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Immune checkpoint blockade (ICB) targeting programmed cell death
protein1(PD-1) and cytotoxic T lymphocyte protein 4 (CTLA-4) caninduce
remarkable, yet unpredictable, responses across a variety of cancers.
Studies suggest that there is a relationship between a cancer patient’s gut
microbiota composition and clinical response to ICB; however, defining
microbiome-based biomarkers that generalize across cohorts has been
challenging. This may relate to previous efforts quantifying microbiota

to species (or higher taxonomic rank) abundances, whereas microbial
functions are often strain specific. Here, we performed deep shotgun
metagenomic sequencing of baseline fecal samples from a unique, richly
annotated phase 2 trial cohort of patients with diverse rare cancers

treated with combination ICB (n =106 discovery cohort). We demonstrate
that strain-resolved microbial abundances improve machine learning
predictions of ICB response and 12-month progression-free survival relative
to models built using species-rank quantifications or comprehensive
pretreatment clinical factors. Through a meta-analysis of gut metagenomes
froma further six comparable studies (n = 364 validation cohort), we found
cross-cancer (and cross-country) validity of strain-response signatures,
but only when the training and test cohorts used concordant ICB regimens
(anti-PD-1 monotherapy or combination anti-PD-1 plus anti-CTLA-4).

This suggests that future development of gut microbiome diagnostics or
therapeutics should be tailored according to ICB treatment regimen rather
thanaccording to cancer type.

The past decade has seen an ‘immuno-oncology revolution’ largely  of PD-1). Combination ICB (CICB) targeting both PD-1and CTLA-4 has
driven by the rapid uptake of immune checkpoint blockade (ICB) agents  demonstrated synergistic antitumor activity preclinically' and isnowan
targeting cytotoxic T lymphocyte protein 4 (CTLA-4), programmedcell  approved standard of care for patients with diverse cancers, including
death protein1(PD-1) or programmed deathligand1(PD-L1, theligand melanoma?, clear-cell renal cell carcinoma®, non-small cell lung cancer
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(NSCLC)*, mesothelioma’ and hepatocellular carcinoma®. However, this
success is tempered by the unpredictable nature of responses (seen
in only 20-60% of patients across these cancer indications’) and the
more frequent severeimmune-related adverse effects experienced with
CICB when compared to anti-PD-1or anti-PD-L1 monotherapy?®. Thus,
despite the promise it offers, the judicious use of CICB is paramount.
Additionally, predictive biomarkers for tumor response and/or toxicity
would be highly valuable to guide patient management.

Currently approved tumor-agnostic biomarkers for PD-1blockade
include tumor mutational burden and mismatch repair deficiency’;
however, both have limitations and rely onavailable, contemporaneous
tumor tissue. A promising ‘tumor-extrinsic’ avenue for predicting ICB
response and/or toxicity a priori is assessing a patient’s baseline gut
microbiome composition, referring to the community of microbiota
(predominantly bacteria) resident within the gastrointestinal tract.
Culture-free methods to taxonomically profile fecal microbiomes
have progressed from low-resolution 16S rRNA gene sequencing to
high-resolutionshotgun metagenomics, with studies of clinical cohorts
finding associations between baseline Akkermansia muciniphila (lung
cancer)'°" and Faecalibacterium prausnitzii (melanoma)'* ' fecal
abundances and tumor responses among anti-PD-1recipients. Unfor-
tunately, previous meta-analyses across metagenomic studies have
found limited reproducibility of these candidate microbial biomarkers
for ICBresponse”?°, Although this poor reproducibility may be partly
attributable to methodological or geographic differences between
studies, we hypothesize that species-level taxonomic biomarkers may
lack the precision necessary to capture the specific microbial traits
associated with ICB response or nonresponse. For example, there is
growing awareness of the diversity of intraspecies (strain) variation
among commensal bacteria (such as A. muciniphila and F. prausnitzii),
with diverging functional potentials and differing associations with
host phenotypes®*.

Here, we performed deep shotgun metagenomic sequencing
of baseline fecal samples from patients on the CA209-538 clinical
trial of ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1) for 106
patients with diverse rare cancers (our discovery cohort). Using a
bespoke, genome-resolved metagenomics approach, we discovered
baseline subspecies (strain-level) gut microbial abundance signatures
ofresponse that reproduce between cancer subtypes and externally to
published CICB cohorts despite marked cohort heterogeneity. Notably,
we found that the predictiveness of signatures trained on CICB cohorts
does not extend to anti-PD-1monotherapy cohorts. This suggests that,
although tumor agnostic, different microbiota-host relationships are
relevant to distinct ICB regimens.

Results

Clinical characteristics of the CA209-538 cohort

The CA209-538 clinical trial, titled ‘A phase 2 trial of ipilimumab and
nivolumab for the treatment of rare cancers’, is a prospective, multi-
center clinical trial (NCT02923934) that enrolled 120 patients with
histologically confirmed advanced rare solid-organ cancers across
five Australian hospital networks (Methods). Notably, patients had
diverse tumor histologies grouped into three prespecified cohorts:
upper gastrointestinal and biliary cancers (UGB), neuroendocrine
neoplasms (NEN) and rare gynecological tumors (GYN). Most patients
(n=108) had received prior systemic anticancer therapies (median of
one line (range 0-6 lines)). All participants were treated on trial with
combination nivolumab and ipilimumab for up to four doses (induc-
tion), followed by nivolumab maintenance for up to 2 years or until
progressive disease (PD) or unacceptable toxicity (Fig. 1a). The prespec-
ified secondary endpoint of the trial was to develop ‘tumor-agnostic’
biomarkers for CICB response by leveraging the unique clinical trial
design of CA209-538, whichincluded patients with diverse cancers, but
with highly standardized clinical and experimental procedures. There-
fore, a pretreatment fecal sample was collected from most (n =106)

participants (Table 1). No major clinical differences were observed
between microbiome-evaluable patients and those who were not sam-
pled (Supplementary Table1).

The clinical efficacy and safety outcomes for subgroups from
CA209-538 have been published previously” . As expected, overall
survival (OS) significantly differed by histology (Extended Data Fig. 1a);
however, progression-free survival (PFS) was more consistent
(Extended Data Fig. 1b). Notably, the percentage of patients with an
objective response (complete response (CR) or partial response (PR))
was remarkably stable across histological cohorts (24-25%) (Fig. 1b),
with the Response Evaluation Criteria in Solid Tumors (RECIST)
1.1 best overall response (BOR) being strongly associated with PFS
and OS (Fig. 1c,d). Using univariable statistical testing, we found a
strong positive monotonic association between albumin and BOR
(Kendall P=0.0056) and a negative monotonic association between
neutrophil-to-lymphocyte ratio (NLR) and BOR (Kendall P=0.0033)
(Extended Data Fig. 1c). This was particularly driven by patients with
rapid clinical progression (clinical PD (cPD)) having significantly lower
albuminand higher NLR, both responses toinflammation showntobe
strongly prognostic across cancer types and treatment settings”*,

Microbiome profiling of baseline fecal samples
To understand the composition of patient gut microbiomes, we per-
formed deep shotgun metagenomic sequencing of the 106 available
baseline fecal samples (median20.4 million paired-end reads per sam-
ple). For precise taxonomic quantification, we used a genome-resolved
approach of first assembling a study-specific strain reference data-
base using metagenome-assembled genomes (MAGs), supplemented
with relevant Genome Taxonomy Database (GTDB) species reference
genomes (SRGs) (Methods). Ultimately, this database included 1,397
strain genomes covering 904 known species and additionally included
34 ‘new’ strains that could be taxonomically classified only to the genus
level. The Bowtie 2 alignment rates to our tailored strain reference
library were high (median 88.4%), withamedian of 10.2 million mapped
paired-end reads (50%) passing stringent quality control and used for
precise strain quantification (Supplementary Fig.1and Methods).
We first evaluated whether there were gross compositional dif-
ferences based on the patients’ BOR. Notably, we found a positive
monotonic association between BOR and the fecal Shannon diversity
index,acommonalphadiversity metric (Fig. 1e). Associations between
alpha diversity and cancer patient outcomes have been found in the
setting of patients receiving hematopoietic cell transplant® or cer-
vical cancer chemoradiation® but not in anti-PD-1 recipients with
metastatic melanoma'®'®; thus, such associations may be treatment
regimen specific. We then assessed intersample beta diversity using
the Aitchison distance and also found gross microbial compositional
differences by BOR group (permutational multivariate analysis of
variance (PERMANOVA) P=0.0319) (Fig.1f).Indeed, among the 23 pre-
treatment clinical and technical metadata tested, BOR group was the
metadata variable explaining the most microbial variance (Extended
Data Fig. 1d). By contrast, patient PFS at 12 months (PFS12) or OS at 12
months was associated with little microbial variance. APERMANOVA of
baseline microbial variance versus amoving PFS threshold revealed a
peak association at <4 months (Extended DataFig. 1e), indicating that,
in our cohort, patients with rapid progression had the most distinct
gross baseline microbial compositions.

Strain-response signatures are valid across cancer types

Giventhe gross compositional differences, we hypothesized that spe-
cificstrains may allow for prediction of CICB efficacy in our cohort. We
assessed objective response versus progression (RvsP), defined as a
RECIST BOR of CR or PR versus PD or cPD, as our primary endpoint.
In doing so, we excluded patients with a BOR of stable disease (SD)
(n=29), given its ambiguity in a pan-cancer cohort, in which it may
represent disease control or simply indolent cancer behavior. As a
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Fig. 1| Clinical and gut microbiome compositional differences between
responders and nonresponders. a, CA209-538 study and microbiome analysis
schema (created using BioRender.com). Pretreatment fecal samples were
collected fromn =106 trial participants and subjected to DNA extraction,
shotgun metagenomic sequencing, and analysis using a genome-resolved
metagenomics pipeline, involving quality control (QC), de novo assembly

of near-complete MAGs (nc-MAGs) and precise read mapping. Further to

the standard filters, reads mapping to genomes with <50% coverage breadth
were removed. b, Bar plot of patient RECIST 1.1 BOR by histology cohort for
microbiome-evaluable patients. The percentages of patients with an objective
response (PR or CR) are indicated. ¢, Kaplan-Meier curve of PFS stratified by
BOR category (cPDn=21,PDn=30,SDn=29,PRn=22,CRn=4).Log-rank test
P=2.1x10"*.d,Kaplan-Meier curve of OS stratified by BOR category (cPDn =21,

PCo1: (4.6%)

PDn=30,SDn=29,PRn=22,CRn=4).Log-rank test P=1.2x107*,

e, Boxplots of microbiome alpha diversity, as measured by the Shannon diversity
index, across BOR categories (cPDn=21,PDn=30,SDn=29,PRn=22,CRn=4).
Boxplot center line indicates the median; box limits indicate the upper and
lower quartiles; and whiskers indicate 1.5x the interquartile range. The linear
model (line of best fit) for the Shannon diversity index and BOR (with shaded
95% confidence interval) is superimposed (in gray). Kendall rand Pvalues for

the association between the Shannon diversity index and BOR are indicated.

f, Principal coordinate 1 (PCol) versus 2 (PCo2) using the Aitchison distance of
strain abundances, colored by patient BOR category. Ellipses depict 0.8 of each
group’s multivariate ¢t distribution. PERMANOVA P value and R* using 9,999
permutations are indicated.
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Table 1| Baseline clinical characteristics by patient BOR category

Characteristics Best response P
cPD (n=21) PD (n=30) SD (n=29) PR (n=22) CR (n=4)

Histology cohort

GYN 6(28.6%) 12 (40.0%) 9(31.0%) 7 (31.8%) 2 (50.0%) 0.18

NEN 5(23.8%) 5(16.7%) 14 (48.3%) 6 (27.3%) 2(50.0%)

UGB 10 (47.6%) 13 (43.3%) 6(20.7%) 9 (40.9%) 0 (0%)

No. of prior systemic therapies

Mean (s.d.) 1.43 (0.811) 1.60 (1.22) 1.97 (1.61) 2.00 (1.23) 1,00 (0.82) 0.32

Median (min, max) 1(0, 3) 1(0, 5) 2(0,5) 2(1,5) 1(0,2)

Measurable tumor (mm)

Mean (s.d.) 15 (82.3) 72.6 (48.4) 84.1(53.8) 90.0 (78.2) 70.0 (19.1) 0.49

Median (min, max) 108 (17.0, 344) 58.0(24.0, 219) 770 (17.0, 220) 64.0 (11.0, 325) 775 (42.0, 83.0)

Age (years)

Mean (s.d.) 591(13.9) 56.5 (15.1) 59.9 (14.3) 56.3 (12.5) 65.3(9.29) 0.85

Median (min, max) 65.0 (20.0, 75.0) 62.5(26.0, 75.0) 60.0 (22.0, 82.0) 53.5(38.0,74.0) 64.0 (57.0, 76.0)

Sex

Female 9 (42.9%) 22 (73.3%) 17 (58.6%) 17 (77.3%) 4 (100%) 0.048

Male 12 (571%) 8(26.7%) 12 (41.4%) 5(22.7%) 0 (0%)

Site

AUS 2(9.5%) 8(26.7%) 5 (17.2%) 7(31.8%) 0 (0%) 0.34

BLA 2(9.5%) 7(23.3%) 4(13.8%) 3(13.6%) 0(0%)

BMO 4(19.0%) 1(3.3%) 3(10.3%) 1(4.5%) 0 (0%)

MON 8(38.1%) 6(20.0%) 1(37.9%) 3(13.6%) 2(50.0%)

PMC 5(23.8%) 8(26.7%) 6 (20.7%) 8(36.4%) 2(50.0%)

Season

Autumn 9 (42.9%) 13 (43.3%) 12 (41.4%) 11(50.0%) 1(25.0%) 0.8

Spring 3(14.3%) 2(6.7%) 7(241%) 2(91%) 1(25.0%)

Summer 5(23.8%) 10 (33.3%) 5(17.2%) 5(22.7%) 2 (50.0%)

Winter 4 (19.0%) 5(16.7%) 5(17.2%) 4(18.2%) 0 (0%)

BMI (kgm™)

Mean (s.d.) 261 (5.74) 27.2 (5.30) 28.6(6.23) 257 (5.05) 25.6 (3.49) 0.97

Median (min, max) 25.1(191, 38.2) 28.2(18.6, 37.0) 28.2(18.9, 48.2) 25.0 (18.8, 35.3) 24.6 (22.8, 30.5)

PPIs (<8 weeks)

Yes 14 (66.7%) 9 (30.0%) 8(27.6%) 7 (31.8%) 3 (75.0%) 0.017

No 7(33.3%) 21(70.0%) 21(72.4%) 15 (68.2%) 1(25.0%)

Antibiotics (<8 weeks)

Yes 3(14.3%) 1(3.3%) 3(10.3%) 2(91%) 0 (0%) 0.65

No 18 (85.7%) 29 (96.7%) 26 (89.7%) 20 (90.9%) 4(100%)

Platelets (x10°(™)

Mean (s.d.) 297 (134) 279 (81.1) 224 (97.8) 287 (118) 283 (50.1) 0.32

Median (min, max) 302 (87.0, 603) 273 (133, 575) 189 (62.0, 431) 276 (144, 559) 300 (211, 321)

Albumin (gl™)

Mean (s.d.) 30.9 (5.66) 35.0(5.34) 36.2(4.34) 35.7 (3.47) 37.0(216) 0.0056

Median (min, max) 32.0(20.0, 38.0) 36.5(20.0, 44.0) 37.0 (24.0, 44.0) 36.0(29.0, 41.0) 36.5(35.0, 40.0)

NLR

Mean (s.d.) 10.7 (15.8) 3.33(1.99) 3.24(218) 3.66 (2.57) 2.74(0.144) 0.0033

Median (min, max) 5.27 (2.22, 66.0) 2.92(0.970,10.7) 2.72 (1.00,10.0) 3.27(0.960, 9.80) 270(2.62,2.95)

LDH (UL™)

Mean (s.d.) 380 (208) 277 (155) 264 (143) 480 (696) 283(59.2) 0.89

Median (min, max) 296 (149, 945) 215 (162, 898) 219 (128, 912) 302 (140, 3,440) 295 (202, 339)

Clinical characteristics (metadata) are reported stratified by BOR category for microbiome-evaluable participants (n=106). Numerical metadata are summarized with both means and median
values, and statistical associations with BOR (an ordinal variable increasing from cPD to CR) were computed using the Kendall T test. Categorical metadata were analyzed using frequency
tables, with statistical associations with BOR computed using the chi-squared test. AUS, Austin Hospital (Melbourne); BLA, Blacktown Hospital (Sydney); BMO, Border Medical Oncology
(Albury); MON, Monash Hospital (Melbourne); PMC, Peter MacCallum Cancer Centre (Melbourne); BMI, body mass index; PPls, proton-pump inhibitors; LDH, lactate dehydrogenase.
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sensitivity analysis, we also evaluated PFS12, withresponders and those
with PFS12 largely overlapping given the durability of CICB efficacy
(Extended DataFig. 2a).

We used a supervised machine learning (ML) workflow (Fig. 2a).
As input features (predictors), we tested the 15 potentially relevant
clinical factors (Methods) and the microbial factors (centered log
ratio (CLR)-transformed strain abundances) separately and combined
to assess their relative and synergistic performance, respectively. In
addition to strain-level rank, we tested microbial abundances aggre-
gated to higher taxonomic ranks (species, genus and family levels)
to determine the influence of taxonomic resolution on predictive
performance. For each feature set, we performed athoroughrandom
hyperparameter search across 1,000 iterations of a 20 times repeated
fivefold cross-validation (Methods). For predictions, we used arandom
forest (RF) classifier, previously shown to generally outperformother
classical ML algorithms for microbiome-host predictions™.

Interestingly, we found that clinical factors alone were poorly
predictive of RvsP (meanreceiver operating characteristic (ROC) area
under the curve (AUC) = 0.56) (Fig. 2b). This was despite the previously
observed relationship between low blood albumin, highNLR and cPD,
suggesting that these factors are more useful for delineating patients
with the worst prognosis rather than distinguishing responders and
nonresponders. Furthermore, it affirms the current difficulty of pre-
dictingclinical activity using routinely available factors and emphasizes
the need for further technical innovation. In contrast, clinical factors
were more predictive of PFS12 (AUC = 0.65; Extended Data Fig. 2b),
inferring that these are more prognostic markers than predictors of
antitumor activity.

When microbiome features were used, there was a positive
monotonic association between the mean AUC score and taxonomic
resolution for both endpoints (increasing from family to strain level)
(Kendall P=1.1 x 107" for RvsP, P=7.1x107" for PFS12). In particular,
strain-resolved abundances provided the best predictive performance
(AUC = 0.73for RvsP, AUC = 0.70 for PFS12), significantly outperform-
ing the more common species-level abundances. Consistent with
their poor standalone performance, clinical factors failed toaugment
microbiome predictors. Overall, these data suggest that microbial
abundances, especially at strain-level resolution, are more valuable
inpredicting tumor response or landmark PFS than higher taxonomic
aggregations or clinical features.

We subsequently focused on strain—-RvsP classifiers, given their
superior performance and larger incremental benefit over routine
clinical factors. We were particularly interested in assessing the con-
cordance of strain—-RvsP predictions from the entire cohort (n =77
evaluable) with actual patient BOR outcomes. Notably, despite being
trained on binary RvsP, the predicted probabilities of patients were
correctly ranked by their actual BOR category (Kendall P< 2.2 x107),
including (on average) central predictions for the SD group that
were ‘unseen’ during model training (n = 29) (Extended Data Fig. 2c).
Intrigued, we assessed whether RvsP predictions could distinguish a
‘better’ or ‘worse’ SD group. Indeed, we found a nonsignificantimprove-
mentinthe OS of patients with SD with an above-median RvsP predic-
tion, although this analysis was likely underpowered (log-rank P= 0.17;
Extended Data Fig. 2d).

Finally, akey priority was toidentify whether microbial signatures
aretumor agnostic; thatis, whether they generalize from one distinct
tumor type to another. As our study naturally has three distinct cancer
cohorts (GYN, NEN and UGB), we performed a leave-one-group-out
cross-validation (training strain-RvsP classifiers using two groups
and then testing on the left-out group). Notably, the mean AUC of the
left-out group was consistently superior to that of arandom model
(overall mean AUC = 0.75) (Fig. 2c). Although the small sample size
limits its interpretability, the particularly good performance for the
UGB and GYN groups may reflect the specific relevance of the gut
microbiome in these cancers.

Our ML analysis of our discovery cohort demonstrates that
strain-level gut microbial predictors of CICB response may be relatively
robust across diverse cancer types and are superior to ML predictors
builtusing routine clinically available data. Furthermore, predictions
trained on binary RvsP appear to capture the RECIST BOR biologically
and may have utility for predicting the durability of SD.

Faecalibacterium strains are positively implicated

We next sought to understand which features (strain abundances)
were most important in driving the strain—-RvsP model predictions.
To do this, we used the SHapley Additive exPlanations (SHAP) ‘Tree-
Explainer’ algorithm®* (Methods). We first noted that, although most
strains contributed little to predictions, afew were disproportionately
important (Extended Data Fig. 3a). Twenty-two strains were within
half as impactful as the mostimportant strain (a strain of Faecalibac-
terium sp900539885, an uncultured species), which we opted to focus
on subsequently. Interestingly, these strains were neither rare (<5%
prevalent) nor core (>50% prevalent) taxa within our cohort (Extended
DataFig. 3b).

Tovisualize the phylogenetic relationships of these ‘top 22’ strains
inthe context of all study-specific bacterial strains, we constructed an
approximately maximum-likelihood phylogenetic tree using the GTDB
toolkit (GTDB-tk) (Methods and Fig. 3a). This demonstrated that 20 of
the 22 strains were gram positives, with most (18 of 20) belonging to
the Firmicutes (Bacillota) phylum. The most ‘beneficial’ strains (that
is, higher strain abundances shifted predictions toward ‘response’)
clusteredin one clade of the Ruminococcaceae family, with four being
strains within the Faecalibacterium genus. Until recently, the National
Center for Biotechnology Information taxonomy database recognized
only one species within the genus Faecalibacterium (F. prausnitzii)*,
anditsfecalabundance has beenassociated with good general health**
and response to anti-PD-1 monotherapy in patients with melanoma' or
hepatobiliary cancers®. However, more recent analyses have revealed
considerable phylogenetic and functional diversity within the F. praus-
nitziispecies complex?. Inkeeping with this, at the 98% genomiciden-
tity threshold, our custom strain reference library included n =35
distinct Faecalibacterium strains (from n =13 distinct species), with
the most important (and prevalent) clustering near the F. prausnitzii
D phylogenetic clade (Supplementary Fig. 2).

Conversely, 15 of the 22 strains appeared to have a negative asso-
ciation with response in our discovery cohort. As before, most were
Firmicutes, with 6,3 and 2 (of the 15) strains belonging to the Lachno-
spiraceae, Oscillospiraceae and Ruminococcaceae families, respec-
tively. Notably, eight of these strains belonged to thus far uncultivated
(and thus unnamed) species. The remaining four ‘negative’ strains
belonged to the species Bifidobacterium dentium, A. muciniphila Band
Spyradocola merdavium. It should be noted that A. muciniphila B is a
distinct species from A. muciniphila; although the latter was positively
implicated in anti-PD-1 efficacy in NSCLC" (also positive in our study
but not within the top 22 strains), recent analyses have revealed that
itis phylogenetically and phenotypically distinct from A. muciniphila
B (known as Akkermansia SGB9228 by MetaPhlAn4 taxonomy)*. The
juxtaposition of Bifidobacterium longum1and B. dentium1as positive
and negative, respectively, also highlights how closely related taxa can
have discordant relationships with host phenotypes. Indeed, while the
species B. longumhasbeen linked to positive health outcomes, such as
protection frominflammatory bowel disease®, protection from child-
hood malnutrition®, and anti-PD-1 responses®, B. dentium is aknown
oral opportunistic pathogen linked to tooth decay®®.

We next aimed to interrogate the genomes of the top 22 strains
to understand functional potentials that may underpin their strong
(positive and negative) response associations. We first evaluated them
for virulence factors and found that they harbored none, suggesting
that even the negative strains are not prototypical ‘pathogens’. To look
more broadly at strain functional potential, we queried the presence

Nature Medicine


http://www.nature.com/naturemedicine

Article https://doi.org/10.1038/s41591-024-02823-z

a Feature sets 20x repeated
fivefold CV
\ D Preprocessing Model training
\ H
\ \ _ n One-hot oversampling forest
\\ \\ Clinical + family encoding
N— —
X Model testing
,\, Clinical + strain Standard
scaling ROC AUC
g One-hot
/ encoding
[ cinial |
b ..
10 RvsP P=0.0004
P=05
0.9 -1
R 1=0.26,P=11x10
]
2 08
H
S
<< 0.7 q —_r -
g - -
(a4 -— —
S 06 - —
[}
g ®
0.5
0.4 — : : . .
Clinical Family Genus Species Strain
C 10 ———
-
-
-—— - ..'
/i
0.8 | E——
I
0.6 1
z |
2 J4
3 I
5 == -
[75] K
0.4 | I
-
Left-out test group
GYN (n =27, AUC = 0.81)
02 NEN (n =18, AUC = 0.64)
.." UGB (n =32, AUC =0.81)
== = Mean ROC (AUC = 0.75)
,". = === Chance
0 \ \ \ \ \
0 0.2 0.4 0.6 0.8 1.0
1 - specificity
Fig.2|Strain-resolution gut microbial signatures outperform clinical 100 folds. The linear model (line of best fit) for the AUC score and taxonomic
predictors and cross-validate across tumor histology types. a, Schematic of rank of microbiome-only feature sets (with shaded 95% confidence interval)
the supervised ML framework. Input features (clinical, microbiome or combined)  is superimposed. Kendall 7and Pvalues for the association between the AUC
and thetarget variables (RvsP or PFS12) were splitinto five folds (four training score and taxonomic rank of microbiome-only feature sets are indicated. The
folds, one testing fold). The process was repeated 20 times per iteration, with the Mann-Whitney Utest Pvalue for comparing the AUCs of specific pairwise feature
AUC score used to select the best hyperparameters. CV, cross-validation. b, AUC sets (depicted by calipers) is also indicated. ¢, ROC curves for the strain-RvsP
scores for the best iteration of RvsP classifiers for each feature set combination classifiers retrained using leave-one-histology-cohort-out cross-validation.
during 20 times repeated fivefold cross-validation (100 folds each): clinical Model training and testing were repeated 100 times, with predictions averaged to
(yellow), microbiome (blue) and combined (green), at different taxonomic account for model stochasticity.

resolutions. Data represent the mean (circle) and s.d. (error bars) over the
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orabsence of metabolic pathways using the tool gapseq (Methods). As
expected, we observed clustering of metabolic potential by phylogeny;
however, the two negative Ruminococcaceae (strains of the Rutheni-
bacterium lactatiformans and Avimicrobium caecorum species) were
quite distinct from the five ‘positive’ strains (Extended Data Fig. 3c).

We hypothesized that specific metabolic functions may distin-
guish these negative and positive Ruminococcaceae. One metabolite
of particular interest was butyrate, given that it has been implicated
in anticancer cytotoxic T cell activation preclinically®****, and fecal
butyrate has been positively associated with ICB efficacy in clinical
cohorts*>**, Additionally, although butyrate-producing potential has
previously been broadly ascribed to Ruminococacceae, more recent
analyses have revealed marked strain-level variation within this fam-
ily**.Indeed, the acetyl-CoA butyrate pathway (which dominates among
Firmicutes bacteria) was complete in all (five of five) positive but no
negative (none of two) top 22 Ruminococacceae (Fig.3b). In contrast,
taking a ‘strain-agnostic’ approach of quantifying the abundance of
the acetyl-CoAbutyrate terminal enzymes (but + buk) in metagenomic
samples did not reveal asignificant enrichmentin responders (Fig.3c),
highlighting the need for strain-aware approaches to develop
context-specific functional hypotheses.

Microbial signatures may be ICB regimen specific

To evaluate the external generalizability of our strain-RvsP signature,
we reanalyzed all comparable shotgun metagenomic cohorts (Meth-
ods and Supplementary Fig. 3). We included cohorts that analyzed
baseline (15 days of ICB commencement) fecal samples, performed
lllumina paired-end shotgun metagenomic sequencing, and provided
either RECIST BOR (five studies) or pathological response (one study)
metadata. Including our discovery cohort (CA209-538 cohort), the
sevenstudiesrecruited participants from 11 cities across five countries
(United States, United Kingdom, Netherlands, Spain and Australia)
(Fig. 4a) and represent n =470 total patients (n = 383 after excluding
patients with a BOR of SD). Quality-controlled reads were mapped to
the same reference library to estimate abundances for the same 1,397
strains. Although we were mindful that the reference library derived
from the CA209-538 cohort might not represent all bacterial strains
inexternal studies, we were reassured by both the high overall Bowtie
2 alignment rates (median 79.2-87.6% across external studies) and
the high proportion of quality-controlled reads used for abundance
estimation after stringent filtering (median 50.7-62.1% across external
studies) (Extended Data Fig. 4a).

A summary of the key characteristics of the included studies is
provided in Table 2. Given that all external studies evaluated patients
with melanoma, known to be particularly amenable to ICB, it is not
surprising that their objective response rates trended higher than
those in our study that evaluated patients with diverse rare cancer
types (38-84% versus 25%; Fig. 4a). This highlights that tumor typeisan
importantvariablein determining ICB response but does not preclude
the existence of universal gut microbiota that may enhance or detract
fromanindividual'slikelihood of showing an antitumor ICB response.

APERMANOVA of individual metadatavariables revealed that the
leading sources of microbial variance across the meta-cohort were
study site (city) (9.3%) and DNA extraction kit (8.0%) (Extended Data

Fig. 4b). However, these two factors were also strongly associated
with one another (chi-squared test P < 2.2 x 107¢), with distinct stud-
ies recruiting participants from specific cities but also using distinct
DNA extraction kits (Extended Data Fig. 4c,d). Although it would be
desirable to ‘correct’ for DNA extraction kit (which has awell-described
influence on downstream microbial quantifications®), this would likely
also mitigate the true biological variance caused by patient geogra-
phy*¢ (whichis important when evaluating the cross-country validity
of abiomarker). Furthermore, a recent reanalysis of an intratumoral
microbiome meta-analysis raised concerns that statistical batch cor-
rection may artificially inflate cross-cohort predictions due to data
leakage*. Therefore, to evaluate the performance of our strain-RvsP
classifier as robustly as possible, we opted not to adjust abundances
beyond CLR transformation.

Given their distinct mechanisms of action, we were particularly
interested in differentially evaluating performance on CICB and
anti-PD-1 monotherapy cohorts. Of the six external studies, two com-
prised only anti-PD-1recipients, two comprised only CICB recipients
and two comprised both and were split based on regimen, creating
eightexternal validation cohorts (four CICB, four anti-PD-1). Notably,
there was a marked difference in the performance of the CA209-538
strain-RvsP signature between these groups, with overall modest
external generalizability to CICB cohorts (mean AUC = 0.65; Fig. 4b)
but no generalizability to anti-PD-1cohorts (mean AUC = 0.51; Fig. 4c).

Intrigued, we sought to use our meta-cohort to evaluate whether
this difference could also be seen more generally. We thus trained
and tested strain—RvsP RF classifiers using all strain abundances
and every pairwise combination of cohorts (nine cohorts, keeping
2017_Frankeland 2022 _Lee split by ICB regimen) and evaluated AUCs.
Consistent with our previous observation, we found that the predic-
tive performance was better when training and testing on ‘concordant’
cohorts—thatis, whenthe training and test cohortsreceived the same
ICB regimen—rather than ‘discordant’ cohorts (Fig. 4d). Importantly,
thiswas also true for strain—RvsP signatures trained on anti-PD-1 mon-
otherapy cohorts. Taken together, the results showed a significant
improvement in the cross-study strain-RvsP predictive performance
inconcordant rather than discordant regimen cohorts (Mann-Whitney
UtestP=2.8x107).

Discussion

In this study, we used strain-resolved metagenomic classification to
discover asignature of 22 gut microbial strains associated with response
to combination ipilimumab (anti-CTLA-4) plus nivolumab (anti-PD-1)
inaphase 2 trial cohort of Australian patients with diverse rare cancers
(n=106). To our knowledge, this represents the largest gut microbiome
study of patients treated with CICB published to date. Using supervised
ML, we demonstrate the value that precise, strain-level gut microbial
quantifications provide in predicting clinical response or PFS12, exceed-
ing the value of routinely available clinicalinformation or that of higher
taxonomic rank abundances. Furthermore, we show the external gen-
eralizability of strain-level response signatures across cancer histol-
ogy types and countries, both within the trial (comparing across the
predetermined histology cohorts) and externally (to metastatic mela-
noma cohorts fromotherindustrialized countries). This was despite a

Fig.3|Firmicutes bacteria dominate the gut microbiome strain-response
signature. a, Phylogenetic tree of bacterial strains in our custom reference
library (n=1,391strains, excluding n = 6 archaea), highlighting the top 22 strains
(labels are colored by impact (that is, feature importance) on RvsP predictions).
Four main phyla are shown by the colored ring, with the Ruminococcaceae,
Oscillospiraceae and Lachnospiraceae families highlighted. The scale for
phylogenetic distance is shown in the center of the tree. b, Phylogenetic tree
ofthe top 22 strains, with the tips colored by strainimpact and sized by strain
prevalence. The adjacent heat map depicts the presence or absence of genes
within the primary butyrate-producing (acetyl-CoA) pathway. Full enzyme

(encoding gene) names: acetyl-CoA acetyltransferase (¢hl), B-hydroxybutyryl-
CoA dehydrogenase (bhbd), crotonase (cro), butyryl-CoA dehydrogenase (bcd),
and the alternative terminal enzymes butyryl-CoA:acetate CoA transferase (but)
and butyrate kinase (buk). ¢, Boxplots of the sample-wise abundance of butyrate
acetyl-CoA terminal enzymes (but + buk), split by patient response (progression
(P)n=51,response (R) n =26). Boxplot center line indicates the median; box
limits indicate the upper and lower quartiles; and whiskers indicate 1.5x the
interquartile range. Abundance is normalized as reads per million (RPM). Pvalue
by the Mann-Whitney Utest is indicated.
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strong heterogeneity in microbiome compositionacross cohorts, likely  of response classifiers trained and tested on concordant versus discord-
influenced by divergent fecal collection and DNA extractionmethods.  ant ICB cohorts, implying that different microbial relationships likely
Finally, we observed astriking differenceinthe cross-study performance  underlie these distinct treatment regimens.
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Fig. 4| Meta-analysis reveals that gut microbiome strain-response
signatures are ICB regimen specific. a, World map showing the studies included
in our meta-analysis. Bordered circles depict the coordinates of recruiting

sites (cities). Pie charts depict the proportion of patients with tumor response,
progression or SD. The area of the pie charts depicts the sample size. 2022 _
Simpson studied neoadjuvant ipilimumab + nivolumab for stage lll melanoma
and thus used pathological response criteria (International Neoadjuvant
Melanoma Consortium criteria); all other studies used the RECIST 1.1 criteria.

®For this study, only the subset of patients (n = 37) with stool collected within 15
days of the start of ICB therapy was included in the meta-analysis. b, ROC curve of
strain—-RvsP classifiers trained on the discovery cohort (CA209-538) and tested
on external CICB cohorts separately. ¢, ROC curve of strain-RvsP classifiers
trained on the discovery cohort (CA209-538) and tested on external anti-PD-1
monotherapy cohorts separately. d, Heat map denoting the AUC scores for
strain-RvsP classifiers trained on one dataset (column) and tested on another
(rows). Panels are faceted by ICB regimen (CICB or anti-PD-1 monotherapy).

Given the success of combination anti-PD-1 and anti-CTLA-4
ICB across diverse cancers, there is great interest in defining
tumor-agnostic pretreatment biomarkers, including through using
gutmicrobial abundance signatures. Arecent review by Thomas et al.”®
defined cross-cancer ICB response (‘Gut OncoMicrobiome Signature’)
implemented using species-level abundances. This study differs, first,
in using strain-level signatures and, second, by deliberately splitting
cohortsinto thosereceiving anti-PD-1monotherapy and those receiv-
ing anti-PD-1 plus anti-CTLA-4 CICB. Of note, although Thomas et al.
found good left-out performance for the exclusively anti-PD-1-treated

NSCLC andrenal cell carcinoma cohorts, performance was poor among
left-out melanomacohorts, potentially due to patients receiving mono-
therapy and those receiving CICB being admixed.

Although the external performance of the CA209-538 strain-
response signature fell short of what is required for clinical use, its
performance was remarkably better in CICB (AUC = 0.67, 0.40, 0.78
and 0.75) than anti-PD-1(AUC = 0.46, 0.44, 0.58 and 0.54) melanoma
cohorts from other industrialized countries. Consistent with this,
strain-response signatures trained on external cohorts were also
superior when tested on concordant rather than discordant regimen
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Table 2 | Characteristics of studies included in the meta-analysis

Characteristics Study
CA209-538 2022_Simpson*® 2021_McCulloch® 2022 _Lee™ 2021_Andrews®® 2018_Matson®” 2017_Frankel®®
(n=106) (n=38) (n=37)° (n=165) (n=46) (n=39) (n=39)
Country Australia Australia USA UK, USA USA USA
Netherlands,
Spain
Cancer type (%) UGB (36%), MEL (100%) MEL (100%) MEL (100%) MEL (100%) MEL (100%) MEL (100%)
GYN (34%),
NEN (30%)
ICB regimen (%) CICB (100%) CICB (100%) Anti-PD-1(100%) CICB (33%), CICB (100%) Anti-PD-1 CICB (62%),
anti-PD-1(61%), (100%) anti-PD-1(36%),
anti-CTLA-4 (7%) anti-CTLA-4 (3%)
Response criteria RECIST 1.1 Pathological (INMC) RECIST 1.1 RECIST 1.1 RECIST 1.1 RECIST 1.1 RECIST 1.1
Response
CR 3.8% PathR: 84% 5.4% 13% 1% 5.1% 13%
PR 21% 51% 26% 52% 33% 36%
SD 27% 22% 17% 1% 31% 13%
PD 28% Non-pathR: 16% 22% 42% 26% 31% 39%
cPD 20% 0% 1.8% 0% 0% 0%
Stool collection kit  OMR-200 EasySampler EasySampler LO—TF kits, OMR-200 EasySampler NR
MA—plain tube,
NL—plain tube,
LD—OMR-200,
BL—OMR-200
DNA extraction kit FastDNA soil FastDNA feces PowerSoil LO—TF MagMAX,  PowerSoil PowerFecal Other
MA—TF MagMAX,
LD—TF MagMAX,
NL—TF MagMAX,
BL—PowerFecal
Sequencer (bases NovaSeq NovaSeq NovaSeq NovaSeq NextSeq NextSeq HiSeq
per read) (2x151) (2x151) (2x151) (2x151) (2x151) (2x151) (2x100)
Clean PE reads (millions)
Minimum 910 5.05 272 4.38 12.8 19.3 181
Median 20.4 22.5 30.5 20.7 40.0 35.6 45.4
Maximum 53.8 34.5 72.2 104 69.8 777 59.9

The clinical and technical characteristics of the studies included in the meta-analysis are summarized. Published studies are denoted by ‘year_author’. USA, United States of America; UK,
United Kingdom; MEL, melanoma; INMC, International Neoadjuvant Melanoma Consortium; LO, London; MA, Manchester; NL, Netherlands; LD, Leeds; BL, Barcelona; TF, Thermo Fisher
Scientific; PathR, pathologic response; NR, not reported; PE, paired-end. °Of the original ‘Pittsburgh early cohort’ (n=63), n=37 had their analyzed stool sample collected between day -15 and

day 15 of starting ICB and were therefore deemed eligible.

cohorts. Thus, we believe that this work makes a strong case for dis-
tinct microbial consortia underpinning response or nonresponse to
eachregimen. Thisis biologically plausible, given that we know that
CICB has adistinct mechanism of action compared to anti-PD-1mono-
therapy*® and distinct baseline tumor immune microenvironment
signatures*. Furthermore, the addition of anti-CTLA-4 has a profound
effect on gut barrier permeability’®”', potentially changing the influ-
ence of the gut microbiome onICB response. Nevertheless, the poor
generalizability of the CA209-538 strain-RvsP signature to anti-PD-1
cohorts is still intriguing, given the similarity in key positive strains
and those species or genera previously associated with response. For
example, Faecalibacteriumhasbeen linked to the efficacy of anti-PD-1
monotherapy in patients with melanoma' or hepatobiliary®” cancers,
and B. longum has been linked to anti-PD-1 efficacy in patients with
melanoma® and NSCLC*. Therefore, we postulate that the distinction
may lie in the negative taxa, with many of the top negative strains in
our signature being members of the Lachnospiraceae family (pre-
viously broadly associated with anti-PD-1 response in melanoma
cohorts™). This is also conceptually consistent with the observation
of more discrepanciesin the pretreatment tumorimmunotranscrip-
tomic landscape of anti-PD-1 and CICB nonresponders compared
to responders®.

This work has several limitations that should be addressed in
the future. First, despite our relatively large discovery cohort and
meta-analysis, the individual cohort and total sample sizes are
still small, limiting the statistical power of our signature. Future
meta-analyses will benefit from larger, more geographically diverse
cohorts, ideally with standardized, best-practice approaches to fecal
collectionand DNA extraction methods®. Moreover, although we used
astate-of-the-art bioinformatics pipeline to generate and quality con-
trol MAGs to represent study-specific strains (many of which are new or
uncultivated), they still potentially harbor errors (such as fragmenta-
tion, assembly breaks and contamination)*. Although not possible due
to the collection medium used in this study, our group has previously
demonstrated large-scale fecal strain-culturing methods®, which, when
coupled withwhole-genome sequencing, have allowed us to build com-
prehensive, context-specific genome reference libraries thatimprove
the accuracy of reference-based metagenomic taxonomic classifica-
tion®. Finally, such patient-specific culturing is necessary to perform
in vitro and in vivo testing of microbial strains or consortia to derive
precise mechanistic insights into their associations with response or
nonresponse to ICB and to confirm the direction of causality.

Until then, we believe that this work provides a number of readily
implementableinsights to help futureresearch and development in this
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field. First, it highlights the added value of strain resolutionin developing
gutmicrobial ICB biomarkers. Thereisnow ample evidence thatintraspe-
ciesvariation of gut microbiota cansubstantially change their effect on
hosts, first described for enteric pathogens (for example, Escherichia
coli*®) but more recently demonstrated for immunomodulatory com-
mensals®®, providing further conceptual support for this notion. Sec-
ond, itsuggests that strain signatures may be generalizable across cancer
types and geographic locations, supporting investment in developing
‘pan-cancer’ gut microbial diagnostics and/or therapeutic ICB adjuncts.
Lastly, thedistinct performance of CICB and anti-PD-1gut microbial sig-
natures suggests that we should disaggregate these regimens in future
analyses to define the relationships between gut microbiota and ICB
more precisely inaregimen-specific fashion and, eventually, to use this
information in personalizing the care of cancer patients.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41591-024-02823-z.
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Methods

CA209-538: clinical trial procedures

CA209-538, titled ‘A phase 2 trial of ipilimumab and nivolumab for the
treatment of rare cancers’, is an investigator-initiated, prospective,
multicenter, single-arm clinical trial (NCT02923934). The study was
approved by the Austin Health (Melbourne, Australia) Human Research
Ethics Committee (approval: HREC/16/Austin/152).

Between October 2017 and February 2020, 120 adult patients with
rare cancers were recruited across five sites in southeastern Australia
(Austin Health, Peter MacCallum Cancer Centre, Monash Health, Black-
town Hospital and Albury Wodonga Health/Border Medical Oncology).
Patients were recruited into three prespecified ‘histology cohorts’ of
approximately equal sizes: (1) UGB, comprising cholangiocarcinomas,
gallbladder cancers, duodenal cancers and gastrointestinal stromal
tumors; (2) NEN, including neuroendocrine tumors or carcinoma of
any primary organ (except small cell lung carcinoma) or adrenocorti-
cal carcinoma; and (3) GYN, comprising diverse histologies including
carcinosarcoma, low-grade serous carcinoma and clear-cell carcinoma
of gynecological organs.

Patients wereeligibleif they had ahistologically confirmed diagno-
sisofatargetrare cancer (UGB, NEN or GYN cancers) that was advanced
or metastatic, an Eastern Cooperative Oncology Group (ECOG) perfor-
mance status of 0-1,ameasurable tumor lesion per RECIST 1.1 criteria®
and screening blood laboratory values largely within normal limits.
Prior systemic therapy or radiotherapy was permitted if completed
at least 4 or 2 weeks, respectively, of the first administration of the
study drugs and all related adverse events had stabilized or returned to
baseline. The exclusion criteriaincluded active central nervous system
metastases (brain or leptomeningeal); prior CICB (monotherapy was
permitted); prior malignancy active in the previous 3 years; active,
known or suspected autoimmune conditions; and requirement for
systemic corticosteroids >10 mg prednisolone daily or equivalent.
Participants provided fully informed written consent, including for
the collection and analysis of biospecimens (including fecal samples)
and sharing of anonymized data as part of research collaborations.
The data cutoff was May 7, 2022, providing a minimum of 26 months
of follow-up for all participants.

All patients were intended to be treated with CICB in the form
of nivolumab 3 mg kg™ and ipilimumab 1 mg kg™ three weekly for
four doses (induction), followed by nivolumab monotherapy main-
tenance (3 mg kg™ two weekly or 480 mg four weekly after a protocol
amendment) for up to 2 years or until PD or unacceptable toxicity.
The trial’s prespecified primary endpoint was to determine the clini-
cal efficacy of CICB in patients with rare cancers using the RECIST 1.1
BOR®. In brief, BOR was determined at data cutoff and defined as the
investigator-assessed RECIST 1.1 best response designation at any
on-trial time point until the date of objectively determined progres-
sion per RECIST 1.1or the date of subsequent anticancer therapy com-
mencement. For participants without documented progression or
subsequent therapy, all available response designations contributed
to their BOR assessment. The trial’s minimum duration criterion for
the determination of SD was 9 weeks.

For the assessment of radiographic response, all patients were
intended to undergo whole-body cross-sectional imaging with com-
puted tomography or magnetic resonance imaging at baseline (within
28 days before registration), 12 weeks, 18 weeks and then 12 weekly
thereafter (1 week). Patients with rapid disease-related clinical dete-
rioration who were thus unable to undergo restaging imaging at the
first restaging time point were deemed to have cPD. PFS and OS were
determined fromthe date of first treatment; the efficacy and safety out-
comes for various trial subcohorts have been reported previously* .
Giventhe accumulating evidence of ‘pseudoprogression’inaminority
of ICB recipients®, under the trial protocol, ICB therapy could extend
beyond RECIST 1.1-defined PD if there was investigator-assessed clinical
benefit and good participant tolerance of the study drugs until there

was evidence of afurther 10% or greater increase in target lesion dimen-
sions or further new diseasesites.

Other clinical metadata. Detailed information on tumor characteris-
tics, demographic factors, blood laboratory values and concomitant
medications was collected by the site investigators into an electronic
case report form. For this analysis, we included the following 15 clini-
cal metadata variables, as we hypothesized their potential relevance
to treatment response and/or gut microbial compositions based on
our literature review: patient age (years, at time of trial commence-
ment), sex, body mass index, ECOG performance status, histology
cohort (based on the pathology report), extent of measurable tumor
(based on the sum of RECIST target lesion diameters calculated using
the computed tomography scan at trial screening), study site, season
of fecal sample collection, antibiotic use, proton-pump inhibitor use,
chemotherapy use, blood NLR, platelet count, albuminlevels and lac-
tate dehydrogenase levels (Supplementary Table 3). Only one partici-
panthad received prior ICB monotherapy (aNEN cohort patient treated
with anti-PD-1therapy ceased 20 months before trial treatment); given
that only one patient was involved, this was not included as a clinical
variable. Antibiotic, proton-pump inhibitor and chemotherapy use
was defined as their recorded use within the 8 weeks before cycle 1
of study treatment, given the evidence of antibiotic perturbations
of gut microbial compositions lasting this duration®. The different
antibiotics used were amoxicillin, amoxicillin plus clavulanic acid,
ampicillin, azithromycin, cefalexin, cefazolin, ceftriaxone, clinda-
mycin, co-trimoxazole, doxycycline, flucloxacillin, gentamicin, nor-
floxacin, penicillin, piperacillin plus tazobactam and metronidazole.
Asonly 9 ofthe106 microbiome-evaluable patients had used any anti-
biotics in this 8-week period, they were not further subcategorized
based on class or antimicrobial coverage. The different proton-pump
inhibitors used were esomeprazole, pantoprazole, rabeprazole
and omeprazole.

Fecal sample collection. The collection of fecal samples was added
to the study protocol in version 5 (July 24, 2017). Participants were
trained and provided OMR-200 ‘OMNigene GUT kits’ (DNA Genotek)
to collectafecal sampleimmediately before treatment (fromday -7 to
day Orelativetocycleloftrial treatment). OMR-200 kits are designed
tostabilize DNA and have been shown to enhance DNA quantifications
and stability across storage temperatures relative to nonpreserva-
tive alternatives®*. Fecal samples were express-shipped to the Olivia
Newton-John Cancer ResearchInstitute, where they were then frozen at
-80 °Cforlong-termstorage. DNA was extracted using the FastDNA kit
(MP Biomedicals), including a negative control using ultrapure water.
DNA samples were shipped to the Wellcome Sanger Instituteondry ice
for shotgun metagenomic sequencing.

Fecal shotgun metagenomic sequencing and analysis

DNA sequencing and quality control. DNA samples were quantified
using a Qubit fluorometer, and whole metagenome libraries were
deeply sequenced on a single run of the NovaSeq 6000 S4 platform
(2 x150-bp paired-end reads), generating a median of 20,477,028
raw paired-end reads per sample (interquartile range 19,244,530-
22,056,539 paired-end reads). Raw sequencing data were first human
decontaminated by the Wellcome Sanger Institute core sequencing
teamby removing read pairsinwhich one or bothaligned tothe GRCh37
human genome assembly using bwa (v0.7.17; ‘aln’ then ‘sampe’ com-
mands)®. These data were further quality controlled using the metaW-
RAP (v1.2)%‘reads_qc’ pipeline, which first trimmed low-quality bases
using trim-galore (v0.6.7)*’ (default parameters) and then performeda
second pass of human decontamination with BMTagger (v3.101)*® using
the GRCh38 human genome assembly. Finally, amedian of 20,359,318
clean paired-end reads per sample (interquartile range 19,014,843~
21,771,873) were available for further analysis.
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MAG assembly. Quality-controlled paired-end reads were first assem-
bledindividually with SPAdes (v3.14) using option “meta’ (refs. 69,70).
Unassembled reads were thenrecovered by mapping raw reads back to
metaSPAdes-assembled contigs using bwa ‘mem’ (v0.7.17)%, followed
by reassembly with MEGAHIT (v1.2.4)" using default parameters. Sub-
sequently, the sample-wise metaSPAdes and MEGAHIT assemblies were
combined and sorted, with short contigs (<1,500 bp) removed. The
resulting assemblies were then independently binned with MetaBAT
2 (v2.13)"?, MaxBin2 (v2.2.4)”* and CONCOCT (v0.4)™ using default
parameters and aminimum contig length threshold 0of 1,500 bp (option
‘--minContig1500’). The depth of contig coverage required for the bin-
ning was inferred by mapping the raw reads back to their assemblies
with bwa-mem and then calculating the corresponding read depths
foreach contig with samtools (v1.5)” (‘samtools view -Sbu’ followed by
‘samtoolssort’), together with the ‘jgi_summarize_bam_contig_depths’
functionin MetaBAT 2.

Thereafter, individual bin sets produced by the three binning
programs were consolidated into a refined bin set consisting of the
best version of each bin based on the most optimal genome completion
and contamination metrics amongall seven versions of hybridized bin
sets (MetaBAT 2, MaxBin2, CONCOCT, MetaBAT 2 + MaxBin2, MetaBAT
2+ CONCOCT, MaxBin2 + CONCOCT, MetaBAT 2 + MaxBin2 + CON-
COCT), as estimated by CheckM (v1.1.2)”® using the metaWRAP (v1.2)
‘bin_refinement’ pipeline®. Finally, the final bin sets were further
improved by performing reassembly with SPAdes in ‘--careful’ mode
after both strict and permissive mapping of raw reads and keeping
the bin sets with the best CheckM metrics. In total, 4,277 MAGs with
>50% completion and <5% contamination were generated. These were
then further quality controlled, now for 290% completeness and <5%
contamination using CheckM2 (v0.1.3)”” and for strain-level contamina-
tion using GUNC (v1.0.5)® to finally identify 2,209 quality-controlled
nc-MAGs consistent with the MIMAG (minimum information about
a MAG) criteria’®. Finally, study-specific MAGs were taxonomically
classified (using GTDB r207 taxonomy) with GTDB-tk (v2.1)*°, pplacer
(vL.1)* and fastANI (v1.3)*.

Generation of a custom, MAG-informed reference database. Asthe
recovery of MAGs may be challenging for some (for example, low abun-
dance or difficult to assemble) strains, we sought to supplement our
study-specific strain genome reference database with SRGs from GTDB
1207 (62,291 bacterialand 3,412 archaeal genomes) to create a ‘hybrid’
referencelibrary. Toidentify arelevant shortlist of GTDB SRGs, we first
mapped quality-controlled reads from our study to the full GTDB r207
SRG database with Bowtie 2 (v2.3.5)* and inStrain (v1.3.0)%* (using
default settings in ‘--database’ mode). After further filtering of reads
mappedto<0.5SRGbreadth, we determined that n=1,076 SRGs were
present. We combined these SRGs with the study-specific nc-MAGs
(total 3,285) and used dRep (v2.0.0)* to dereplicate the combined
genome set to 98% identity using the settings -comp 90 -con 5--S_algo-
rithmfastANI--S_ani 0.98 --cov_thresh 0.50 --multiround_primary_clus-
tering--greedy_secondary_clustering’. An absolute nucleotide identity
(ANI) threshold of 98% was chosen as acompromise between offering
subspecies (strain-level) resolution for read classification while still
mitigating ‘read stealing’ due to overly similar reference genomes (as
detailedintheinStrain documentation). Ultimately, n = 1,397 genomes
were selected using dRep and formed our ‘hybrid’ custom strain refer-
ence database. Of these, just over half were study-specific nc-MAGs
(714, 51%), whereas the remainder were either near-complete isolate
(423, 30%) genomes or nc-MAG (260, 19%) SRGs. Using GTDB-tk, we
could classify 1,363 of the 1,397 genomes to 904 separate GTDB r207
species clusters (898 bacteria, 6 archaea), with the remaining 34 (32
bacteria, 2 archaea) representing completely new species. For the
904 ‘known’ species, 705 species had 1 strain, whereas 199 species had
2-21strains each. The species with n = 21 distinct strains by 98% ANI
delimitation was Ruminococcus D bicirculans (Supplementary Table 16).

Read mapping to a custom strain database. We first used Bowtie
2 to generate a mapping index and then to align reads to our custom
reference database. We then used the inStrain profile, now with set-
tings --min_read_ani 0.95--min_genome_coverage1’, to perform more
precise quality control of the mapped reads. InStrain uses informa-
tion on paired-end read orientation, mapQ score, insert size and ANI
value tofilter read mappings stringently, resulting in high-confidence
quantifications.

To enhance our confidence about read mappings further, we
removed reads mapped with <0.5 genome breadth coverage, as low
genome breadth mightindicate mapping to mobile genetic elements or
mismapping. For our discovery cohort,amedian of 50% (range 39-73%)
of quality-controlled reads were ultimately used for abundance estima-
tion of strains within each sample (Supplementary Fig. 1).

We finally used Decontam (v1.16.0)* to screen for potential
contaminants. Reassuringly, after the above steps, no bacteria were
identified in our negative control sample for the discovery cohort.
Based on the ‘frequency’ method (inverse correlation between the
abundance of strains and the DNA concentration of submitted sam-
ples), one strain was identified as a potential contaminant in over
10% of samples from our discovery cohort (CA209-538 cohort) and
was thus removed (Pseudomonas E sp002874965; Supplementary
Fig.4).

Downstream analysis of taxonomic abundances. Most downstream
microbiome analyses were performed in the R (v4.1.0) environment,
using ‘phyloseq’ (v1.12.0)¥, ‘microbiome’ (v1.12.0)*and ‘vegan’ (v2.6.4).
Specifically, alphadiversity was computed using the Shannon diversity
index on strain relative abundances (each sample’s sum abundances
transformed to a sum of 1). As we found no association between the
Shannon diversity index and clean paired-end reads in our discovery
cohort (Pearson R=0.068, P=0.49), we did not perform rarefaction.
Beta diversity was calculated using the strain Aitchison distance, a
measure of Euclidean distance of CLR-transformed abundances, com-
puted using log(a/gma), where ais the species relative abundance and
gma is the sample geometric mean relative abundance (with a small
pseudocount of one-half the minimum nonzero abundance added
to all values to account for zeros). As CLR abundances may better
account for the inherent compositionality of microbial abundance
data®, CLR-transformed feature abundances were exclusively used
for the supervised ML analyses.

Generation and visualization of phylogenetic trees. For whole bac-
terial kingdom genome sets, approximately maximum-likelihood
phylogenetic trees were constructed using GTDB-tk (v2.1.0)*° (align-
ing 120 ubiquitous bacterial genes) and FastTree (v2.1.0)°° using the
WAG model (Fig. 3a,b). For the tree of Faecalibacterium genomes,
pairwise whole-genome ANI distances were computed using FastANI*
(many-to-many mode), which was converted into a distance matrix and
then to a Newick-format tree using rapidNJ (v2.3.3)” (Supplementary
Fig.2). Trees were visualized using the R package ggtree (v3.2.1)°%

Functional annotation. To evaluate the presence of virulence factor
genes, we used abricate (v1.0.1)” to screen relevant strain genomes
against the VFDB (Virulence Factor Database)®*. To profile strain met-
abolic potential broadly, we used gapseq (v1.2)* using the ‘gapseq
find’ command with default settings. Briefly, this involved perform-
ing a homology search of genomes (using TBLASTN (https://doi.org/
10.1186/1471-2105-10-421)) for 28,768 reactions from 2,910 metabolic
pathways (curated from MetaCyC and manually). Metabolic pathways
were deemed present if 280% complete (lowered to >67% if ‘key’ reac-
tions were present).

To evaluate butyrate production potential specifically, we used
a previously validated multilevel approach involving hidden Markov
models (HMMs)**°°, Briefly, we used a published database of 1,716
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genomes and 19,284 genes to build HMM profiles (using HMMER
v3.2.1; http://hmmer.org/) for the six genes encoding the acetyl-CoA
butyrate-producing pathway (responsible for butyrate production
through carbohydrate degradation). These genes are acetyl-CoA
acetyltransferase (thl), B-hydroxybutyryl-CoA dehydrogenase (bhbd),
crotonase (cro), butyryl-CoA dehydrogenase (bcd), and the alterna-
tive terminal enzymes butyryl-CoA:acetate CoA transferase (but) and
butyrate kinase (butk). We then used these modelsto screen the strain
genomes for the presence of these respective genes. As an orthogonal
approach, we also mapped cleaned sample paired-end reads to the
above genes’ sequences using Bowtie 2 and then used inStrain ‘quick
profile’ to count mappings to estimate their sample-wise gene abun-
dance (normalized per million reads) agnostic of source strain. The
output is available in Supplementary Tables 13 (strain_top22_acetyl-
coa_pwy) and 14 (sample_acetylcoa_pwy).

Supervised ML analysis

Supervised ML analyses were performed in the Python 3 environ-
ment using the packages sklearn (v1.1.1)”, imblearn (v0.9.1)* and their
dependencies. The supervised ML pipeline involved a preprocess-
ing step before model training and testing, performed separately
for each training and testing instance to ensure no data leakage. This
involved standard-scaling numerical features (computed using the
formula z = (x - u)/s, where x is the feature value (for example, the
CLR-transformed strain abundances), uis the mean of the fold samples
andsisthes.d. of the fold samples) and one-hot encoding categorical
features. Subsequently, only before classifier training (but not test-
ing), classes of the target variable (RvsP or PFS12) were balanced with
random oversampling with replacement.

We choseto use RF as our classifier, givenits, on average, superior
performance using microbial feature sets in previous benchmarking
studies®. RF uses bootstrapped data to create an ensemble of decision
trees (each trained on a subset of features), with the ultimate classifi-
cation based on consensus; thus, it is feature scale invariant and able
to capture nonlinearities and is also interpretable using TreeSHAP
(described subsequently).

Our hyperparameter tuning procedure involved arandom hyper-
parameter search over a broad array of options with 1,000 separate
combinations tested, aiming to maximize the ROC AUC averaged over
20 times repeated fivefold cross-validation (that is, 100 separate mod-
elstrained and tested (splits), foreach 1,000 iterations, for each feature
and classifier combination).

ROC AUC is a popular classifier performance metric that evalu-
ates the discriminative performance across all potential decision
thresholds, thus allowing for a head-to-head comparison of differ-
ently calibrated classifiers’. Ultimately, the best hyperparameter
combination (based on mean AUC) was selected and referred to as the
‘tuned’ pipeline. The optimal hyperparameters and AUC scores for all
100 splits for all full feature sets are listed in Supplementary Table 9
(hyperparam_tuning_all).

To evaluate model performance, we used cross-validation (for
example, leave-one-histotype-out cross-validation) or completely
separate training and test cohorts (for example, training amodel using
onestudy cohortand thentesting the fitted model onanother cohort).
Whenever evaluating model performance, training and testing pro-
cedures were repeated 100 times, and the resultant predictions were
averaged to account for the stochasticity of our RF pipeline. As with
hyperparameter tuning, ROC AUC was our metric of choice for gaug-
ing model performance.

Featureimportances were evaluated with the ‘shap’ package using
the TreeExplainer() function. Based onthe foundation of game theory,
TreeExplainer computes the influence of each feature (strain abun-
dance) in determining the RF classifier’slocal (per-sample) prediction.
Therefore, we computed global featureimportances (cohort-wide aver-
age of the absolute TreeExplainer scores) and imputed the importance

‘direction’ (that is, positive or negative influence on response predic-
tion) by constructing asimple linear model between the feature values
and SHAP values. We repeated this procedure 1,000 times to account
robustly for the RF pipeline’s stochasticity. The global feature impor-
tanceands.d. values of all features are listed in Supplementary Table 12
(strain_importance).

Literature review and meta-analysis of relevant published
datasets

We sought to identify all published clinical datasets that met the fol-
lowing criteria:

1. Evaluated baseline fecal microbiota from patients with cancer
who were about to commence only ICB (anti-PD-1, anti-CTLA-4
or CICB) therapy. ‘Baseline’ samples were defined as those
collected between day -15 and day 15 relative to the start of ICB
to ensure that the profile reflected the patient’s gut microbial
contextimmediately before treatment and that the gut micro-
bial profile had not been already affected by ICB therapy (for
example, anti-CTLA-4 appears to modify gut barrier integrity*'
and thus could feasibly change microbial compositions).

2. Used short-read, paired-end shotgun metagenomic sequenc-
ing (to allow us to standardize and maintain stringency in our
bioinformatic pipeline and quality control steps).

3. Reported tumor response. To be pragmatic, we accepted
radiographic (using RECIST 1.1) or pathological response. How-
ever, we excluded studies that reported only PFS12 or where
response was binned with SD.

To find all such datasets, we performed a structured PubMed
database search combining the following three search strings that
used both MeSH (Medical Subject Headings) terms and title and/or
abstract keywords:

‘neoplasms’[MeSH Major Topic] OR ‘cancer’[Title/Abstract] OR
‘malignancy’[Title/Abstract] OR ‘tumor’[Title/Abstract]

OR

‘immune checkpoint inhibitors’[MeSH Terms] OR
‘pembrolizumab’[Title/Abstract] OR ‘nivolumab’[Title/Abstract]
OR‘atezolizumab’[Title/Abstract] OR ‘avelumab’[Title/Abstract]
OR‘durvalumab’[Title/Abstract] OR ‘cemiplimab’[Title/Abstract]
OR‘dostarlimab’[Title/Abstract] OR ‘ipilimumab’[Title/Abstract]
OR‘tremilimumab’[Title/Abstract] OR ‘immunotherapy’[Title/
Abstract] OR ‘immune checkpoint’[Title/Abstract]

OR

‘microbiota’[MeSH Terms] OR ‘metagenome’[MeSH Terms] OR
‘metagenomics’[MeSH Terms] OR ‘microbiome’[Title/Abstract]
OR ‘microbiota’[Title/Abstract]

Intotal, thissearchyielded 1,181 records up to December 31,2022.
Titles and abstracts were manually reviewed to identify a total of 28
unique studies meeting eligibility criterion 1. A manual bibliography
search yielded a further three studies meeting eligibility criterion 1
(Supplementary Table 17 (lit_review)). Of these, 19 studies used shotgun
metagenomics, and 13 studies made these raw data available. Three
studies were excluded as the shotgun metagenomic dataweressingle end
(IonTorrent). Finally, of the remaining ten studies, four were excluded as
they did not reportresponse, yielding six studies that could beincluded
inour meta-analysis (see Supplementary Fig. 3 for a PRISMA-style flow-
chart). Metadata for each cohort were curated from the corresponding
publication tables or relevant sequencing repositories (for example,
Sequence Read Archive, European Nucleotide Archive).
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Shotgun metagenomic sequencing data for the six evaluable
cohorts were downloaded and analyzed using a uniform bioinformatic
procedure (as described earlier), including FASTQ file quality control
and human DNA decontamination, and then read mapping to anidenti-
cal custom strain database (generated from CA209-538 MAGs) using
identical settings of Bowtie 2 and inStrain. Despite awide range in the
number of quality-controlled paired-end reads per sample, in general,
allwere deeply sequenced (Table 2). Subsequent downstream analysis
of gut microbial profiles and supervised ML analyses were performed
using identical methods to those previously described.

Statistical analysis

Statistical tests are cited in the text. Ingeneral, nonparametric statisti-
caltests were preferred (all were two-sided). To determine associations
between an ordinal and a numeric variable (for example, BOR versus
anumeric metadata variable), we used the Kendall 7 test. For associa-
tions between a binary and a numeric variable, the Mann-Whitney U
(alsoknown as the Wilcoxon rank-sum) test was used. For associations
between a nonordinal categorical variable and a numeric variable,
the Kruskal-Wallis test was used. The threshold for significance was
set as a two-tailed P value of <0.05. Data were processed and visual-
ized using the R packages ‘tidyverse’ (v2.0.0)'°, ‘ggpubr’ (v0.6.0),
‘survival’ (v3.5.5)'%, ‘survminer’ (v0.4.9) and ‘tablel’ (v1.4.3) and the
Python packages ‘numpy’ (v1.23.3)'?, ‘pandas’ (v1.4.3) and ‘matplotlib’
(v3.5.1)'%. For all boxplots, the center line indicates the median, box
limits indicate the upper and lower quartiles, and whiskers indicate
1.5xtheinterquartile range.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All CA209-538 fecal shotgun metagenomic sequencing data (after
first-pass human decontamination) have been deposited to the Euro-
pean Nucleotide Archive (study accession no. ERP134027). The 1,397
quality-controlled (near-complete) study-specific genomes used
as the custom reference database have been deposited to Zenodo
(https://doi.org/10.5281/zenod0.10450122). CA209-538 clinical meta-
data and strain abundance data necessary to replicate our analyses
are provided in the Supplementary Tables. The six publicly available
shotgun metagenomics datasets were downloaded using the following
accessionnumbers: EGASO0001006982 (2022_Simpson), PRJEB43119
(2022_Lee), PRINA762360 (2022_McCulloch), EGAD0O0001006734
(2021_Andrews), PRJNA399742 (2018 Matson) and PRJNA397906
(2017_Frankel). Permission to access the 2021_Andrews raw sequenc-
ing dataset was kindly provided by J. Wargo and The University of
Texas M.D. Anderson Cancer Center. Permission to access the 2022_
Simpson raw sequencing data was kindly provided by G. Long and
the Melanoma Institute of Australia. Associated sample-level clinical
metadatafor external datasets were collected fromtheir relevant pub-
lications, the relevant sequencingrepository or an associated GitHub
repository.

Code availability

No unique software or computational code was created for this study.
Therelevant code to replicate our supervised machine learning analy-
ses of CA209-538 data, using the datain Supplementary Table 8 (meta-
data_and_clr_abundances), isavailable at https://github.com/agunjur/
cancer_microbiome_CICB;/.
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Extended Data Fig. 1| Clinical and gut microbiome characteristics of the
CA209-538 clinical trial cohort. a, Kaplan-Meier curve of progression-free
survival stratified by histology (UGB n =38, NEN n =32, GYN n =36). Log-rank
test p-value for OS duration across groups printed. Chi-squared test p-value
shown for proportion of OS12 per group printed. b, Kaplan-Meier curve of
progression-free survival stratified by histology (UGB n =38, NENn =32, GYN
n=36). Log-rank test p-value for PFS duration across groups printed. Chi-
squared test of independence p-value shown for proportion of PFS12 per group
printed. ¢, Boxplots of patient baseline blood albumin (g/L) and NLR levels
(log-transformed) by BOR category (cPDn=21,PDn=30,SDn=29,PRn=22,
CRn=4).Boxplot centre line= median; box limits= upper and lower quartiles;
whiskers=1.5x interquartile range. Linear model line-of-best-fit for respective
variables (albumin and NLR) versus BOR (with shaded 95% confidence interval)
superimposed (in grey). Kendall 7 and p-value for association between respective
variables (albumin and NLR) and BOR printed. Pairwise Mann-Whitney

U test p-values for cPD vs other groups summarized (*: p < 0.05, *: p < 0.01,

** p<0.001). Exact p-values as follows: Albumin: cPD vs PD p = 0.0076, cPD
vsSD p=0.00079, cPD vs PRp =0.0039, cPD vs CR p = 0.034; NLR: cPD vs PD
p=0.00093, cPDvs SD p=0.00042, cPD vs PR p=0.0075,cPD vs CR p=0.025.
d, Proportion of explained variance (R?) of microbial composition by
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p-values available in Supplementary Table 6 (‘ca209-538_permanova’). e, Analysis
of baseline microbial variance by moving PFS cut-off (1-monthly intervals,

from 1-24 months). Top panel show microbial variance between groups formed
by cut-off (inverse PERMANOVA p-value, 999 permutations) using Aitchison
distance. Bottom panel shows proportion of progression-free-survivors at
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Extended Data Fig. 2| Sensitivity analyses of gut microbial strain-efficacy
classifiers. a, Comparison of the RvsP and PFS12 binary endpoints. Venn
diagrams show the overlap between the ‘negative and ‘positive’ outcome
populations (P/non-PFS12 and R/PFS12 respectively). Size of circles (area) in
proportion to population size, with set differences labelled. b, AUC scores

for the best iteration of PFS12 classifiers for each feature-set combination

during 20-repeated 5-fold cross-validation (100 folds each): clinical (yellow),
microbiome (blue) and combined (green), at different taxonomic resolutions.
Mean (circle) and standard deviation (error bars) over the 100 folds. Linear model
line-of-best-fit for AUC score and taxonomic rank of microbiome-only feature
sets (with shaded 95% confidence interval) superimposed. Kendall rand p-value
for association between AUC score and taxonomic rank of microbiome-only
feature sets printed. Mann-Whitney U p-value for comparison of AUCs of specific
pairwise feature-sets (depicted by callipers) printed. ¢, Patient’s predicted RvsP
(using strain-RvsP RF classifiers trained on the full evaluable cohort) vs. actual

BOR outcome (cPDn=21,PDn=30,SDn=29,PRn=22,CRn=4).Boxplot centre
line= median; box limits=upper and lower quartiles; whiskers=1.5x interquartile
range. Kendall rank correlation rand p-value for association between predicted
RvsP and actual BOR printed. d, Kaplan-Meier overall survival curves for those
patients with abest overall response (BOR) of stable disease (n = 29), stratified by
those with above median (blue) and below median (red) strain-RvsP RF classifier
predictions. Bottom panel shows number of patients at risk at each marked
interval. P-value by log-rank test printed. Acronyms: P= progressors (RECIST
progressive disease (PD) or clinical progressive disease (cPD)), R=responders
(RECIST complete response (CR) or partial response (PR)), GYN=gynaecological,
NEN=neuro-endocrine neoplasm, UGB=upper gastrointestinal & biliary, ROC=
receiver operating characteristic, AUC=area under curve, OS= overall survival,
SD=stable disease, RvsP=response versus progression, cPD= clinical progressive
disease, PD=progressive disease, SD=stable disease, PR=partial response, CR =
complete response.
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Extended Data Fig. 3| Identification and metabolic-potential profiling

of the top 22 response predictive strains. a, Kernel density plot of impact
(feature importance) of strains in the strain-RvsP classifier. The top 22 strains
with absolute impact within half maximal value shown (coloured by importance,
and size by prevalence). b, Strainimpact (absolute) versus prevalence in the
CA209-538 cohort. Top 22 strains coloured (blue and red for positive and
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negative associations with response, respectively), with importance threshold
depicted (red dashed line). ¢, Plot of principal coordinate 1vs 2 usingJaccard
dissimilarity of metabolic pathway presence/absence for top 22 strain genomes.
Points (individual strains) coloured by impact on RvsP, and size by prevalence.
Acronyms: PCo= principle coordinate.
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Extended Data Fig. 4 | Heterogeneity of baseline gut microbial compositions
across meta-analysis cohorts. a, Proportion of quality-controlled paired-end
reads aligned by Bowtie 2 (red), and ultimately used for abundance estimation
after stringent filtering (cyan). Organised by study (2017_FRANKEL n = 39,
2018_MATSONn =39,2021 ANDREWS n=46, LEEn=165,2022_ MCCULLOCH
n=37,2022_2022_SIMPSON n =38, CA209-538 n =106). Boxplot central line=
median, box limits=upper and lower quartiles, and whiskers=1.5x interquartile
range. Median printed within each boxplot. b, Proportion of explained variance
(R?) of microbial composition by metadata variables (grouped into ‘exposome’,
‘technical’ and ‘tumour’ categories. R?values (printed on bar) calculated using

PERMANOVA (9999 permutations). ¢, PCA plot of samples by CLR-transformed
abundances (Aitchison’s distance), with points coloured by sample city (the
variable explaining the most variance). Ellipses depict 0.8 of each group’s
multivariate t-distribution. PERMANOVA p-value and R? using 9999 permutations
printed. d, PCA plot of samples by CLR-transformed abundances (Aitchison’s
distance), with points coloured by extraction kit (the variable explaining

the second-most variance). Ellipses depict 0.8 of each group’s multivariate
t-distribution. PERMANOVA p-value and R? using 9999 permutations printed.
Acronyms: ICB=immune checkpoint blockade, PCo= principle coordinate.

Nature Medicine


http://www.nature.com/naturemedicine

nature portfolio

Corresponding author(s):  Dr Trevor D. Lawley

Last updated by author(s): 05 Jan 2024

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|Z| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
|Z| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

< A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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|X| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No specific software was used for data collection.

Data analysis All software used for data analyses is publicly available, and is cited in the Methods section where possible. These software are:
command-line tools: bwa v0.7.17, trim-galore v0.6.7, BMTagger v3.101, SPAdes v3.14, MEGAHIT v1.24, MetaBAT 2 v2.13, MaxBin2 v2.2.4,
CONCOCT v0.4, samtools v1.5, CheckM v1.1.2, MetaWRAP v1.2, CheckM2 v0.1.3, GUNC v1.0.5, GTDB-tk v2.1, pplacer v1.1, fastANI v1.3,
bowtie2 v2.3.5, inStrain v1.3.0, dRep v2.0.0, Gapseq v1.2, HMMER v3.2.1, FastTree v2.1.0, rapidNJ v2.3.3, abricate v1.0.1.
Python 3: scikit-learn v1.1.1, imblearn v0.9.1, shap v0.41.0, numpy v1.23.3, pandas v1.4.3, matplotlib v3.5.1.
Rv4.1.0: decontam v1.16.0, tidyverse v2.0.0, ggpubr v0.6.0, survival v3.5.5, survminer v0.4.9, table1 v1.4.3, phyloseq v1.12.0, microbiome
v1.12.0, vegan v2.6.4, ggtree v3.2.1.
Code to replicate our supervised machine learning analysis of CA209-538 cohort data is deposited at https://github.com/agunjur/
cancer_microbiome_CICB .

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All CA209-538 faecal shotgun metagenomic sequencing data (after first-pass human decontamination) has been deposited to the European Nucleotide Archive
(study accession number ERP134027). The 1397 quality-controlled (near-complete) study-specific genomes used as the custom reference database have been
deposited to zenodo (https://doi.org/10.5281/zenodo.10450122). CA209-538 clinical metadata and strain abundance data necessary to replicate our analyses is
provided as the supplementary tables. The six publicly available shotgun metagenomics datasets were downloaded using the following accession numbers:
2022_SIMPSON: EGAS00001006982, 2022_LEE: PRJIEB43119, 2022_MCCULLOCH: PRINA762360, 2021_ANDREWS: EGAD0O0001006734, 2018 _MATSON:
PRINA399742, 2017_FRANKEL: PRINA397906. Permission to access the 2021_ANDREWS raw sequencing dataset for academic use was kindly provided by Dr
Jennifer Wargo and The University of Texas M.D. Anderson Cancer Center. Permission to access the 2022_SIMPSON raw sequencing data was kindly provided by
Professor Georgina Long and the Melanoma Institute of Australia. Associated clinical metadata for external datasets was collected from their relevant publications,
the relevant sequencing repository or an associated github repository.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender CA209-538 clinical trial participant's self-reported sex was assessed by CA209-538 clinical investigators and recorded into the
electronic case report form (eCRF). Sex is reported as a clinical variable in Table 1, Ext Table 1 and Ext Table 2, included as a
metadata variable in the CA209-538 PERMANOVA analyses (Ext Fig 1d), and as a clinical feature in the supervised machine
learning analyses (Fig 2b, Ext Fig 2b).

Reporting on race, ethnicity, or Race / ethnicity was not recorded or analysed.
other socially relevant
groupings

Population characteristics All CA209-538 participants were adults with advanced rare cancers falling into 3 histological cohorts: upper gastrointestinal /
biliary tract (UGB), rare gynaecological (GYN) or neuro-endocrine neoplasms (NEN). All patients were adults (median age
(years) 60 [range 20-82] and n=81 (68%) were female sex by self-report. Faecal samples were collected from most patients
(n=106 'microbiome evaluable'). Patient-level metadata for microbiome-evaluable patients, including age, sex, body-mass
index, ECOG performance status and study site is available in Supplementary table 3.
More details on trial inclusion/exclusion criteria are available at https://classic.clinicaltrials.gov/ct2/show/NCT02923934.

Recruitment CA209-538 participants were screened for eligibility based on protocol inclusion criteria at 5 clinical sites across two states in
Australia (3 sites in Victoria: Monash Health, Austin Health, Peter MacCallum Cancer Centre; 2 sites in New South Wales:
Blacktown Hospital, Border Medical Oncology Unit). This involved referring medical practitioners sending detailed referrals to
site principle investigators, who subsequently reviewed patients to confirm eligibility, willingness to participate, and sign trial
informed consent. To aid recruitment, the clinical trial was advertised broadly, including via the 'Cancer Council Victoria:
Victorian Cancer Trials Link' (https://trials.cancervic.org.au/details.aspx?ID=vctl_nct02923934). Patient geography and
knowledge of the study may have biased study participation.

Ethics oversight CA209-538 was approved across the 5 clinical sites by the Austin Health Human Research Ethics Committee (reference:
HREC/16/Austin/152).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The primary objective of CA209-538 was to evaluate the clinical efficacy (by RECIST 1.1 response criteria) of ipilimumab and nivolumab in rare
cancers. At the time of its design there was limited/no available data to estimate response rates of combination anti-PD-1 plus anti-CTLA-4
blockade in patients with these selected rare cancers, with CA209-538 designed to address this gap. Therefore, no statistical sample size or
power calculation could be performed a priori.
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Data exclusions  No data were excluded intentionally. A minority (n=14) of trial participants were unable to provide a stool specimen immediately prior to
commencement of trial therapy. Statistical analyses of microbiome-evaluable (n=106) vs missing (n=14) patients is presented in Ext. table 1.
There was a higher proportion of non-evaluable patients from one site (BLA, n=7), but no other suggestions of bias. All n=106 evaluable
samples produced high-quality metagenomic sequencing data and were included in our analysis.

Replication No technical replicates of metagenomic sequencing was performed, however PERMANOVA analysis suggests technical variables such as DNA
plate were little contributors to microbial variance (Ext Fig 1d).

Randomization  Not applicable as CA209-538 was designed as a single-arm study to evaluate the efficacy of combination immune checkpoint blockade across
rare cancers (representing novel indications), as above.

Blinding Not applicable as CA209-538 is a single-arm study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  ClinicalTrials.gov Identifier: NCT02923934

Study protocol The clinical outcomes for CA209-538 histological subgroups have been reported and published previously. Version 8 of the study
protocol is included in the Supplementary materials with this submission.

Data collection CA209-538 participants were recruited between October 2017 and February 2020 across 5 clinical sites in Australia 5 clinical sites
across two states in Australia (3 sites in Victoria: Monash Health, Austin Health, Peter MacCallum Cancer Centre; 2 sites in New South
Wales: Blacktown Hospital, Border Medical Oncology Unit). Clinical sites were hospital outpatient settings. Site clinical trial
investigators recorded de-identified patient information into an eCRF.

Outcomes The pre-defined primary outcome of CA209-538 was to evaluate the clinical efficacy of ipilimumab and nivolumab in patients with
advanced rare cancer types, as determined using RECIST 1.1 'clinical benefit' (complete response + partial response + stable disease).
The pre-defined secondary outcome of CA209-538 clinical trial was to identify whether a common predictive biomarker or immune
signature can be identified in responding patients that can occur irrespective of tumour type. Samples collected include baseline
whole blood, serum, peripheral blood mononuclear cells, archival formalin-fixed paraffin embedded tumour, and faecal samples.
Specific methodology to define this 'common predictive biomarker' was not prespecified, and specific performance measures were
not pre-defined.
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