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Clustering predicted structures at the scale 
of the known protein universe

Inigo Barrio-Hernandez1,8, Jingi Yeo2,8, Jürgen Jänes3, Milot Mirdita2, Cameron L. M. Gilchrist2, 

Tanita Wein4, Mihaly Varadi1, Sameer Velankar1, Pedro Beltrao3,5 ✉ & Martin Steinegger2,6,7 ✉

Proteins are key to all cellular processes and their structure is important in 

understanding their function and evolution. Sequence-based predictions of protein 

structures have increased in accuracy1, and over 214)million predicted structures are 

available in the AlphaFold database2. However, studying protein structures at this 

scale requires highly eocient methods. Here, we developed a structural-alignment- 

based clustering algorithm4Foldseek cluster4that can cluster hundreds of millions 

of structures. Using this method, we have clustered all of the structures in the 

AlphaFold database, identifying 2.30)million non-singleton structural clusters, of 

which 31% lack annotations representing probable previously undescribed structures. 

Clusters without annotation tend to have few representatives covering only 4%  

of all proteins in the AlphaFold database. Evolutionary analysis suggests that most 

clusters are ancient in origin but 4% seem to be species specifc, representing lower- 

quality predictions or examples of de novo gene birth. We also show how structural 

comparisons can be used to predict domain families and their relationships, identifying 

examples of remote structural similarity. On the basis of these analyses, we identify 

several examples of human immune-related proteins with putative remote homology 

in prokaryotic species, illustrating the value of this resource for studying protein 

function and evolution across the tree of life.

Proteins are the major actors in all cellular processes, from the gen-

eration of energy to the division of the cell. Knowing their structure 

is relevant for studying their function, their evolution and potentially 

for the design of drugs. Although our knowledge of protein sequences 

has grown considerably over the past years, reaching over hundreds of 

millions of sequences, the knowledge of their 3D structures has lagged 

behind owing to the lack of highly scalable experimental methods. 

Improvements in methods for predicting structure from sequences1,3,4 

now enable the scalable prediction of protein structures for the known 

protein universe. The AlphaFold Protein Structure Database (AFDB) 

is a publicly available data repository of protein structures and their 

confidence metrics, predicted using the AlphaFold2 AI system1,2. The 

AlphaFold-predicted structures have been generally assessed to be of 

high quality when the predicted local distance difference test (pLDDT) 

confidence metrics are accounted for, despite remaining inferior to 

experimentally determined structures5. AlphaFold2 and its predicted 

structures have now been used for diverse applications, including stud-

ies of protein pockets6, prediction of structures of complexes7,8, studies 

of structural similarity9, novel fold predictions10 and even improvement 

of genomic annotation11.

The large increase in available predicted protein structures has 

spurred the development of more efficient computational approaches, 

including structural data file compressions12, methods for pocket pre-

dictions13,14 and comparison of protein structures through structural 

alignments. For the latter, Foldseek has been developed. Foldseek 

can increase the speed of comparisons of structures by four to five 

orders of magnitudes relative to previous approaches while maintain-

ing sensitivity15, making it possible to perform structural compari-

sons at a large scale. Clustering proteins by their structure is a crucial 

tool for analysing structural databases as it enables the grouping of 

remotely related proteins. Identifying distant relationships might 

provide valuable insights into protein structure evolution and func-

tion. For example, protein family analysis of the initial release of about 

365,000 structures10,16, covering the proteomes of humans and 20 

model organisms, suggested that 92% of predicted domains within 

this set match existing domain superfamilies. However, comparing all 

214)million structures against each other using current methods would 

take approximately 10 years on a 64-core machine. To speed up the 

process of clustering amino acid sequences, a linear time algorithm, 

Linclust17, has been proposed to reduce the computational time sig-

nificantly. However, such methods have yet to be applied to clustering 

by protein structural similarity.

Here, we analysed the AlphaFold Protein Structure Database, which 

contains predicted structures for 214)million proteins across the tree of 

life. To be able to explore this resource, we developed a highly scalable 

structure-based clustering algorithm based on Linclust17 (Methods and 

Extended Data Fig. 1) that structurally aligns and clusters 52)million 

structures in 5 days on 64 cores. We clustered the AlphaFold structural 
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database into 2.30)million clusters with 31% of clusters4representing 

4% of protein sequences4not matching previously known structural 

or domain family annotations. We found that 532,478 clusters have 

representatives present in all of the tree of life and we found several 

species-specific structural clusters that could contain examples of 

de novo gene birth events. Finally, we used structural comparisons to 

predict domain families and their relationships identifying putative 

remote homologies that expand the evolutionary coverage of previ-

ously known families.

Structure-based clustering of the AFDB

The AFDB covers over 214)million predicted protein structures and 

has grown in several stages (Fig. 1a). The initial release focused on 20 

key model organisms, while subsequent updates provided predic-

tions for the Swiss-Prot dataset of the Universal Protein Resource18 

(UniProt) and proteomes relevant to global health, taken from priority 

lists compiled by the World Health Organisation. The current update 

covers most of the TrEMBL dataset of UniProt. The AFDB parses and 

archives these data and makes them accessible through bulk download 

options, programmatic access end points and interactive web pages. 

The programmatic access, in particular, facilitated the integration 

of AlphaFold models into other biological data repositories, such as 

Protein Data Bank Europe (PDBe)19, UniProt18, Pfam20, InterPro21 and 

Ensembl22.

To gain insights into the 214,684,311 structures of the AlphaFold 

UniProt v.3 database we developed a scalable clustering approach 

in two steps as depicted in Fig. 1b. The first step involved using 

MMseqs2 (ref. 23) to cluster the database on the basis of 50% sequence 

identity and a 90% sequence alignment overlap of both sequences, 

resulting in 52,327,413 clusters. For each cluster, the protein structure 

with the highest confidence (that is, the highest pLDDT score) was 

MMseqs2 cluster

90% sequence overlap

50% sequence identity

214 million 

proteins

AFDB

52.3 million 

clusters

AFDB50

18.8 million clusters

Foldseek clusters

b

c

214,000,000
+UniProt TrEMBL

365,000

21 proteomes

July 2021

804,000

+SwissProt

Dec 2021

995,000

+Tropical

diseases

Jan 2022 July 2022

Number of predicted

structures in

AFDB

Database releases

a

d

Fragment

Representative

Highest pLDDT

15.3 million

clusters

2.30 million clusters

AFDB clusters

0

20

40

60

80

100

O
c
c
u
p

a
ti
o

n
 i
n
 e

a
c
h
 b

in
 (
%

)

Cluster size range

0

20

40

60

80

100

O
c
c
u
p

a
ti
o

n
 i
n
 e

a
c
h
 b

in
 (
%

)

Removed (fragments, singletons)
Without annotation

With annotation

Score

0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a
liz

e
d

 d
e
n
s
it
y

LDDT
TM score
Pfam consistency

Foldseek cluster

90% structure overlap

E <0.01

Remove

singletons

Remove

fragments

0 0.25 0.50 0.75 1.00

AFD
B
, 2

14
 m

ill
io

n

AFD
B
 c

lu
st

er
s,
 2

.3
0 

m
ill
io

n
2–

4
4–

10

10
–2

0

20
–4

0

40
–8

0

80
–1

60

16
0–

32
0

32
0–

70
0

70
0–

1,
80

0

1,
80

0–
38

,9
01

Fig. 1 | The AFDB, structural clustering workflow and summary of the 

clusters. a, The AFDB started as a collaborative effort between EMBL-EBI and 

DeepMind in 2021. The database grew in multiple stages, with the latest version 

of 2022 containing over 214)million predicted protein structures and their 

confidence metrics. b, A two-step approach was used to cluster proteins in the 

database. First, MMseqs2 was used to cluster 214)million UniProtKB protein 

sequences (AFDB) on the basis of 50% sequence identity and 90% sequence 

overlap, resulting in a reduction of the database size to 52)million clusters 

(AFDB50). For each cluster, the protein with the highest pLDDT score was 

selected as the representative. Next, using Foldseek, the representative 

structures were clustered into 18.8)million clusters (Foldseek clusters) without 

a sequence identity threshold, but still enforcing a 90% sequence overlap and 

an E-value of less than 0.01 for each structural alignment. As the last step, we 

removed all sequences labelled as fragments from the clustering, ending up 

with 2.30)million clusters with at least two structures (AFDB clusters). c, AFDB 

cluster structural and Pfam consistency. Our clusters have a median LDDT of 

0.77 and a median TM score of 0.71 across all clusters and 66.5% of clusters with 

Pfam annotations are 100% consistent. d, Summary of sequences and clusters 

with and without annotation (left) and the relationship of cluster sizes to 

annotation (right). From left to right, each bin occupies AFDB clusters at rates 

of 12.24%, 10.59%, 9.20%, 10.07%, 10.46%, 10.05%, 9.04%, 9.20%, 9.19% and 9.96%.
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selected as the representative. Clustering proteins by structural simi-

larity remains computationally intensive and difficult to scale. For this 

reason, we developed a structure-based clustering algorithm based 

on Foldseek (Methods). In brief, we adapted Linclust and MMseqs2 

sequence clustering algorithms to the three-dimensional interaction 

(3Di) structural alphabet used in Foldseek to allow structural clusters in 

linear time complexity. Our structural clustering method resulted in the 

identification of 18,661,407 clusters, using an E-value of 0.01 and struc-

tural alignment overlap of 90% of both sequence criteria. It took 129)h 

on 64 cores to finish the clustering. As the final step, we removed every 

sequence labelled as a 8fragment9 in UniProt. This identified 2,302,908 

non-singleton clusters that have on average 13.05 proteins per cluster 

with an average pLDDT of 71.64. The remaining 13,012,338 singleton 

clusters have an average pLDDT of 58.95.

Cluster purity analysis

We measured the quality of our AFDB clusters (Fig. 1c) by assessing 

their structural and Pfam consistency. By aligning each cluster member 

to a representative, we found that the clusters tend to be structurally 

homogeneous as judged by two structural similarity metrics (median 

LDDT of 0.77 and a median template modelling (TM) score of 0.71; 

Fig. 1c). Similarly, we found that members of the same clusters tend 

to have the same Pfam domain (Fig. 1c), with 66.4% having 100% con-

sistency. The relationship between cluster members and consistency 

score (Extended Data Fig. 2a) reveals that clusters even with thou-

sands of members have perfect consistency. We further examined the 

relationship between structural and functional similarity using Pfam 

(Extended Data Fig. 2b) and Enzyme Commission (EC) annotations 

(Extended Data Fig. 3). As anticipated, an increase in LDDT corresponds 

to an increase in functional similarity. With increasing LDDT from 0.5 

to 0.9, there is an increase in the percentage of perfectly consistent 

clusters4from 29.2% to 93.8% in Pfam, and from 40.3% to 81.3% for EC 

(level 4), respectively.

Structural similarity between two sequences can often be traced 

back to either shared evolutionary roots (homologues), or it can be a 

result of convergent evolution (analogues). We therefore investigated 

the evolutionary relationships within clusters produced by our method 

using the Evolutionary Classification of Protein Domains (ECOD)  

database24. This hierarchical domain database delineates the evolu-

tionary relationships between protein domains. This analysis showed 

that 97.4% of pairwise compared cluster members are conserved  

at the H-group (homology) level (Methods). This analysis suggests 

that our clusters are probably composed primarily by homologues, 

although specific examples will require further evolutionary analysis.

Clusters of unknown structure and function

The availability of predicted structures covering a large fraction of 

the known protein universe enables us to examine what fraction of 

this structural space is novel. We tried to uncover structurally and 

functionally unknown protein clusters in the AFDB dataset4defined 

as 8dark clusters9. We first identified 1,135,118 (49% of AFDB clusters) 

clusters that were found to be at least partially similar to previously 

known structures in the PDB (Methods). The representative proteins 

of the remaining clusters were next annotated to the Pfam database 

by MMseqs2 search, resulting in 883,788 (38% of AFDB clusters) dark 

clusters (Methods). Finally, we identified clusters containing members 

with Pfam or TIGRFAM25 annotations in the UniProt/TrEMBL and Swiss-

Prot database. This resulted in the identification of 711,705 (30.9% of 

AFDB clusters) dark clusters, probably enriched for novel structures.

The distribution of the known and unknown clusters as a function of 

their size is shown in Fig. 1d. The sizes of clusters that lack annotations 

are smaller compared with the annotated clusters. For this reason, the 

dark clusters map to a proportionally smaller fraction of the protein 

universe. Although these clusters comprise approximately 30.9% of the 

AFDB clusters, they represent only 4.06% of the AFDB. This is consis-

tent with the expectation that structures with many representatives 

in the protein universe are better studied and that the vast majority of 

protein structures can be annotated with at least partial similarity to a 

known structure of domain family annotation.

Novel enzymes and small-molecule binders

From the 711,705 clusters without annotations (dark clusters), we sele-

cted 33,842 clusters with the highest average AlphaFold2 prediction  

confidence (that is, average pLDDT)>90). For each, we picked the mem-

ber with the highest confidence for further investigation. To predict 

potential novel enzymes, we searched each structure for pockets 

and predicted Gene Ontology (GO) and EC number using DeepFRI, a 

structure-based function prediction method (Methods). In total, we 

identified 1,770 pockets in 1,707 structures and made 5,324 functional 

assignments within these proteins with predicted pockets. The pocket 

prediction led to the identification of high-confidence structure predic-

tions (pLDDT)>90) that do not appear to be correct. From 1,770 pockets, 

579 (32.7%) encompass more than 40% of the total protein sequence, 

indicating that the predicted structure is not compact. Manual inspec-

tion of these structures (examples are shown in Extended Data Fig. 4) 

confirmed this lack of compactness and secondary structural elements. 

We hypothesize that several of these are probably incorrect predictions.

The top most often predicted molecular functions are shown in 

Fig. 2a with the top three including the term 8transporter activity9.  
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Fig. 2 | Putative novel enzymes and small-molecule-binding proteins in 

structures lacking annotation. a, Counts of GO molecular function terms  

that are most often predicted by DeepFRI on the set of selected 1,707 structures 

with predicted pockets. b3d, Examples of structures (A0A849TG76 and 

A0A2D8BRH7 (b), A0A849ZK06 (c) and S0EUL8 (d)) with predicted pockets 

and functional annotations. Each example shows the UniProt ID (top), the 

highest-scoring DeepFRI function prediction (bottom) and the top-scoring 

pocket (pink surface). The structures are coloured by residue-level contributions 

to the DeepFRI function predictions, ranging from blue (no contribution) to 

yellow (strong contribution).
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Similarly, the most often predicted cellular component was 8intrin-

sic component of membrane9 (379 annotations). This indicates that 

structures without annotations may be enriched for membrane-bound 

proteins that have been historically difficult to determine experimen-

tally. This is also the case when considering all 711,705 dark clusters 

predicted by DeepFRI (Extended Data Fig. 5). Two examples of putative 

transporters are shown in Fig. 2b, including the top predicted pocket 

and coloured by the residue importance given by DeepFRI for this 

predicted function. In addition to the putative transporters, there is 

a wide diversity of other predicted functions. For example, UniProt 

A0A849ZK06 (Fig. 2c) is predicted to be a ribonucleotide-binding 

protein with an overall structure having an organization that resem-

bles a protein kinase fold. The residues contributing the most to the 

DeepFRI prediction are directly in contact with the top scoring pocket 

(Fig. 2c), suggesting a potential nucleotide-binding function for this 

pocket. Finally, UniProt S0EUL8 (Fig. 2d) has a top prediction of EC 

5.6.2.-, which annotates enzymes that can alter nucleic acid conforma-

tions. The structure resembles members of the structural maintenance 

of chromosomes family but it is missing several characteristic ele-

ments. The preceding gene in the genome encodes a RecN homologue 

(a member of the structural maintenance of chromosomes family), 

giving additional evidence for a role of UniProt S0EUL8 in chromo-

some maintenance.

Taxonomic analysis of the clusters

To gain insights into the distribution of the identified structural clus-

ters, we examined their taxonomic composition to determine the extent 

of protein machinery shared across different super-kingdoms (Fig. 3a). 

For this, we mapped the members of the cluster in the tree of life and 

identified the most recent common ancestor for all members of the 

cluster (Methods). In this way, we mapped non-singleton structural 

clusters that appear to be conserved at the cellular organism (23%) 

(that is, universal to all life), bacterial (16.1%), Eukaryota (13.5%) and 

Archaea (0.5%) levels. Together, this suggests that the majority of the 

structural clusters are probably very ancient in origin.

Although the majority of protein clusters is mapped to the com-

mon ancestor of eukarya or older, we found a small fraction (3.91%) 

of species-specific structural clusters. Compared with other clusters, 

the species-specific clusters tend to have fewer members (that is, twice 

more likely to have just two members); they are more likely to be dark, 

with 56% having no annotation; and composed of smaller proteins, 

with a median length of around 40 amino acid fewer). However, the 

overall prediction confidence (pLDDT) of the species-specific clusters 

is comparable to that of the remaining clusters, with an average of 69.35 

compared to 71.73. The organisms with the largest species-specific 

clusters are Acidobacteria bacterium, Araneus ventricosus, Escherichia 

coli, Sepia pharaonis and Chloroflexi bacterium, which range from 1,884 

to 1,390 clusters.

Human-related cluster analysis

As an example application, we studied human protein-containing clus-

ters from an evolutionary conservation perspective. We mapped the 

clusters containing human proteins to the tree of life (Extended Data 

Fig. 6) and first looked for human-specific clusters (that is, containing 

only human proteins). Out of the 13 human-specific clusters identi-

fied, 9 are predicted non-confident with a pLDDT score of less than 70 

and did not contain structural proteins. The remaining four clusters 

contained a herpes virus U54 (UniProt: A0A126LB04) unit; annexin 

(UniProt: A0A4D5RA95) with limited human homologues in UniRef50; 

a U2 snRNP-specific A2 protein (UniProt: Q9UEN1) that appeared to be a 

fragment but is not labelled as one; and VPS53 (UniProt: A0A7P0T9Z7), 

a single long coil structure that was not clustered by Foldseek due to 

high random chances of observing such a structure. Our findings do 

not support the presence of newly emerging human-specific struc-

tural clusters within the set of human sequences annotated in UniProt.  

However, this does take into account singleton clusters.

We next extracted all clusters containing a human protein and asso-

ciated each human cluster with its corresponding GO terms and low-

est common ancestor (LCA). When multiple human sequences were 

present in a cluster, the GO annotation of the human protein with the 

highest pLDDT score was selected. A small selection of GO annotations 

that highlight the evolutionary conservation of human structures is 

shown in Fig. 3b. Human proteins with similar structures across most 

of the tree of life are annotated with a diverse set of terms including 

several enzyme activities (for example, ligase activity, oxidoreduc-

tase activity, serine-type endopeptidase activity). Present in bacteria 

and eukarya, proteins linked with the microtubule-organizing centre 

and voltage-gated potassium channel activity are included. Mostly 

restricted to eukarya, terms such as nucleus, chromatin organization 

and microtubule motor activity are included. More recently evolved 

structures include annotations such as immune response and hormone 

activity.

Bacterial and human immunity protein links

Note that, even if some biological processes were primarily restricted 

to eukarya or more recently diverged clades, we could find cluster rep-

resentatives that were present in bacterial species. For example, most 

human proteins that are annotated to the nucleus (GO:0005634) are in 

clusters mapped to eukarya as their LCA. However, we found exceptions 

including, for example, a histone-related cluster (Fig. 3c) supporting 

the previously reported evolutionary link between eukaryotic and 

bacterial histones26. Similarly, we found several immunity-related pro-

teins with structural similar proteins present in bacteria. These include 

TNFRSF4 (UniProt: P43489) with similar structures in bacteria due to 

common cysteine-rich repeat regions that overlap with the TNFR/NGFR 

cysteine-rich region domain annotations in InterPro (IPR001368). We 

also found bacterial structures that are related to the human CD4 like 

protein B4E1T0 (Extended Data Fig. 7a), although these can also be 

annotated by sequence matching to the immunoglobulin-like domain 

family in InterPro (IPR013783).

The structural similarity between human and bacterial proteins 

may also inform on their function in bacteria. The human bactericidal 

permeability-increasing (BPI) protein (B4DKH6) is a key component 

of the innate immune system and is known to have a strong affinity 

for negatively charged lipopolysaccharides found in Gram-negative 

bacteria. In our analyses, this protein clusters with bacterial structures 

(Fig 3c), for example, the protein A0A2D5ZNG0, which aligns with 

the human protein at a TM-score of 0.81 normalized to the length of 

the human protein. Moreover, searching for partial hits by Foldseek 

identified that YceB from E. coli and other gram-negative bacteria has 

structural similarity to the C-terminal region of human BPI (Extended 

Data Fig. 7b). The E. coli YceB protein is a tubular putative lipid-binding 

protein without a well-characterized function. This structural simi-

larity may suggest a role of YceB homologues in regulating the outer 

membrane.

Our analysis identified a cluster containing the human protein AIM2 

(O14862), which recognizes pathogenic double-stranded DNA27 and 

leads to the formation of the AIM2 inflammasome. When search-

ing the NR database using NCBI BLAST28, we found no bacterial hits 

for the human AIM2 gene. However, three structures in 8Candidatus 

Lokiarchaeota archaeon9 and one in the bacterium Clostridium sp. 

from an uncultured source (UniProt: A0A1C5UEQ5) were identified 

as similar to human AIM2 in our analysis. The bacterial protein (Uni-

Prot: A0A1C5UEQ5), encoded on a contig of length 138,559 (GenBank: 

FMFM01000010), is unlikely to be a contaminant due to its length29. 

UniProt A0A1C5UEQ5 is not unique, as many homologous sequences, 

mostly labelled as 8hypothetical protein9, were found in the NR database 

https://www.uniprot.org/uniprot/A0A849ZK06
https://www.uniprot.org/uniprot/S0EUL8
https://www.uniprot.org/uniprot/S0EUL8
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https://www.uniprot.org/uniprot/A0A4D5RA95
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http://amigo.geneontology.org/amigo/term/GO:0005634
https://www.uniprot.org/uniprot/P43489
https://www.ebi.ac.uk/interpro/entry/InterPro/IPR001368/
https://www.uniprot.org/uniprot/B4E1T0
https://www.ebi.ac.uk/interpro/entry/InterPro/IPR013783/
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https://www.uniprot.org/uniprot/O14862
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https://www.ncbi.nlm.nih.gov/nuccore/FMFM01000010
https://www.uniprot.org/uniprot/A0A1C5UEQ5
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from mostly uncultured human gut bacterial sequences with higher 

than 90% sequence identity. We predicted the structure of one homolo-

gous protein that is 64% identical to UniProt A0A1C5UEQ5 (Extended 

Data Fig. 8)4which originates from a cultured Lachnospiraceae bacte-

rium that is part of the Culturable Genome Reference30 of the human 

gut4using ColabFold31 and confirmed that it has a similar structure 

DNA-binding domain structure (TM score of 0.97 and 0.56 in relation 

to UniProt A0A1C5UEQ5 and human AIM, respectively). These results 

suggest that the AIM2 inflammasome may have been repurposed from 

ancient DNA-sensing-related proteins. It is possible that the bacterial 

versions may also have a role in pathogen DNA sensing and response.

These results exemplify how the structural clusters can provide 

hypotheses as to the evolutionary origin of specific biological pro-

cesses and further illustrate the cross-kingdom similarities in immune 

systems.

Domain prediction by structure search

The clusters defined above group structurally similar proteins at full 

length. Proteins are sometimes composed of different regions or 

domains that can fold independently, with a growing collection of 

such domain families being catalogued in databases such as Pfam20 
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was found to be conserved at the cellular organism level and supports the 

previously reported evolutionary connection between eukaryotic and bacterial 

histones (left)26. The human innate immunity genes BPI (middle) and AIM2 

(right) encode structurally similar proteins in bacterial species, highlighting 

the potential for cross-kingdom sharing of immunity-related proteins.  

Acido. bacterium, Acidobacteria bacterium; Actino. bacterium, Actinomycetia 
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or InterPro21. Domain family prediction is performed primarily by 

sequence searches, exploring the fact that domain families have 

conserved sequence features. The vast increase in protein structures 

and fast algorithms to compare them opens the possibility of pre-

dicting domain families by structural similarity. Here we devised a 

procedure using structural similarity matches by Foldseek to predict 

putative domain regions and families (Fig. 4a and Methods). In brief, 

a representative structure from each of the Foldseek clusters defined 

above was used for an all-by-all structural similarity search using Fold-

seek. Although these representative structures should be structur-

ally non-redundant at the full protein level, they will still share many 

structurally similar domains. For each sequence/structure, we cluster 

the start and end positions of all Foldseek hits and use these to define 

probable domain boundaries. The predicted domain regions were 

then connected if they had structural similarity, and a network cluster-

ing method was used to cluster domain regions into putative domain  

families (Methods).

We used Pfam annotations to assess the quality of these predic-

tions (Fig. 4b3g). For each putative domain family with at least five 

representatives, we determined the frequency of the first and second 

most frequent Pfam annotations, with the majority having homoge-

neous annotations (Fig. 4b). Each Pfam annotation is predominantly 

found within a single domain family suggesting that these tend to be 

non-redundant. For domain families with at least 5 representatives, 

7,599 families match Pfam, 2,032 match Pfam domains of unknown 

function and 10,722 do not match Pfam and are probably enriched in 

novel families. The median length of the regions is similar for previ-

ously known or putative novel families (Fig. 4e). Given that we started 

with mostly non-redundant structures, we do not expect this approach 

to recover most domain families. We found 5,388 non-redundant 

Pfam annotations for predicted domain families with at least 5 rep-

resentatives, corresponding to around 29% of the 19,000 known  

Pfam families.

In summary, clustering of local Foldseek hits can accurately predict 

domain families leading to the prediction of many potential unexplored 

families. We provide a complete list of all predicted domain families 

online (https://cluster.foldseek.com/).

Structural similarity in distant domains

The network clustering procedure used above also enables the iden-

tification of pairs of predicted domain families that share some struc-

tural similarity. Among such pairs, we found around 500 connections 

between clusters enriched with a Pfam annotation and other domains 
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a, Diagram of the structure-based domain family prediction method. Clustering 

of the start and end positions for Foldseek hits of one protein against all others 

was used to define potential domain boundary positions. Each predicted 

domain region was linked to the others sharing structural similarities and 

graph-based clustering was used to define domain families and interdomain 

similarity. b, The frequency distribution of the most common (n)=)9,631)  
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of all predicted domain families. anno., annotation. c, The counts of the 
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e, The distribution of protein region length in the predicted domain families, 
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without clear annotations, providing examples of potential functional 

annotations. From these, we focused on connected domain families 

enriched in proteins from different kingdoms (Fig. 5). The Frag1-like 

domains exemplify the strength of structural-based similarity search-

ing (Fig. 5a). The Frag1/DRAM/Sfk1 Pfam domain (PF10277) annotates 

proteins with a six-³-helix bundle transmembrane region observed in 

eukaryotic species. In our analysis, a domain family enriched for this 

Pfam annotation was linked to two additional families enriched in bac-

terial and archeal sequences, one enriched for a domain of unknown 

function (DUF998; PF06197) and a second not annotated. The three 

families are structurally identical, typically forming a six-³-helix bun-

dle, despite the very low sequence similarity between the sequences 

forming these.

We also found a cluster enriched for the anthrax_toxA Pfam 

(PF03497; Fig. 5b), more specifically, the annotated domains contained 

structures similar to the oedema factor, a calmodulin-activated adeny-

lyl cyclase32. The oedema factor is one of the three components forming 

the bacterial anthrax toxin system. Our analysis identified a structur-

ally similar putative domain family enriched in eukaryotic proteins 

(Fig. 5b). Specifically, several algae proteins were found to have struc-

tures that had partial matches to the oedema-factor-domain-related 

structures. This raises the possibility that algae might be using similar 

toxin systems.

Identification of gasdermin domains

Our search resulted in the identification of two domain families with 

structural similarity to a cluster enriched for the gasdermin domain 

(Fig. 5c). In humans, gasdermin is the executor of inflammatory cell 

death called pyroptosis and is crucial for defence against pathogens. 

After sensing a pathogen, caspases are activated that cleave off the 

C-terminal repressor domain of gasdermin, releasing the N-terminal 

domain to assemble into large pores in the cell membrane33. The 

predicted gasdermin structures from all three groups exhibited the 

structural characteristic conservation of a twisted central antiparallel 

³-sheet and the shared placement of connecting helices and strands of 

gasdermin. The structures enriched in the gasdermin Pfam annotation 

adopted a similar conformation to that of the mammalian gasdermin N 

terminus, especially of gasdermin E, which is considered to be evolution-

ary ancient34. In the inactive structure of mammalian gasdermin (A, B, D 

and E), the N terminus forms interfaces with the repressor C-terminal 

domain mediating autoinhibition, one of these is the primary interface 

at the ³1 helix35. Gasdermin is activated by proteolytic cleavage, which 

results in N-terminal activation through the lengthening of strands 

³3, ³5, ³7 and ³8, and oligomerization36. Indeed, gasdermin domains 

from the Pfam annotated group had both the ³1 helix as well as the 

corresponding ³-sheets necessary for the active form of gasdermin. 
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Fig. 5 | Examples of non-annotated domain families with structural 

similarity to annotated domain families. a, Frag1-like domains. Three 

clusters were found enriched for the Frag1 Pfam annotation that had structural 
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A cluster enriched for the anthrax_toxA Pfam annotation was found with 
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structures reveal homology to human gasdermin E. The corresponding 

structural characteristics are highlighted. Some gasdermin domains were 

found fused to protease domains (UniProt: A0A2C5ZLK3). The bacterial 

gasdermin structure (PDB: 7N51) is similar to novel gasdermin domains from 
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Gasdermin was also recently found in bacteria and archaea, in which 

it is similarly activated by dedicated proteases and defends against 

phages by pore-mediated cell death37. Notably, the non-annotated 

group 1 of gasdermin domains displayed strong similarity to the bac-

terial gasdermin structure (Fig. 5c). The other non-annotated group 

(cluster 3) showed a large degree of diversity and exhibited features of 

both mammalian and bacterial gasdermin. In some cases, we observed 

that the N-terminal gasdermin domain was fused to other domains 

including proteases (Fig. 5c; UniProt: A0A2C5ZLK3). As gasdermin is 

activated by proteolytic cleavage, such protein fusion hints at a similar 

activation mechanism for the novel gasdermin domains.

Discussion

The orders-of-magnitude increase in available structural models raises 

challenges in data management and analysis of such large volumes. 

This difficulty is amplified by the fact that the repository of publicly 

available structures, consisting of the combined databases of AFDB 

and the ESMatlas38, is approaching a billion entries. For this reason, we 

developed a clustering procedure that can scale to billions of structures, 

identifying 2.30)million non-singleton clusters of which 31% do not have 

similarity to previously known structures or domain annotations. These 

clusters annotate only 4% of protein sequences, indicating that the 

vast majority of the protein structural space has been at least partially 

annotated. As the criteria used include partial hits to known structures 

or domain annotations, the degree of understudied structural space is 

probably underestimated. As we illustrate, our analysis can guide the 

prioritization of predicted novel protein families for future computa-

tional and experimental characterization.

Structural clustering is a powerful tool for identifying structurally 

similar proteins that can inform on evolutionary relationships, but its 

accuracy can be affected by certain limitations. Here we set a 90% align-

ment overlap as the requirement for assigning a structure to a cluster, 

which may exclude similar structures with significant insertions or 

unique repeat arrangements. Moreover, our strict E-value threshold 

of 0.01 may result in missed similarities. Another limitation is that the 

current AFDB does not contain the full extent of protein sequences 

from metagenomics studies or viral proteins, limiting the potential 

to detect retroviral proteins.

In addition to the full-length protein clustering, we used Foldseek9s  

local hit matches to predict and cluster protein regions into puta-

tive domain families. The protein region clusters tend to overlap 

well with previous definitions of domain families as annotated 

in the Pfam database and led to the identification of over 10,000  

unassigned domain-level clusters that should be enriched in putative 

novel domain families. We did not perform exhaustive searches with 

other sequence-based domain family annotations that could annotate 

additional clusters with previous knowledge. Note that we consid-

ered only the representatives of Foldseek clusters when performing 

the domain prediction. As the domain prediction requires multiple 

observations on the same structural region, additional domains are 

expected to be detected if each structure was searched against a larger 

set of structures.

As protein structure is conserved for longer periods of evolution-

ary time than protein sequences, we expect that AFDB will empower 

the identification of remote homology. Although some advanced 

sequence-based methods can already assist in this task39341, the avail-

ability of predicted structures may help identify meaningful evolu-

tionary relationships. From an analysis of curated protein families, 

we find that our clusters are enriched preferentially in homologous 

over analogous relationships (Methods). Nevertheless, one should 

still be cautious when interpreting structural similarity as evolutionary 

homology. Our analysis here provides several examples of structural 

similarity across kingdoms that is indicative of remote homology.  

In particular, we focused on several examples relating human immunity 

to bacterial structures, emphasizing how some ancient systems have 

been co-opted for use in the mammalian immune response system. We 

expect that many more examples can be derived from the clustering 

results provided here.
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Methods

Structural clustering algorithm

The clustering procedure is similar to MMseqs29s clustering but, instead 

of using sequences, Foldseek9s 3Di alphabet (Extended Data Fig. 1) was 

used to represent the structures as one-dimensional sequences. The clus-

tering algorithm combines Linclust17 and cascaded MMseqs2 (ref. 42) 

clustering. The pipeline applies this strategy to allow for efficient clus-

tering of millions of structures. First, protein structures are converted 

to 3Di sequences and processed according to the Linclust workflow. 

This includes extracting m k-mers (default m)=)300, k)=)10) from each 

sequence and grouping them on the basis of their hash value. The k-mer 

groups are then used to assign each structure to the longest sequence 

(representative) within the group. The shared diagonal on which the 

k-mer is found is also stored for further use in the alignment step.

The pipeline then proceeds with an ungapped alignment algorithm 

that rescores the structures on the basis of the shared diagonal between 

members and representatives using 3Di and amino acid information. 

The sequences that meet the defined alignment criteria, such as E-value, 

alignment coverage, sequence identity, alignment LDDT43 or TM score44,  

are clustered using the MMseqs2 clustering module (default using 

the set-cover algorithm). After this step, the structures that have 

been assigned already are removed from the set and the remaining 

representative member hits are aligned using Foldseek9s structural 

Gotoh3Smith3Waterman algorithm15, and all passing hits are clustered 

as well. The remaining cluster representatives are successively clustered 

by three cascaded steps of prefiltering, structural Smith3Waterman 

alignment and clustering.

Distinguishing homologues from analogues

Structural similarity between two sequences can be attributed to either 

common evolutionary ancestry (homologues) or convergent evolution 

(analogues). We investigated the association between cluster members, 

computed by our pipeline on the basis of structural similarity, and 

homology relationships using the ECOD database24. ECOD is a hierar-

chical domain database that describes the evolutionary relationships 

between pairs of protein domains. Its hierarchical levels from root to 

leaf are classified as: A-group (same architecture), X-group (possible 

homology), H-group (homology), T-group (topology) and F-group 

(sequence similarity). Analogues are expected to occur between mem-

bers of different X-groups, whereas homologues should be found within 

the H-group.

For our benchmark, we downloaded the ECOD (F99 v.20230309) 

PDB database and applied the same MMseqs2 and Foldseek clustering 

procedure used for the AFDB. We conducted an ECOD cluster purity 

analysis on all non-singleton clusters by measuring the pairwise cluster 

member consistency at different hierarchy levels. The analysis revealed 

high average consistency rates of 99.6%, 98.6%, 97.4%, 96.8% and 72.8% 

for ECOD9s A-group, X-group, H-group, T-group and F-group, respec-

tively. This indicates an effective clustering of homologous proteins, 

demonstrating a nearly exclusive distinction between homologues 

and analogues. The high level of consistency in our clustering is mainly 

attributed to the stringent E-value of 1022; when raising it to 10, the 

consistencies decrease to 69.7%, 55.7%, 53.3%, 51.9% and 36.6%, respec-

tively. A similar result was observed using the MALISAM database45, a 

single-domain database of analogous protein domains. When clus-

tering the 260 protein structures within the MALISAM database with 

Foldseek9s default parameters, no clustering of analogues occurs. How-

ever, if we increase the E-value threshold, we begin to form clusters 

containing analogues.

Cluster purity analysis

To assess cluster purity, we followed a two-step approach. First, we 

calculated the average LDDT and TM score per cluster to assess the 

structural similarity. For this, we aligned the representative to the 

cluster members using the structurealign -e INF -a module in Foldseek 

and reported the alignment LDDT and TM score using --format-output 

lddt,alntmscore. For each cluster we computed the mean illustrated 

in Fig. 1c.

Second, we evaluated the Pfam consistency of each cluster by using 

Pfam labels obtained from UniProtKB. We took into account only the 

clusters that have at least two sequences with Pfam annotations and we 

calculated the fraction of correctly covered Pfam domains for all Pfam 

sequence pairs ignoring self-comparison. We define true positives as 

a pair of Pfam domains belonging to the same clan. For each pair, we 

computed the consistency scores by true-positive count divided by 

the count of Pfams in the reference sequence. Finally, we computed 

the mean overall pair scores. This approach enabled us to determine 

the proportion of sequences within a given cluster that shared the 

same Pfam annotation.

Finally, we also calculated the EC number consistency of each cluster. 

EC numbers were extracted from UniProtKB. The EC consistency was 

evaluated similarly to the Pfam consistency but was done four times 

according to the four classes of the EC number. We considered only the 

clusters with at least two sequences that have EC annotations. At each 

class of the EC number, the annotation without any code at the class was 

ignored. For each pair as the Pfam consistency, the consistency scores 

were computed by the true-positive count divided by the number of 

ECs in the sequences in the pair avoiding self-comparison. The scores 

were finally computed to the mean overall pair scores.

Dark clusters and LCA

To eliminate clusters similar to previously known experimental  

structures, we conducted a search using Foldseek against the PDB 

(v.2022-10-14) for each cluster representative, with an E-value thresh-

old of 0.1. We then excluded clusters annotated with Pfam domains  

by searching the cluster representatives using MMseqs2 with para-

meters -s 7.5 --max-seqs 100000 -e 0.001 against the Pfam database. 

Finally, we removed clusters with members annotated with Pfam or  

TIGRFAM20 annotations in the UniProt/TrEMBL and SwissProt data-

base. To determine the LCA of each cluster, we used the lca module 

in MMseqs2 (ref. 46) ignoring the two taxa (1) 12,908 unclassified 

sequences and (2) 28,384 other sequences. We visualized the LCA 

results using a Sankey plot generated by Pavian47.

Prediction of functions and pockets

We predicted small-molecule-binding sites for representative dark clus-

ter members by adapting a previously described approach9. We used 

AutoSite to predict pockets48, and selected pockets with an AutoSite 

empirical composite score of >60 and mean pocket residue pLDDT of 

>90 for additional analyses. To assign putative function and predict 

catalytic residues, we used DeepFRI49 to predict enriched GO/EC terms 

and residue-level saliency weights across available GO/EC categories 

(BP, CC, EC, MF). Pocket and functional predictions were then visually 

examined using a web app (Data Availability).

Domain prediction from local alignments

First, we filtered out low-scoring Foldseek hits using an E-value of 1023 

as the threshold. We defined potential domain boundary positions 

for each protein sequence by clustering start3stop positions (hier-

archical clustering, height parameter of 250 to establish clusters). 

Predicted domains were then linked to others on the basis of structural 

similarities, retaining the highest scores when duplicates were found. 

The resulting network was then trimmed excluding connections with 

E-value higher than 1025, predicted domains with more than 350 amino 

acids and connected components with less than 5 nodes. We applied 

graph-based clustering (walktrap, 6 steps), keeping communities 

with at least 5 members. Each predicted domain inside the selected 

communities was annotated using Pfam-A regions mapped to UniProt 

identifiers (v.35.0), more than 75% of the Pfam domain has to overlap 



with the predicted domain. We calculated inside each community the 

frequency of Pfam annotations and defined them on the basis of the 

highest one. Owing to its size, we decided to keep out of the follow-

ing analysis one community with 152,959 structures (group ID 1;1, see 

supplementary files at https://cluster.foldseek.com/). We connected 

the remaining communities on the basis of the structure similarities, 

allowing connections with a P)<)1023.

Web server

We developed a web server to allow for user-friendly exploration of 

clusters, their members and related similar clusters. The server was 

implemented using a REST-based client-server architecture, with a 

VueJS front-end and a NodeJS back-end. The clustering-related informa-

tion is accessed through an SQLite database and information related to 

individual structures through Foldseek compatible databases through 

a C++-based NodeJS-extension for fast read-in and search. Similar to 

the Foldseek webserver, we used NGL50 to visualize structures and 

WebAssembly-based versions of PULCHRA51 to restore full protein 

structures from our stored C-alpha traces and TM-align for pairwise 

structure alignments of cluster members to their representatives. To 

visualize the taxonomic distribution, we implemented Sankey diagrams 

inspired by Pavian. Clusters can be found through member UniProt 

accessions, through a Foldseek search to similar clusters or by searching  

for GO terms. Individual cluster members can be further explored with 

links to UniProt, the Foldseek webserver and the UniProt3D Atlas52.

Reporting summary

Further information on research design is available in the Nature  

Portfolio Reporting Summary linked to this article.

Data availability

Clustering data are freely and publicly available (CC-BY) online 

(https://cluster.foldseek.com/). All data generated and used for the 

analyses can be downloaded online (https://afdb-cluster.steineg-

gerlab.workers.dev). AlphaFold database v.3 (https://alphafold.ebi.

ac.uk/) was used for the analysis and is currently available at gs://

public-datasets-deepmind-alphafold. For the analysis, we used Pfam 

v.34.0 (https://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam34.0), 

PDB (14 October 2022; https://www.rcsb.org), UniProt TrEMBL 2022_03 

(https://ftp.ebi.ac.uk/pub/databases/uniprot/), SwissProt 2022_03 

(https://ftp.ebi.ac.uk/pub/databases/uniprot/), ECOD 20230309 

(http://prodata.swmed.edu/ecod/) and the MALISAM (http://prodata.

swmed.edu/malisam/) database.

Code availability

The structural clustering method is available at https://foldseek.com/, 

is implemented in Foldseek v.4.645b789 and is available as free and 

open-source software (GPLv3). MMseqs2/Linclust v.14.7e284 is avail-

able online (https://mmseqs.com/). The cluster analysis was performed 

using goatools v.1.2.4 (https://github.com/tanghaibao/goatools), Deep-

FRI v.0.0.1 for GO predictions (https://github.com/flatironinstitute/

DeepFRI) and ColabFold v.1.5.2 for structure prediction (https://colab-

fold.com). For plotting, Python v.3.10.6 (https://www.python.org/), 

Matplotlib v.3.6.2 (https://matplotlib.org/), seaborn v.0.12.2 (https://

github.com/mwaskom/seaborn), ChimeraX v.1.5 (https://www.cgl.

ucsf.edu/chimerax/), Pavian commit: cd2f21 (https://fbreitwieser.shin-

yapps.io/pavian/) and pandas v.1.5.2 (https://github.com/pandas-dev/

pandas) were used.
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Extended Data Fig. 1 | The five-step clustering pipeline for efficiently 

clustering millions of protein structures using Foldseek’s 3Di alphabet.  

(1) Protein structures are converted to 3Di sequences and processed through 

the Linclust workflow. (2) For each sequence, 300)min-hasing k-mers are 

extracted and sorted. (3) The longest structure is assigned to be the centre of 

each k-mer cluster. (4) Structural alignment is performed in two stages: first an 

ungapped alignment based on shared diagonal information is performed, hits 

are pre-clustered and second the remaining sequences are aligned using 

Foldseek9s structural Smith-Waterman. (5) The remaining structures meeting 

alignment criteria are clustered using MMseqs29s clustering module. After the 

Linclust step the centroids are successively clustered by three cascaded steps 

of prefiltering, structural Smith-Waterman alignment and clustering using 

Foldseek9s search.



Extended Data Fig. 2 | Relationship of mean pairwise Pfam consistency to 

cluster features. These graphs are plotted with 1,004,422 clusters with at 

least two Pfam annotated sequences. (a) We analysed Pfam consistency  

of clusters binned by their member counter. These bins represent Pfam 

annotated non-singleton clusters at rates of 19.2%, 13.5%, 9.5%, 12.6%, 11.0%, 

12.4%, 11.8% and 10.0% from left to right, respectively. (b) We analysed Pfam 

consistency of clusters binned by their LDDT of each cluster. These bins 

represent Pfam annotated non-singleton clusters equally.
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Extended Data Fig. 3 | Relationship of mean pairwise EC number 

consistency to LDDT of cluster. These graphs are plotted with 113,287 

clusters with at least two Enzyme Commission number annotated sequences. 

Each panel describes EC consistency compared at 1 to 4 classes. Each bin in a 

panel represents EC annotated non-singleton clusters equally.



Extended Data Fig. 4 | Examples of non-compact AlphaFold2 predicted structures. Examples of representative structures of clusters without annotations 

having pLDDT>90 and a predicted pocket covering over 80% of the residues of the structure.
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Extended Data Fig. 5 | Top predicted molecular functions in all 712k dark 

clusters with DeepFRI scores greater than 0.5. The graph displays the most 

frequent molecular functions predicted by DeepFRI with prediction scores 

above 0.5 across all 712k dark clusters, highlighting the prevalence of the 

keyword <transmembrane=. Only 98,882 (13.9%) out of the 712K have a 

prediction score greater than 0.5.



Extended Data Fig. 6 | LCA plot of the clusters that contain Homo Sapiens proteins. Lowest common ancestor Sankey plot generated by Pavian for all clusters 

containing human proteins.
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Extended Data Fig. 7 | Additional examples of human related proteins in 

structural clusters with representatives or partial matches in bacterial 

species. (a) We found bacterial structures related to the human CD4 like 

protein B4E1T0. The human protein (B4E1T0) has 3 Pfams - PF05790, PF09191, 

PF12104. Those Pfams are specific to Eukaryotes only. In contrast, the bacterial 

protein (A0A1F4ZDN5) has no Pfam annotation. (b) The human protein 

(B4DKH6) is a bactericidal permeability-increasing protein found in humans. 

The E. coli protein (P0AB26) has a similar structure to the human protein, 

contains a Pfam domain of unknown function (DUF) and its structure is also 

experimentally determined (PDB: 3l6i B).

https://www.uniprot.org/uniprot/B4E1T0
https://www.uniprot.org/uniprot/B4E1T0
https://www.uniprot.org/uniprot/B4DKH6
https://www.uniprot.org/uniprot/P0AB26
https://doi.org/10.2210/pdb3l6i/pdb


Extended Data Fig. 8 | Comparison of predicted structures of homologous 

proteins: Lachnospiraceae bacterium to Clostridium. (a) pLDDT and 

multiple-sequence-alignment coverage output produced by ColabFold for the 

prediction of the protein sequence of Lachnospiraceae. (b) The predicted 

structure of RJW57900.1. (C) Superposition of the Clostridium protein 

structure with Lachnospiraceae with the DNA binding domain being well 

superposable.








