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A gut microbial signature for combination 
immune checkpoint blockade across  
cancer types

Ashray Gunjur)  )1,2 , Yan Shao)  )1, Timothy Rozday1, Oliver Klein3,4,5, 

Andre Mu1,6, Bastiaan W. Haak1,7, Ben Markman)  )8,9,10, Damien Kee4,11,12, 

Matteo S. Carlino13,14, Craig Underhill)  )15,16, Sophia Frentzas8, 

Michael Michael11,17, Bo Gao13, Jodie Palmer3, Jonathan Cebon3,4, 

Andreas Behren)  )3, David J. Adams)  )2,18 & Trevor D. Lawley)  )1,18 

Immune checkpoint blockade (ICB) targeting programmed cell death 

protein 1 (PD-1) and cytotoxic T lymphocyte protein 4 (CTLA-4) can induce 

remarkable, yet unpredictable, responses across a variety of cancers. 

Studies suggest that there is a relationship between a cancer patient9s gut 

microbiota composition and clinical response to ICB; however, defning 

microbiome-based biomarkers that generalize across cohorts has been 

challenging. This may relate to previous eforts quantifying microbiota 

to species (or higher taxonomic rank) abundances, whereas microbial 

functions are often strain specifc. Here, we performed deep shotgun 

metagenomic sequencing of baseline fecal samples from a unique, richly 

annotated phase 2 trial cohort of patients with diverse rare cancers 

treated with combination ICB (n)=)106 discovery cohort). We demonstrate 

that strain-resolved microbial abundances improve machine learning 

predictions of ICB response and 12-month progression-free survival relative 

to models built using species-rank quantifcations or comprehensive 

pretreatment clinical factors. Through a meta-analysis of gut metagenomes 

from a further six comparable studies (n)=)364 validation cohort), we found 

cross-cancer (and cross-country) validity of strain3response signatures, 

but only when the training and test cohorts used concordant ICB regimens 

(anti-PD-1 monotherapy or combination anti-PD-1 plus anti-CTLA-4). 

This suggests that future development of gut microbiome diagnostics or 

therapeutics should be tailored according to ICB treatment regimen rather 

than according to cancer type.

The past decade has seen an 8immuno-oncology revolution9 largely 

driven by the rapid uptake of immune checkpoint blockade (ICB) agents 

targeting cytotoxic T lymphocyte protein 4 (CTLA-4), programmed cell 

death protein 1 (PD-1) or programmed death ligand 1 (PD-L1, the ligand 

of PD-1). Combination ICB (CICB) targeting both PD-1 and CTLA-4 has 

demonstrated synergistic antitumor activity preclinically1 and is now an 

approved standard of care for patients with diverse cancers, including 

melanoma2, clear-cell renal cell carcinoma3, non-small cell lung cancer 
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participants (Table 1). No major clinical differences were observed 

between microbiome-evaluable patients and those who were not sam-

pled (Supplementary Table 1).

The clinical efficacy and safety outcomes for subgroups from 

CA209-538 have been published previously23326. As expected, overall 

survival (OS) significantly differed by histology (Extended Data Fig. 1a);  

however, progression-free survival (PFS) was more consistent 

(Extended Data Fig. 1b). Notably, the percentage of patients with an 

objective response (complete response (CR) or partial response (PR)) 

was remarkably stable across histological cohorts (24325%) (Fig. 1b),  

with the Response Evaluation Criteria in Solid Tumors (RECIST) 

1.1 best overall response (BOR) being strongly associated with PFS 

and OS (Fig. 1c,d). Using univariable statistical testing, we found a 

strong positive monotonic association between albumin and BOR 

(Kendall P)=)0.0056) and a negative monotonic association between 

neutrophil-to-lymphocyte ratio (NLR) and BOR (Kendall P)=)0.0033) 

(Extended Data Fig. 1c). This was particularly driven by patients with 

rapid clinical progression (clinical PD (cPD)) having significantly lower 

albumin and higher NLR, both responses to inflammation shown to be 

strongly prognostic across cancer types and treatment settings27,28.

Microbiome profiling of baseline fecal samples
To understand the composition of patient gut microbiomes, we per-

formed deep shotgun metagenomic sequencing of the 106 available 

baseline fecal samples (median 20.4 million paired-end reads per sam-

ple). For precise taxonomic quantification, we used a genome-resolved 

approach of first assembling a study-specific strain reference data-

base using metagenome-assembled genomes (MAGs), supplemented 

with relevant Genome Taxonomy Database (GTDB) species reference 

genomes (SRGs) (Methods). Ultimately, this database included 1,397 

strain genomes covering 904 known species and additionally included 

34 8new9 strains that could be taxonomically classified only to the genus 

level. The Bowtie 2 alignment rates to our tailored strain reference 

library were high (median 88.4%), with a median of 10.2 million mapped 

paired-end reads (50%) passing stringent quality control and used for 

precise strain quantification (Supplementary Fig. 1 and Methods).

We first evaluated whether there were gross compositional dif-

ferences based on the patients9 BOR. Notably, we found a positive 

monotonic association between BOR and the fecal Shannon diversity 

index, a common alpha diversity metric (Fig. 1e). Associations between 

alpha diversity and cancer patient outcomes have been found in the 

setting of patients receiving hematopoietic cell transplant29 or cer-

vical cancer chemoradiation30 but not in anti-PD-1 recipients with 

metastatic melanoma16,18; thus, such associations may be treatment 

regimen specific. We then assessed intersample beta diversity using 

the Aitchison distance and also found gross microbial compositional 

differences by BOR group (permutational multivariate analysis of 

variance (PERMANOVA) P)=)0.0319) (Fig. 1f). Indeed, among the 23 pre-

treatment clinical and technical metadata tested, BOR group was the 

metadata variable explaining the most microbial variance (Extended 

Data Fig. 1d). By contrast, patient PFS at 12 months (PFS12) or OS at 12 

months was associated with little microbial variance. A PERMANOVA of 

baseline microbial variance versus a moving PFS threshold revealed a 

peak association at <4 months (Extended Data Fig. 1e), indicating that, 

in our cohort, patients with rapid progression had the most distinct 

gross baseline microbial compositions.

Strain–response signatures are valid across cancer types
Given the gross compositional differences, we hypothesized that spe-

cific strains may allow for prediction of CICB efficacy in our cohort. We 

assessed objective response versus progression (RvsP), defined as a 

RECIST BOR of CR or PR versus PD or cPD, as our primary endpoint. 

In doing so, we excluded patients with a BOR of stable disease (SD) 

(n)=)29), given its ambiguity in a pan-cancer cohort, in which it may 

represent disease control or simply indolent cancer behavior. As a 

(NSCLC)4, mesothelioma5 and hepatocellular carcinoma6. However, this 

success is tempered by the unpredictable nature of responses (seen 

in only 20360% of patients across these cancer indications7) and the 

more frequent severe immune-related adverse effects experienced with 

CICB when compared to anti-PD-1 or anti-PD-L1 monotherapy8. Thus, 

despite the promise it offers, the judicious use of CICB is paramount. 

Additionally, predictive biomarkers for tumor response and/or toxicity 

would be highly valuable to guide patient management.

Currently approved tumor-agnostic biomarkers for PD-1 blockade 

include tumor mutational burden and mismatch repair deficiency9; 

however, both have limitations and rely on available, contemporaneous 

tumor tissue. A promising 8tumor-extrinsic9 avenue for predicting ICB 

response and/or toxicity a priori is assessing a patient9s baseline gut 

microbiome composition, referring to the community of microbiota 

(predominantly bacteria) resident within the gastrointestinal tract. 

Culture-free methods to taxonomically profile fecal microbiomes 

have progressed from low-resolution 16S rRNA gene sequencing to 

high-resolution shotgun metagenomics, with studies of clinical cohorts 

finding associations between baseline Akkermansia muciniphila (lung 

cancer)10313 and Faecalibacterium prausnitzii (melanoma)14316 fecal 

abundances and tumor responses among anti-PD-1 recipients. Unfor-

tunately, previous meta-analyses across metagenomic studies have 

found limited reproducibility of these candidate microbial biomarkers 

for ICB response17320. Although this poor reproducibility may be partly 

attributable to methodological or geographic differences between 

studies, we hypothesize that species-level taxonomic biomarkers may 

lack the precision necessary to capture the specific microbial traits 

associated with ICB response or nonresponse. For example, there is 

growing awareness of the diversity of intraspecies (strain) variation 

among commensal bacteria (such as A. muciniphila and F. prausnitzii), 

with diverging functional potentials and differing associations with 

host phenotypes21,22.

Here, we performed deep shotgun metagenomic sequencing 

of baseline fecal samples from patients on the CA209-538 clinical 

trial of ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1) for 106 

patients with diverse rare cancers (our discovery cohort). Using a 

bespoke, genome-resolved metagenomics approach, we discovered 

baseline subspecies (strain-level) gut microbial abundance signatures 

of response that reproduce between cancer subtypes and externally to 

published CICB cohorts despite marked cohort heterogeneity. Notably, 

we found that the predictiveness of signatures trained on CICB cohorts 

does not extend to anti-PD-1 monotherapy cohorts. This suggests that, 

although tumor agnostic, different microbiota3host relationships are 

relevant to distinct ICB regimens.

Results

Clinical characteristics of the CA209-538 cohort
The CA209-538 clinical trial, titled ‘A phase 2 trial of ipilimumab and 

nivolumab for the treatment of rare cancers’, is a prospective, multi-

center clinical trial (NCT02923934) that enrolled 120 patients with 

histologically confirmed advanced rare solid-organ cancers across 

five Australian hospital networks (Methods). Notably, patients had 

diverse tumor histologies grouped into three prespecified cohorts: 

upper gastrointestinal and biliary cancers (UGB), neuroendocrine 

neoplasms (NEN) and rare gynecological tumors (GYN). Most patients 

(n)=)108) had received prior systemic anticancer therapies (median of 

one line (range 036 lines)). All participants were treated on trial with 

combination nivolumab and ipilimumab for up to four doses (induc-

tion), followed by nivolumab maintenance for up to 2 years or until 

progressive disease (PD) or unacceptable toxicity (Fig. 1a). The prespec-

ified secondary endpoint of the trial was to develop 8tumor-agnostic9 

biomarkers for CICB response by leveraging the unique clinical trial 

design of CA209-538, which included patients with diverse cancers, but 

with highly standardized clinical and experimental procedures. There-

fore, a pretreatment fecal sample was collected from most (n)=)106) 

http://www.nature.com/naturemedicine
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Fig. 1 | Clinical and gut microbiome compositional differences between 

responders and nonresponders. a, CA209-538 study and microbiome analysis 

schema (created using BioRender.com). Pretreatment fecal samples were 

collected from n)=)106 trial participants and subjected to DNA extraction, 

shotgun metagenomic sequencing, and analysis using a genome-resolved 

metagenomics pipeline, involving quality control (QC), de novo assembly 

of near-complete MAGs (nc-MAGs) and precise read mapping. Further to 

the standard filters, reads mapping to genomes with <50% coverage breadth 

were removed. b, Bar plot of patient RECIST 1.1 BOR by histology cohort for 

microbiome-evaluable patients. The percentages of patients with an objective 

response (PR or CR) are indicated. c, Kaplan3Meier curve of PFS stratified by 

BOR category (cPD n)=)21, PD n)=)30, SD n)=)29, PR n)=)22, CR n)=)4). Log-rank test 

P)=)2.1)×)10242. d, Kaplan3Meier curve of OS stratified by BOR category (cPD n)=)21, 

PD n)=)30, SD n)=)29, PR n)=)22, CR n)=)4). Log-rank test P)=)1.2)×)10234.  

e, Boxplots of microbiome alpha diversity, as measured by the Shannon diversity 

index, across BOR categories (cPD n)=)21, PD n)=)30, SD n)=)29, PR n)=)22, CR n)=)4). 

Boxplot center line indicates the median; box limits indicate the upper and 

lower quartiles; and whiskers indicate 1.5× the interquartile range. The linear 

model (line of best fit) for the Shannon diversity index and BOR (with shaded 

95% confidence interval) is superimposed (in gray). Kendall τ and P values for 

the association between the Shannon diversity index and BOR are indicated. 

f, Principal coordinate 1 (PCo1) versus 2 (PCo2) using the Aitchison distance of 

strain abundances, colored by patient BOR category. Ellipses depict 0.8 of each 

group9s multivariate t distribution. PERMANOVA P value and R2 using 9,999 

permutations are indicated.
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Table 1 | Baseline clinical characteristics by patient BOR category

Characteristics Best response P

cPD (n)=)21) PD (n)=)30) SD (n)=)29) PR (n)=)22) CR (n)=)4)

Histology cohort

 GYN 6 (28.6%) 12 (40.0%) 9 (31.0%) 7 (31.8%) 2 (50.0%) 0.18

 NEN 5 (23.8%) 5 (16.7%) 14 (48.3%) 6 (27.3%) 2 (50.0%)

 UGB 10 (47.6%) 13 (43.3%) 6 (20.7%) 9 (40.9%) 0 (0%)

No. of prior systemic therapies

 Mean (s.d.) 1.43 (0.811) 1.60 (1.22) 1.97 (1.61) 2.00 (1.23) 1.00 (0.82) 0.32

 Median (min, max) 1 (0, 3) 1 (0, 5) 2 (0, 5) 2 (1, 5) 1 (0, 2)

Measurable tumor (mm)

 Mean (s.d.) 115 (82.3) 72.6 (48.4) 84.1 (53.8) 90.0 (78.2) 70.0 (19.1) 0.49

 Median (min, max) 108 (17.0, 344) 58.0 (24.0, 219) 77.0 (17.0, 220) 64.0 (11.0, 325) 77.5 (42.0, 83.0)

Age (years)

 Mean (s.d.) 59.1 (13.9) 56.5 (15.1) 59.9 (14.3) 56.3 (12.5) 65.3 (9.29) 0.85

 Median (min, max) 65.0 (20.0, 75.0) 62.5 (26.0, 75.0) 60.0 (22.0, 82.0) 53.5 (38.0, 74.0) 64.0 (57.0, 76.0)

Sex

 Female 9 (42.9%) 22 (73.3%) 17 (58.6%) 17 (77.3%) 4 (100%) 0.048

 Male 12 (57.1%) 8 (26.7%) 12 (41.4%) 5 (22.7%) 0 (0%)

Site

 AUS 2 (9.5%) 8 (26.7%) 5 (17.2%) 7 (31.8%) 0 (0%) 0.34

 BLA 2 (9.5%) 7 (23.3%) 4 (13.8%) 3 (13.6%) 0 (0%)

 BMO 4 (19.0%) 1 (3.3%) 3 (10.3%) 1 (4.5%) 0 (0%)

 MON 8 (38.1%) 6 (20.0%) 11 (37.9%) 3 (13.6%) 2 (50.0%)

 PMC 5 (23.8%) 8 (26.7%) 6 (20.7%) 8 (36.4%) 2 (50.0%)

Season

 Autumn 9 (42.9%) 13 (43.3%) 12 (41.4%) 11 (50.0%) 1 (25.0%) 0.8

 Spring 3 (14.3%) 2 (6.7%) 7 (24.1%) 2 (9.1%) 1 (25.0%)

 Summer 5 (23.8%) 10 (33.3%) 5 (17.2%) 5 (22.7%) 2 (50.0%)

 Winter 4 (19.0%) 5 (16.7%) 5 (17.2%) 4 (18.2%) 0 (0%)

BMI (kg)m22)

 Mean (s.d.) 26.1 (5.74) 27.2 (5.30) 28.6 (6.23) 25.7 (5.05) 25.6 (3.49) 0.97

 Median (min, max) 25.1 (19.1, 38.2) 28.2 (18.6, 37.0) 28.2 (18.9, 48.2) 25.0 (18.8, 35.3) 24.6 (22.8, 30.5)

PPIs (<8 weeks)

 Yes 14 (66.7%) 9 (30.0%) 8 (27.6%) 7 (31.8%) 3 (75.0%) 0.017

 No 7 (33.3%) 21 (70.0%) 21 (72.4%) 15 (68.2%) 1 (25.0%)

Antibiotics (<8 weeks)

 Yes 3 (14.3%) 1 (3.3%) 3 (10.3%) 2 (9.1%) 0 (0%) 0.65

 No 18 (85.7%) 29 (96.7%) 26 (89.7%) 20 (90.9%) 4 (100%)

Platelets (×109)l21)

 Mean (s.d.) 297 (134) 279 (81.1) 224 (97.8) 287 (118) 283 (50.1) 0.32

 Median (min, max) 302 (87.0, 603) 273 (133, 575) 189 (62.0, 431) 276 (144, 559) 300 (211, 321)

Albumin (g)l21)

 Mean (s.d.) 30.9 (5.66) 35.0 (5.34) 36.2 (4.34) 35.7 (3.47) 37.0 (2.16) 0.0056

 Median (min, max) 32.0 (20.0, 38.0) 36.5 (20.0, 44.0) 37.0 (24.0, 44.0) 36.0 (29.0, 41.0) 36.5 (35.0, 40.0)

NLR

 Mean (s.d.) 10.7 (15.8) 3.33 (1.99) 3.24 (2.18) 3.66 (2.57) 2.74 (0.144) 0.0033

 Median (min, max) 5.27 (2.22, 66.0) 2.92 (0.970, 10.7) 2.72 (1.00, 10.0) 3.27 (0.960, 9.80) 2.70 (2.62, 2.95)

LDH (U)l21)

 Mean (s.d.) 380 (208) 277 (155) 264 (143) 480 (696) 283 (59.2) 0.89

 Median (min, max) 296 (149, 945) 215 (162, 898) 219 (128, 912) 302 (140, 3,440) 295 (202, 339)

Clinical characteristics (metadata) are reported stratified by BOR category for microbiome-evaluable participants (n)=)106). Numerical metadata are summarized with both means and median 

values, and statistical associations with BOR (an ordinal variable increasing from cPD to CR) were computed using the Kendall τ test. Categorical metadata were analyzed using frequency 

tables, with statistical associations with BOR computed using the chi-squared test. AUS, Austin Hospital (Melbourne); BLA, Blacktown Hospital (Sydney); BMO, Border Medical Oncology 

(Albury); MON, Monash Hospital (Melbourne); PMC, Peter MacCallum Cancer Centre (Melbourne); BMI, body mass index; PPIs, proton-pump inhibitors; LDH, lactate dehydrogenase.
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sensitivity analysis, we also evaluated PFS12, with responders and those 

with PFS12 largely overlapping given the durability of CICB efficacy 

(Extended Data Fig. 2a).

We used a supervised machine learning (ML) workflow (Fig. 2a). 

As input features (predictors), we tested the 15 potentially relevant 

clinical factors (Methods) and the microbial factors (centered log 

ratio (CLR)-transformed strain abundances) separately and combined 

to assess their relative and synergistic performance, respectively. In 

addition to strain-level rank, we tested microbial abundances aggre-

gated to higher taxonomic ranks (species, genus and family levels) 

to determine the influence of taxonomic resolution on predictive 

performance. For each feature set, we performed a thorough random 

hyperparameter search across 1,000 iterations of a 20 times repeated 

fivefold cross-validation (Methods). For predictions, we used a random 

forest (RF) classifier, previously shown to generally outperform other 

classical ML algorithms for microbiome3host predictions31.

Interestingly, we found that clinical factors alone were poorly 

predictive of RvsP (mean receiver operating characteristic (ROC) area 

under the curve (AUC))=)0.56) (Fig. 2b). This was despite the previously 

observed relationship between low blood albumin, high NLR and cPD, 

suggesting that these factors are more useful for delineating patients 

with the worst prognosis rather than distinguishing responders and 

nonresponders. Furthermore, it affirms the current difficulty of pre-

dicting clinical activity using routinely available factors and emphasizes 

the need for further technical innovation. In contrast, clinical factors 

were more predictive of PFS12 (AUC)=)0.65; Extended Data Fig. 2b),  

inferring that these are more prognostic markers than predictors of 

antitumor activity.

When microbiome features were used, there was a positive 

monotonic association between the mean AUC score and taxonomic 

resolution for both endpoints (increasing from family to strain level) 

(Kendall P)=)1.1)×)10211 for RvsP, P)=)7.1)×)10215 for PFS12). In particular, 

strain-resolved abundances provided the best predictive performance 

(AUC)=)0.73 for RvsP, AUC)=)0.70 for PFS12), significantly outperform-

ing the more common species-level abundances. Consistent with 

their poor standalone performance, clinical factors failed to augment 

microbiome predictors. Overall, these data suggest that microbial 

abundances, especially at strain-level resolution, are more valuable 

in predicting tumor response or landmark PFS than higher taxonomic 

aggregations or clinical features.

We subsequently focused on strain3RvsP classifiers, given their 

superior performance and larger incremental benefit over routine 

clinical factors. We were particularly interested in assessing the con-

cordance of strain3RvsP predictions from the entire cohort (n)=)77 

evaluable) with actual patient BOR outcomes. Notably, despite being 

trained on binary RvsP, the predicted probabilities of patients were 

correctly ranked by their actual BOR category (Kendall P)<)2.2)×)10216), 

including (on average) central predictions for the SD group that 

were 8unseen9 during model training (n)=)29) (Extended Data Fig. 2c). 

Intrigued, we assessed whether RvsP predictions could distinguish a 

8better9 or 8worse9 SD group. Indeed, we found a nonsignificant improve-

ment in the OS of patients with SD with an above-median RvsP predic-

tion, although this analysis was likely underpowered (log-rank P)=)0.17; 

Extended Data Fig. 2d).

Finally, a key priority was to identify whether microbial signatures 

are tumor agnostic; that is, whether they generalize from one distinct 

tumor type to another. As our study naturally has three distinct cancer 

cohorts (GYN, NEN and UGB), we performed a leave-one-group-out 

cross-validation (training strain3RvsP classifiers using two groups 

and then testing on the left-out group). Notably, the mean AUC of the 

left-out group was consistently superior to that of a random model 

(overall mean AUC)=)0.75) (Fig. 2c). Although the small sample size 

limits its interpretability, the particularly good performance for the 

UGB and GYN groups may reflect the specific relevance of the gut 

microbiome in these cancers.

Our ML analysis of our discovery cohort demonstrates that 

strain-level gut microbial predictors of CICB response may be relatively 

robust across diverse cancer types and are superior to ML predictors 

built using routine clinically available data. Furthermore, predictions 

trained on binary RvsP appear to capture the RECIST BOR biologically 

and may have utility for predicting the durability of SD.

Faecalibacterium strains are positively implicated
We next sought to understand which features (strain abundances) 

were most important in driving the strain3RvsP model predictions. 

To do this, we used the SHapley Additive exPlanations (SHAP) 8Tree-

Explainer9 algorithm32 (Methods). We first noted that, although most 

strains contributed little to predictions, a few were disproportionately 

important (Extended Data Fig. 3a). Twenty-two strains were within 

half as impactful as the most important strain (a strain of Faecalibac-

terium sp900539885, an uncultured species), which we opted to focus 

on subsequently. Interestingly, these strains were neither rare (<5% 

prevalent) nor core (>50% prevalent) taxa within our cohort (Extended 

Data Fig. 3b).

To visualize the phylogenetic relationships of these 8top 229 strains 

in the context of all study-specific bacterial strains, we constructed an 

approximately maximum-likelihood phylogenetic tree using the GTDB 

toolkit (GTDB-tk) (Methods and Fig. 3a). This demonstrated that 20 of 

the 22 strains were gram positives, with most (18 of 20) belonging to 

the Firmicutes (Bacillota) phylum. The most 8beneficial9 strains (that 

is, higher strain abundances shifted predictions toward 8response9) 

clustered in one clade of the Ruminococcaceae family, with four being 

strains within the Faecalibacterium genus. Until recently, the National 

Center for Biotechnology Information taxonomy database recognized 

only one species within the genus Faecalibacterium (F. prausnitzii)33, 

and its fecal abundance has been associated with good general health34 

and response to anti-PD-1 monotherapy in patients with melanoma16 or 

hepatobiliary cancers15. However, more recent analyses have revealed 

considerable phylogenetic and functional diversity within the F. praus-

nitzii species complex22. In keeping with this, at the 98% genomic iden-

tity threshold, our custom strain reference library included n)=)35 

distinct Faecalibacterium strains (from n)=)13 distinct species), with 

the most important (and prevalent) clustering near the F. prausnitzii 

D phylogenetic clade (Supplementary Fig. 2).

Conversely, 15 of the 22 strains appeared to have a negative asso-

ciation with response in our discovery cohort. As before, most were 

Firmicutes, with 6, 3 and 2 (of the 15) strains belonging to the Lachno-

spiraceae, Oscillospiraceae and Ruminococcaceae families, respec-

tively. Notably, eight of these strains belonged to thus far uncultivated 

(and thus unnamed) species. The remaining four 8negative9 strains 

belonged to the species Bifidobacterium dentium, A. muciniphila B and 

Spyradocola merdavium. It should be noted that A. muciniphila B is a 

distinct species from A. muciniphila; although the latter was positively 

implicated in anti-PD-1 efficacy in NSCLC13 (also positive in our study 

but not within the top 22 strains), recent analyses have revealed that 

it is phylogenetically and phenotypically distinct from A. muciniphila 

B (known as Akkermansia SGB9228 by MetaPhlAn4 taxonomy)21. The 

juxtaposition of Bifidobacterium longum 1 and B. dentium 1 as positive 

and negative, respectively, also highlights how closely related taxa can 

have discordant relationships with host phenotypes. Indeed, while the 

species B. longum has been linked to positive health outcomes, such as 

protection from inflammatory bowel disease35, protection from child-

hood malnutrition36, and anti-PD-1 responses37, B. dentium is a known 

oral opportunistic pathogen linked to tooth decay38.

We next aimed to interrogate the genomes of the top 22 strains 

to understand functional potentials that may underpin their strong 

(positive and negative) response associations. We first evaluated them 

for virulence factors and found that they harbored none, suggesting 

that even the negative strains are not prototypical 8pathogens9. To look 

more broadly at strain functional potential, we queried the presence 
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Fig. 2 | Strain-resolution gut microbial signatures outperform clinical 

predictors and cross-validate across tumor histology types. a, Schematic of 

the supervised ML framework. Input features (clinical, microbiome or combined) 

and the target variables (RvsP or PFS12) were split into five folds (four training 

folds, one testing fold). The process was repeated 20 times per iteration, with the 

AUC score used to select the best hyperparameters. CV, cross-validation. b, AUC 

scores for the best iteration of RvsP classifiers for each feature set combination 

during 20 times repeated fivefold cross-validation (100 folds each): clinical 

(yellow), microbiome (blue) and combined (green), at different taxonomic 

resolutions. Data represent the mean (circle) and s.d. (error bars) over the 

100 folds. The linear model (line of best fit) for the AUC score and taxonomic 

rank of microbiome-only feature sets (with shaded 95% confidence interval) 

is superimposed. Kendall τ and P values for the association between the AUC 

score and taxonomic rank of microbiome-only feature sets are indicated. The 

Mann3Whitney U test P value for comparing the AUCs of specific pairwise feature 

sets (depicted by calipers) is also indicated. c, ROC curves for the strain3RvsP 

classifiers retrained using leave-one-histology-cohort-out cross-validation. 

Model training and testing were repeated 100 times, with predictions averaged to 

account for model stochasticity.
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or absence of metabolic pathways using the tool gapseq (Methods). As 

expected, we observed clustering of metabolic potential by phylogeny; 

however, the two negative Ruminococcaceae (strains of the Rutheni-

bacterium lactatiformans and Avimicrobium caecorum species) were 

quite distinct from the five 8positive9 strains (Extended Data Fig. 3c).

We hypothesized that specific metabolic functions may distin-

guish these negative and positive Ruminococcaceae. One metabolite 

of particular interest was butyrate, given that it has been implicated 

in anticancer cytotoxic T cell activation preclinically39341, and fecal 

butyrate has been positively associated with ICB efficacy in clinical 

cohorts42,43. Additionally, although butyrate-producing potential has 

previously been broadly ascribed to Ruminococacceae, more recent 

analyses have revealed marked strain-level variation within this fam-

ily44. Indeed, the acetyl-CoA butyrate pathway (which dominates among 

Firmicutes bacteria) was complete in all (five of five) positive but no 

negative (none of two) top 22 Ruminococacceae (Fig. 3b). In contrast, 

taking a 8strain-agnostic9 approach of quantifying the abundance of 

the acetyl-CoA butyrate terminal enzymes (but)+)buk) in metagenomic 

samples did not reveal a significant enrichment in responders (Fig. 3c),  

highlighting the need for strain-aware approaches to develop 

context-specific functional hypotheses.

Microbial signatures may be ICB regimen specific
To evaluate the external generalizability of our strain3RvsP signature, 

we reanalyzed all comparable shotgun metagenomic cohorts (Meth-

ods and Supplementary Fig. 3). We included cohorts that analyzed 

baseline (±15 days of ICB commencement) fecal samples, performed 

Illumina paired-end shotgun metagenomic sequencing, and provided 

either RECIST BOR (five studies) or pathological response (one study) 

metadata. Including our discovery cohort (CA209-538 cohort), the 

seven studies recruited participants from 11 cities across five countries 

(United States, United Kingdom, Netherlands, Spain and Australia) 

(Fig. 4a) and represent n)=)470 total patients (n)=)383 after excluding 

patients with a BOR of SD). Quality-controlled reads were mapped to 

the same reference library to estimate abundances for the same 1,397 

strains. Although we were mindful that the reference library derived 

from the CA209-538 cohort might not represent all bacterial strains 

in external studies, we were reassured by both the high overall Bowtie 

2 alignment rates (median 79.2387.6% across external studies) and 

the high proportion of quality-controlled reads used for abundance 

estimation after stringent filtering (median 50.7362.1% across external 

studies) (Extended Data Fig. 4a).

A summary of the key characteristics of the included studies is 

provided in Table 2. Given that all external studies evaluated patients 

with melanoma, known to be particularly amenable to ICB, it is not 

surprising that their objective response rates trended higher than 

those in our study that evaluated patients with diverse rare cancer 

types (38384% versus 25%; Fig. 4a). This highlights that tumor type is an 

important variable in determining ICB response but does not preclude 

the existence of universal gut microbiota that may enhance or detract 

from an individual9s likelihood of showing an antitumor ICB response.

A PERMANOVA of individual metadata variables revealed that the 

leading sources of microbial variance across the meta-cohort were 

study site (city) (9.3%) and DNA extraction kit (8.0%) (Extended Data 

Fig. 4b). However, these two factors were also strongly associated 

with one another (chi-squared test P)<)2.2)×)10216), with distinct stud-

ies recruiting participants from specific cities but also using distinct 

DNA extraction kits (Extended Data Fig. 4c,d). Although it would be 

desirable to 8correct9 for DNA extraction kit (which has a well-described 

influence on downstream microbial quantifications45), this would likely 

also mitigate the true biological variance caused by patient geogra-

phy46 (which is important when evaluating the cross-country validity 

of a biomarker). Furthermore, a recent reanalysis of an intratumoral 

microbiome meta-analysis raised concerns that statistical batch cor-

rection may artificially inflate cross-cohort predictions due to data 

leakage47. Therefore, to evaluate the performance of our strain3RvsP 

classifier as robustly as possible, we opted not to adjust abundances 

beyond CLR transformation.

Given their distinct mechanisms of action, we were particularly 

interested in differentially evaluating performance on CICB and 

anti-PD-1 monotherapy cohorts. Of the six external studies, two com-

prised only anti-PD-1 recipients, two comprised only CICB recipients 

and two comprised both and were split based on regimen, creating 

eight external validation cohorts (four CICB, four anti-PD-1). Notably, 

there was a marked difference in the performance of the CA209-538 

strain3RvsP signature between these groups, with overall modest 

external generalizability to CICB cohorts (mean AUC)=)0.65; Fig. 4b) 

but no generalizability to anti-PD-1 cohorts (mean AUC)=)0.51; Fig. 4c).

Intrigued, we sought to use our meta-cohort to evaluate whether 

this difference could also be seen more generally. We thus trained 

and tested strain3RvsP RF classifiers using all strain abundances 

and every pairwise combination of cohorts (nine cohorts, keeping 

2017_Frankel and 2022_Lee split by ICB regimen) and evaluated AUCs. 

Consistent with our previous observation, we found that the predic-

tive performance was better when training and testing on 8concordant9 

cohorts4that is, when the training and test cohorts received the same 

ICB regimen4rather than 8discordant9 cohorts (Fig. 4d). Importantly, 

this was also true for strain3RvsP signatures trained on anti-PD-1 mon-

otherapy cohorts. Taken together, the results showed a significant 

improvement in the cross-study strain3RvsP predictive performance 

in concordant rather than discordant regimen cohorts (Mann3Whitney 

U test P)=)2.8)×)1027).

Discussion
In this study, we used strain-resolved metagenomic classification to 

discover a signature of 22 gut microbial strains associated with response 

to combination ipilimumab (anti-CTLA-4) plus nivolumab (anti-PD-1) 

in a phase 2 trial cohort of Australian patients with diverse rare cancers 

(n)=)106). To our knowledge, this represents the largest gut microbiome 

study of patients treated with CICB published to date. Using supervised 

ML, we demonstrate the value that precise, strain-level gut microbial 

quantifications provide in predicting clinical response or PFS12, exceed-

ing the value of routinely available clinical information or that of higher 

taxonomic rank abundances. Furthermore, we show the external gen-

eralizability of strain-level response signatures across cancer histol-

ogy types and countries, both within the trial (comparing across the 

predetermined histology cohorts) and externally (to metastatic mela-

noma cohorts from other industrialized countries). This was despite a 

Fig. 3 | Firmicutes bacteria dominate the gut microbiome strain–response 

signature. a, Phylogenetic tree of bacterial strains in our custom reference 

library (n)=)1,391 strains, excluding n)=)6 archaea), highlighting the top 22 strains 

(labels are colored by impact (that is, feature importance) on RvsP predictions). 

Four main phyla are shown by the colored ring, with the Ruminococcaceae, 

Oscillospiraceae and Lachnospiraceae families highlighted. The scale for 

phylogenetic distance is shown in the center of the tree. b, Phylogenetic tree 

of the top 22 strains, with the tips colored by strain impact and sized by strain 

prevalence. The adjacent heat map depicts the presence or absence of genes 

within the primary butyrate-producing (acetyl-CoA) pathway. Full enzyme 

(encoding gene) names: acetyl-CoA acetyltransferase (thl), ³-hydroxybutyryl-

CoA dehydrogenase (bhbd), crotonase (cro), butyryl-CoA dehydrogenase (bcd), 

and the alternative terminal enzymes butyryl-CoA:acetate CoA transferase (but) 

and butyrate kinase (buk). c, Boxplots of the sample-wise abundance of butyrate 

acetyl-CoA terminal enzymes (but)+)buk), split by patient response (progression 

(P) n)=)51, response (R) n)=)26). Boxplot center line indicates the median; box 

limits indicate the upper and lower quartiles; and whiskers indicate 1.5× the 

interquartile range. Abundance is normalized as reads per million (RPM). P value 

by the Mann3Whitney U test is indicated.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-024-02823-z

strong heterogeneity in microbiome composition across cohorts, likely 

influenced by divergent fecal collection and DNA extraction methods. 

Finally, we observed a striking difference in the cross-study performance 

of response classifiers trained and tested on concordant versus discord-

ant ICB cohorts, implying that different microbial relationships likely 

underlie these distinct treatment regimens.
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Given the success of combination anti-PD-1 and anti-CTLA-4 

ICB across diverse cancers, there is great interest in defining 

tumor-agnostic pretreatment biomarkers, including through using 

gut microbial abundance signatures. A recent review by Thomas et al.20 

defined cross-cancer ICB response (8Gut OncoMicrobiome Signature9) 

implemented using species-level abundances. This study differs, first, 

in using strain-level signatures and, second, by deliberately splitting 

cohorts into those receiving anti-PD-1 monotherapy and those receiv-

ing anti-PD-1 plus anti-CTLA-4 CICB. Of note, although Thomas et al. 

found good left-out performance for the exclusively anti-PD-1-treated 

NSCLC and renal cell carcinoma cohorts, performance was poor among 

left-out melanoma cohorts, potentially due to patients receiving mono-

therapy and those receiving CICB being admixed.

Although the external performance of the CA209-538 strain3

response signature fell short of what is required for clinical use, its 

performance was remarkably better in CICB (AUC)=)0.67, 0.40, 0.78 

and 0.75) than anti-PD-1 (AUC)=)0.46, 0.44, 0.58 and 0.54) melanoma 

cohorts from other industrialized countries. Consistent with this, 

strain3response signatures trained on external cohorts were also 

superior when tested on concordant rather than discordant regimen 
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Fig. 4 | Meta-analysis reveals that gut microbiome strain–response 

signatures are ICB regimen specific. a, World map showing the studies included 

in our meta-analysis. Bordered circles depict the coordinates of recruiting 

sites (cities). Pie charts depict the proportion of patients with tumor response, 

progression or SD. The area of the pie charts depicts the sample size. a2022_

Simpson studied neoadjuvant ipilimumab)+)nivolumab for stage III melanoma 

and thus used pathological response criteria (International Neoadjuvant 

Melanoma Consortium criteria); all other studies used the RECIST 1.1 criteria. 

bFor this study, only the subset of patients (n)=)37) with stool collected within 15 

days of the start of ICB therapy was included in the meta-analysis. b, ROC curve of 

strain3RvsP classifiers trained on the discovery cohort (CA209-538) and tested 

on external CICB cohorts separately. c, ROC curve of strain3RvsP classifiers 

trained on the discovery cohort (CA209-538) and tested on external anti-PD-1 

monotherapy cohorts separately. d, Heat map denoting the AUC scores for 

strain3RvsP classifiers trained on one dataset (column) and tested on another 

(rows). Panels are faceted by ICB regimen (CICB or anti-PD-1 monotherapy).
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cohorts. Thus, we believe that this work makes a strong case for dis-

tinct microbial consortia underpinning response or nonresponse to 

each regimen. This is biologically plausible, given that we know that 

CICB has a distinct mechanism of action compared to anti-PD-1 mono-

therapy48 and distinct baseline tumor immune microenvironment 

signatures49. Furthermore, the addition of anti-CTLA-4 has a profound 

effect on gut barrier permeability50,51, potentially changing the influ-

ence of the gut microbiome on ICB response. Nevertheless, the poor 

generalizability of the CA209-538 strain3RvsP signature to anti-PD-1 

cohorts is still intriguing, given the similarity in key positive strains 

and those species or genera previously associated with response. For 

example, Faecalibacterium has been linked to the efficacy of anti-PD-1 

monotherapy in patients with melanoma16 or hepatobiliary15 cancers, 

and B. longum has been linked to anti-PD-1 efficacy in patients with 

melanoma37 and NSCLC52. Therefore, we postulate that the distinction 

may lie in the negative taxa, with many of the top negative strains in 

our signature being members of the Lachnospiraceae family (pre-

viously broadly associated with anti-PD-1 response in melanoma 

cohorts19). This is also conceptually consistent with the observation 

of more discrepancies in the pretreatment tumor immunotranscrip-

tomic landscape of anti-PD-1 and CICB nonresponders compared  

to responders49.

This work has several limitations that should be addressed in 

the future. First, despite our relatively large discovery cohort and 

meta-analysis, the individual cohort and total sample sizes are 

still small, limiting the statistical power of our signature. Future 

meta-analyses will benefit from larger, more geographically diverse 

cohorts, ideally with standardized, best-practice approaches to fecal 

collection and DNA extraction methods45. Moreover, although we used 

a state-of-the-art bioinformatics pipeline to generate and quality con-

trol MAGs to represent study-specific strains (many of which are new or 

uncultivated), they still potentially harbor errors (such as fragmenta-

tion, assembly breaks and contamination)53. Although not possible due 

to the collection medium used in this study, our group has previously 

demonstrated large-scale fecal strain-culturing methods54, which, when 

coupled with whole-genome sequencing, have allowed us to build com-

prehensive, context-specific genome reference libraries that improve 

the accuracy of reference-based metagenomic taxonomic classifica-

tion55. Finally, such patient-specific culturing is necessary to perform 

in vitro and in vivo testing of microbial strains or consortia to derive 

precise mechanistic insights into their associations with response or 

nonresponse to ICB and to confirm the direction of causality.

Until then, we believe that this work provides a number of readily 

implementable insights to help future research and development in this 

Table 2 | Characteristics of studies included in the meta-analysis

Characteristics Study

CA209-538 

(n)=)106)

2022_Simpson43 

(n)=)38)

2021_McCulloch19 

(n)=)37)a

2022_Lee18 

(n)=)165)

2021_Andrews59 

(n)=)46)

2018_Matson37 

(n)=)39)

2017_Frankel60 

(n)=)39)

Country Australia Australia USA UK,
Netherlands,
Spain

USA USA USA

Cancer type (%) UGB (36%),
GYN (34%),
NEN (30%)

MEL (100%) MEL (100%) MEL (100%) MEL (100%) MEL (100%) MEL (100%)

ICB regimen (%) CICB (100%) CICB (100%) Anti-PD-1 (100%) CICB (33%),
anti-PD-1 (61%),
anti-CTLA-4 (7%)

CICB (100%) Anti-PD-1 
(100%)

CICB (62%),
anti-PD-1 (36%),
anti-CTLA-4 (3%)

Response criteria RECIST 1.1 Pathological (INMC) RECIST 1.1 RECIST 1.1 RECIST 1.1 RECIST 1.1 RECIST 1.1

Response

 CR 3.8% PathR: 84% 5.4% 13% 11% 5.1% 13%

 PR 21% 51% 26% 52% 33% 36%

 SD 27% 22% 17% 11% 31% 13%

 PD 28% Non-pathR: 16% 22% 42% 26% 31% 39%

 cPD 20% 0% 1.8% 0% 0% 0%

Stool collection kit OMR-200 EasySampler EasySampler LO4TF kits,
MA4plain tube,
NL4plain tube,
LD4OMR-200,
BL4OMR-200

OMR-200 EasySampler NR

DNA extraction kit FastDNA soil FastDNA feces PowerSoil LO4TF MagMAX,
MA4TF MagMAX,
LD4TF MagMAX,
NL4TF MagMAX,
BL4PowerFecal

PowerSoil PowerFecal Other

Sequencer (bases 
per read)

NovaSeq 
(2)×)151)

NovaSeq  
(2)×)151)

NovaSeq  
(2)×)151)

NovaSeq  
(2)×)151)

NextSeq  
(2)×)151)

NextSeq 
(2)×)151)

HiSeq  
(2)×)100)

Clean PE reads (millions)

 Minimum 9.10 5.05 2.72 4.38 12.8 19.3 18.1

 Median 20.4 22.5 30.5 20.7 40.0 35.6 45.4

 Maximum 53.8 34.5 72.2 104 69.8 77.7 59.9

The clinical and technical characteristics of the studies included in the meta-analysis are summarized. Published studies are denoted by 8year_author9. USA, United States of America; UK, 

United Kingdom; MEL, melanoma; INMC, International Neoadjuvant Melanoma Consortium; LO, London; MA, Manchester; NL, Netherlands; LD, Leeds; BL, Barcelona; TF, Thermo Fisher 

Scientific; PathR, pathologic response; NR, not reported; PE, paired-end. aOf the original 8Pittsburgh early cohort9 (n)=)63), n)=)37 had their analyzed stool sample collected between day 215 and 

day 15 of starting ICB and were therefore deemed eligible.
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field. First, it highlights the added value of strain resolution in developing 

gut microbial ICB biomarkers. There is now ample evidence that intraspe-

cies variation of gut microbiota can substantially change their effect on 

hosts, first described for enteric pathogens (for example, Escherichia 

coli56) but more recently demonstrated for immunomodulatory com-

mensals57,58, providing further conceptual support for this notion. Sec-

ond, it suggests that strain signatures may be generalizable across cancer 

types and geographic locations, supporting investment in developing 

8pan-cancer9 gut microbial diagnostics and/or therapeutic ICB adjuncts. 

Lastly, the distinct performance of CICB and anti-PD-1 gut microbial sig-

natures suggests that we should disaggregate these regimens in future 

analyses to define the relationships between gut microbiota and ICB 

more precisely in a regimen-specific fashion and, eventually, to use this 

information in personalizing the care of cancer patients.
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Methods
CA209-538: clinical trial procedures
CA209-538, titled ‘A phase 2 trial of ipilimumab and nivolumab for the 

treatment of rare cancers’, is an investigator-initiated, prospective, 

multicenter, single-arm clinical trial (NCT02923934). The study was 

approved by the Austin Health (Melbourne, Australia) Human Research 

Ethics Committee (approval: HREC/16/Austin/152).

Between October 2017 and February 2020, 120 adult patients with 

rare cancers were recruited across five sites in southeastern Australia 

(Austin Health, Peter MacCallum Cancer Centre, Monash Health, Black-

town Hospital and Albury Wodonga Health/Border Medical Oncology). 

Patients were recruited into three prespecified 8histology cohorts9 of 

approximately equal sizes: (1) UGB, comprising cholangiocarcinomas, 

gallbladder cancers, duodenal cancers and gastrointestinal stromal 

tumors; (2) NEN, including neuroendocrine tumors or carcinoma of 

any primary organ (except small cell lung carcinoma) or adrenocorti-

cal carcinoma; and (3) GYN, comprising diverse histologies including 

carcinosarcoma, low-grade serous carcinoma and clear-cell carcinoma 

of gynecological organs.

Patients were eligible if they had a histologically confirmed diagno-

sis of a target rare cancer (UGB, NEN or GYN cancers) that was advanced 

or metastatic, an Eastern Cooperative Oncology Group (ECOG) perfor-

mance status of 031, a measurable tumor lesion per RECIST 1.1 criteria61 

and screening blood laboratory values largely within normal limits. 

Prior systemic therapy or radiotherapy was permitted if completed 

at least 4 or 2 weeks, respectively, of the first administration of the 

study drugs and all related adverse events had stabilized or returned to 

baseline. The exclusion criteria included active central nervous system 

metastases (brain or leptomeningeal); prior CICB (monotherapy was 

permitted); prior malignancy active in the previous 3 years; active, 

known or suspected autoimmune conditions; and requirement for 

systemic corticosteroids >10)mg prednisolone daily or equivalent. 

Participants provided fully informed written consent, including for 

the collection and analysis of biospecimens (including fecal samples) 

and sharing of anonymized data as part of research collaborations. 

The data cutoff was May 7, 2022, providing a minimum of 26 months 

of follow-up for all participants.

All patients were intended to be treated with CICB in the form 

of nivolumab 3)mg)kg21 and ipilimumab 1)mg)kg21 three weekly for 

four doses (induction), followed by nivolumab monotherapy main-

tenance (3)mg)kg21 two weekly or 480)mg four weekly after a protocol 

amendment) for up to 2 years or until PD or unacceptable toxicity. 

The trial9s prespecified primary endpoint was to determine the clini-

cal efficacy of CICB in patients with rare cancers using the RECIST 1.1 

BOR61. In brief, BOR was determined at data cutoff and defined as the 

investigator-assessed RECIST 1.1 best response designation at any 

on-trial time point until the date of objectively determined progres-

sion per RECIST 1.1 or the date of subsequent anticancer therapy com-

mencement. For participants without documented progression or 

subsequent therapy, all available response designations contributed 

to their BOR assessment. The trial9s minimum duration criterion for 

the determination of SD was 9 weeks.

For the assessment of radiographic response, all patients were 

intended to undergo whole-body cross-sectional imaging with com-

puted tomography or magnetic resonance imaging at baseline (within 

28 days before registration), 12 weeks, 18 weeks and then 12 weekly 

thereafter (±1 week). Patients with rapid disease-related clinical dete-

rioration who were thus unable to undergo restaging imaging at the 

first restaging time point were deemed to have cPD. PFS and OS were 

determined from the date of first treatment; the efficacy and safety out-

comes for various trial subcohorts have been reported previously23326. 

Given the accumulating evidence of 8pseudoprogression9 in a minority 

of ICB recipients62, under the trial protocol, ICB therapy could extend 

beyond RECIST 1.1-defined PD if there was investigator-assessed clinical 

benefit and good participant tolerance of the study drugs until there 

was evidence of a further 10% or greater increase in target lesion dimen-

sions or further new disease sites.

Other clinical metadata. Detailed information on tumor characteris-

tics, demographic factors, blood laboratory values and concomitant 

medications was collected by the site investigators into an electronic 

case report form. For this analysis, we included the following 15 clini-

cal metadata variables, as we hypothesized their potential relevance 

to treatment response and/or gut microbial compositions based on 

our literature review: patient age (years, at time of trial commence-

ment), sex, body mass index, ECOG performance status, histology 

cohort (based on the pathology report), extent of measurable tumor 

(based on the sum of RECIST target lesion diameters calculated using 

the computed tomography scan at trial screening), study site, season 

of fecal sample collection, antibiotic use, proton-pump inhibitor use, 

chemotherapy use, blood NLR, platelet count, albumin levels and lac-

tate dehydrogenase levels (Supplementary Table 3). Only one partici-

pant had received prior ICB monotherapy (a NEN cohort patient treated 

with anti-PD-1 therapy ceased 20 months before trial treatment); given 

that only one patient was involved, this was not included as a clinical 

variable. Antibiotic, proton-pump inhibitor and chemotherapy use 

was defined as their recorded use within the 8 weeks before cycle 1 

of study treatment, given the evidence of antibiotic perturbations 

of gut microbial compositions lasting this duration63. The different 

antibiotics used were amoxicillin, amoxicillin plus clavulanic acid, 

ampicillin, azithromycin, cefalexin, cefazolin, ceftriaxone, clinda-

mycin, co-trimoxazole, doxycycline, flucloxacillin, gentamicin, nor-

floxacin, penicillin, piperacillin plus tazobactam and metronidazole. 

As only 9 of the 106 microbiome-evaluable patients had used any anti-

biotics in this 8-week period, they were not further subcategorized 

based on class or antimicrobial coverage. The different proton-pump 

inhibitors used were esomeprazole, pantoprazole, rabeprazole  

and omeprazole.

Fecal sample collection. The collection of fecal samples was added 

to the study protocol in version 5 ( July 24, 2017). Participants were 

trained and provided OMR-200 8OMNigene GUT kits9 (DNA Genotek) 

to collect a fecal sample immediately before treatment (from day 27 to 

day 0 relative to cycle 1 of trial treatment). OMR-200 kits are designed 

to stabilize DNA and have been shown to enhance DNA quantifications 

and stability across storage temperatures relative to nonpreserva-

tive alternatives64. Fecal samples were express-shipped to the Olivia 

Newton-John Cancer Research Institute, where they were then frozen at 

280)°C for long-term storage. DNA was extracted using the FastDNA kit 

(MP Biomedicals), including a negative control using ultrapure water. 

DNA samples were shipped to the Wellcome Sanger Institute on dry ice 

for shotgun metagenomic sequencing.

Fecal shotgun metagenomic sequencing and analysis
DNA sequencing and quality control. DNA samples were quantified 

using a Qubit fluorometer, and whole metagenome libraries were 

deeply sequenced on a single run of the NovaSeq 6000 S4 platform 

(2)×)150-bp paired-end reads), generating a median of 20,477,028 

raw paired-end reads per sample (interquartile range 19,244,5303

22,056,539 paired-end reads). Raw sequencing data were first human 

decontaminated by the Wellcome Sanger Institute core sequencing 

team by removing read pairs in which one or both aligned to the GRCh37 

human genome assembly using bwa (v0.7.17; 8aln9 then 8sampe9 com-

mands)65. These data were further quality controlled using the metaW-

RAP (v1.2)66 8reads_qc9 pipeline, which first trimmed low-quality bases 

using trim-galore (v0.6.7)67 (default parameters) and then performed a 

second pass of human decontamination with BMTagger (v3.101)68 using 

the GRCh38 human genome assembly. Finally, a median of 20,359,318 

clean paired-end reads per sample (interquartile range 19,014,8433

21,771,873) were available for further analysis.

http://www.nature.com/naturemedicine
https://clinicaltrials.gov/ct2/show/NCT02923934


Nature Medicine

Article https://doi.org/10.1038/s41591-024-02823-z

MAG assembly. Quality-controlled paired-end reads were first assem-

bled individually with SPAdes (v3.14) using option 8-meta9 (refs. 69,70). 

Unassembled reads were then recovered by mapping raw reads back to 

metaSPAdes-assembled contigs using bwa 8mem9 (v0.7.17)65, followed 

by reassembly with MEGAHIT (v1.2.4)71 using default parameters. Sub-

sequently, the sample-wise metaSPAdes and MEGAHIT assemblies were 

combined and sorted, with short contigs (<1,500)bp) removed. The 

resulting assemblies were then independently binned with MetaBAT 

2 (v2.13)72, MaxBin2 (v2.2.4)73 and CONCOCT (v0.4)74 using default 

parameters and a minimum contig length threshold of 1,500)bp (option 

8--minContig 15009). The depth of contig coverage required for the bin-

ning was inferred by mapping the raw reads back to their assemblies 

with bwa-mem and then calculating the corresponding read depths 

for each contig with samtools (v1.5)75 (8samtools view -Sbu9 followed by 

8samtools sort9), together with the 8jgi_summarize_bam_contig_depths9 

function in MetaBAT 2.

Thereafter, individual bin sets produced by the three binning 

programs were consolidated into a refined bin set consisting of the 

best version of each bin based on the most optimal genome completion 

and contamination metrics among all seven versions of hybridized bin 

sets (MetaBAT 2, MaxBin2, CONCOCT, MetaBAT 2)+)MaxBin2, MetaBAT 

2)+)CONCOCT, MaxBin2)+)CONCOCT, MetaBAT 2)+)MaxBin2)+)CON-

COCT), as estimated by CheckM (v1.1.2)76 using the metaWRAP (v1.2) 

8bin_refinement9 pipeline66. Finally, the final bin sets were further 

improved by performing reassembly with SPAdes in 8--careful9 mode 

after both strict and permissive mapping of raw reads and keeping 

the bin sets with the best CheckM metrics. In total, 4,277 MAGs with 

g50% completion and f5% contamination were generated. These were 

then further quality controlled, now for g90% completeness and f5% 

contamination using CheckM2 (v0.1.3)77 and for strain-level contamina-

tion using GUNC (v1.0.5)78 to finally identify 2,209 quality-controlled 

nc-MAGs consistent with the MIMAG (minimum information about 

a MAG) criteria79. Finally, study-specific MAGs were taxonomically 

classified (using GTDB r207 taxonomy) with GTDB-tk (v2.1)80, pplacer 

(v1.1)81 and fastANI (v1.3)82.

Generation of a custom, MAG-informed reference database. As the 

recovery of MAGs may be challenging for some (for example, low abun-

dance or difficult to assemble) strains, we sought to supplement our 

study-specific strain genome reference database with SRGs from GTDB 

r207 (62,291 bacterial and 3,412 archaeal genomes) to create a 8hybrid9 

reference library. To identify a relevant shortlist of GTDB SRGs, we first 

mapped quality-controlled reads from our study to the full GTDB r207 

SRG database with Bowtie 2 (v2.3.5)83 and inStrain (v1.3.0)84 (using 

default settings in 8--database9 mode). After further filtering of reads 

mapped to <0.5 SRG breadth, we determined that n)=)1,076 SRGs were 

present. We combined these SRGs with the study-specific nc-MAGs 

(total 3,285) and used dRep (v2.0.0)85 to dereplicate the combined 

genome set to 98% identity using the settings 8-comp 90 -con 5 --S_algo-

rithm fastANI --S_ani 0.98 --cov_thresh 0.50 --multiround_primary_clus-

tering --greedy_secondary_clustering9. An absolute nucleotide identity 

(ANI) threshold of 98% was chosen as a compromise between offering 

subspecies (strain-level) resolution for read classification while still 

mitigating 8read stealing9 due to overly similar reference genomes (as 

detailed in the inStrain documentation). Ultimately, n)=)1,397 genomes 

were selected using dRep and formed our 8hybrid9 custom strain refer-

ence database. Of these, just over half were study-specific nc-MAGs 

(714, 51%), whereas the remainder were either near-complete isolate 

(423, 30%) genomes or nc-MAG (260, 19%) SRGs. Using GTDB-tk, we 

could classify 1,363 of the 1,397 genomes to 904 separate GTDB r207 

species clusters (898 bacteria, 6 archaea), with the remaining 34 (32 

bacteria, 2 archaea) representing completely new species. For the 

904 8known9 species, 705 species had 1 strain, whereas 199 species had 

2321 strains each. The species with n)=)21 distinct strains by 98% ANI 

delimitation was Ruminococcus D bicirculans (Supplementary Table 16).

Read mapping to a custom strain database. We first used Bowtie 

2 to generate a mapping index and then to align reads to our custom 

reference database. We then used the inStrain profile, now with set-

tings 8--min_read_ani 0.95 --min_genome_coverage 19, to perform more 

precise quality control of the mapped reads. InStrain uses informa-

tion on paired-end read orientation, mapQ score, insert size and ANI 

value to filter read mappings stringently, resulting in high-confidence 

quantifications.

To enhance our confidence about read mappings further, we 

removed reads mapped with <0.5 genome breadth coverage, as low 

genome breadth might indicate mapping to mobile genetic elements or 

mismapping. For our discovery cohort, a median of 50% (range 39373%) 

of quality-controlled reads were ultimately used for abundance estima-

tion of strains within each sample (Supplementary Fig. 1).

We finally used Decontam (v1.16.0)86 to screen for potential 

contaminants. Reassuringly, after the above steps, no bacteria were 

identified in our negative control sample for the discovery cohort. 

Based on the 8frequency9 method (inverse correlation between the 

abundance of strains and the DNA concentration of submitted sam-

ples), one strain was identified as a potential contaminant in over 

10% of samples from our discovery cohort (CA209-538 cohort) and 

was thus removed (Pseudomonas E sp002874965; Supplementary  

Fig. 4).

Downstream analysis of taxonomic abundances. Most downstream 

microbiome analyses were performed in the R (v4.1.0) environment, 

using 8phyloseq9 (v1.12.0)87, 8microbiome9 (v1.12.0)88 and 8vegan9 (v2.6.4). 

Specifically, alpha diversity was computed using the Shannon diversity 

index on strain relative abundances (each sample9s sum abundances 

transformed to a sum of 1). As we found no association between the 

Shannon diversity index and clean paired-end reads in our discovery 

cohort (Pearson R)=)0.068, P)=)0.49), we did not perform rarefaction. 

Beta diversity was calculated using the strain Aitchison distance, a 

measure of Euclidean distance of CLR-transformed abundances, com-

puted using log(a/gma), where a is the species relative abundance and 

gma is the sample geometric mean relative abundance (with a small 

pseudocount of one-half the minimum nonzero abundance added 

to all values to account for zeros). As CLR abundances may better 

account for the inherent compositionality of microbial abundance 

data89, CLR-transformed feature abundances were exclusively used 

for the supervised ML analyses.

Generation and visualization of phylogenetic trees. For whole bac-

terial kingdom genome sets, approximately maximum-likelihood 

phylogenetic trees were constructed using GTDB-tk (v2.1.0)80 (align-

ing 120 ubiquitous bacterial genes) and FastTree (v2.1.0)90 using the 

WAG model (Fig. 3a,b). For the tree of Faecalibacterium genomes, 

pairwise whole-genome ANI distances were computed using FastANI82 

(many-to-many mode), which was converted into a distance matrix and 

then to a Newick-format tree using rapidNJ (v2.3.3)91 (Supplementary 

Fig. 2). Trees were visualized using the R package ggtree (v3.2.1)92.

Functional annotation. To evaluate the presence of virulence factor 

genes, we used abricate (v1.0.1)93 to screen relevant strain genomes 

against the VFDB (Virulence Factor Database)94. To profile strain met-

abolic potential broadly, we used gapseq (v1.2)95 using the 8gapseq 

find9 command with default settings. Briefly, this involved perform-

ing a homology search of genomes (using TBLASTN (https://doi.org/ 

10.1186/1471-2105-10-421)) for 28,768 reactions from 2,910 metabolic 

pathways (curated from MetaCyC and manually). Metabolic pathways 

were deemed present if g80% complete (lowered to g67% if 8key9 reac-

tions were present).

To evaluate butyrate production potential specifically, we used 

a previously validated multilevel approach involving hidden Markov 

models (HMMs)44,96. Briefly, we used a published database of 1,716 

http://www.nature.com/naturemedicine
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genomes and 19,284 genes to build HMM profiles (using HMMER 

v3.2.1; http://hmmer.org/) for the six genes encoding the acetyl-CoA 

butyrate-producing pathway (responsible for butyrate production 

through carbohydrate degradation). These genes are acetyl-CoA 

acetyltransferase (thl), ³-hydroxybutyryl-CoA dehydrogenase (bhbd), 

crotonase (cro), butyryl-CoA dehydrogenase (bcd), and the alterna-

tive terminal enzymes butyryl-CoA:acetate CoA transferase (but) and 

butyrate kinase (butk). We then used these models to screen the strain 

genomes for the presence of these respective genes. As an orthogonal 

approach, we also mapped cleaned sample paired-end reads to the 

above genes9 sequences using Bowtie 2 and then used inStrain 8quick 

profile9 to count mappings to estimate their sample-wise gene abun-

dance (normalized per million reads) agnostic of source strain. The 

output is available in Supplementary Tables 13 (strain_top22_acetyl-

coa_pwy) and 14 (sample_acetylcoa_pwy).

Supervised ML analysis
Supervised ML analyses were performed in the Python 3 environ-

ment using the packages sklearn (v1.1.1)97, imblearn (v0.9.1)98 and their 

dependencies. The supervised ML pipeline involved a preprocess-

ing step before model training and testing, performed separately 

for each training and testing instance to ensure no data leakage. This 

involved standard-scaling numerical features (computed using the 

formula z)=)(x)−)u)/s, where x is the feature value (for example, the 

CLR-transformed strain abundances), u is the mean of the fold samples 

and s is the s.d. of the fold samples) and one-hot encoding categorical 

features. Subsequently, only before classifier training (but not test-

ing), classes of the target variable (RvsP or PFS12) were balanced with 

random oversampling with replacement.

We chose to use RF as our classifier, given its, on average, superior 

performance using microbial feature sets in previous benchmarking 

studies31. RF uses bootstrapped data to create an ensemble of decision 

trees (each trained on a subset of features), with the ultimate classifi-

cation based on consensus; thus, it is feature scale invariant and able 

to capture nonlinearities and is also interpretable using TreeSHAP 

(described subsequently).

Our hyperparameter tuning procedure involved a random hyper-

parameter search over a broad array of options with 1,000 separate 

combinations tested, aiming to maximize the ROC AUC averaged over 

20 times repeated fivefold cross-validation (that is, 100 separate mod-

els trained and tested (splits), for each 1,000 iterations, for each feature 

and classifier combination).

ROC AUC is a popular classifier performance metric that evalu-

ates the discriminative performance across all potential decision 

thresholds, thus allowing for a head-to-head comparison of differ-

ently calibrated classifiers99. Ultimately, the best hyperparameter 

combination (based on mean AUC) was selected and referred to as the 

8tuned9 pipeline. The optimal hyperparameters and AUC scores for all 

100 splits for all full feature sets are listed in Supplementary Table 9 

(hyperparam_tuning_all).

To evaluate model performance, we used cross-validation (for 

example, leave-one-histotype-out cross-validation) or completely 

separate training and test cohorts (for example, training a model using 

one study cohort and then testing the fitted model on another cohort). 

Whenever evaluating model performance, training and testing pro-

cedures were repeated 100 times, and the resultant predictions were 

averaged to account for the stochasticity of our RF pipeline. As with 

hyperparameter tuning, ROC AUC was our metric of choice for gaug-

ing model performance.

Feature importances were evaluated with the 8shap9 package using 

the TreeExplainer() function. Based on the foundation of game theory, 

TreeExplainer computes the influence of each feature (strain abun-

dance) in determining the RF classifier9s local (per-sample) prediction. 

Therefore, we computed global feature importances (cohort-wide aver-

age of the absolute TreeExplainer scores) and imputed the importance 

8direction9 (that is, positive or negative influence on response predic-

tion) by constructing a simple linear model between the feature values 

and SHAP values. We repeated this procedure 1,000 times to account 

robustly for the RF pipeline9s stochasticity. The global feature impor-

tance and s.d. values of all features are listed in Supplementary Table 12  

(strain_importance).

Literature review and meta-analysis of relevant published 
datasets
We sought to identify all published clinical datasets that met the fol-

lowing criteria:

 1. Evaluated baseline fecal microbiota from patients with cancer 

who were about to commence only ICB (anti-PD-1, anti-CTLA-4 

or CICB) therapy. 8Baseline9 samples were defned as those 

collected between day 215 and day 15 relative to the start of ICB 

to ensure that the profle refected the patient9s gut microbial 

context immediately before treatment and that the gut micro-

bial profle had not been already afected by ICB therapy (for 

example, anti-CTLA-4 appears to modify gut barrier integrity51 

and thus could feasibly change microbial compositions).

 2. Used short-read, paired-end shotgun metagenomic sequenc-

ing (to allow us to standardize and maintain stringency in our 

bioinformatic pipeline and quality control steps).

 3. Reported tumor response. To be pragmatic, we accepted 

radiographic (using RECIST 1.1) or pathological response. How-

ever, we excluded studies that reported only PFS12 or where 

response was binned with SD.

To find all such datasets, we performed a structured PubMed 

database search combining the following three search strings that 

used both MeSH (Medical Subject Headings) terms and title and/or 

abstract keywords:

8neoplasms9[MeSH Major Topic] OR 8cancer9[Title/Abstract] OR 

8malignancy9[Title/Abstract] OR 8tumor9[Title/Abstract]

OR

8immune checkpoint inhibitors9[MeSH Terms] OR 

8pembrolizumab9[Title/Abstract] OR 8nivolumab9[Title/Abstract] 

OR 8atezolizumab9[Title/Abstract] OR 8avelumab9[Title/Abstract] 

OR 8durvalumab9[Title/Abstract] OR 8cemiplimab9[Title/Abstract] 

OR 8dostarlimab9[Title/Abstract] OR 8ipilimumab9[Title/Abstract] 

OR 8tremilimumab9[Title/Abstract] OR 8immunotherapy9[Title/

Abstract] OR 8immune checkpoint9[Title/Abstract]

OR

8microbiota9[MeSH Terms] OR 8metagenome9[MeSH Terms] OR 

8metagenomics9[MeSH Terms] OR 8microbiome9[Title/Abstract] 

OR 8microbiota9[Title/Abstract]

In total, this search yielded 1,181 records up to December 31, 2022. 

Titles and abstracts were manually reviewed to identify a total of 28 

unique studies meeting eligibility criterion 1. A manual bibliography 

search yielded a further three studies meeting eligibility criterion 1 

(Supplementary Table 17 (lit_review)). Of these, 19 studies used shotgun 

metagenomics, and 13 studies made these raw data available. Three 

studies were excluded as the shotgun metagenomic data were single end 

(Ion Torrent). Finally, of the remaining ten studies, four were excluded as 

they did not report response, yielding six studies that could be included 

in our meta-analysis (see Supplementary Fig. 3 for a PRISMA-style flow-

chart). Metadata for each cohort were curated from the corresponding 

publication tables or relevant sequencing repositories (for example, 

Sequence Read Archive, European Nucleotide Archive).

http://www.nature.com/naturemedicine
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Shotgun metagenomic sequencing data for the six evaluable 

cohorts were downloaded and analyzed using a uniform bioinformatic 

procedure (as described earlier), including FASTQ file quality control 

and human DNA decontamination, and then read mapping to an identi-

cal custom strain database (generated from CA209-538 MAGs) using 

identical settings of Bowtie 2 and inStrain. Despite a wide range in the 

number of quality-controlled paired-end reads per sample, in general, 

all were deeply sequenced (Table 2). Subsequent downstream analysis 

of gut microbial profiles and supervised ML analyses were performed 

using identical methods to those previously described.

Statistical analysis
Statistical tests are cited in the text. In general, nonparametric statisti-

cal tests were preferred (all were two-sided). To determine associations 

between an ordinal and a numeric variable (for example, BOR versus 

a numeric metadata variable), we used the Kendall τ test. For associa-

tions between a binary and a numeric variable, the Mann3Whitney U 

(also known as the Wilcoxon rank-sum) test was used. For associations 

between a nonordinal categorical variable and a numeric variable, 

the Kruskal3Wallis test was used. The threshold for significance was 

set as a two-tailed P value of <0.05. Data were processed and visual-

ized using the R packages 8tidyverse9 (v2.0.0)100, 8ggpubr9 (v0.6.0), 

8survival9 (v3.5.5)101, 8survminer9 (v0.4.9) and 8table19 (v1.4.3) and the 

Python packages 8numpy9 (v1.23.3)102, 8pandas9 (v1.4.3) and 8matplotlib9 

(v3.5.1)103. For all boxplots, the center line indicates the median, box 

limits indicate the upper and lower quartiles, and whiskers indicate 

1.5× the interquartile range.

Reporting summary
Further information on research design is available in the Nature 

Portfolio Reporting Summary linked to this article.

Data availability
All CA209-538 fecal shotgun metagenomic sequencing data (after 

first-pass human decontamination) have been deposited to the Euro-

pean Nucleotide Archive (study accession no. ERP134027). The 1,397 

quality-controlled (near-complete) study-specific genomes used 

as the custom reference database have been deposited to Zenodo  

(https://doi.org/10.5281/zenodo.10450122). CA209-538 clinical meta-

data and strain abundance data necessary to replicate our analyses 

are provided in the Supplementary Tables. The six publicly available 

shotgun metagenomics datasets were downloaded using the following 

accession numbers: EGAS00001006982 (2022_Simpson), PRJEB43119 

(2022_Lee), PRJNA762360 (2022_McCulloch), EGAD00001006734 

(2021_Andrews), PRJNA399742 (2018_Matson) and PRJNA397906 

(2017_Frankel). Permission to access the 2021_Andrews raw sequenc-

ing dataset was kindly provided by J. Wargo and The University of 

Texas M.D. Anderson Cancer Center. Permission to access the 2022_

Simpson raw sequencing data was kindly provided by G. Long and 

the Melanoma Institute of Australia. Associated sample-level clinical 

metadata for external datasets were collected from their relevant pub-

lications, the relevant sequencing repository or an associated GitHub  

repository.

Code availability
No unique software or computational code was created for this study. 

The relevant code to replicate our supervised machine learning analy-

ses of CA209-538 data, using the data in Supplementary Table 8 (meta-

data_and_clr_abundances), is available at https://github.com/agunjur/

cancer_microbiome_CICB/.
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Extended Data Fig. 1 | Clinical and gut microbiome characteristics of the 

CA209-538 clinical trial cohort. a, Kaplan-Meier curve of progression-free 

survival stratified by histology (UGB n)=)38, NEN n)=)32, GYN n)=)36). Log-rank 

test p-value for OS duration across groups printed. Chi-squared test p-value 

shown for proportion of OS12 per group printed. b, Kaplan-Meier curve of 

progression-free survival stratified by histology (UGB n)=)38, NEN n)=)32, GYN 

n)=)36). Log-rank test p-value for PFS duration across groups printed. Chi-

squared test of independence p-value shown for proportion of PFS12 per group 

printed. c, Boxplots of patient baseline blood albumin (g/L) and NLR levels 

(log-transformed) by BOR category (cPD n)=)21, PD n)=)30, SD n)=)29, PR n)=)22, 

CR n)=)4). Boxplot centre line= median; box limits= upper and lower quartiles; 

whiskers= 1.5x interquartile range. Linear model line-of-best-fit for respective 

variables (albumin and NLR) versus BOR (with shaded 95% confidence interval) 

superimposed (in grey). Kendall τ and p-value for association between respective 

variables (albumin and NLR) and BOR printed. Pairwise Mann-Whitney  

U test p-values for cPD vs other groups summarized (*: p)<)0.05, **: p)<)0.01,  

***: p)<)0.001). Exact p-values as follows: Albumin: cPD vs PD p)=)0.0076, cPD 

vs SD p)=)0.00079, cPD vs PR p)=)0.0039, cPD vs CR p)=)0.034; NLR: cPD vs PD 

p)=)0.00093, cPD vs SD p)=)0.00042, cPD vs PR p)=)0.0075, cPD vs CR p)=)0.025.  

d, Proportion of explained variance (R2) of microbial composition by  

each available clinical and technical metadata variable. Calculated using 

PERMANOVA on inter-sample Aitchison distance (9999 permutations).  

Metadata variables coloured by category (blood, exposome, patient,  

technical or tumour). PERMANOVA p-values summarized (*: p)<)0.05). Exact 

p-values available in Supplementary Table 6 (8ca209-538_permanova9). e, Analysis 

of baseline microbial variance by moving PFS cut-off (1-monthly intervals,  

from 1-24 months). Top panel show microbial variance between groups formed 

by cut-off (inverse PERMANOVA p-value, 999 permutations) using Aitchison 

distance. Bottom panel shows proportion of progression-free-survivors at 

respective threshold (that is the proportion in each group). Dashed line with  

* indicates p)=)0.05 threshold. Exact p-values available in Supplementary Tables 7  

(8moving_pfs_permanova9). Acronyms: UGB = upper gastrointestinal & biliary, 

NEN = neuro-endocrine neoplasms, GYN = gynaecological, PFS = progression-

free survival, OS = overall survival, BOR = best overall response, CR = complete 

response, PR = partial response, SD = stable disease, PD = progressive disease, 

cPD = clinical progressive disease, chemo = chemotherapy, PPI = proton-

pump inhibitor, BMI = body-mass index, LDH = lactate dehydrogenase, NLR = 

neutrophil:lymphocyte ratio, ECOG = eastern cooperative oncology group, 

PERMANOVA = permutational multivariate analysis of variance.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Sensitivity analyses of gut microbial strain-efficacy 

classifiers. a, Comparison of the RvsP and PFS12 binary endpoints. Venn 

diagrams show the overlap between the 8negative and 8positive9 outcome 

populations (P/non-PFS12 and R/PFS12 respectively). Size of circles (area) in 

proportion to population size, with set differences labelled. b, AUC scores 

for the best iteration of PFS12 classifiers for each feature-set combination 

during 20-repeated 5-fold cross-validation (100 folds each): clinical (yellow), 

microbiome (blue) and combined (green), at different taxonomic resolutions. 

Mean (circle) and standard deviation (error bars) over the 100 folds. Linear model 

line-of-best-fit for AUC score and taxonomic rank of microbiome-only feature 

sets (with shaded 95% confidence interval) superimposed. Kendall τ and p-value 

for association between AUC score and taxonomic rank of microbiome-only 

feature sets printed. Mann-Whitney U p-value for comparison of AUCs of specific 

pairwise feature-sets (depicted by callipers) printed. c, Patient9s predicted RvsP 

(using strain-RvsP RF classifiers trained on the full evaluable cohort) vs. actual 

BOR outcome (cPD n)=)21, PD n)=)30, SD n)=)29, PR n)=)22, CR n)=)4). Boxplot centre 

line= median; box limits= upper and lower quartiles; whiskers= 1.5x interquartile 

range. Kendall rank correlation τ and p-value for association between predicted 

RvsP and actual BOR printed. d, Kaplan-Meier overall survival curves for those 

patients with a best overall response (BOR) of stable disease (n)=)29), stratified by 

those with above median (blue) and below median (red) strain-RvsP RF classifier 

predictions. Bottom panel shows number of patients at risk at each marked 

interval. P-value by log-rank test printed. Acronyms: P= progressors (RECIST 

progressive disease (PD) or clinical progressive disease (cPD)), R= responders 

(RECIST complete response (CR) or partial response (PR)), GYN= gynaecological, 

NEN= neuro-endocrine neoplasm, UGB= upper gastrointestinal & biliary, ROC= 

receiver operating characteristic, AUC= area under curve, OS= overall survival, 

SD= stable disease, RvsP= response versus progression, cPD= clinical progressive 

disease, PD= progressive disease, SD= stable disease, PR= partial response, CR = 

complete response.
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Extended Data Fig. 3 | Identification and metabolic-potential profiling 

of the top 22 response predictive strains. a, Kernel density plot of impact 

(feature importance) of strains in the strain-RvsP classifier. The top 22 strains 

with absolute impact within half maximal value shown (coloured by importance, 

and size by prevalence). b, Strain impact (absolute) versus prevalence in the 

CA209-538 cohort. Top 22 strains coloured (blue and red for positive and 

negative associations with response, respectively), with importance threshold 

depicted (red dashed line). c, Plot of principal coordinate 1 vs 2 using Jaccard 

dissimilarity of metabolic pathway presence/absence for top 22 strain genomes. 

Points (individual strains) coloured by impact on RvsP, and size by prevalence. 

Acronyms: PCo= principle coordinate.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Heterogeneity of baseline gut microbial compositions 

across meta-analysis cohorts. a, Proportion of quality-controlled paired-end 

reads aligned by Bowtie 2 (red), and ultimately used for abundance estimation 

after stringent filtering (cyan). Organised by study (2017_FRANKEL n)=)39, 

2018_MATSON n)=)39, 2021_ANDREWS n)=)46, LEE n)=)165, 2022_MCCULLOCH 

n)=)37, 2022_ 2022_SIMPSON n)=)38, CA209-538 n)=)106). Boxplot central line= 

median, box limits= upper and lower quartiles, and whiskers= 1.5x interquartile 

range. Median printed within each boxplot. b, Proportion of explained variance 

(R2) of microbial composition by metadata variables (grouped into 8exposome9, 

8technical9 and 8tumour9 categories. R2 values (printed on bar) calculated using 

PERMANOVA (9999 permutations). c, PCA plot of samples by CLR-transformed 

abundances (Aitchison9s distance), with points coloured by sample city (the 

variable explaining the most variance). Ellipses depict 0.8 of each group9s 

multivariate t-distribution. PERMANOVA p-value and R2 using 9999 permutations 

printed. d, PCA plot of samples by CLR-transformed abundances (Aitchison9s 

distance), with points coloured by extraction kit (the variable explaining 

the second-most variance). Ellipses depict 0.8 of each group9s multivariate 

t-distribution. PERMANOVA p-value and R2 using 9999 permutations printed. 

Acronyms: ICB= immune checkpoint blockade, PCo= principle coordinate.
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