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Proteins are key to all cellular processes and their structure isimportant in
understanding their function and evolution. Sequence-based predictions of protein
structures have increased inaccuracy’, and over 214 million predicted structures are
available in the AlphaFold database?. However, studying protein structures at this

scalerequires highly efficient methods. Here, we developed a structural-alignment-
based clustering algorithm—Foldseek cluster—that can cluster hundreds of millions
of structures. Using this method, we have clustered all of the structures in the
AlphaFold database, identifying 2.30 million non-singleton structural clusters, of
which 31% lack annotations representing probable previously undescribed structures.
Clusters without annotation tend to have few representatives covering only 4%

of all proteins in the AlphaFold database. Evolutionary analysis suggests that most
clustersare ancient in origin but 4% seem to be species specific, representing lower-
quality predictions or examples of de novo gene birth. We also show how structural
comparisons can be used to predict domain families and their relationships, identifying
examples of remote structural similarity. On the basis of these analyses, we identify
several examples of humanimmune-related proteins with putative remote homology
in prokaryotic species, illustrating the value of this resource for studying protein
function and evolution across the tree of life.

Proteins are the major actors in all cellular processes, from the gen-
eration of energy to the division of the cell. Knowing their structure
isrelevant for studying their function, their evolution and potentially
for the design of drugs. Although our knowledge of protein sequences
hasgrown considerably over the past years, reaching over hundreds of
millions of sequences, the knowledge of their 3D structures has lagged
behind owing to the lack of highly scalable experimental methods.
Improvementsin methods for predicting structure from sequences™>*
now enable the scalable prediction of protein structures for the known
protein universe. The AlphaFold Protein Structure Database (AFDB)
is a publicly available data repository of protein structures and their
confidence metrics, predicted using the AlphaFold2 Al system'. The
AlphaFold-predicted structures have been generally assessed to be of
high quality whenthe predicted local distance difference test (pLDDT)
confidence metrics are accounted for, despite remaining inferior to
experimentally determined structures®. AlphaFold2 and its predicted
structures have now been used for diverse applications, including stud-
ies of protein pockets®, prediction of structures of complexes™, studies
of structural similarity®, novel fold predictions' and even improvement
of genomic annotation®.

The large increase in available predicted protein structures has
spurred the development of more efficient computational approaches,
including structural data file compressions'?, methods for pocket pre-
dictions™ and comparison of protein structures through structural

alignments. For the latter, Foldseek has been developed. Foldseek
canincrease the speed of comparisons of structures by four to five
orders of magnitudes relative to previous approaches while maintain-
ing sensitivity's, making it possible to perform structural compari-
sons at alarge scale. Clustering proteins by their structureisa crucial
tool for analysing structural databases as it enables the grouping of
remotely related proteins. Identifying distant relationships might
provide valuable insights into protein structure evolution and func-
tion. Forexample, protein family analysis of the initial release of about
365,000 structures'®’, covering the proteomes of humans and 20
model organisms, suggested that 92% of predicted domains within
this set match existing domain superfamilies. However, comparing all
214 million structures against each other using current methods would
take approximately 10 years on a 64-core machine. To speed up the
process of clustering amino acid sequences, a linear time algorithm,
Linclust”, has been proposed to reduce the computational time sig-
nificantly. However, such methods have yet to be applied to clustering
by protein structural similarity.

Here, we analysed the AlphaFold Protein Structure Database, which
contains predicted structures for 214 million proteins across the tree of
life. Tobe able to explore this resource, we developed a highly scalable
structure-based clustering algorithm based on Linclust” (Methods and
Extended Data Fig. 1) that structurally aligns and clusters 52 million
structuresin 5 days on 64 cores. We clustered the AlphaFold structural
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Fig.1| The AFDB, structural clustering workflow and summary of the
clusters.a, The AFDB started asa collaborative effort between EMBL-EBl and
DeepMindin2021. The database grew in multiple stages, with the latest version
0f2022 containing over 214 million predicted protein structures and their
confidence metrics. b, Atwo-step approach was used to cluster proteinsinthe
database. First, MMseqs2 was used to cluster 214 million UniProtKB protein
sequences (AFDB) on the basis of 50% sequence identity and 90% sequence
overlap, resultinginareduction of the database size to 52 million clusters
(AFDBS50). Foreach cluster, the protein with the highest pLDDT score was
selected astherepresentative. Next, using Foldseek, the representative
structures were clustered into 18.8 million clusters (Foldseek clusters) without

database into 2.30 million clusters with 31% of clusters—representing
4% of protein sequences—not matching previously known structural
or domain family annotations. We found that 532,478 clusters have
representatives present in all of the tree of life and we found several
species-specific structural clusters that could contain examples of
denovo gene birth events. Finally, we used structural comparisons to
predict domain families and their relationships identifying putative
remote homologies that expand the evolutionary coverage of previ-
ously known families.

Structure-based clustering of the AFDB

The AFDB covers over 214 million predicted protein structures and
has grown in several stages (Fig. 1a). The initial release focused on 20
key model organisms, while subsequent updates provided predic-
tions for the Swiss-Prot dataset of the Universal Protein Resource™®
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asequenceidentity threshold, butstillenforcinga90% sequence overlap and
an E-value of less than 0.01 for each structural alignment. As the last step, we
removed all sequences labelled as fragments from the clustering, ending up
with2.30 million clusters with at least two structures (AFDB clusters). c, AFDB
cluster structural and Pfam consistency. Our clusters have amedian LDDT of
0.77andamedian TMscore of 0.71across all clusters and 66.5% of clusters with
Pfam annotationsare100% consistent.d, Summary of sequences and clusters
withand without annotation (left) and the relationship of cluster sizes to
annotation (right). From left to right, each bin occupies AFDB clusters at rates
0f12.24%,10.59%,9.20%,10.07%,10.46%,10.05%, 9.04%,9.20%, 9.19% and 9.96%.

(UniProt) and proteomes relevant to global health, taken from priority
lists compiled by the World Health Organisation. The current update
covers most of the TrTEMBL dataset of UniProt. The AFDB parses and
archives these dataand makes themaccessible through bulk download
options, programmatic access end points and interactive web pages.
The programmatic access, in particular, facilitated the integration
of AlphaFold models into other biological data repositories, such as
Protein Data Bank Europe (PDBe)", UniProt', Pfam®, InterPro* and
Ensembl®.

To gain insights into the 214,684,311 structures of the AlphaFold
UniProt v.3 database we developed a scalable clustering approach
in two steps as depicted in Fig. 1b. The first step involved using
MMseqs2 (ref. 23) to cluster the database on the basis of 50% sequence
identity and a 90% sequence alignment overlap of both sequences,
resultingin 52,327,413 clusters. For each cluster, the protein structure
with the highest confidence (that is, the highest pLDDT score) was
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with predicted pockets. b-d, Examples of structures (AOA849TG76 and
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yellow (strong contribution).

selected as the representative. Clustering proteins by structural simi-
larity remains computationally intensive and difficult to scale. For this
reason, we developed a structure-based clustering algorithm based
on Foldseek (Methods). In brief, we adapted Linclust and MMseqs2
sequence clustering algorithms to the three-dimensional interaction
(3Di) structural alphabet used in Foldseek to allow structural clustersin
linear time complexity. Our structural clustering method resulted in the
identification of 18,661,407 clusters, using an E-value of 0.01and struc-
tural alignment overlap of 90% of both sequence criteria. It took 129 h
on 64 coresto finish the clustering. As the final step, we removed every
sequence labelled as a ‘fragment’in UniProt. This identified 2,302,908
non-singleton clusters that have onaverage 13.05 proteins per cluster
with an average pLDDT of 71.64. The remaining 13,012,338 singleton
clusters have an average pLDDT of 58.95.

Cluster purity analysis

We measured the quality of our AFDB clusters (Fig. 1c) by assessing
their structural and Pfam consistency. By aligning each cluster member
to arepresentative, we found that the clusters tend to be structurally
homogeneous as judged by two structural similarity metrics (median
LDDT of 0.77 and a median template modelling (TM) score of 0.71;
Fig. 1c). Similarly, we found that members of the same clusters tend
to have the same Pfam domain (Fig. 1c), with 66.4% having 100% con-
sistency. The relationship between cluster members and consistency
score (Extended Data Fig. 2a) reveals that clusters even with thou-
sands of members have perfect consistency. We further examined the

relationship between structural and functional similarity using Pfam
(Extended Data Fig. 2b) and Enzyme Commission (EC) annotations
(Extended DataFig.3). Asanticipated, anincreasein LDDT corresponds
toanincrease in functional similarity. With increasing LDDT from 0.5
to 0.9, there is an increase in the percentage of perfectly consistent
clusters—from29.2% to 93.8% in Pfam, and from 40.3% to 81.3% for EC
(level 4), respectively.

Structural similarity between two sequences can often be traced
back to either shared evolutionary roots (homologues), or it can be a
result of convergent evolution (analogues). We therefore investigated
the evolutionary relationships within clusters produced by our method
using the Evolutionary Classification of Protein Domains (ECOD)
database®. This hierarchical domain database delineates the evolu-
tionaryrelationships between protein domains. This analysis showed
that 97.4% of pairwise compared cluster members are conserved
at the H-group (homology) level (Methods). This analysis suggests
that our clusters are probably composed primarily by homologues,
although specific examples will require further evolutionary analysis.

Clusters of unknown structure and function

The availability of predicted structures covering a large fraction of
the known protein universe enables us to examine what fraction of
this structural space is novel. We tried to uncover structurally and
functionally unknown protein clusters in the AFDB dataset—defined
as ‘dark clusters’. We first identified 1,135,118 (49% of AFDB clusters)
clusters that were found to be at least partially similar to previously
known structures in the PDB (Methods). The representative proteins
of the remaining clusters were next annotated to the Pfam database
by MMseqs2 search, resulting in 883,788 (38% of AFDB clusters) dark
clusters (Methods). Finally, we identified clusters containing members
with Pfam or TIGRFAM® annotations in the UniProt/TrEMBL and Swiss-
Prot database. This resulted in the identification of 711,705 (30.9% of
AFDB clusters) dark clusters, probably enriched for novel structures.

The distribution of the known and unknown clusters as a function of
their sizeis shownin Fig. 1d. The sizes of clusters that lack annotations
aresmaller compared with the annotated clusters. For thisreason, the
dark clusters map to a proportionally smaller fraction of the protein
universe. Although these clusters comprise approximately 30.9% of the
AFDB clusters, they represent only 4.06% of the AFDB. This is consis-
tent with the expectation that structures with many representatives
inthe proteinuniverse are better studied and that the vast majority of
proteinstructures canbe annotated with at least partial similarity toa
known structure of domain family annotation.

Novel enzymes and small-molecule binders

Fromthe 711,705 clusters without annotations (dark clusters), we sele-
cted 33,842 clusters with the highest average AlphaFold2 prediction
confidence (thatis, average pLDDT >90). For each, we picked the mem-
ber with the highest confidence for further investigation. To predict
potential novel enzymes, we searched each structure for pockets
and predicted Gene Ontology (GO) and EC number using DeepFRI, a
structure-based function prediction method (Methods). In total, we
identified 1,770 pocketsin1,707 structures and made 5,324 functional
assignments within these proteins with predicted pockets. The pocket
predictionled to the identification of high-confidence structure predic-
tions (pLDDT >90) that do not appear to be correct. From1,770 pockets,
579 (32.7%) encompass more than 40% of the total protein sequence,
indicatingthat the predicted structure is not compact. Manual inspec-
tion of these structures (examples are shown in Extended Data Fig. 4)
confirmed this lack of compactness and secondary structural elements.
We hypothesize that several of these are probably incorrect predictions.

The top most often predicted molecular functions are shown in
Fig. 2a with the top three including the term ‘transporter activity’.
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Similarly, the most often predicted cellular component was ‘intrin-
sic component of membrane’ (379 annotations). This indicates that
structures without annotations may be enriched for membrane-bound
proteins that have been historically difficult to determine experimen-
tally. This is also the case when considering all 711,705 dark clusters
predicted by DeepFRI (Extended Data Fig. 5). Two examples of putative
transporters are shown in Fig. 2b, including the top predicted pocket
and coloured by the residue importance given by DeepFRlI for this
predicted function. In addition to the putative transporters, there is
awide diversity of other predicted functions. For example, UniProt
AOA849ZKO06 (Fig. 2¢) is predicted to be a ribonucleotide-binding
protein with an overall structure having an organization that resem-
bles a protein kinase fold. The residues contributing the most to the
DeepFRIpredictionare directly in contact with the top scoring pocket
(Fig. 2¢), suggesting a potential nucleotide-binding function for this
pocket. Finally, UniProt SOEULS8 (Fig. 2d) has a top prediction of EC
5.6.2.-,whichannotates enzymes that canalter nucleic acid conforma-
tions. The structure resembles members of the structural maintenance
of chromosomes family but it is missing several characteristic ele-
ments. The preceding genein the genome encodes aRecN homologue
(amember of the structural maintenance of chromosomes family),
giving additional evidence for a role of UniProt SOEUL8 in chromo-
some maintenance.

Taxonomic analysis of the clusters

To gaininsights into the distribution of the identified structural clus-
ters, we examined their taxonomic composition to determine the extent
of proteinmachinery shared across different super-kingdoms (Fig. 3a).
For this, we mapped the members of the cluster in the tree of life and
identified the most recent common ancestor for all members of the
cluster (Methods). In this way, we mapped non-singleton structural
clusters that appear to be conserved at the cellular organism (23%)
(that s, universal to all life), bacterial (16.1%), Eukaryota (13.5%) and
Archaea (0.5%) levels. Together, this suggests that the majority of the
structural clusters are probably very ancient in origin.

Although the majority of protein clusters is mapped to the com-
mon ancestor of eukarya or older, we found a small fraction (3.91%)
of species-specific structural clusters. Compared with other clusters,
the species-specific clusters tend to have fewer members (that is, twice
more likely to have just two members); they are more likely to be dark,
with 56% having no annotation; and composed of smaller proteins,
with amedian length of around 40 amino acid fewer). However, the
overall prediction confidence (pLDDT) of the species-specific clusters
iscomparable to that of the remaining clusters, with an average of 69.35
compared to 71.73. The organisms with the largest species-specific
clusters are Acidobacteria bacterium, Araneus ventricosus, Escherichia
coli, Sepia pharaonis and Chloroflexi bacterium, whichrange from1,884
t01,390 clusters.

Human-related cluster analysis

Asan example application, we studied human protein-containing clus-
ters from an evolutionary conservation perspective. We mapped the
clusters containing human proteins to the tree of life (Extended Data
Fig. 6) and firstlooked for human-specific clusters (thatis, containing
only human proteins). Out of the 13 human-specific clusters identi-
fied, 9 are predicted non-confident witha pLDDT score of less than 70
and did not contain structural proteins. The remaining four clusters
contained a herpes virus U54 (UniProt: AOA126LB04) unit; annexin
(UniProt: AOA4D5RA95) with limited human homologues in UniRef50;
aU2snRNP-specific A’ protein (UniProt: QQUENI) that appeared tobe a
fragmentbutisnotlabelled as one; and VPS53 (UniProt: AOA7POT9Z7),
asingle long coil structure that was not clustered by Foldseek due to
high random chances of observing such a structure. Our findings do
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not support the presence of newly emerging human-specific struc-
tural clusters withinthe set of human sequences annotated in UniProt.
However, this does take into account singleton clusters.

We next extracted all clusters containing ahuman proteinand asso-
ciated each human cluster with its corresponding GO terms and low-
est common ancestor (LCA). When multiple human sequences were
presentina cluster, the GO annotation of the human protein with the
highest pLDDT score was selected. A small selection of GO annotations
that highlight the evolutionary conservation of human structures is
shown in Fig. 3b. Human proteins with similar structures across most
of the tree of life are annotated with a diverse set of terms including
several enzyme activities (for example, ligase activity, oxidoreduc-
tase activity, serine-type endopeptidase activity). Present in bacteria
and eukarya, proteins linked with the microtubule-organizing centre
and voltage-gated potassium channel activity are included. Mostly
restricted to eukarya, terms such as nucleus, chromatin organization
and microtubule motor activity are included. More recently evolved
structuresinclude annotations such asimmune response and hormone
activity.

Bacterial and human immunity protein links

Notethat, evenif somebiological processes were primarily restricted
to eukaryaor morerecently diverged clades, we could find cluster rep-
resentatives that were presentinbacterial species. For example, most
human proteins that are annotated to the nucleus (GO:0005634) arein
clusters mappedto eukaryaastheir LCA. However, we found exceptions
including, for example, a histone-related cluster (Fig. 3c) supporting
the previously reported evolutionary link between eukaryotic and
bacterial histones?. Similarly, we found severalimmunity-related pro-
teins with structural similar proteins presentinbacteria. These include
TNFRSF4 (UniProt: P43489) with similar structures in bacteria due to
commoncysteine-rich repeat regions that overlap with the TNFR/NGFR
cysteine-richregion domainannotationsin InterPro (IPR0O01368). We
also found bacterial structures that are related to the human CD4 like
protein B4E1TO (Extended Data Fig. 7a), although these can also be
annotated by sequence matching to theimmunoglobulin-like domain
family inInterPro (IPR013783).

The structural similarity between human and bacterial proteins
may alsoinform ontheir functionin bacteria. The human bactericidal
permeability-increasing (BPI) protein (B4DKH6) is a key component
of the innate immune system and is known to have a strong affinity
for negatively charged lipopolysaccharides found in Gram-negative
bacteria.In ouranalyses, this protein clusters with bacterial structures
(Fig 3c), for example, the protein AOA2D5ZNGO, which aligns with
the human protein at a TM-score of 0.81 normalized to the length of
the human protein. Moreover, searching for partial hits by Foldseek
identified that YceB from E. coli and other gram-negative bacteria has
structural similarity to the C-terminal region of human BPI (Extended
DataFig.7b). TheE.coliYceB proteinis a tubular putative lipid-binding
protein without a well-characterized function. This structural simi-
larity may suggest a role of YceB homologues in regulating the outer
membrane.

Our analysis identified a cluster containing the human protein AIM2
(014862), which recognizes pathogenic double-stranded DNA% and
leads to the formation of the AIM2 inflammasome. When search-
ing the NR database using NCBI BLAST?, we found no bacterial hits
for the human A/M2 gene. However, three structures in ‘Candidatus
Lokiarchaeota archaeon’ and one in the bacterium Clostridium sp.
from an uncultured source (UniProt: AOA1CS5UEQS5) were identified
as similar to human AIM2 in our analysis. The bacterial protein (Uni-
Prot: AOAIC5SUEQS5), encoded onacontig of length 138,559 (GenBank:
FMFM01000010), is unlikely to be a contaminant due to its length®.
UniProt AOAICSUEQS is not unique, as many homologous sequences,
mostly labelled as ‘hypothetical protein’, were found in the NR database
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GO-annotated clusters. A histone protein with anucleus GO annotation, which
was found tobe conserved at the cellular organismlevel and supports the
previously reported evolutionary connection between eukaryotic and bacterial

from mostly uncultured human gut bacterial sequences with higher
than90% sequence identity. We predicted the structure of one homolo-
gous protein that is 64% identical to UniProt AOA1ICSUEQS5 (Extended
DataFig.8)—which originates fromacultured Lachnospiraceae bacte-
rium that is part of the Culturable Genome Reference®® of the human
gut—using ColabFold* and confirmed that it has a similar structure
DNA-binding domain structure (TM score of 0.97 and 0.56 in relation
to UniProt AOAIC5UEQS and human AIM, respectively). These results
suggest that the AIM2 inflammasome may have been repurposed from
ancient DNA-sensing-related proteins. It is possible that the bacterial
versions may also have arole in pathogen DNA sensing and response.

[1 B4DKH6 (human)

2. Bactericidal permeability-increasing protein
GO: immune response

[1014862
(human)

1 AOA1C5UEQ5
(bacteria)

3. Interferon-inducible protein AIM2
GO: defence response to virus

histones (left)?*. The humaninnateimmunity genes BPI (middle) and AIM2
(right) encode structurally similar proteinsin bacterial species, highlighting
the potential for cross-kingdom sharing of immunity-related proteins.

Acido. bacterium, Acidobacteria bacterium; Actino. bacterium, Actinomycetia
bacterium;‘Ca.Bathyarchaeotaarchaeon’,‘Candidatus Bathyarchaeota
archaeon’; D. bacterium, Deltaproteobacteria bacterium; H. pylori, Helicobacter
pylori; memb., membrane; P. bacterium, Planctomycetes bacterium; R. irregularis,
Rhizophagusirregularis; S. enterica, Salmonella enterica; T. cinerariifolium,
Tanacetum cinerariifolium.

These results exemplify how the structural clusters can provide
hypotheses as to the evolutionary origin of specific biological pro-
cessesand furtherillustrate the cross-kingdom similarities inimmune
systems.

Domain prediction by structure search

The clusters defined above group structurally similar proteins at full
length. Proteins are sometimes composed of different regions or
domains that can fold independently, with a growing collection of
such domain families being catalogued in databases such as Pfam?®
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Fig. 4 |Prediction of domain families by local structural similarity hits.
a,Diagram of the structure-based domain family prediction method. Clustering
ofthe startand end positions for Foldseek hits of one protein against all others
was used to define potential domain boundary positions. Each predicted
domainregionwas linked to the others sharing structural similarities and
graph-based clustering was used to define domain families and interdomain
similarity. b, The frequency distribution of the most common (n =9,631)

and the second most common (n =1,628) Pfam annotations found members
of all predicted domain families. anno., annotation. ¢, The counts of the
number of clusters with agiven Pfam as the most frequent. d, The number of
domain family clusters annotated to a Pfam, DUF or no domain annotation.
e, Thedistribution of protein region length in the predicted domain families,

or InterPro®. Domain family prediction is performed primarily by
sequence searches, exploring the fact that domain families have
conserved sequence features. The vast increase in protein structures
and fast algorithms to compare them opens the possibility of pre-
dicting domain families by structural similarity. Here we devised a
procedure using structural similarity matches by Foldseek to predict
putative domain regions and families (Fig. 4a and Methods). In brief,
arepresentative structure from each of the Foldseek clusters defined
above was used for anall-by-all structural similarity search using Fold-
seek. Although these representative structures should be structur-
ally non-redundant at the full protein level, they will still share many
structurally similar domains. For each sequence/structure, we cluster
the start and end positions of all Foldseek hits and use these to define
probable domain boundaries. The predicted domain regions were
then connectedifthey had structural similarity, and a network cluster-
ing method was used to cluster domain regions into putative domain
families (Methods).

We used Pfam annotations to assess the quality of these predic-
tions (Fig. 4b-g). For each putative domain family with at least five
representatives, we determined the frequency of the first and second
most frequent Pfam annotations, with the majority having homoge-
neous annotations (Fig. 4b). Each Pfam annotation is predominantly
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of structures

stratified by their annotations: Pfam domain (n=1,048,276), DUF (n=72,798)
and notannotated (n=1,904,498).f, Non-redundant count of Pfam and DUF
domain families foundinthe structure-based predicted families. g, The
distribution of the number of structures found for each predicted domain
family annotated withaknown Pfam (n =3,875) or DUF domain (n =1,513).

The top 6 Pfam annotations are highlighted using their abbreviations: Pkinase,
protein kinase domain PF00069); zf-C2H2, zinc finger, C2H2 type PFO0096;
Ank_2,ankyrinrepeats, PF12796; RVT_1, reverse transcriptase, PFO0078;
WD40, WD domain, G-betarepeat PFO0400; ABC_tran, ABC transporter,
PFO0005. Thebox plotsinb, eand g show the median (centre line), the quartiles
land 3 (boxlimits) and 1.5 x theinterquartile range (whiskers).

found within a single domain family suggesting that these tend to be
non-redundant. For domain families with at least 5 representatives,
7,599 families match Pfam, 2,032 match Pfam domains of unknown
function and 10,722 do not match Pfam and are probably enriched in
novel families. The median length of the regions is similar for previ-
ously known or putative novel families (Fig. 4e). Given that we started
with mostly non-redundant structures, we do not expect thisapproach
to recover most domain families. We found 5,388 non-redundant
Pfam annotations for predicted domain families with at least 5 rep-
resentatives, corresponding to around 29% of the 19,000 known
Pfam families.

Insummary, clustering of local Foldseek hits can accurately predict
domainfamiliesleadingto the prediction of many potential unexplored
families. We provide a complete list of all predicted domain families
online (https://cluster.foldseek.com/).

Structural similarity in distant domains

The network clustering procedure used above also enables the iden-
tification of pairs of predicted domain families that share some struc-
tural similarity. Among such pairs, we found around 500 connections
between clusters enriched witha Pfam annotation and other domains
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Fig.5|Examples of non-annotated domain families with structural
similarity to annotated domain families. a, Fragl-like domains. Three
clusters were found enriched for the Fragl Pfam annotation that had structural
similarity to one cluster enriched for adomain of unknownsignificance
(DUF998) and one cluster without annotations. b, Anthrax_toxA-like domains.
Acluster enriched for the anthrax_toxA Pfam annotation was found with
structural similarity toa cluster with no annotations. ¢, Two clusters without
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without clear annotations, providing examples of potential functional
annotations. From these, we focused on connected domain families
enriched in proteins from different kingdoms (Fig. 5). The Fragl-like
domains exemplify the strength of structural-based similarity search-
ing (Fig. 5a). The Fragl/DRAM/Sfk1 Pfam domain (PF10277) annotates
proteins with asix-a-helix bundle transmembrane region observedin
eukaryotic species. In our analysis, a domain family enriched for this
Pfam annotation was linked to two additional families enriched in bac-
terial and archeal sequences, one enriched for a domain of unknown
function (DUF998; PF06197) and a second not annotated. The three
families are structurally identical, typically forming a six-a-helix bun-
dle, despite the very low sequence similarity between the sequences
forming these.

We also found a cluster enriched for the anthrax_toxA Pfam
(PF03497;Fig.5b), more specifically, the annotated domains contained
structures similar to the oedemafactor, acalmodulin-activated adeny-
lylcyclase®. The oedemafactoris one of the three components forming
the bacterial anthrax toxin system. Our analysis identified astructur-
ally similar putative domain family enriched in eukaryotic proteins
(Fig. 5b). Specifically, several algae proteins were found to have struc-
tures thathad partial matches to the oedema-factor-domain-related
structures. This raises the possibility that algae might be using similar
toxin systems.
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gasdermin Pfam annotations. Cluster 2 gasdermin N-terminal domain
structures reveal homology to human gasdermin E. The corresponding
structural characteristics are highlighted. Some gasdermin domains were
found fused to protease domains (UniProt: AOA2C5ZLK3). The bacterial
gasdermin structure (PDB: 7N51) is similar to novel gasdermin domains from
non-annotated cluster 2. The third cluster revealed homology to both animal
and bacterial gasdermins.

Identification of gasdermin domains

Our search resulted in the identification of two domain families with
structural similarity to a cluster enriched for the gasdermin domain
(Fig. 5¢). Inhumans, gasdermin is the executor of inflammatory cell
death called pyroptosis and is crucial for defence against pathogens.
After sensing a pathogen, caspases are activated that cleave off the
C-terminal repressor domain of gasdermin, releasing the N-terminal
domain to assemble into large pores in the cell membrane®. The
predicted gasdermin structures from all three groups exhibited the
structural characteristic conservation of atwisted central antiparallel
B-sheet and the shared placement of connecting helices and strands of
gasdermin. The structures enriched in the gasdermin Pfam annotation
adopted asimilar conformation to that of the mammaliangasdermin N
terminus, especially of gasdermin E, whichis considered to be evolution-
aryancient®.Intheinactive structure of mammalian gasdermin (A, B,D
and E), the N terminus forms interfaces with the repressor C-terminal
domain mediating autoinhibition, one of these is the primary interface
atthe al helix®. Gasdermin is activated by proteolytic cleavage, which
results in N-terminal activation through the lengthening of strands
B3, B5, B7 and B8, and oligomerization®. Indeed, gasdermin domains
from the Pfam annotated group had both the a1 helix as well as the
corresponding B-sheets necessary for the active form of gasdermin.
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Gasdermin was also recently found in bacteria and archaea, in which
itis similarly activated by dedicated proteases and defends against
phages by pore-mediated cell death¥. Notably, the non-annotated
group 1 of gasdermin domains displayed strong similarity to the bac-
terial gasdermin structure (Fig. 5c). The other non-annotated group
(cluster 3) showed alarge degree of diversity and exhibited features of
both mammalianand bacterial gasdermin. In some cases, we observed
that the N-terminal gasdermin domain was fused to other domains
including proteases (Fig. 5¢c; UniProt: AOA2C5ZLK3). As gasdermin is
activated by proteolytic cleavage, such protein fusion hints at asimilar
activation mechanism for the novel gasdermin domains.

Discussion

The orders-of-magnitudeincreasein available structural models raises
challenges in data management and analysis of such large volumes.
This difficulty is amplified by the fact that the repository of publicly
available structures, consisting of the combined databases of AFDB
and the ESMatlas™, isapproachingabillion entries. For this reason, we
developedaclustering procedure that canscale to billions of structures,
identifying2.30 million non-singleton clusters of which 31% do not have
similarity to previously known structures or domainannotations. These
clusters annotate only 4% of protein sequences, indicating that the
vast majority of the protein structural space hasbeen at least partially
annotated. As the criteria used include partial hits to known structures
ordomainannotations, the degree of understudied structural space is
probably underestimated. As we illustrate, our analysis can guide the
prioritization of predicted novel protein families for future computa-
tional and experimental characterization.

Structural clustering is a powerful tool for identifying structurally
similar proteins that caninform on evolutionary relationships, but its
accuracy can be affected by certain limitations. Here we set a 90% align-
mentoverlap as the requirement for assigning a structure to a cluster,
which may exclude similar structures with significant insertions or
unique repeat arrangements. Moreover, our strict £-value threshold
of 0.01 may result in missed similarities. Another limitationis that the
current AFDB does not contain the full extent of protein sequences
from metagenomics studies or viral proteins, limiting the potential
to detect retroviral proteins.

Inaddition to the full-length protein clustering, we used Foldseek’s
local hit matches to predict and cluster protein regions into puta-
tive domain families. The protein region clusters tend to overlap
well with previous definitions of domain families as annotated
in the Pfam database and led to the identification of over 10,000
unassigned domain-level clusters that should be enriched in putative
novel domain families. We did not perform exhaustive searches with
other sequence-based domain family annotations that could annotate
additional clusters with previous knowledge. Note that we consid-
ered only the representatives of Foldseek clusters when performing
the domain prediction. As the domain prediction requires multiple
observations on the same structural region, additional domains are
expectedtobedetectedifeachstructure was searched againstalarger
set of structures.

As protein structure is conserved for longer periods of evolution-
ary time than protein sequences, we expect that AFDB will empower
the identification of remote homology. Although some advanced
sequence-based methods can already assist in this task®*, the avail-
ability of predicted structures may help identify meaningful evolu-
tionary relationships. From an analysis of curated protein families,
we find that our clusters are enriched preferentially in homologous
over analogous relationships (Methods). Nevertheless, one should
stillbe cautious wheninterpreting structural similarity as evolutionary
homology. Our analysis here provides several examples of structural
similarity across kingdoms that is indicative of remote homology.
Inparticular, we focused onseveral examples relating humanimmunity
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to bacterial structures, emphasizing how some ancient systems have
been co-opted for use in the mammalianimmune response system. We
expect that many more examples can be derived from the clustering
results provided here.
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Methods

Structural clustering algorithm

The clustering procedure is similar to MMseqs2’s clustering but, instead
of using sequences, Foldseek’s 3Di alphabet (Extended Data Fig.1) was
usedtorepresentthestructuresasone-dimensional sequences. The clus-
tering algorithm combines Linclust” and cascaded MMseqs2 (ref. 42)
clustering. The pipeline applies this strategy to allow for efficient clus-
tering of millions of structures. First, protein structures are converted
to 3Di sequences and processed according to the Linclust workflow.
This includes extracting m k-mers (default m =300, k =10) from each
sequence and grouping them onthe basis of their hash value. The k-mer
groups are then used to assign each structure to the longest sequence
(representative) within the group. The shared diagonal on which the
k-mer isfoundis also stored for further use in the alignment step.

The pipeline then proceeds with an ungapped alignmentalgorithm
thatrescoresthe structures onthe basis of the shared diagonal between
members and representatives using 3Di and amino acid information.
Thesequences that meet the defined alignment criteria, such as E-value,
alignment coverage, sequenceidentity, alignment LDDT* or TMscore*,
are clustered using the MMseqs2 clustering module (default using
the set-cover algorithm). After this step, the structures that have
been assigned already are removed from the set and the remaining
representative member hits are aligned using Foldseek’s structural
Gotoh-Smith-Waterman algorithm®, and all passing hits are clustered
aswell. Theremaining cluster representatives are successively clustered
by three cascaded steps of prefiltering, structural Smith-Waterman
alignment and clustering.

Distinguishing homologues from analogues

Structural similarity between two sequences canbe attributed to either
common evolutionary ancestry (homologues) or convergent evolution
(analogues). Weinvestigated the association between cluster members,
computed by our pipeline on the basis of structural similarity, and
homology relationships using the ECOD database**. ECOD is a hierar-
chicaldomain database that describes the evolutionary relationships
between pairs of protein domains. Its hierarchical levels from root to
leaf are classified as: A-group (same architecture), X-group (possible
homology), H-group (homology), T-group (topology) and F-group
(sequence similarity). Analogues are expected to occur between mem-
bers of different X-groups, whereas homologues should be found within
the H-group.

For our benchmark, we downloaded the ECOD (F99 v.20230309)
PDB database and applied the same MMseqs2 and Foldseek clustering
procedure used for the AFDB. We conducted an ECOD cluster purity
analysis on all non-singleton clusters by measuring the pairwise cluster
member consistency at different hierarchy levels. The analysis revealed
high average consistency rates 0f 99.6%, 98.6%, 97.4%, 96.8% and 72.8%
for ECOD’s A-group, X-group, H-group, T-group and F-group, respec-
tively. This indicates an effective clustering of homologous proteins,
demonstrating a nearly exclusive distinction between homologues
and analogues. The high level of consistency in our clusteringis mainly
attributed to the stringent E-value of 107, when raising it to 10, the
consistencies decrease to 69.7%, 55.7%, 53.3%, 51.9% and 36.6%, respec-
tively. A similar result was observed using the MALISAM database®, a
single-domain database of analogous protein domains. When clus-
tering the 260 protein structures within the MALISAM database with
Foldseek’s default parameters, no clustering of analogues occurs. How-
ever, if we increase the E-value threshold, we begin to form clusters
containing analogues.

Cluster purity analysis

To assess cluster purity, we followed a two-step approach. First, we
calculated the average LDDT and TM score per cluster to assess the
structural similarity. For this, we aligned the representative to the

cluster members using the structurealign -e INF -amodule in Foldseek
andreported the alignment LDDT and TM score using --format-output
Iddt,alntmscore. For each cluster we computed the meanillustrated
inFig.1c.

Second, we evaluated the Pfam consistency of each cluster by using
Pfam labels obtained from UniProtKB. We took into account only the
clusters that have at least two sequences with Pfam annotations and we
calculated the fraction of correctly covered Pfam domains for all Pfam
sequence pairs ignoring self-comparison. We define true positives as
a pair of Pfam domains belonging to the same clan. For each pair, we
computed the consistency scores by true-positive count divided by
the count of Pfams in the reference sequence. Finally, we computed
the mean overall pair scores. This approach enabled us to determine
the proportion of sequences within a given cluster that shared the
same Pfam annotation.

Finally, we also calculated the EC number consistency of each cluster.
EC numbers were extracted from UniProtKB. The EC consistency was
evaluated similarly to the Pfam consistency but was done four times
accordingtothe four classes of the EC number. We considered only the
clusters with atleast two sequences that have EC annotations. Ateach
class of the EC number, the annotation without any code at the class was
ignored. For each pair asthe Pfam consistency, the consistency scores
were computed by the true-positive count divided by the number of
ECsinthe sequencesinthe pair avoiding self-comparison. The scores
were finally computed to the mean overall pair scores.

Dark clustersand LCA

To eliminate clusters similar to previously known experimental
structures, we conducted a search using Foldseek against the PDB
(v.2022-10-14) for each cluster representative, with an E-value thresh-
old of 0.1. We then excluded clusters annotated with Pfam domains
by searching the cluster representatives using MMseqs2 with para-
meters -s 7.5 --max-seqs 100000 -e 0.001 against the Pfam database.
Finally, we removed clusters with members annotated with Pfam or
TIGRFAM20 annotations in the UniProt/TrEMBL and SwissProt data-
base. To determine the LCA of each cluster, we used the Ica module
in MMseqs2 (ref. 46) ignoring the two taxa (1) 12,908 unclassified
sequences and (2) 28,384 other sequences. We visualized the LCA
results using a Sankey plot generated by Pavian®.

Prediction of functions and pockets

We predicted small-molecule-binding sites for representative dark clus-
ter members by adapting a previously described approach®. We used
AutoSite to predict pockets*®, and selected pockets with an AutoSite
empirical composite score of >60 and mean pocket residue pLDDT of
>90 for additional analyses. To assign putative function and predict
catalytic residues, we used DeepFRI* to predict enriched GO/EC terms
and residue-level saliency weights across available GO/EC categories
(BP, CC, EC, MF). Pocket and functional predictions were then visually
examined using a web app (Data Availability).

Domain prediction from local alignments

First, we filtered out low-scoring Foldseek hits using an E-value of 10~
as the threshold. We defined potential domain boundary positions
for each protein sequence by clustering start-stop positions (hier-
archical clustering, height parameter of 250 to establish clusters).
Predicted domains were thenlinked to others on the basis of structural
similarities, retaining the highest scores when duplicates were found.
The resulting network was then trimmed excluding connections with
E-value higher than 1075, predicted domains with more than 350 amino
acids and connected components with less than 5 nodes. We applied
graph-based clustering (walktrap, 6 steps), keeping communities
with at least 5 members. Each predicted domain inside the selected
communities was annotated using Pfam-A regions mapped to UniProt
identifiers (v.35.0), more than 75% of the Pfam domain has to overlap



with the predicted domain. We calculated inside each community the
frequency of Pfam annotations and defined them on the basis of the
highest one. Owing to its size, we decided to keep out of the follow-
ing analysis one community with 152,959 structures (group ID 1;1, see
supplementary files at https://cluster.foldseek.com/). We connected
the remaining communities on the basis of the structure similarities,
allowing connections witha P<1072,

Web server

We developed a web server to allow for user-friendly exploration of
clusters, their members and related similar clusters. The server was
implemented using a REST-based client-server architecture, with a
VueJSfront-end and aNodeJS back-end. The clustering-related informa-
tionisaccessed through an SQLite database and informationrelated to
individual structures through Foldseek compatible databases through
a C++-based NodeJS-extension for fast read-in and search. Similar to
the Foldseek webserver, we used NGL* to visualize structures and
WebAssembly-based versions of PULCHRA® to restore full protein
structures from our stored C-alpha traces and TM-align for pairwise
structure alignments of cluster members to their representatives. To
visualize the taxonomic distribution, we implemented Sankey diagrams
inspired by Pavian. Clusters can be found through member UniProt
accessions, through a Foldseek search to similar clusters or by searching
for GO terms. Individual cluster members can be further explored with
links to UniProt, the Foldseek webserver and the UniProt3D Atlas™.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Clustering data are freely and publicly available (CC-BY) online
(https://cluster.foldseek.com/). All data generated and used for the
analyses can be downloaded online (https://afdb-cluster.steineg-
gerlab.workers.dev). AlphaFold database v.3 (https://alphafold.ebi.
ac.uk/) was used for the analysis and is currently available at gs://
public-datasets-deepmind-alphafold. For the analysis, we used Pfam
v.34.0 (https://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam34.0),
PDB (14 October 2022; https://www.rcsb.org), UniProt TTEMBL 2022_03
(https://ftp.ebi.ac.uk/pub/databases/uniprot/), SwissProt 2022_03
(https://ftp.ebi.ac.uk/pub/databases/uniprot/), ECOD 20230309
(http://prodata.swmed.edu/ecod/) and the MALISAM (http://prodata.
swmed.edu/malisam/) database.

Code availability

Thestructural clustering method is available at https://foldseek.com/,
isimplemented in Foldseek v.4.645b789 and is available as free and
open-source software (GPLv3). MMseqs2/Linclust v.14.7e284 is avail-
able online (https://mmseqs.com/). The cluster analysis was performed

using goatools v.1.2.4 (https://github.com/tanghaibao/goatools), Deep-
FRIv.0.0.1for GO predictions (https://github.com/flatironinstitute/
DeepFRI) and ColabFold v.1.5.2 for structure prediction (https://colab-
fold.com). For plotting, Python v.3.10.6 (https://www.python.org/),
Matplotlib v.3.6.2 (https://matplotlib.org/), seaborn v.0.12.2 (https://
github.com/mwaskom/seaborn), ChimeraX v.1.5 (https://www.cgl.
ucsf.edu/chimerax/), Pavian commit: cd2f21 (https://fbreitwieser.shin-
yapps.io/pavian/) and pandasv.1.5.2 (https://github.com/pandas-dev/
pandas) were used.
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Extended DataFig.1| Thefive-step clustering pipeline for efficiently
clustering millions of protein structures using Foldseek’s 3Dialphabet.
(1) Proteinstructures are converted to 3Di sequences and processed through
theLinclust workflow. (2) Foreach sequence, 300 min-hasing k-mers are
extracted and sorted. (3) Thelongest structureis assigned to be the centre of
each k-mer cluster. (4) Structural alignment is performed in two stages: first an
ungapped alignmentbased on shared diagonal information is performed, hits

Q.
- P weak alignment

arepre-clustered and second the remaining sequences are aligned using
Foldseek’s structural Smith-Waterman. (5) The remaining structures meeting
alignment criteria are clustered using MMseqs2’s clustering module. After the
Linclust step the centroids are successively clustered by three cascaded steps
of prefiltering, structural Smith-Waterman alignment and clustering using
Foldseek’s search.
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having pLDDT>90 and a predicted pocket covering over 80% of the residues of the structure.
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clusterswithDeepFRIscores greater than0.5. The graph displays the most keyword “transmembrane”. Only 98,882 (13.9%) out of the 712K have a
frequent molecular functions predicted by DeepFRIwith predictionscores predictionscoregreater than0.5.
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Extended DataFig.7|Additional examples of humanrelated proteinsin protein (AOA1F4ZDNS5) has no Pfam annotation. (b) The human protein
structural clusters with representatives or partial matches in bacterial (B4DKH6) is abactericidal permeability-increasing protein found in humans.
species. (a) We found bacterial structures related to the human CD4 like TheE. coliprotein (POAB26) has asimilar structure to the human protein,

protein B4E1TO. The human protein (B4E1TO) has 3 Pfams - PF05790, PF09191, contains aPfam domain of unknown function (DUF) and its structureis also
PF12104. Those Pfams are specific to Eukaryotes only. In contrast, thebacterial ~ experimentally determined (PDB:316iB).
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