA heterogeneity was also
observed: chrM:302:A,AC and chrM:302:A,ACC appeared most associ-
ated with loci near SSBP1, TFAM, LONP1 and MCAT, whereas the other
heteroplasmies were most strongly associated with loci containing
DGUOK, PNP and POLG2. Although many genes implicated in hetero-
plasmy control were also identified in our mtCN GWAS, others were not
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lead SNP two-sided Pvalue; dark points are at GWS. Vertical lines, SNPs
identified for multiple mtDNA variants or near genes of interest. Green, genes
also nominated for mtCN; *has Cauchy Pvalue at GWS from RVAS; 'CS variants
with PIP > 0.1;*CS variants with PIP > 0.9; ‘c’, coding variant in CS; underline,
eQTL colocalizationwith PIP > 0.1. g, Role of genes identified by heteroplasmy
GWAS in mtDNA dynamics. h, chrM:16183:AC,A heteroplasmy versus DGUOK
lead SNP genotype. i, Structure of DGUOK (20CP from RSCB under CCO
license; https://doi.org/10.2210/pdb2ocp/pdb) with Q170 inred, nearby
residues participatingin hydrogen bonds or stacking interaction in pink, and
dATPasblacksticks. j, chrM:16183:A,AC heteroplasmy versus POLG2lead SNP
genotype.k, Structure of polymerase gamma (4ZTU from RSCB under CCO
license; https://doi.org/10.2210/pdb4ZTU/pdb) with POLG in light blue and
POLG2 subunitsin green/yellow.Bound DNAisindark blue; POLG2 residue
G4l6isshownasred spheres.Inpanelshandj, redlines, median.
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nuclear genome. a, Scheme of chrM:302 region with associated G-quadruplex
and length heteroplasmy (G,,AG,) nomenclature.b, Sibling-sibling transmission
of chrM:302length heteroplasmies. c-e, chrM:302length heteroplasmy
compositionacross UKB (c), within select UKB mtDNA haplogroups (d) and across
171single cellsinwhole blood (e). For c-e, each vertical bar corresponds toasingle
individual (c,d) or cell (e). For b-e, colours correspond to the legend next to panel
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(forexample, TEFM, MTPAP, SSBP1, ABHD10; Fig. 4f). Many associated
loci were near genes with established roles in mtDNA replication and
maintenance (Fig. 4g), with missense variantsidentified in the 95% CS
in DGUOK, LONPI1, POLRMT, MGMEI and POLG2, and eQTL colocaliza-
tion PIP > 0.1seen for POLRMT, POLG2 and TFAM. Of the novel hits, we
highlight alocus containing C7orf73 (Fig. 4f and Extended Data Fig. 10f),
whichencodesaproteinrecently linked tocomplex 1V (ref. 42), suggest-
ing amoonlighting role for this short proteinin mtDNA maintenance.

Zoomingin, we see relatively large effect sizes from PIP > 0.9 variants
inor near genes related to nucleotide metabolism (PNP, DGUOK) and
DNA replication (POLG2). The probable causal variant for PNP (PIP 1,
Extended DataFig.10g)isintronicand colocalizes with astrong negative
cross-tissue eQTL* (multi-tissue P = O; colocalization PIP 1; Extended
Data Fig.10h,i). PNPis not yet linked to mtDNA disease but performs
an analogous reaction to TYMP (an mtDNA disease gene) on purines.
The probable causal variant for DGUOK (PIP 0.99, Fig. 4h) resultsin a
p.GIn170Arg missense change in the kinase domain, potentially affect-
ing the tertiary structure of the protein as this glutamine side chain
participatesinanumber of hydrogen bonds and stacking interactions
(Fig.4i). The putative causal variant for POLG2 (PIP 1, Fig. 4j) results in
p.Gly416Alainapredicted anticodonbinding domain. This amino acid

(blackdot). Errorbars, mean +1s.e.m.; mtCN, copies per diploid nuclear genome;
totaln=121,816.g, Case-only mtDNA heteroplasmy GWAS Manhattan plot for
chrM:302:A,AC. Red genes are mitochondria-related; *gene with RVAS Cauchy
Pvalue at GWS; 'CS variants proximal to the gene with PIP > 0.1; ‘c’, missense
variantidentified in the CS; underline, eQTL colocalization with PIP > 0.1.

h, chrM:302 heteroplasmy as a function of highest PIPSNP genotype in SSBPI
locus.Red line, median. i, Quantile-quantile plots of gene-based SKAT-O Pvalues
from RVAS for chrM:302:A,AC. Colours represent max MAF ofincluded variants,
blacklineis nullexpectation, error bandis 95% Clunder the null. Ref, reference.

is highly conserved (Extended Data Fig. 10j) and the mutation affects
aloop near the POLG2 homodimer surface (Fig. 4k). These examples
highlight protein-altering variants that appear to substantially affect
thelevels of specific heteroplasmic mtDNA variants.

To test whether heteroplasmy-associated nuclear loci act through
mtDNA mutagenesis, we repeated our GWAS, re-coding heteroplasmy
traits as ‘case/control’, in which for each mtDNA variant, cases showed
detectable heteroplasmy and controls did not. We observed little signal
(Extended Data Fig. 10b), arguing against a mutagenic origin influ-
enced by nucDNA variation and supporting the notion that maternal
transmission determines the presence of each tested heteroplasmy,
whereas nuclear variation can influence the subsequent relative het-
eroplasmic fraction.

We took several steps to validate our genetic findings. We performed
areplication analysis in AoU across 96,698 diverse individuals and
observed high concordance between cross-ancestry meta-analysis
effect sizes in UKB and AoU (R?*=0.79; Extended Data Fig. 10c and
Supplementary Note 4) with limited attenuation (as expected with
winner’s curse**). We investigated potential technical and biological
confounders, observinglittle correlation between these variables and
heteroplasmies (Extended DataFig.11a-e and Supplementary Note 2).
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We explicitly tested the robustness of our results to the contaminating
effects of NUMTs (Supplementary Notes 5 and 6), finding that GWAS
effect sizes were not sensitive to mtDNA coverage as would be expected
for NUMT-derived signals (Extended Data Fig.11j-m). We found strong
correlations between UKB meta-analysis effect sizes and those from
individual ancestry groups in AoU despite small n (R*=0.49-0.78;
Extended Data Fig.10d), reducing the likelihood of confounding by
recent polymorphic NUMTs. We tested all GWAS hits for LD R?>> 0.1
with variants within 20 kilobase (kb) windows of 4,736 reference and
polymorphic NUMTs, finding only 1 potentially concerning locus—
among the UKB EUR (European) group, the SSBPI locus had LD R~ 1
with variants in a reference NUMT. Importantly, this locus remained
significant for chrM:302:A,AC among the AFR (African) group in AoU
despite AFR showing much lower LD with NUMT variants (Extended
DataFig.10k). Further, the levels of ultra-rare missense/LoF variationin
SSBPIwere significantly associated with chrM:302:A,AC heteroplasmy
(Fig. 5i and Supplementary Table 7).

CSBIl variation across people and cells

The ‘length heteroplasmy’ at chrM:302, located in the CSBIl region
of the mtDNA NCR (Fig. 5a), is the most common heteroplasmic site
we observed and occurs within a regulatory motif for mtDNA replica-
tion® Although the reference genome corresponds to G,,AG, (nomen-
clature indicates the length of the poly-G stretch on the GRCh38
opposite strand, Fig. 5a), we frequently observe individuals harbour-
ing G,,AGg (chrM:302:A,AC), G,,AG, (chrM:302:A,ACC) and G,,AG,,
(chrM:302:A,ACCC). The fractions of mtDNA carrying these variants
are quantitatively shared between siblings (Fig. 5b), indicating
maternal transmission of mixtures of multiple mtDNA haplotypes at
position 302.

Most of the 156,885 individuals assessed in UKB harbour a mixture of
these length heteroplasmies (Fig. 5¢), with individuals from different
haplogroups showing different distributions (Fig. 5d). The observed
quantitative maternal transmission of heteroplasmy implies that
mtDNA mixtures exist in individual cells, and we indeed find mtDNA
mixtures at chrM:302in171single cells from one individual (Fig. 5e) by
re-analysing previously reported single-cell data (Methods).

We find multiple lines of evidence linking mtDNA replication and
length variation at chrM:302. Longer alleles at this site are associated
with decliningmtCN,4; withan effect size comparable to the TFAMlocus
(Fig. 5f, PIP =1). Nuclear genetic analyses for chrM:302:A,AC, the most
common length heteroplasmy, nominated several genes relevant for
mtDNA replication and nucleotide balance (for example, SSBP1, identi-
fied by GWAS and corroborated by ultra-rare RVAS; Fig. 5g,i), including
several genes not identified in GWASs for other heteroplasmic sites
(CDA, MTPAP, TFAM, TEFM, LONP1, MCAT; Figs. 4f and 5g). mtCN and
chrM:302:A,AC heteroplasmy even show colocalization at the two
most significant mtCN loci: 10:60145079:A,G (a TFAM 5’ untranslated
region (UTR) variant) and 19:5711930:C,T (a LONPI missense variant);
both show a PIP =1 for mtCN and have PIP > 0.3 for chrM:302:A,AC.
Itis notable that previous studies have suggested that the chrM:302
site serves as a ‘rheostat’ for mtDNA replication versus transcription,
whichare functionally linked in mitochondria®>*. The G-quadruplex at
CSBII (Fig. 5a) is a tertiary RNA/DNA hybrid structure that promotes
DNA replication by impairing RNA polymerase progression, promoting
the formation of interrupted RNA fragments subsequently used for
primed replication**¢. Prior in vitro studies have suggested that CSBII
G-quadruplex strength is a function of chrM:302 allele, altering the
degree to which RNA transcription switches to DNA synthesis* (Fig. 5a).
We now report that nuclear variantsin genesrelated to the mtDNA repli-
some canfavour onelength heteroplasmy over another—for example,
variants near SSBPI favour chrM:302:A,ACC (Fig. 5h). Taken together,
our results propose that nuclear genetic variation can influence the
replication efficiency of mtDNA molecules based on chrM:302 allele.
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Discussion

Given that all protein machinery for mtDNA replication and main-
tenance is nucDNA-encoded, it is plausible that commonly occur-
ring nuclear variants can influence mtDNA heteroplasmy, although
this has never been demonstrated in humans. Here, by leveraging
WGS across two large biobanks, we report pervasive nuclear genetic
control of mtDNA abundance and heteroplasmy variationin humans.
Many of these nuclear quantitative trait loci (QTLs) correspond to
machinery responsible for mtDNA maintenance, which may influence
heteroplasmy by directly acting on mtDNA and altering the relative
replication efficiency of mtDNA molecules based on mtDNA sequence,
whereas several others correspond to genes never before linked to
mtDNA biology. High statistical resolution allows us to gain detailed
molecularinsights into the mechanisms underlying an entire battery
of mito-nuclear interactions, with implications for basic physiology,
human disease and evolution.

Our ability to dissect the genetic architecture of mtCN and hetero-
plasmy was possible both because of the statistical power afforded by
the scale of large biobanks and because of careful attention given to
technical and biological confounders. We analysed mtDNA sequences
across 274,832 individuals of diverse ancestries from two biobanks. We
were particularly attentive to contamination by mtDNA pseudogenesin
the nuclear genome (NUMTs, Supplementary Notes 5and 6). We explic-
itly tested many potential confounders of mtDNA traits, finding that
correction of mtCN for blood cell composition had a profound effect on
the observed association landscape. Many previously reported associa-
tions between blood mtCN and cardiometabolic traits*?® disappear or
reverse direction after adjustment for blood cell composition (Fig. 1f).
Our corrections reduce and even eliminate certain recently reported
GWAS hits* near genes suspiciously related to blood cell composi-
tion and inflammation (for example, HLA, HBSIL). Our data suggest
that, inmany cases, aninflammatory state in cardiometabolic disease
influences blood cell composition, driving the previously observed
decline in mtCN.

Theresulting GWASs of mtCN,and mtDNA heteroplasmies provide
molecularinsightsinto mtDNA maintenance. The nuclear loci we iden-
tify, including those with fine-mapped missense variation (for example,
MGMEI, POLG, POLG2, DGUOK, LONPI), are enriched for roles in the
mtDNA nucleoid, mtDNA replication and nucleotide balance. We show
how population-level genetic analysis can produce detailed, mecha-
nistic insights into mtDNA replication: GWAS of the relative mtDNA
coverageinthe 7S DNA ‘flap’ region highlights missense variantsin both
MGME1 and POLG, whose products have exonuclease activity that can
resolve thisreplication ‘flap’ intermediate. We speculate that the puta-
tively causal variantin MGME1, p.Thr265lle, may act by directly affecting
DNA binding by disrupting a hydrogen bond within a helix-forming
part of the DNA binding pocket of the MGME1 exonuclease domain
(Fig. 2f). We observe notable differences in the genetic architecture of
mtCN,; versus heteroplasmy: although TFAM, LONP1, DGUOK and PNP
areassociated withboth traits, the former two (encoding components
of the mtDNA nucleoid) were the most significant associations for
mtCN,4, whereas the latter two (involved in nucleotide balance) were
among the strongest associations across many heteroplasmies. QTLs
corresponding to TWNK were identified only for mtCN, 4, whereas asso-
ciations near SSBP1, TEFM and POLRMT were specific to heteroplasmy,
suggesting that genetic variationin different mtDNA replication genes
can have effects specific to mtCN or heteroplasmy. We spotlight many
loci with no previous links to mtDNA biology, such as C7orf73, MCAT,
ABHDI10, NDUFV3, CDA and ADA, implying new roles for their protein
products. Future studies are required to evaluate the specificimpacts
of the candidate causal variants on the function of proteins involved
in mtDNA replication and maintenance.

Our study has implications for rare mitochondrial diseases. First,
our GWAS nominates candidate genes for unsolved mitochondrial



disease. PNPis an excellentexample: it has not previously been linked
to mtDNA disease; however, we now show that it is associated with
mtCN,qand thelevels of 13 length heteroplasmic variants at 3 mtDNA
sites. It participates in purine catabolism, and defects in analogous
steps in pyrimidine catabolism are linked to mtDNA deletion/deple-
tion syndromes. Second, we confirm an earlier estimate thatabout 1in
200 individuals carries aknown pathogenic mtDNA variant”’, but now
alsoreportintermediate phenotypesinsuchindividuals—for example,
the MELAS A3243G variantis associated withanincreasedrisk for dia-
betes. Interestingly, the heteroplasmy distribution observed for the
MELAS variant appears to be left-shifted, potentially suggesting nega-
tive selection as previously observed®®. Third, because the number of
wild-type mtDNA moleculesis key for healthy physiology, it is tempting
tospeculate thatindividuals with a higher mtCN polygenic score may
be more resilient to pathogenic, heteroplasmic mtDNA mutations,
helpingto explain some of the striking phenotypic variability observed
between family members that carry the same maternally transmitted
pathogenic mtDNA mutations®. Larger, rare disease-focused studies
will be required to determine the extent to which the nuclear variants
we have identified can modify the penetrance of mtDNA mutations.

A striking finding from our work is that nearly every human har-
bours heteroplasmic mtDNA variants obeying two key principles: (1)
heteroplasmic SNVs are typically somatic and accrue with age sharply
after age 70, whereas (2) heteroplasmicindels are found in more than
60% ofindividuals, do not accrue with age and are usually inherited as
mixturesinthe same maternallineage. The accrual of point mutations
with age has been reported™; however, to our knowledge the stability
ofindels with age has not previously been appreciated. Consistent with
earlier work®, heteroplasmic SNVs tend to occur more in the mtDNA
hypervariableregions, but we find that most heteroplasmies detected
here are actually inherited indels. Most heteroplasmic indels appear
to occur next to poly-C stretches in the non-protein-coding mtDNA;
heteroplasmicindel rates are orders of magnitude lower next to poly-C
stretches in coding regions, suggesting negative selection in these
regions. Strikingly, for any given commonindel, we find that maternal
heteroplasmy levels quantitatively predict offspring heteroplasmy
levels, suggesting neutral transmission. We show that these hetero-
plasmy levels are also under nuclear genetic control, with associated
locienriched for genesinvolved in mtDNA biology and nucleotide bal-
ance. These loci are similar across heteroplasmies at multiple mtDNA
sites, suggesting a shared genetic architecture.

In theory, the nuclear QTLs we identify for mtDNA length hetero-
plasmies could operate by one of two mechanisms: (1) the associated
nuclear variants are ‘mutagenic’ and impair mtDNA copying fidelity
resulting in somatic indels due to slippage in poly-C tracts*:, or (2)
these nuclear variants confer a replicative advantage to maternally
inherited mtDNA molecules carrying certain length variants. Our data
favour the latter. Case/control GWAS showed very little signal com-
pared with case-only analysis; in concert with the observed maternal
transmission this strongly suggests that the identified nuclear QTLs
modify existing indel heteroplasmy levels rather than acting through
mutagenesis, potentially by altering the replicative efficiency of the
mtDNA molecules carrying different alleles.

Our work provides insight into mechanisms by which the nuclear
genotype may be able to confer a replicative advantage to specific
mtDNA variants. Thisis perhaps bestillustrated by length heteroplasmy
at chrM:302. This heteroplasmy occurs within the G-quadruplex in
CSBIlin the mtDNA NCR, which may induce switching from transcrip-
tion to replication by blocking transcription progression. Previous
in vitro studies have shown that the chrM:302 length polymorphism
affects the strength of this G-quadruplex, hence modifying the tran-
scription/replication switch®*. We find that mixtures of mtDNA with dif-
ferent chrM:302 length variants are found in over half of the population
and are maternally inherited. Once inherited, we show that chrM:302
allelesinfluence mtDNA abundance (actingin cis), and we find that the

resulting heteroplasmy levels areinfluenced (in-trans) by nuclear QTLs
(forexample, SSBP1, POLG2, TEFM) whose protein products are thought
todirectly operate this regulatory switch*. Insum, our resultsindicate
that the associated nuclear variants alter chrM:302 heteroplasmy by
influencing factors thatinteract with the chrM:302 G-quadruplex, thus
privileging the replication of mtDNA templates carrying a particular
chrM:302 genotype. Recent experiments in embryonic stem cells led
to speculation that CSBII length variants may contribute to mtDNA
reversion after mitochondrial replacement therapy*’ owing to replica-
tive advantage of carryover mtDNA from the intending mother. Our
results may provide mechanistic insight into nuclear genetic control
of this reversion.

An open question is why mtDNA heteroplasmy is so common in
humans, and whether aselective advantage preserves this variation and
the observed mito-nuclearinteractions. Inthe current paper, we have
shown that quantitative mtDNA traits in the population can be under
both cis-acting control (through mtDNA variation) and trans-acting
control (through nucDNA variation), and it is possible that these effects
balance eachother to maintain stable heteroplasmy across generations.
As the mtDNA has high mutation rates with little or no recombination,
itis prone tothe accumulation of disabling mutations that could lead to
its ‘meltdown’ through Mueller’s ratchet*°. However, mtDNA mutation
followed by heteroplasmy is arequisite step in evolutionary adaptation.
Nuclear QTLs for mtDNA heteroplasmy may represent mechanisms
by which areservoir of such variation can be tolerated and harnessed
over evolutionary time-scales.
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Methods

Overview of mtSwirl

Here we develop mtSwirl, ascalable pipeline for mtCN and variant call-
ing which makes calls relative to an internally generated per-sample
consensus sequence before mapping all calls back to GRCh38. In addi-
tionto GRCh38reference filesand WGS data, the mtSwirl pipeline takes
asinputnuclear genomereference intervals that represent regions with
high homology to the mtDNA (reference NUMTSs). We constructed a
set of 385 putative NUMTs by using a BLAST-based inventory of refer-
ence NUMTs published previously™, extending the boundaries of each
interval by 500 bases, and merging any overlapping intervals. Initial
variant callsinthe mtDNA and reference NUMT regions are made from
mapped WGS data using Mutect2 and HaplotypeCaller, respectively
(using GATK v.4.2.6.0), and haplogroup inference is performed using
Haplogrep*. Consensus sequences are subsequently constructed using
homoplasmies (mtDNA) and homozygous alternative (nucDNA) calls.
Reads are realigned to the new consensus sequence and variants are
called on the mtDNA using Mutect2. To avoid the artificial coverage
depression at the ends of the mtDNA reference genome, we call vari-
antsinthe control region after alignment to a shifted mtDNA molecule.
Allvariant calls and per-base coverage estimates are then returned to
GRCh38 coordinates and output from the pipeline. See Supplemen-
tary Note 1for more details. We release two versions of our pipeline
on GitHub (https://github.com/rahulg603/mtSwirl): mtSwirlSingle,
asingle-sample pipeline intended for use with Cromwell and on plat-
forms with high worker limits such as Terra and the AoU Workbench,
and mtSwirlMulti, a multi-sample version that processes multiple sam-
ples serially per machine, intended for use on platforms with asmaller
parallel worker limit such as the UKB Research Analysis Platform.

Cohorts

UKB. The UKB is a large prospective cohort study of approximately
500,000 individuals in the UK*, about 200,000 of whom had WGS
performed at the time of this study. Samples were selected for the
first round of WGS using a pseudorandom approach to ensure that
included samples were representative of the full cohort. Sequencing
data were generated using DNA extracted from buffy coat obtained
from participants; more details have been reported previously*. All
UKB data were accessed under application 31063 and mtDNA variant
calling was performed on the UKB Research Analysis Platform.

AoU. AoU is alarge longitudinal cohort study based in the USA, with
a central goal of enroling a diverse cohort of participants providing
electronic health record data over time, specimens for genetic analysis,
survey responses and standardized biometric measurements®.
At the time of this study, 98,590 individuals had completed WGS on
samples obtained from whole blood. DNA extraction was completed
atthe Mayo Clinic, and sequencing was performed at three sequencing
centres (Baylor College of Medicine, Broad Institute and University of
Washington) using harmonized protocols. Post-sequencing variant
and sample QC was performed by the AoU Data and Research Center
(DRC). AllmtDNA analyses were performed using the AoU Researcher
Workbenchinthe Controlled Tier vé workspace: ‘Genetic determinants
of mitochondrial DNA phenotypes’, using datafrom the Q22022 release.
See https://support.researchallofus.org/hc/en-us/article_attachments/
7237425684244/Al1_Of_Us_Q2_2022_Release_Genomic_Quality_Report.
pdf for more details on genomics QC and preprocessing.

gnomAD v.3.1subset. gnomAD v.3.1is a database aggregating WGS
datafrom 76,156 samples fromseveral experiments and projects around
theworld, as part of which an mtDNA variant call-set was recently pro-
duced?. Samples were sourced from several study designs including
case—control studies for common diseases, population-based cohorts
and observational studies. Individuals with inborn severe paediatric

disease were excluded. Most data were sourced from sequencing
performed on either blood samples extracted using study-specific
methodologies or cell lines?. We made use of a subset of the gnomAD
v.3.1samplesto prototype our pipeline (mtSwirl) and compareits per-
formance with previous mtCN and variant calls (‘Vanilla’). We excluded
samples with very high mtCN as done previously”, as these are most
likely to be cell line samples rather than whole blood samples; we used
amorestringent threshold of 350 as we wanted to maximally enrich for
whole blood samples for this analysis. We also removed samples with
mtCN <50 due to elevated NUMT contamination in these samples®
(Extended Data Fig. 8c). We selected approximately 6,300 samples
from gnomAD v.3.1 to maximize inclusion of diverse haplogroups
including those underrepresented in UKB (Extended Data Fig.2a). We
specifically supplemented samples belonging to the L haplogroups
and enforced a cap on the number of samples assigned to either NFE
(Non-Finnish European) or FIN (Finnish). For other larger haplogroups
we performed random subsampling proportional to the original com-
position of the gnomAD dataset to achieve our final sample size. All
analyses were performed using Terra (https://app.terra.bio/), and all
analyses were performed using the mtSwirl pipeline deployed using
Cromwellin Terra.

1000G. The expanded 1000G cohort is a foundational collection of
3,202 diverse samples from 26 populations with recently completed
high-coverage WGS and 602 trios***. Unlike the other cohorts, for
which sequencing was performed directly on whole blood or whole
blood subfractions, sequencing for1000G was performed on lympho-
blastoid cell cultures which were established from peripheral blood
mononuclear cells at the Coriell Cell Repositories®. The expanded
1000G cohort, which includes the full set of unrelated samples from
1000G phase 3 as well as additional samples to complete 602 trios,
was recently sequenced with more details elsewhere®. All data were
accessed through the 1000G-high-coverage-2019’ workspacein Terra,
and all analyses were performed using mtSwirl deployed using Crom-
wellin Terra.

Computing mean nucDNA coverage in UKB

As mean nucDNA coverage was not available for UKB, we used sam-
toolsv.1.9 idxstats*, samtools flagstat and GATK v.4.2.6.0 CollectQuali-
tyYieldMetrics as part of the mtSwirlMulti pipeline to efficiently and
economically estimate mean coverage on the nucDNA. Idxstats-based
counts of total mapped reads were computed over autosomes with the
subsequent formula applied to get average nucDNA coverage after
removing contributions from duplicate reads:

Mean coverage =

(total mapped reads - singletons - reads with discordant mate

—duplicates) x read length
genome length

Computing mtCN
Across all cohorts we used the following formula to compute mtCN:

, meanor median mtDNA coverage

2
mean nucDNA coverage

We defaulted to use of mean mtDNA coverage for the main
mtCN-related analyses.

Post-calling mtDNA phenotype QC

Tointegrate our variant calls and perform sample and variant QC, we
extended apreviously developed pipeline?. Single-sample variant call
format files (VCFs) emitted from mtSwirl were merged into a single
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Hail MatrixTable (v.0.2.98 (ref. 57)) upon which all downstream steps
were conducted.

Forsample QC, any samples showing homoplasmic variant overlap
(Supplementary Note 1) were removed. We observed asignificant eleva-
tion in heteroplasmic SNV calls among samples with mtCN below 50,
with astabilization of heteroplasmic calls above 50 mtDNA copies per
cell (Extended Data Fig. 8c), highly suggestive of elevated NUMT con-
taminationin the low copy number samples. Thus, to avoid contamina-
tion of our results, all samples with mtCN < 50 were removed. Finally, all
samples with evidence of contamination more than 2% were removed, as
estimated by (1) mtDNA contamination using Haplocheck 0124 (ref. 58)
in mtSwirl, (2) nucDNA contamination or (3) the presence of multiple
haplogroup-defining variants at abnormally low allele fraction. Given
the small count of samples processed in 2006 and abnormally elevated
mtCN estimates in these samples (Extended Data Fig. 3e), we excluded
these samples from all UKB analyses.

For variant QC, (1) variants with a very low heteroplasmy (less than
0.01) were called as reference with a heteroplasmy of 0, (2) variants
with heteroplasmy below 0.05 were flagged and removed as these are at
highrisk of being enriched for NUMT-derived signals and (3) all variant
calls flagged by Mutect2 were removed (Supplementary Note 1). For
all sites, aminimum coverage threshold of 100 was used to distinguish
between homoplasmic reference calls and sites without variant calls
due tolow variant calling confidence as done previously?. mtDNA vari-
ants were annotated using the Variant Effect Predictor v.101 (ref. 59)
and dbSNP v.151(ref. 60). Variants with at least 0.1% of samples passing
filters and showing a heteroplasmy between 0 and 0.5 were annotated
as‘common low heteroplasmy’. Variant calls failing QC were coded with
amissing heteroplasmy.

For mtCN, we removed the samples identified during variant call-set
sample QC as showing signs of contamination or abnormal overlap-
ping homoplasmy calls, or which were processed in2006. Because we
expect mtDNA-wide coverage measures, such as mtCN, to be robust
to NUMTs, we do not enforce hard cut-offs on mtCN measurements.

Construction of mtDNA heteroplasmy phenotypes

We defined our set of common heteroplasmies in UKB as ‘common low
heteroplasmy’ variants (Methods) which are present as heteroplasmies
in atleast 500 individuals, resulting in 39 variants. We produced two
main sets of phenotypes: (1) a‘case-only’ dataset consisting of hetero-
plasmy values for these variants in which any individuals without the
variant detected were coded as missing and (2) a‘case-control’ dataset
in which cases consisted of those with any detectable heteroplasmy
and controls consisted of those with the variant not detected. Inboth
phenotype schemes, samples identified as homoplasmic for each
variant were always coded as missing. For the case-control dataset,
only samples that could be accurately inferred as areference for each
variant were labelled as controls—specifically, the sample was coded
as missing for a variant if it had a coverage less than 100 at the site or
showed the variant call as QC-fail (Methods).

For sensitivity analyses, we produced several further case-only
heteroplasmy datasets: (1) in which any variant calls supported by an
alternative allele depth (AD alt) of less than the mean nucDNA coverage
ofthe sample were made missing; (2) in which heteroplasmy estimates
were corrected for the depth of mtDNA coverage at the variant site
after re-alignment; and (3) in which length heteroplasmy estimates at
chrM:302 were corrected for median coverage at CSBII. All corrections
were performed by obtaining residuals from the linear regression of
the heteroplasmy onto the covariate for each variant across all samples
before genetic analysis.

mtDNA phenotype covariate adjustment approach

Weinvestigated time of day of blood draw, fasting time, assessment date
and assessment centre as technical covariates for mtDNA traits. As draw
time and assessment date are continuous, we used natural splinesinthe

correction model to flexibly model nonlinear relationships between
these covariates and the mtDNA phenotype. For assessment date, we
used knots placed roughly seasonally to model seasonal variation in
mtDNA phenotypes—these corresponded to3 monthincrements start-
ing on1July 2007 and ending on 1July 2010. For draw time, we used
anatural spline basis with 5 degrees of freedom. Assessment month
and assessment centre were modelled as indicator variables. Fasting
times were provided in increments of 1 h and thus were modelled as
indicator variables; fasting times of more than 18 h were labelled as
18 and fasting times of O were labelled as 1. All terms were included in
ajoint model for correction.

We also investigated the relationship between mtDNA pheno-
types and blood cell type percentages and mean blood cell volumes.
Wesselected all non-redundant traits available: white blood cell leuco-
cytecount, haematocrit percentage, platelet crit, monocyte percentage,
neutrophil percentage, eosinophil percentage, basophil percentage,
reticulocyte percentage, high light scatter reticulocyte percentage,
immaturereticulocyte fraction, mean corpuscular volume, meanretic-
ulocyte volume, mean sphered cell volume, mean platelet thrombocyte
volume. We did notinclude nucleated red blood cell percentage as only
approximately 1% of the entire UKB cohort has non-zero values for this
measure, and we excluded lymphocyte percentage given collinearity
with neutrophil percentage (r = 0.92) and the sum-to-1property of the
white blood cell differential measurements. To avoid excess leverage
fromoutlying blood cell measurements, we removed any blood meas-
urements with a Z-score > 4. All terms were included in a joint model
for correction.

For both the technical covariate and blood cell type models,
F-test Pvalues were obtained for each of the 40 mtDNA phenotypes
(39 case-only heteroplasmies and mtCN). For any phenotypes that
showed F-test P< 0.05/40 (Bonferroni corrected), we produced cor-
rected versions of the phenotype by obtaining the residuals from
the regression of the mtDNA phenotype onto covariates of interest
before genetic analysis. For mtCN, adjustments were performed with
log(mtCN) as the response variable. For heteroplasmy estimates,
adjustments were performed with case-only heteroplasmies as the
response variable. The specific correctionsimplemented were (where
‘ns’ refers to the natural spline function):

log(mtCN) ~ ns(blood draw time, 5) + assessment centre
+ fasting time + ns(assessment date, SEASONALKNOTS)
+month of assessment + blood cell variables

As sensitivity analyses for case-only heteroplasmy phenotypes,
residuals from the following models were produced:

chrM:567:A,ACCCCCC~ ns(blood draw time, 5) + assessment centre
+ fasting time + ns(assessment date, SEASONAL KNOTS)
+month of assessment

(chrM:16093:T,C; chrM:16182:A,ACC; chrM:16183:A,AC) ~ blood cell
variables

For each response variable, residuals were generated using
residuals (Im(model))asimplementedinRv.4.2.1. Inall visualizations
of covariate-adjusted variables (for example, mtCN,4), we rescaled the
residualized variable by adding the pre-adjustment mean. In the case
of mtCN,;, we rescaled and exponentiated the residualized variable
toreturnadjusted values back to an absolute scale. See Supplementary
Notes 2 and 3 for more details.

mtDNA principal component analysis and predictive power for
mtDNA haplogroups

To construct a high-quality variant genotype matrix for principal com-
ponent analysis (PCA), we obtained the set of homoplasmic variants



(heteroplasmy > 0.95) passing QC identified at a MAF > 0.001in UKB.
Any samples with a QC-pass homoplasmy detected were coded as 1
for each respective variant; all others were coded as O. This binary
genotype matrix was subsequently filtered to the set of unrelated
samples upon which we computed the first 50 principal components
after centring and scaling using the efficient truncated singular value
decomposition algorithm implemented in the irlba v.2.3.5.1 package
inR.Related samples were projected onto these principal components
(PCs) to produce a set of mtDNA PC coordinates for each sample. The
set of related samples were defined previously in the Pan UK Biobank
(Pan UKBB) project®. In brief, PC-relate was used as implemented
in Hail within each assigned genetic ancestry group in UKB and the
maximal set of unrelated samples were identified using the maximal
independent set algorithm implemented in Hail.

To assess the goodness of fit of mtDNA PCs for the prediction of
top-level mtDNA haplogroups, we fitamultinomialmodel with top-level
haplogroup as the response variable and the first 30 mtDNA PCs as
explanatory variables as implemented in the nnet v.7.3-17 package in
R®2. We included only samples belonging to haplogroups with at least
30 samplesin UKB. For assessment of the predictive power of mtDNA
PCsfor ‘level 2’ haplogroups, we fit multinomial models using a similar
approach for eachtop-level haplogroup, with ‘level 2’ haplogroups as
the response variable. In all cases, a null model was fit in parallel with
the sameresponse variable with only anintercept term. We computed
McFadden’s pseudo R? for each model with the following formula:

log likelihood
null model log likelihood

Pseudo R?=1-

Correlations between mtCN, mtCN, 4, blood cell composition,
heteroplasmies and disease phenotypes

We obtained 29 common disease diagnoses from UKB from a previously
curated set of phecodes and International Classification of Disease-10
(ICD10) codes corresponding to major common diseases® along with
demographic variables (age, sex) and blood cell composition pheno-
types (Methods). We obtained mtCN,,,,, mtCN,4;, common (N> 500)
case-only heteroplasmies (Methods) and three major blood cell com-
position traits (platelet crit, monocyte count and neutrophil count),
and performed Z-score transformation for each. To test for associa-
tions with disease phenotypes, we implemented a logistic regression
model using the glm functioninR, including age, sex, age?, age? x sex,
age x sex, top-level haplogroup and genetic ancestry group assign-
ment as covariates:

Disease phenotype = trait +age +sex +age? +age? x sex +age x sex
+population +top level haplogroup

We included haplogroups with at least 30 individuals represented
in UKB. Haplogroup was included in the model only when the trait was
mtDNA-derived (for example, it was not included for blood composi-
tion phenotypes). Odds ratios were obtained asexp(8,,.,,), and the 95%
Clwas obtained as exp(f, ., +1.96 X s.€.q5;c)-
Derivation of mtDNA coverage discrepancy phenotypes
We obtained mtDNA intervals corresponding to the 7S DNA,
heavy strand origin, CSBII, CSBIII and the LSP***¢*, We computed
per-individual median mtDNA coverages in the regions corresponding
to the first third of the 7S DNA (termed ‘7S DNA"), the region between
CSBII and the heavy strand origin (‘7S DNA flap’), and the region
between CSBIIl and the LSP (‘7S RNA primer’). To generate coverage
discrepancy phenotypes, weregressed DNA flap coverage onto either 7S
DNA coverage or 7SRNA primer coverage. To avoid coverage discrepan-
ciesattributable toinherited mtDNA variationinthe regions of interest,
we included indicator variables for all top-level haplogroups with at

least 30 samples as well as their interactions with 7S DNA or 7S RNA
primer coverage. We also included terms corresponding to the same
blood cell composition and technical variables used for adjustment of
mtCN (Methods and Supplementary Note 2) to reduce the degree of
variation attributable to these factors. The residuals from the following
model were used as the coverage discrepancy phenotype for GWAS:

7S DNA flap coverage = (7S RNA primer or 7S DNA coverage)
+haplogroup + (7SRNA primer or 7S DNA coverage)
x haplogroup +blood cell composition + technical variables

Relatedness analyses in UKB

Relatedness was computed and sibling-sibling and parent-offspring
pairs wereinferred as previously described in UKB®. For the assessment
of transmission of all QC-pass mtDNA variants, we restricted to only
variants found in five or more samples.

Determination of chrM:302 length heteroplasmy composition
To constructlength heteroplasmy compositional profiles, we obtained
all pre- and post-QC variant calls made at position chrM:302. We
generated a ‘QC-fail’ heteroplasmy estimate at position 302 for each
individual by summing pre-QC heteroplasmies that failed post-
calling QC; all other alleles included in the composition passed QC
(Methods). We defined a ‘reference’ call at chrM:302 for each sample
as 1-sum(heteroplasmy of any allele at chrM:302), in which the sum
included all QC-pass alleles as well as the ‘QC-fail’ estimate. All samples
without variant calls at chrM:302 were assigned a reference fraction
of1,and samples witha depth of less than 100 at chrM:302 (after local
re-alignment during variant calling) were excluded. For each sample,
we combined all heteroplasmies from calls other than reference,
chrM:302:A,AC, chrM:302:A,ACC and chrM:302:A,ACCCinto an ‘Other’
category. The ‘QC-fail’ fraction was included in the ‘Other’ category.
Any calls with amissing value forachrM:302 allele (thatis, because the
allele was removed due to filtering) were imputed as a heteroplasmy
of 0 forthe purposes of visualizations and analyses. As afinal step, any
callswith a heteroplasmy fraction less than 0.05 were labelled ‘Other’
as we use this heteroplasmy cut-off throughout our study to avoid
contamination from potential NUMT-derived artifact.

Associations between pathogenic variant carrier status and
continuous phenotypesin UKB

We obtained continuous phenotypes available in UKB corresponding
to classic symptoms of MELAS—diabetes-like symptoms (elevated
triglycerides (ID 30870), elevated haemoglobin A, (ID 30750)) and
hearing impairment (by means of the speech-reception threshold
assessment (IDs 20019 and 20021))—as well as the results from the
visual acuity test for analysis of known pathogenic variants for Leber’s
hereditary optic neuropathy (logMAR from visual acuity test (IDs 5201
and 5208)). All obtained phenotypes were filtered to samples with
available mtDNA variant calls and corrections were applied for age,
sex, age?, age” x sex, age x sex and genetic ancestry group assignment
by obtaining residuals from the following linear regression model using
residuals (Im(model)) inR:

Measurement ~ age + sex + age” + age” x sex + age x sex
+population

Asblood biomarkers tend to have log-normal distributions, correc-
tions were applied after log transformation of haemoglobin A,. and
triglyceride levels. Post-adjustment, all measurements were returned
to their original scale by adding the pre-adjustment dataset-wide
means for each measurement modality. Final estimates for the
speech-recognition threshold and vision logMAR were generated by
averaging measurements for the leftand right ear and eye, respectively.
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Carriers of known pathogenic mtDNA variants were defined as indi-
viduals carrying the variant post-QC at any fraction. We defined a set of
controls asindividuals with none of the ten known pathogenic mtDNA
variants tested. Only samples that could be accurately inferred as
reference for all ten variants were labelled as controls—the sample was
excluded if, for any of the ten variants, it had a coverage of below 100
at the site or showed a QC-fail variant call (Methods).

Comparisons between residual phenotype values among variant
carriers versus global controls were performed only for variant-phe-
notype pairs with more than ten defined phenotype values among
variant carriers. Pvalues were obtained by performing a two-sample
t-test between phenotype values among variant carriers and the set
of global controls, and Q values were obtained by applying the Benja-
mini-Hochberg procedure.

Creation of mutational spectrum categories

Heteroplasmic SNV mutation types in AoU were constructed using
the set of QC-pass heteroplasmic SNVs. For each SNV type, the set of
individuals without any heteroplasmic variants wasidentified as those
withno QC-pass variantcall of that type; these individuals were included
as zeros in estimates of the mean SNV count of each type.

chrM:302 length heteroplasmy inference in single cells
Single-cell mitochondrial single-cell assay for transposase-accessible
chromatin with sequencing (mtscATAC-seq) data'® were obtained and
analysed with Massachusetts General Hospital Institutional Review
Board (IRB) approval under protocol no. 2016P001517. We used the
BedTools® intersect tool (v.2.29.2) to identify read alignments com-
pletely spanning the chrM:300-318 locus in the mtscATAC-seq data.
Wetheniterated over these reads and classified their chrM:302length
variant by extracting the poly-C/G tracts using a regular expression,
‘AA(CCC+[CT]CC+)GC’, anchored on the two constant base pairs on
either side of the variant region to detect the canonical variant struc-
ture of two poly-C/G tracts with or without a single intervening A/T.
Alleles in matching reads were classified based on the length of their
poly-C/G tracts, whereas alleles in the reads that did not match the
regular expression were classified as missing. Next, we filtered out any
reads with cell barcodes that were notin the published list of cell calls,
and further restricted our analysis to only the cells with atleast 20 reads
at the chrM:300-318 locus. For each of these high-coverage cells, we
calculated the fraction of reads showing each of the top three most
common length variants (G,AGg, G,AG, and G,AG,,) and aggregated
any other detected alleles into the remainder (Other) for display as a
stacked bar plot. We also estimated bulk heteroplasmy by summing
the allele counts from the high-coverage cells and re-calculating the
fractions for the top three length variants, again with all other alleles
being aggregated into the remainder ‘Other’ category.

UKB GWAS approach

AllGWASs were performed in UKB using approaches as performed in
thePan UKBBiinitiative®'. In brief, ancestry assignment was performed
by first projecting UKB samples into genotype PC-space constructed
fromreference samples from 1000G phase 3 and the Human Genome
Diversity Project (HGDP), and subsequently using arandom forest
classifier to assign continental labels trained on the 1000G + HGDP
reference data. In each ancestry group, PCA was performed among
unrelated samples with related samples projected onto this PC-space.
Further sample QC was performed as described as part of the Pan
UKBB initiative®, including removal of ancestry outliers using a
centroid-based metric, and filtering of individuals with high genotype
missingness, sex discordance and sex chromosome aneuploidies.
Variant QC was also performed on UKB-provided imputed v3 variants
(GRCh37) as part of the Pan UKBB initiative®, including only those with
INFO scores greater than 0.8 on autosomes and the X-chromosome.
Association tests were performed only on variants with aminor allele

count (MAC) >20. We have constructed and released a mapping from
our QC-pass UKB GRCh37 variants to GRCh38 coordinates, built using
the beftools +liftover tool (https://github.com/freeseek/score) with
default parameters.

For GWAS, SAIGE v.1.1.5 (ref. 67) was used to perform association tests
for each assigned ancestry group using the first ten per-population
PCs, age, age x sex, age? and age? x sex as covariates (referred to as
‘baseline’). Ancestry groups wereincluded onlyif at least 50 individuals
had the phenotype defined. The use of the SAIGE GRM-based approach
allowed for the inclusion of related samples in the GWAS, and we ena-
bled leave-one-chromosome-out fitting in all steps. For all continuous
phenotype GWASs (case-only mtDNA heteroplasmy traitsand mtCN),
phenotypes were inverse rank normalized before genetic analysis.

For all main mtDNA heteroplasmy analyses, top-level mtDNA hap-
logroup was included as an extra set of covariates in the GWAS model
as aset of 24 indicator variables with haplogroup A as reference. Any
samples belonging to top-level haplogroups with fewer than 30 sam-
ples represented were excluded. The same GWAS model was used for
sensitivity analysis of case-only heteroplasmies after removing calls
with AD altless than mean nucDNA coverage, after correction for local
variant coverage, after correction for CSBII coverage, and after cor-
rection for technical or blood trait covariates (Methods). For the main
mtCN analyses, we used only the baseline covariates to perform genetic
associations withmtCN,,,, and mtCN,;.

We performed two extra sensitivity analyses for case-only hetero-
plasmy GWASs: (1) inclusion of 30 mtDNA PCs as covariates in the GWAS
modelinstead of top-level haplogroup for seven variants which showed
relatively high heterogeneity across level two haplogroups, and (2)
inclusion of mtCN,q;as a covariate inthe GWAS model for all case-only
heteroplasmiesinaddition to top-level haplogroup. We also tested the
effects of including top-level haplogroup indicator variables as extra
covariates in GWASs for mtCN,,,, and mtCN,;.

AoUGWAS approach

We performed a GWAS in AoU as a replication for our main case-only
heteroplasmy analyses in UKB. Ancestry inference was performed
upstream by the AoU DRC. In brief, AoU samples were projected into
the PCA space of genotypes from chromosomes 20 and 21from HGDP
and 1000G, and arandom forest classifier trained to identify ances-
try labels in 1000G + HGDP was used to assign continental ancestry
labels to AoU samples.

We performed sample and variant QC after WGS variant calls
(GRCh38) were imported into Hail. Multi-allelic sites were split and
sites with very low precomputed allele frequency were removed
(MAF > 0.0001retained). For sample QC, samples flagged by the DRC
as population outliers for several metrics or identified asrelated by the
DRCwere excluded. For variant QC, we removed any variants filtered by
the DRC, which occurredinbriefbecause of no high-quality genotypes
for the variant (defined as GQ > 20, DP > 10, AB > 0.2 for heterozygotes),
excess heterozygotes or alow-quality score for the variant. We further
removed any variants not in Hardy-Weinberg equilibrium (one-sided
P<1x107)and variants with a call rate < 0.95. Finally, we removed any
variants with MAC <20 in each assigned ancestry group.

We next extracted covariates relevant for our GWAS model. We used
an SQL query to obtain date of birth in the controlled data repository
and used the provided QC flat files to obtain sex assigned at birth. As
date of sample collection was not provided, approximate age was con-
structed for all analyses by subtracting the year of birth from the year
2021. To address residual stratification in assigned ancestry groups,
we produced PCsin each ancestry group using avery similar approach
as used in UKB (Methods) as we found that the provided PCs did not
appropriately handle stratification among positive control phenotypes
such as height, blood glucose, diastolic blood pressure and systolic
blood pressure (Supplementary Note 4). We included 20 recomputed
PCs, in addition to approximate age, age?, age x sex and age? x sex as
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covariates in the final GWAS model. We did not perform genetic asso-
ciation analysis for the MID (Middle Eastern) group as fewer than 400
samples with available WGS data were assigned MID.

We used Hail with the hl.linear_regression_rows() method to per-
form GWAS after all QC. As described in the Methods, we performed
genetic analysis for all QC-pass case-only mtDNA heteroplasmies with
homoplasmic calls set to missing. As this analysis is intended for rep-
lication, weincluded any mtDNA variants found in300 or more samples
acrossany ancestry group, resulting in41 variants for genetic analysis.
Of these, 36 were also analysed in UKB; 3 UKB variants were not suffi-
cientlycommonin AoU for genetic analysis. As in UKB, for the analysis
of case-only mtDNA heteroplasmies, top-level mtDNA haplogroup was
included as covariates in the GWAS model as a set of 27 indicator vari-
ables in addition to age, sex and PC covariates. Samples belonging to
top-level haplogroups with fewer than 30 samples in AoU were
excluded. All case-only mtDNA heteroplasmy phenotypes were inverse
rank normalized before analysis.

See the AoU genotype quality report for more information on
upstream genotype data and sample QC, ancestry inference and
relatedness inference (https://support.researchallofus.org/hc/
en-us/article_attachments/7237425684244/All Of Us Q2 2022 Release_
Genomic_Quality_Report.pdf).

UKB rare variant analysis approach

Gene-based and single-variant testing of rare variants was performed
using SAIGE-GENE+ (ref. 68) asimplemented in SAIGE v.1.1.5. Given the
analysis of low-frequency variants and the small sizes of the other
populations, we focused on the EUR (European) genetic ancestry group
for this analysis. Covariates and phenotypes were identical to those
used for the common variant GWASs in all cases (Methods). Genetic
datawere obtained from the UKB OQFE 450k exomes release. We ena-
bled leave-one-chromosome-out fitting in all steps, with default param-
eters used for estimation of categorical variance ratios. SKAT-0%° was
used for set-based testing, with burden and SKAT” Pvalues reported
for each test. Gene- and variant-consequence annotations were used
as constructed elsewhere®. For each gene, synonymous, missense,
LoF, missense + LoF and synonymous + missense + pLoF variants with
maximum MAF1x10™*,1x10and 1x 102 were included in combina-
torial sets (12 variant sets per gene) with aggregate Pvalues combined
per gene using the Cauchy combination test”. Rare variant associations
from first assessed using Pvalues fromthe Cauchy test which combines
information across all evaluated categories, with subsequent evalua-
tion of associated variant groups (for example, missense versus syn-
onymous, MAF cut-offs) performed only for results at GWS from the
Cauchy test. Thus, for agiven phenotype, we defined our GWS thresh-
old based onthe primary assessment of the singular Cauchy test (that
is, W";enes .

Heritability estimation and enrichment analyses for mtCN
S-LDSC? was used for heritability estimation and enrichment analy-
ses for mtCN in UKB as performed previously?. In brief, we analysed
EUR summary statistics in UKB, restricting variants to those in Hap-
Map3 (HM3). We estimated overall SNP-heritability, controlling for
97 annotations corresponding to coding regions, enhancer regions,
MAF bins and others’* (referred to as baselineLD v.2.2). For enrichment
analyses, we obtained gene-sets corresponding to (1) the top 10% of
genes specifically expressed in major tissues from GTEx* and (2) genes
producing protein products thatlocalize to each major organelle with
high confidence using COMPARTMENTS". Variants were mapped to
each gene with a100 kb symmetric window and LD scores for each
gene-set annotation were computed using the 1000G EUR reference
panel (https://alkesgroup.broadinstitute.org/LDSCORE/). Heritability
enrichment for all gene-sets was tested using S-LDSC atop the baseline
v.1.1model, controlling for 53 annotations including coding regions
and 5’ and 3’ UTRs>.

Cross-ancestry meta-analysis in UKB and AoU

We conducted a fixed-effect meta-analysis across ancestries in each
cohort (UKB and AoU) based on inverse-variance weighted betas and
standard errors™. For each ancestry, we excluded low-confidence vari-
ants defined as MAC <20 in either biobank. We computed effect size
heterogeneity Pvalues across ancestries using Cochran’s Q-test™. All
computation was done using Hail v.0.2.

All visualizations of main GWASs (for example, mtCN, cover-
age discrepancy traits, heteroplasmy traits) are of cross-ancestry
meta-analyses after restriction to the set of ‘high-quality’ variants as
defined previously®.

Identification of LD-independent lead SNPs and locus definitions
Clumping was performed using Plink v.1.90 (ref. 76) in Hail Batch for
GWAS results obtained in UKB after filtering to high-quality variants.
We used significance thresholds of 1 for both the index and clumped
SNPs, set the LD threshold for clumping at 0.1 and set the distance
threshold at 500 kb. We used single-ancestry and multi-ancestry LD
reference panels corresponding to the ancestry groupsincludedin the
final multi-ancestry meta-analyses for each mtDNA phenotype as well
asforblood cell traits. Reference panels were constructed by randomly
sampling 5,000 individuals fromall samplesinany givenset of ancestry
groups in the UKB. For single-ancestry LD panels corresponding to
ancestry groups with fewer than 5,000 individuals assigned (EAS (East
Asian) and MID), the full sample available for each ancestry group was
used. More details on the LD reference panels can be found as part of
the Pan UKBB project®. Clumping output files from Plink were con-
verted to Hail Tables and then combined into MatrixTables using the
multi-way-zip-join method as implemented in Hail.

We defined distinct loci conservatively by starting with
LD-independent lead SNPs at GWS and merging any SNPs within
2 megabases (Mb) of one another.

Replication of previous mtCN GWAS with our study

We performed acomparison of significant lociidentified in aprevious
GWAS of mtCN in UKB** with our own by performing LD clumping on
previously released summary statistics as described (Methods) using
1000G phase 3 EUR reference data for LD. We defined distinct loci as
described (Methods), merging any SNPs within 2 Mb of one another,
arriving at 96 loci previously identified. We defined areplicated locus
with mtCN,,,, or mtCN,4 as one in which our GWAS showed a signal at
P<5x107or5 x 10 8 within 2 Mb of the most significant variantidenti-
fied in the previous study at eachlocus.

Bidirectional Mendelian randomization between UKB mtCN and
selected traits

GWAS effect sizes and LD-independent locifrom the UKB cross-ancestry
meta-analysis for mtCN,,,, and mtCN,, were obtained. Summary sta-
tistics and LD-independent loci from GWAS among EUR for neutrophil
count (ID 30140) and case/control disease traits that showed correla-
tion withmtCN,;: osteoarthritis (categorical 20002_both_sexes_1465),
angina (categorical_20002_both_sexes_1473), myocardial infarction
(phecode_411.2_both_sexes), ischaemic heart disease (phecode_411_
both_sexes) and high cholesterol (categorical 20002_both_sexes_1473),
were obtained from the Pan UKBB project®.. Loci for effect-size com-
parison were restricted to those passing variant QC as performed in
UKB (Methods). For each mtCN phenotype, neutrophil count and dis-
ease trait, GWAS effect sizes were obtained for all variants at GWS in
the mtCN GWAS, and, vice versa, mtCN, neutrophil count and disease
trait GWAS effect sizes were obtained for all neutrophil count and dis-
ease trait variants at GWS. We assessed the relationship between pre-
and post-adjustment mtCN GWAS effect sizes and neutrophil
count/disease trait GWAS effect sizes using inverse-variance
weighted linear regression using weights corresponding to
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Fine-mappingin UKB

To identify putative causal variants in associated loci, we conducted
statistical fine-mapping of mtDNA traits in UKB using cross-ancestry
meta-analysis summary statistics. Although we previously showed that
fine-mapping a meta-analysis is often miscalibrated due to heterogene-
ous characteristics of constituent cohorts (for example, genotyping
orimputation)”, awithin-cohort cross-ancestry meta-analysis such as
the present study is a notable exception given no such heterogeneity
systematically exists across ancestries.

We used FINEMAP-inf and SuSiE-inf, which model infinitesimal
effects’, with cross-ancestry meta-analysis summary statistics (Meth-
ods) and a covariate-adjusted in-sample dosage LD matrix’®. We defined
fine-mapping regions based on a3 Mbwindow around each lead variant
and merged regions if they overlapped as described previously”. We
excluded the major histocompatibility complex (MHC) region (chr 6:
25-36 Mb) from analysis due to extensive LD structure in the region.
For each method, we allowed up to ten causal variants per region and
derived PIPs of each variant using a uniform prior probability of cau-
sality. To achieve better calibration, we computed min(PIP) across the
methods and derived up to 10 independent 95% CSs from SuSiE-inf as
described elsewhere”. All reported PIPs are min(PIP) values between
the two methods.

Enrichment of functional categories among fine-mapped variants
We computed functional enrichment of fine-mapped variants across
the mtDNA traits in UKB. We first annotated each variant with seven
functional categories (pLoF, missense, synonymous, 5’ UTR, 3’ UTR,
promoter, cis-regulatory element (CRE) and non-genic) as described
previously”. We then estimated functional enrichment for each cat-
egory asarelativerisk (thatis, aratio of proportion of variants) between
beingin an annotation and fine-mapped (PIP < 0.01or PIP > 0.1). That
is, arelative risk = (proportion of variants with PIP > 0.1 that are in the
annotation)/(proportion of variants with PIP < 0.01thatarein the anno-
tation). The 95% Cls were calculated using bootstrapping with 5,000
replicates. We note that, to increase statistical power, we combined
pLoF/missense and 5’/3’ UTR into single categories, respectively, and
used a more lenient threshold (PIP > 0.1 versus >0.9) compared with
our previous analysis’.

Gene- and variant-prioritization

To nominate genes using GWAS results for each phenotype, we used

the following approach to balance clarity with confidence inthe gene

assignment.

1. Ifthelocus had a CS, for each CS:

a. Filter to variants in the CS and retain variants from the CS that are
either minimal PIP or coding, or have PIP > 0.7.

b. If the variant has PIP > 0.9 and is a coding variant for a gene, assign
that geneto the CS.

c. Otherwise, assign genes within 3 kb of the variant or, if no genes are
within 3 kb, assign the nearest gene to the CS.

2.1f the locus had multiple CSs and at least one had a variant with
PIP > 0.1, we retained assignments corresponding only to variants
with PIP>0.1.

3. Ifthelocus did not have a CS, we assigned the gene with aboundary
nearest to the most significant variant in the locus.

4. We also used RVAS to nominate additional, or support existing, gene
assignments for all GWAS loci containing genes with SKAT-O Cauchy
RVAS Pvalues at GWS for the same phenotype.

Ifavariantisinside agene body (butis non-coding), we considered
that gene to be nearest. For case-only heteroplasmy GWASs, whenthe

same locus was significant across multiple heteroplasmy phenotypes,
we performed manualintegrationto arrive at a set of genes supported
by the most compelling genetic evidence across variants for each locus.
The SSBP1locus was particularly complex, so we assigned SSBP1 (which
harbours the max PIP variant) and provided visualization of the full
locus (Extended Data Fig. 10k). We did not use fine-mapping evidence
fromvariants with PIP > 0.1that are not assigned to a CS. All assignments
were manually reviewed. In all GWAS visualizations, we labelled the
strength of evidence supporting the gene assignment (for example,
if supported by moderate- or high-PIP fine-mapped variants, coding
variants, RVAS gene-based test association).

Colocalization with eQTLs

We conducted colocalization of fine-mapped variants of mtDNA
phenotypes and cis-eQTL associations from GTEx v.8 (ref. 43) and
eQTL catalogue release 4 (ref. 80) as described previously”. Briefly,
we retrieved fine-mapping results of cis-eQTL associations that were
fine-mapped using SuSiE®' with covariate-adjusted in-sample dosage
LD-matrices”. We then computed a PIP of colocalization for avariant as
aproduct of PIP for GWAS and for cis-eQTL (CLPP = PIP s X PIP s cqr)®
When displaying colocalizationacross heteroplasmy traits, we indicate
colocalizationif we see a colocalization PIP > 0.1 for the assigned gene
and any variantinthe CSfor any tissue and for any heteroplasmy trait.

Replication of UKB heteroplasmy results in AoU

To performreplication analysisin AoU, we used LD-independent lead
SNPs fromall case-only heteroplasmy GWASs originally performedin
UKB (Methods). Wefiltered association statistics from AoU (Methods)
to these lead variants and compared effect sizes when the variants
were identified in AoU with MAC > 20. We used Deming regression
implemented inthe deming v.1.4 package in Rto assess therelationship
between effect sizes for these lead SNPsin cross-ancestry meta-analyses
in the two biobanks while accounting for standard errors in both®34,
We coded alleles such that effect sizes were always positive in UKB.

Assessment of LD with known polymorphic and reference NUMTs
We collated an extensive database of polymorphic and reference NUMT
intervals using BLAST, known reference NUMTs*"® and published
polymorphic NUMTsinferred using mate-pair mapping discordance®*.
To search for regions of homology to the mtDNA within the reference
nucDNA, we used BLASTn 2.13.0 with the GRCh37 reference genome
with a word size of 11, an expected threshold of 0.05, short queries
enabled and default values for the other parameters. In total, we
obtained 4,736 overlapping reference and polymorphic NUMT inter-
vals. We constructed a20 kb window around eachnucDNANUMT region
(10 kb up, 10 kb down) and then conservatively tested for LD R*> 0.1
between any SNP in the window and each lead variant at GWS for our
UKB case-only heteroplasmy GWAS using in-sample genome-wide EUR
LD-matrices generated in UKB®. All LD values used to examine
individuallociin either biobank were computed in-sample—for exam-
ple,in AoUwe computed LD using the post-QC genotype MatrixTable
(Methods) used for GWAS with the Hail function hl.Id_matrix().

Multiple alignment of POLG2 protein sequence
POLG2 homologueswere detected using the best bidirectional BlastP
hit (expected <1 x 107%) from humans and were aligned using MUSCLE®®,

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Dataavailability

Interms of data processed or generated as part of this study, we pro-
vide per-population mtDNA heteroplasmic and homoplasmic allele



frequencies and counts in UKB and AoU (Supplementary Tables 5
and 6), genetic association statistics for LD-independentlead SNPs and
fine-mapped variantsin UKBin addition to colocalization results (Sup-
plementary Tables 2-4) and gene-based RVAS association statistics for
genes at GWS for the Cauchy test (Supplementary Table 7). Al GWAS
samplesizes for each genetic ancestry group, meta-analysis and phe-
notype canbe found in Supplementary Table 1. AIl GWAS summary sta-
tistics from UKB cross-ancestry meta-analyses (used here in discovery
analyses) have been deposited in the GWAS Catalog (ID: GCP000614).
Summary statistics containing all per-ancestry association statistics
aswell as cross-ancestry meta-analyses can be accessed through the
Google Cloud Platform (bucket: gs://mito-wgs-public-2023). Full
GWAS summary statistics from AoU (used here as a replication
cohort) have been deposited in a workspace available on the AoU
workbench (titled ‘Nuclear genetic control of mtDNA copy number
and heteroplasmy in humans’; https://workbench.researchallofus.
org/workspaces/aou-rw-3273c7f0/nucleargeneticcontrolofmtd-
nacopynumberandheteroplasmyinhumans/data). Individual-level
data generated as part of UKB (mtCN and mtDNA variant calls) have
beenreturned to UKB to enable utilization of the full individual-level
data by the broader scientific community through the UKB data
showcase. Individual-level data generated as part of AoU have been
deposited in the same workspace containing summary statistics
on the AoU Research Workbench. Please see our GitHub repository
(https://github.com/rahulg603/mtSwirl) for more information on
accessing these data. At the time of publication, access to the AoU
workbench controlled tier is restricted to US-based academic insti-
tutions, government entities, health care institutions and non-profit
organizations. Please also note that as of the time of publication, the
only method to gain access to the AoU workspace containing the
data generated here is to contact us to be added to the workspace.
Forinformation about access to the Researcher Workbench as areg-
istered researcher, please visit https://www.researchallofus.org. In
terms of external data used in this study, we leveraged GWAS summary
statistics, and ancestry-specific LD-matrices, and a curated list of 29
common, high-quality disease phenotypes generated as part of the
Pan UKBB project®. Paths for these summary statistics (https://pan.
ukbb.broadinstitute.org/docs/per-phenotype-files) and LD-matrices
(https://pan.ukbb.broadinstitute.org/docs/Id) can be found on the
Pan UKBB project website (https://pan.ukbb.broadinstitute.org);
these were accessed through the Google Cloud Platform as part
of this study. UKB phenotype and whole-genome sequencing data
can be accessed through the UKB Research Analysis Platform after
completing a UKB access application (https://ukbiobank.dnanexus.
com/landing). AoU phenotype and genotype data can be accessed
through the Controlled Tier v6 on the AoU researcher workbench
(https://workbench.researchallofus.org). gnomAD v.3.1.2 (https://
gnomad.broadinstitute.org) WGS was accessed through a custom
Terra workspace (titled ‘gnomad_subsampled_mitopipeline_head_
to_head’). High-coverage WGS data from 1000G were accessed
using the public 1000G-high-coverage-2019’ workspace in Terra.
Published mtscATAC-seq data used for chrM:302 analysis can be
obtained with dbGaP approval. Gene-sets for enrichment analyses
can be obtained using COMPARTMENTS (https://compartments.
jensenlab.org) and MitoCarta 2.0 (https://www.broadinstitute.org/
files/shared/metabolism/mitocarta/human.mitocarta2.0.html) as
described previously?. The GRCh37 and GRCh38 reference genomes
aswellas other standard reference dataare available through the GATK
resource bundle (https://gatk.broadinstitute.org/hc/en-us/articles/
360035890811-Resource-bundle). Annotations for the baseline v.1.1
and BaselineLD v.2.2 models for S-LDSC as well certain other relevant
reference data, including the HapMap3 SNP list, can be obtained from
https://alkesgroup.broadinstitute.org/LDSCORE/.Known reference
and polymorphic NUMTs were obtained from supplemental data as
provided in published work®"%%,

Code availability

We release the full WDL pipelines and associated input files for
mtDNA analysis from whole-genome sequencing data on GitHub
(https://github.com/rahulg603/mtSwirl; https://doi.org/10.5281/
zenodo.8067503). We also provide the code we used to run the pipe-
line on the UKB Research Analysis Platform, AoU and Terra; consolidate
all data; perform mtDNA sample and variant QC; and run GWAS. See
the Methods and the README inthe GitHub repository for more infor-
mation on how to use the pipeline. Several tools were used as part of
mtSwirl, including GATK v.4.2.6.0 (https://gatk.broadinstitute.org/),
samtools v.1.9 (https://github.com/samtools/samtools) and bcftools
v.1.16 (https://github.com/samtools/bcftools), Haplochecker 0124
https://github.com/genepi/haplocheck), Rv.3.1.1(https://r-project.org),
Hail v.0.2.84 (https://hail.is) and UCSC kent tools source v.430
(genome-source.soe.ucsc.edu/kent.git and https://hgdownload.soe.
ucsc.edu/admin/exe/linux.x86_64/). We used several published tools
and scripts to perform downstream analysis of the mtDNA call-set in
this study. All data wrangling, statistical analysis and figure genera-
tion was performed using Hail v.0.2.98 (https://hail.is), python v.3.7.10
(https://www.python.org) or Rv.4.2.1(https://r-project.org). Paralleliza-
tion of tasks in UKB was performed using Hail Batch (in Hail v.0.2.98)
(https://batch.hail.is) and in AoU using Cromwell v.77 (https://crom-
well.readthedocs.io). GWAS was performed in UKB using SAIGE v.1.1.5
(https://saigegit.github.io). For scaling of UKB GWAS, a custom modifi-
cation of the GWAS pipeline from the Pan UKBB pan-ancestry GWAS was
implemented (https://github.com/atgu/ukbb_pan_ancestry). Linear
regression GWAS was performed in AoU using Hail. We release the
code used for GWAS on both UKB and AoU on GitHub (https://github.
com/rahulg603/mtSwirl). mtDNA PCA was performed in R using the
irlbav.2.3.5.1 package (https://cran.r-project.org/web/packages/irlba/
index.html). Multinomial models were trained using the nnet v.7.3-17
package in R (https://cran.r-project.org/web/packages/nnet/index.
html). Circos plots were made using the circlize package v.0.4.15 in
R (https://jokergoo.github.io/circlize_book/book/). For analysis of
chrM:302 in single-cell data, we used BedTools v.2.29.2 (https://bed-
tools.readthedocs.io). LD clumping was performed using Plink v.1.90
(https://www.cog-genomics.org/plink/). Fine-mapping was performed
using FINEMAP-inf v.1.3 and SuSiE-inf v.1.2 (https://github.com/Finu-
canelab/fine-mapping-inf). eQTL data were obtained from GTEx v.8
(https://gtexportal.org) and the eQTL catalogue release 4 (https://www.
ebi.ac.uk/eqtl/). For replication analysis effect size comparisons, the
deming v.1.4 package was used in R (https://cran.r-project.org/web/
packages/deming/index.html). Heritability estimates and enrichment
analyses were performed using stratified LD-score regression (https://
github.com/bulik/ldsc). BLASTn v.2.13.0 was used as available from
the NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi). MUSCLE v.3.8.31
was used for protein sequence alignment (https://drive5.com/muscle/
downloads_v3.htm).
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Extended DataFig. 3| mtCN shows substantial correlations with technical
andbiological covariates. a. Bivariate mean coverage distributions across
nucDNA and mtDNAin AoU and UKB. b. Distributions of mtCN per diploid
nuclear genomeacross AoU and UKB. c. Correlations between log mtCN and
blood celltraitsin UKB. Line corresponds to ordinary least squares fit; line color
correspondsto the raw coefficient p-value of ajoint model regressing log
mtCN,,, onallblood cell phenotypes.Insetis Pearson correlation coefficient.
d. Distribution of mtCN,;in UKB. Color corresponds to sequencing center; black
isthe combined density. e. MeanmtCN,,,, versus assessment date, binned into
months. Total N=196,372. Pilot month samples are removed from subsequent
analyses. f.Meanblood-corrected mtCN as a function of assessment date; line is

anatural spline withknots positioned seasonally; total N=179,626.g.Mean
blood-corrected mtCN as afunction of assessment month; total N =179,626.
h.Meanblood-corrected mtCN as afunction of self-reported fasting time; total
N=179,623.i.Meanblood-corrected mtCNas afunction of draw time; line
corresponds to natural spline with 5 knots; total N=179,601. j. Mean blood-
corrected mtCN as afunction of assessment center; total N =179,626.k. OR of
rawand corrected mtCNin predicting 29 common diseases in UKB. 1. OR of top
blood cell compositiontraitsin predicting any of 29 common diseases in UKB.
Fore-jerrorbars correspond tomean+/-1s.e.m.. For k-lerror bars correspond
t0 95% Claround the OR, and sample sizes for each comparison canbe found in

Supplementary Table 8. All tests are two-sided.
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Extended DataFig. 8| Overview of mtDNA variationacross >250,000
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Colors correspond tobiobank. Outliers are suppressed to prevent visualizing
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Software and code

Policy information about availability of computer code

Data collection  No data was collected in this study as we analyzed existing whole genome sequencing data.

Data analysis We release the full WDL pipelines and associated input files for mtDNA analysis from whole genome sequencing data on GitHub (https://
github.com/rahulg603/mtSwirl; DOI: 10.5281/zenodo.8067503). We also provide the code we used to run the pipeline on the UKB Research
Analysis Platform, AoU, and Terra, consolidate all data, perform mtDNA sample and variant QC, and run GWAS. See Methods and the README
in the GitHub repository for more information on how to use the pipeline. Several tools were used as part of mtSwirl, including GATK v4.2.6.0
(https://gatk.broadinstitute.org/), samtools v1.9 (https://github.com/samtools/samtools) and bcftools v1.16 (https://github.com/samtools/
bcftools), Haplochecker 0124 https://github.com/genepi/haplocheck), R v3.1.1 (https://r-project.org), Hail v0.2.84 (https://hail.is), and UCSC
kent tools source version 430 (genome-source.soe.ucsc.edu/kent.git and https://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/).

We used several published tools and scripts to perform downstream analysis of the mtDNA callset in this study. All data wrangling, statistical
analysis, and figure generation was performed using either Hail v0.2.98 (https://hail.is), python v3.7.10 (https://www.python.org), or R v4.2.1
(https://r-project.org). Parallelization of tasks in UKB was performed using Hail Batch (in Hail v0.2.98) (https://batch.hail.is) and in AoU using
Cromwell v77 (https://cromwell.readthedocs.io). GWAS was performed in UKB using SAIGE v1.1.5 (https://saigegit.github.io). For scaling of
UKB GWAS, a custom modification of the GWAS pipeline from the Pan UKBB pan-ancestry GWAS was implemented (https://github.com/atgu/
ukbb_pan_ancestry). Linear regression GWAS was performed in AoU using Hail. We release the code used for GWAS on both UKB and AoU on
GitHub (https://github.com/rahulg603/mtSwirl). mtDNA PCA was performed in R using the irlba v2.3.5.1 package (https://cran.r-project.org/
web/packages/irlba/index.html). Multinomial models were trained using the nnet v7.3-17 package in R (https://cran.r-project.org/web/
packages/nnet/index.html). Circos plots were made using the circlize package v0.4.15 in R (https://jokergoo.github.io/circlize_book/book/).
For analysis of chrM:302 in single cell data, we used BedTools v2.29.2 (https://bedtools.readthedocs.io). LD clumping was performed using
Plink v1.90 (https://www.cog-genomics.org/plink/). Finemapping was performed using FINEMAP-inf v1.3 and SuSiE-inf v1.2 (https://
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github.com/Finucanelab/fine-mapping-inf). eQTL data was obtained from GTEx v8 (https://gtexportal.org) and the eQTL catalogue release 4
(https://www.ebi.ac.uk/eqtl/). For replication analysis effect size comparisons, the deming v1.4 package was used in R (https://cran.r-
project.org/web/packages/deming/index.html). Heritability estimates and enrichment analyses were performed using stratified LD-score
regression (https://github.com/bulik/Idsc). BLASTn v2.13.0 was used as available from the NCBI (https://blast.ncbi.nIm.nih.gov/Blast.cgi).
MUSCLE v3.8.31 was used for protein sequence alignment (https://drive5.com/muscle/downloads_v3.htm).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

In terms of data processed or generated as part of this study, we provide per-population mtDNA heteroplasmic and homoplasmic allele frequencies and counts in
UKB and AoU (Supplementary tables 5, 6), genetic association statistics for LD-independent lead SNPs and fine-mapped variants in UKB in addition to colocalization
results (Supplementary tables 2-4), and gene-based RVAS association statistics for genes passing genome-wide significance for the Cauchy test (Supplementary
table 7). All GWAS sample sizes for each genetic ancestry group, meta-analysis, and phenotype can be found in Supplementary table 1. All GWAS summary statistics
from UKB cross-ancestry meta-analyses (used here in discovery analyses) have been deposited in GWAS Catalog (ID: GCP000614). Summary statistics containing all
per-ancestry association statistics as well as cross-ancestry meta-analyses can be accessed via Google Cloud Platform (bucket: gs://mito-wgs-public-2023). Full
GWAS summary statistics from AoU (used here as a replication cohort) have been deposited in a workspace available on AoU workbench (titled “Nuclear genetic
control of mtDNA copy number and heteroplasmy in humans”; https://workbench.researchallofus.org/workspaces/aou-rw-3273c7f0/
nucleargeneticcontrolofmtdnacopynumberandheteroplasmyinhumans/data). Individual level data generated as part of UKB (mtDNA copy number and mtDNA
variant calls) have been returned to UKB to enable utilization of the full individual-level data by the broader scientific community via the UKB data showcase.
Individual level data generated as part of AoU have been deposited in the same workspace containing summary statistics on the AoU Research Workbench. Please
see our Github repository (https://github.com/rahulg603/mtSwirl) for more information on accessing these data. At the time of publication, access to the AoU
workbench controlled-tier is restricted to US-based academic institutions, government entities, health care institutions, and non-profit organizations. Please also
note that as of the time of publication, the only method to gain access to the AoU workspace containing the data generated here is to contact us to be added to the
workspace. For information about access to the Researcher Workbench as a registered researcher, please visit https://www.researchallofus.org.

In terms of external data used in this study, we leveraged GWAS summary statistics, and ancestry-specific LD-matrices, and a curated list of 29 common, high-
quality disease phenotypes generated as part of the Pan UKBB project 62. Paths for these summary statistics (https://pan.ukbb.broadinstitute.org/docs/per-
phenotype-files) and LD-matrices (https://pan.ukbb.broadinstitute.org/docs/Id) can be found on the Pan UKBB project website (https://
pan.ukbb.broadinstitute.org); these were accessed via Google Cloud Platform as part of this study. UKB phenotype and whole genome sequencing data can be
accessed via the UKB Research Analysis Platform after completing a UKB access application (https://ukbiobank.dnanexus.com/landing). AoU phenotype and
genotype data can be accessed via access to the Controlled Tier v6 on the AoU researcher workbench (https://workbench.researchallofus.org). gnomAD v3.1.2
(https://gnomad.broadinstitute.org) WGS was accessed via a custom Terra workspace (titled “gnomad_subsampled_mitopipeline_head_to_head”). High coverage
WGS from 1000G was accessed using the public “1000G-high-coverage-2019” workspace in Terra. Published mtscATACseq data used for chrM:302 analysis can be
obtained via approval from dbGaP. Gene-sets for enrichment analyses can be obtained using COMPARTMENTS (https://compartments.jensenlab.org) and MitoCarta
2.0 (https://www.broadinstitute.org/files/shared/metabolism/mitocarta/human.mitocarta2.0.html) as described previously 24. The GRCh37 and GRCh38 reference
genomes as well as other standard reference data are available via the GATK resource bundle (https://gatk.broadinstitute.org/hc/en-us/articles/360035890811-
Resource-bundle). Annotations for the baseline v1.1 and BaselinelLD v2.2 models for S-LDSC as well certain other relevant reference data, including the HapMap3
SNP list, can be obtained from https://alkesgroup.broadinstitute.org/LDSCORE/. Known reference and polymorphic NUMTs were obtained from supplemental data
as provided in published work 51,86-88.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender We did not perform new recruitment in this study and used existing cohorts and datasets. Sex was determined based on
variables provided by UKB or via genetic inference in AllofUs. Sex is an important correlate with several observed phenotypes
and has been used as a covariate for most analyses in this study.

Population characteristics We did not perform new recruitment in this study and used existing cohorts and datasets. We did not filter on any relevant
population characteristics in our analysis.

Regarding the characteristics of the datasets used in this study, briefly: UKB is a population-based cohort comprising
~500,000 individuals from ages 40-69 in the UK, recruited from sites across the country to cover a variety of socioeconomic
settings and ensure an urban-rural mix (Sudlow et al. 2015 PLOS Medicine). AllofUs (AoU) is a population-based longitudinal
cohort study in the US, enrolling participants age 18 or greater. AoU attempts to represent individuals otherwise
underrepresented in biomedical research, and thus incorporates variables such as race, ethnic group, age, sex, gender
identity, sexual orientation, disability status, income, and more in the recruiting strategy (“The ‘All of Us’ Research Program,”
2019 NEJM). 1000G sampled participants across 26 populations around the world, assessing ~5 subgroups within each of 5
major continental populations to build a reference of genetic variation (“The 1000 Genomes Project Consortium” 2015
Nature, Byrska-Bishop et al. 2022 Cell). Phenotype data from this cohort was not used in this study. gnomAD v3 comprised
opportunistically collected WGS data primarily from case-control studies of adult-onset common diseases, including
cardiovascular disease, type 2 diabetes, and psychiatric disorders. Individuals with severe pediatric disease, or those with
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Recruitment

Ethics oversight

known first degree relatives of those with severe pediatric disease, were excluded from the cohort (Chen et al. 2022 bioRxiv,
Karczewski et al. 2020 Nature). Phenotype data from this cohort was not used in this study. mtscATAC-seq data was obtained
from one individual sequenced as part of recently analyzed MELAS cases (Walker et al. 2020 NEJM). Individuals were selected
on the basis of a known diagnosis of carrying the m.3243A>G pathogenic variant, and not for population. All individuals from
Walker et al. 2020 NEJM were male.

Neither AllofUs nor UKB select explicitly on diagnoses/treatment characteristics. Both sexes were represented in all cohorts
except in mtscATAC-seq data. No filtering was performed on genotype information. The populations represented in our
primary analyses are available in Supplementary table 1 and in Extended data figure 2. All datasets contained whole genome
sequencing data, which was the focus of this study. More details can be found in Methods and in the relevant publications.

We did not perform new recruitment in this study and used existing cohorts and datasets. See previously published literature
for more information on the recruitment of individuals for the published datasets in this work: UK Biobank — Sudlow et al.
2015 PLOS Medicine; UK Biobank WGS — Halldorsson et al., 2022 Nature; AllofUs — “The ‘All of Us’ Research Program,” 2019
NEJM; mtscATAC-seq data — Walker et al. 2020 NEJM.

We did not perform new recruitment in this study and used existing cohorts and datasets. Analysis of UK Biobank data was
performed under UKB Application 31063. Analysis of AllofUs data was performed under Controlled Tier authorization in the
workspace “Genetic determinants of mitochondrial DNA phenotypes”. Institutional Review Board authorization of analysis of
previously published single cell data was provided by Massachusetts General Hospital under protocol #2016P001517.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

Data exclusions

Replication

Randomization

Blinding

This was a biobank-scale analysis making use of all available whole genome sequencing samples in UK Biobank and AllofUs after quality
control. Thus, no a priori sample size calculation was completed. This study comprises the largest analysis of mtDNA to date.

Data were excluded during the study procedure for quality control or power purposes only. In brief, we excluded samples with evidence of
contamination and with abnormal overlapping homoplasmy variant calls from all analysis. The former could produce incorrect mtDNA
phenotype estimation or nucDNA genotype calls; the latter may indicate abnormalities in variant calling. We also excluded samples collected
in the UKB pilot in 2006 as these samples had abnormal mtDNA copy number estimates. For variant analysis, we additionally excluded
samples with low mtDNA copy number due to an established risk of NUMT contamination. We developed the “overlapping homoplasmy”
filter and the “UKB pilot” filter during the study; the others were used previously (Laricchia et al. 2022 Genome Res) and pre-established. For
genetic analyses, we restricted to samples with high confidence continental ancestry assignments in UKB (see http://
pan.ukbb.broadinstitute.org) and AllofUs, and only performed GWAS for ancestry groups with enough measurements for interpretability. See
Methods for more details.

We attempted replication for the two major components of the study: nuclear genetic analyses of (1) mtDNA copy number and (2)
heteroplasmy. For (1), we obtained loci identified by the largest GWAS of mtCN previously completed by Longchamps et al. 2022; we
successfully identified the vast majority of previously identified loci in our study (>85% at a stringent threshold of p < 5e-5). For (2), we used
AoU to perform independent replication of heteroplasmy associations identified in UKB. We saw strong effect size concordance between
cross-ancestry meta-analyses performed in either biobank (R2 = 0.79).

We did not perform experimental group assignment in this study and performed genetic analysis using data from all samples that passed QC.
Thus, as most of this work is population-based, this is not relevant for most of our work. In general, we extensively address potential
confounders by leveraging the deep phenotyping in UK Biobank, testing and correcting for confounders such as blood cell composition, blood
draw time, blood draw season, haplogroup, and others — see Methods. All genetic analyses included further corrections for population
stratification by including genotype PCs computed within each genetic ancestry group, as well as age, sex, age2, age*sex, and age2*sex.
Finally, for case/control disease trait associations with mtDNA phenotypes, we corrected for haplogroup, genetic ancestry group, and the
aforementioned age and sex covariates. See Methods for more details.

Blinding was not relevant for this study as experimental group assignment was not performed.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems
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