Article

A concerted neuron-astrocyte program
declinesinageing and schizophrenia

https://doi.org/10.1038/s41586-024-07109-5
Received: 4 December 2022

Accepted: 23 January 2024
Published online: 06 March 2024

Open access

Emi Ling"?*, James Nemesh'?, Melissa Goldman'?, Nolan Kamitaki'*3, Nora Reed'?,

Robert E. Handsaker'?, Giulio Genovese'?, Jonathan S. Vogelgsang®*®, Sherif Gerges'?,

Seva Kashin'?, Sulagna Ghosh'?, John M. Esposito®, Kiely Morris*, Daniel Meyer'?,

Alyssa Lutservitz'?, Christopher D. Mullally"?, Alec Wysoker'?, Liv Spina“?, Anna Neumann'?,
Marina Hogan'?, Kiku Ichihara'?, Sabina Berretta'**%"> & Steven A. McCarroll"?"*

M Check for updates

Human brains vary across people and over time; such variation is not yet understood

in cellular terms. Here we describe a relationship between people’s cortical neurons
and cortical astrocytes. We used single-nucleus RNA sequencing to analyse the
prefrontal cortex of 191 human donors aged 22-97 years, including healthy individuals
and people with schizophrenia. Latent-factor analysis of these data revealed that, in
people whose cortical neurons more strongly expressed genes encoding synaptic
components, cortical astrocytes more strongly expressed distinct genes with synaptic
functions and genes for synthesizing cholesterol, an astrocyte-supplied component
of synaptic membranes. We call this relationship the synaptic neuron and astrocyte
program (SNAP). In schizophrenia and ageing—two conditions that involve declines

in cognitive flexibility and plasticity*—cells divested from SNAP: astrocytes,
glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons all showed
reduced SNAP expression to corresponding degrees. The distinct astrocytic and
neuronal components of SNAP both involved genes in which genetic risk factors for
schizophreniawere strongly concentrated. SNAP, which varies quantitatively even
among healthy people of similar age, may underlie many aspects of normal human
interindividual differences and may be animportant point of convergence for multiple
kinds of pathophysiology.

Innatural, non-laboratory settings—in which individuals have diverse
geneticinheritances, environments and life histories, ashumans do—
almost all aspects of biology exhibit quantitative variation across
individuals®. Natural variation makes it possible to observe a biological
system across many contexts and potentially learn underlying princi-
ples that govern its function*”.

Here we sought to recognize changes that multiple cell typesin the
human brain characteristically implement together. The need to be
able to recognize tissue-level gene-expression programs comes from
asimple but important idea in the physiology of the brain and other
tissues: cells of different types collaborate to perform essential func-
tions, working together to construct and regulate structures such as
synaptic networks.

We analysed the prefrontal cortex of 191 human brain donors using
single-nucleus RNA sequencing (snRNA-seq) and developed a com-
putational approach, based on latent-factor analysis, to recognize
commonly recurring multicellular gene-expression patterns in such
data. Tissue-level programs of which the expression varies across
individuals could provide new ways to understand healthy brain
function and also brain disorders, as disease processes probably act
through endogenous pathways and programs in cells and tissues.

Alongstanding challenge in genetically complex brain disorders is
to identify the aspects of brain biology on which disparate genetic
effects converge; here we applied thisideato try tobetter understand
schizophrenia.

snRNA-seq analysis of the dIPFC

We analysed the dorsolateral prefrontal cortex (dIPFC; Brodmann
area46), which serves working memory, attention, executive func-
tions and cognitive flexibility®, abilities that decline in schizophrenia
and with advancing age'?. Analyses included frozen post-mortem
dIPFC samples from 191 donors (aged 22-97 years, median 64 years),
including 97 without known psychiatric conditions and 94 affected by
schizophrenia (Extended Data Fig.1and Supplementary Table 1). To
generate data that were well controlled across donors and therefore
amenable to integrative analysis, we processed a series of 20-donor
sets of dIPFC tissue, each as a single pooled sample (or village’;
Fig.1a) and then, during computational analysis, we used combina-
tions of many transcribed single-nucleotide polymorphisms (SNPs)
to identify the source donor of each nucleus (Fig. 1a,b and Extended
DataFig.2).
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Fig.1|Identification of concerted multicellular gene-expression
changes common to schizophreniaand ageing. a, Generation of snRNA-seq
data,inaseries of 20-donor ‘villages’. The diagram was created using images

by thekua (personicon), B. Lachner (laboratory tools) and pnx (brain exterior
side view) under a Creative Commons licence CC01.0. b, Uniform manifold
approximation and projection (UMAP; coloured by donor) analysis of the RNA-
expression profiles of 1,217,965 nuclei analysed from 191 donors. ¢, Assignments
ofnucleito celltypes (same projection asinb).d,e, Assignments of nuclei to
glutamatergic (n=524,186) (d) and GABAergic (n=238,311) (e) neuron subtypes.
CT, corticothalamic; ET, extratelencephalic; IT, intratelencephalic; NP, near-
projecting.f, Latent factor analysis. Cell-type-resolution expression data from
alldonors and cell types were combined into asingle analysis. Latent factor
analysisidentified constellations of gene-expression changes that consistently
appeared together. g, The cell type specificity of the latent factors inferred
from180 donors, shown as the cell type distributions of the 1,000 most strongly

Each of the 1,217,965 nuclei was classified into one of seven cell
types—glutamatergic neurons (43% of all nuclei), GABAergic neu-
rons (20%), astrocytes (15%), oligodendrocytes (12%), polydendro-
cytes (oligodendrocyte progenitor cells, 5.5%), microglia (3.6%)
and endothelial cells (1.3%) (Fig. 1c and Supplementary Fig. 1)—as
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Donor age (years)

loading gene-celltype combinations per factor. Factors 4-7 and 10 are strongly
driven by gene-expression co-variation spanning multiple cell types. h, The
association of schizophrenia (SCZ) withinterindividual variationin the
expression levels of theten latent factorsing, shown as aquantile-quantile
plotcomparing the observed schizophrenia associations with the ten factors
(-log;,[P]) to the distribution of association statistics expected by chance; only
LF4 significantly associated with schizophrenia. See also Supplementary Fig. 6.
i, Therelationship between quantile-normalized LF4 donor expression levels
and age (Spearman’s p; n =180 donors). The shaded regions represent the 95%
confidenceintervals.j, Quantile-normalized LF4 donor scores (n =93 controls,
87 cases), adjusted for age. The Pvalue was calculated using a two-sided
Wilcoxonrank-sum test. For the violin plot, the box limits show the interquartile
range, the whiskers show1.5x theinterquartileinterval, the centre lines show
the median values and the notches show the confidenceintervals around the
median values.

well as neuronal subtypes defined in earlier taxonomies (Fig. 1d,e
and Supplementary Figs. 2 and 3). Each donor contributed nuclei
of all types and subtypes (Supplementary Figs. 1, 4 and 5), although
subsequent analyses excluded 11 atypical samples (Supplementary
Fig.1d).
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Inference of multicellular gene programs

The data revealed substantial interindividual variation in cell-type-
specific gene expression levels, with highly expressed genes in each
cell type exhibiting a median coefficient of variation (across donors)
of about 15%.

Interindividual variation in gene expression almost certainly arises
from cell-type-specific gene-expression programs, and could in prin-
ciple also be shaped by concerted changes in multiple cell types. To
identify such relationships, we applied latent factor analysis, a form
of machine learning thatinfers underlying factors from the tendency
of many measurements to fluctuate together®. Critically, we analysed
cell-type-resolution data from all cell types at once, using interindi-
vidual variation to enable the recognition of relationships between
expression patternsin different cell types (Fig. 1f). Eachinferred factor
was defined by a set of gene-by-cell-type loadings (revealing the distinct
genesitinvolvesineach celltype) and aset of expression levels (of the
factor) in each donor (Fig. If).

Tenlatent factors together explained 30% of interindividual variation
in gene expression levels; these factors appeared to be independent
of one another in their gene use patterns (loadings) and their expres-
sion levels across the individual donors (Extended Data Fig. 3a-d).
Interindividual variationin the factors’inferred expression levels arose
from interindividual variation within each 20-donor experimental
set (Extended Data Fig. 3e). Each factor was primarily driven by gene
expressionin one or a few cell types (Fig. 1g).

Schizophrenia was associated with just one of these latent factors
(LF4) (Fig.1h, Extended DataFig.4a-e and Supplementary Table 2)—a
factor that was also associated with donor age (Fig. 1i). Donors with
and without schizophrenia both exhibited the decline in LF4 with age
(Fig.liand Extended Data Fig.1c,d). Joint regression analysis confirmed
independent decreases in LF4 expression by age and in schizophrenia,
and detected no effect of sex (Supplementary Table 3).

Factorssimilarto LF4 emergedinallanalyses testing LF4’s robustness
to analysis parameters (Supplementary Fig. 6). The LF4 expression
scores of individuals also did not correlate with medication use, time
of day at death, post-morteminterval or sequencing depth (Extended
Data Fig. 4f-k). We also found evidence that the LF4 constellation of
gene-expression changes manifests at the protein level (Supplemen-
tary Fig. 7).

Neuronal and astrocyte genes driving LF4

Ofthe 1,000 gene/cell-type expression traits with the strongest LF4
loadings, 99% involved gene expression in glutamatergic neurons (610),
GABAergic neurons (125) or astrocytes (253) (Fig. 1g). LF4 involved
similar genes and expression effect directions in glutamatergic and
GABAergic neurons, but a distinct set of genes and effect directions
inastrocytes (Fig.2a and Extended Data Fig. 41). To identify biological
processes in LF4, we applied gene set enrichment analysis (GSEA)? to
the LF4 gene loadings, separately for each cell type.

In both glutamatergic and GABAergic neurons, LF4 involved
increased expression of genes with synaptic functions (Fig. 2b,
Extended Data Fig. 4m and Supplementary Table 4). The most
strongly enriched synaptic annotations for both glutamatergic and
GABAergic neurons involved the synaptic vesicle cycle and the pre-
synaptic compartment; the core genes driving these enrichments
encoded components of the SNARE complex and their interaction
partners (STXIA, SNAP25 and SYP), effectors and regulators of syn-
aptic vesicle exocytosis (SYT11, RAB3A and RPH3A) and other synap-
tic vesicle components (S§V24 and SYNI). In glutamatergic neurons,
LF4 also appeared to involve genes encoding postsynaptic com-
ponents, including signalling proteins (PAK1, GSK3B and CAMK4)
and ion channels and receptors (CACNG8, KCNN2, CHRNB2, GRM2
and GRIA3).

People with schizophrenia and people of advanced age exhibited
reduced levels of synapse-related gene expression by cortical neurons
of all types (Fig. 2c and Extended Data Fig. 5).

In astrocytes, LF4 involved gene-expression effects distinct from
those in neurons (Fig. 2a and Extended Data Fig. 41). Gene sets with
roles in fatty acid and cholesterol biosynthesis and export, includ-
ing genes encoding the SREBP1and SREBP2 transcription factors and
their regulators and targets, were positively correlated with LF4 and
underexpressed in the cortical astrocytes of donors with schizophrenia
(Fig.2d and Supplementary Table 4) or advanced age (Extended Data
Fig. 6a). These effects appeared to be specific to astrocytes relative to
other cell types (Extended Data Fig. 7).

Concerted neuron-astrocyte expression

Tounderstand these results in terms of specific biological activities, we
focused on gene sets corresponding to neuronal synaptic components
and three kinds of astrocyte activities: adhesion to synapses, uptake
of neurotransmitters and cholesterol biosynthesis (see the ‘Selected
gene sets’ section of the Methods).

The proportion of astrocyte gene expression devoted to each of these
three astrocyte activities was strongly correlated with the proportion
of neuronal gene expression devoted to synaptic components (Fig. 2e
and Supplementary Fig. 8), even after adjusting for age and case-
control status (Extended Data Fig. 8). Donors with schizophrenia, as
wellas donors with advanced age, tended to have reduced expression
of these genes (Fig. 2e and Extended Data Fig. 6).

As this gene expression program involves concerted effects on the
expression of (distinct) genes for synaptic components in neurons
and astrocytes, we call it SNAP, although it also involves genes with
unknown functions and involves more modest expression effects in
additional cell types. We used the LF4 expression scores of donors to
measure SNAP expression.

Astrocyte gene programs and SNAP

To better appreciate the astrocytic contribution to SNAP, we further
analysed the RNA-expression datafrom 179,764 individual astrocytes.
The analysis readily recognized aknown, categorical distinctionamong
three subtypes of adult cortical astrocytes: protoplasmic astrocytes,
which populate the grey matter and were the most abundant subtype;
fibrous astrocytes; and interlaminar astrocytes (Fig. 3aand Extended
Data Fig. 9a-d). Neither schizophrenia nor age were associated with
variationintherelative abundances of these subtypes (Extended Data
Fig.9e,f).

We next identified latent factors that collectively explained 25% of
quantitative gene-expression variation among individual astrocytes
(using consensus non-negative matrix factorization (¢(NMF)'°, which
better scaled to the single-cell-level data) (Extended Data Fig. 10a,b).
Thefactorsappeared to capture diverse biological activities, including
translation (c(NMF1); zincand cadmium ion homeostasis (c(NMF7); and
inflammatory responses (cNMF8) (Supplementary Table 5). One factor
(cNMF2) corresponded to the astrocyte component of SNAP (Extended
DataFig.10c-eand Supplementary Table 6); the strong co-expression
relationships in SNAP were therefore robust to the computational
approach used (Extended DataFig. 10c-e and Supplementary Fig. 9).

As cNMF2 is informed by variation in the single-astrocyte expres-
sion profiles, we consider it a more precise description of the
astrocyte-specific gene-expression effectsin SNAP, and refer toit here
asSNAP-a. Across donors, the average astrocyte expression of SNAP-a
was associated even more strongly with schizophrenia case-control
status and with age (Fig. 3b—e and Extended Data Fig. 10f-i).

The strongest positive gene-set associations to SNAP-a involved
adhesion to synaptic membranes and intrinsic components of synap-
tic membranes (Supplementary Table 5). The 20 genes most strongly

Nature | www.nature.com | 3



Article

a LF4 gene loadings LF4 gene loadings LF4 gene loadings
=0.62 4,000 =0.20 4,000 =0.09
, 4000 ’ ’
5 Density Density Density
S 2,000 12 2,000 15
D 0 0
e Q Q 15
Q 0 ° % 0 10 E‘
< 6 e g 10
g 3 5 2 5
£ -2,000 3 < 2,000 <
2 4,000
© -4,000
—-4,000-2,000 0 2,0004,000 —-4,000-2,000 0 2,0004,000 -2,000 0 2,000
GABAergic neurons Glutamatergic neurons GABAergic neurons
b SynGO biological process Glutamatergic neurons GABAergic neurons
GO0:0099504: synaptic vesicle cycle
G0:0099536: synaptic signalling I
G0:0050808: synapse organization 1
SYNGO:postsynprocess: process in the postsynapse :
SYNGO:transport: transport 1 1
GO0:0140236: translation at presynapse :
0 1 2 3 4 0 1 2 3 4
-log, [FDR q] —log,,[FDR q]
Glutamatergic neuron subtypes GABAergic neuron subtypes
LAMPS PVALB SST VIP
L2/3 1T L4IT L51T L6 CT L6IT (CGE) (MGE) (MGE) (CGE)
§’_\ 0.020 P=0.02 P=30x10°P=99x10*P=57x10° P=6.4x10* 0.0141P=22x10°P=25x10° P=9.8x10* P=0.04
53
o4
s 8 0.012
38 0016
20
23 0.010
%
o & 0012
£ 5 0.008
g8
@
0.008 0.006
Case-control status H Control E scz
d Astrocytes
Astrocytes Regulation of cholesterol biosynthesis
0.0015 P B -
— Median = -51.9 : . 0.005{ p=7.2x10*
> 00010] —Median=763 i 2 0004 GPAM  SCSD NFYC
K s APOE HMGCS1  TM7SF2
8 0.0005 % SCD IDI1 MVD
- 0.003 SREBF1 HMGCR KPNB1
8 ACACA FDFT1 ELOVLE
0 S 0.002 ACACB SEC14L2  ERLIN2
-4,000 2,000 0 2,000 4,000 g0 SREBF2  FASN DHCR7
LF4 gene loading in astrocytes =)
<
--- All genes 0.001
--- Regulation of cholesterol biosynthesis genes Control scz
e — All: p=0.56, P <2.2 x 107® — All: p=0.54, P <2.2 x 107"® — All: p=0.56,P<2.2 x 107®
13 Control: p = 0.54, P=3.0 x 10¢ 13 Control: p =0.61, P =2.2 x 107® 13 Control: p = 0.56, P = 6.6 x 10°

SCZ:p=0.46,P=9.7 x 10°®

Glutamatergic neurons
trans-synaptic signalling
(aggregated expression)

SCZ:p=0.38,P=33x10*

SCZ:p=0.46,P=7.8x 10°

0.5 1.0 1.5 0.6

Astrocytes
regulation of cholesterol biosynthesis
(aggregated expression)

2.0

Fig.2|Genesrecruited by SNAP inneurons and astrocytes. a, Comparisons
of SNAP gene recruitment between cell types. For each pairwise cell type
comparison, the LF4 gene loadings of all genes expressed (=1 unique molecular
identifier (UMI) per 10°) inboth cell types in the comparison (Spearman’s p;
n=10,346,11,232and 11,217 genes, respectively) are shown. b, Concentrations
of synaptic gene sets (as annotated by SynGO) in LF4’s neuronal components.
FDR, false-discoveryrate.c, The fraction of gene expression (UMlIs) devoted
tosynaptic-vesicle-cycle genesinsubtypes of glutamatergic and GABAergic
neurons, across 180 donors. Pvalues for case-control comparisons were
calculated using two-sided Wilcoxon rank-sum tests. CGE, caudal ganglionic
eminence; MGE, medial ganglionic eminence.d, The distributions of astrocyte
LF4 geneloadings for allexpressed genes (black; n=18,347) and genes annotated
for functionsin cholesterol biosynthesis (blue; n = 21; hereafter, cholesterol
biosynthesis genes according to their GO annotation, although subsets
contribute to cholesterol export and/or to synthesis of additional fatty acids)

4 | Nature | www.nature.com

synaptic cell adhesion
(aggregated expression)

0.8 1.0

Astrocytes

1.2 1.4 04 06 08 10 12 14

Astrocytes

neurotransmitter-reuptake transporters

(aggregated expression)
(left). Right, the proportion of astrocytic gene expression devoted to the
annotated cholesterol biosynthesis genes shown, across 180 donors. The
Pvalue was calculated using atwo-sided Wilcoxon rank-sum test. e, Concerted
gene-expression variationin neurons and astrocytes. The relationships
(across180 donors) between astrocytic gene expressionrelated to three
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cholesterol biosynthesis) and neuronal gene expression related to synapses
(Spearman’s p). Quantities plotted are the fraction of all detected nuclear
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Fig.3|Biological states and transcriptional programs of astrocytes and
L5IT glutamatergic neuronsinschizophrenia. a-c, UMAP analysis of RNA
expression patterns from179,764 astrocyte nuclei from180 donors. Nucleiare
coloured by astrocyte subtype (a), schizophrenia affected/unaffected status
(b) and expression of the astrocyte component of SNAP (SNAP-a) (c).d, The
relationship between donor quantile-normalized SNAP-a expressionscores
and age (Spearman’s p). n=180 donors. The shaded regionsrepresent the 95%
confidenceintervals. e, The distributions of SNAP-adonor scores (age adjusted
and quantile normalized) for people with and without schizophrenia.n=93
controls, 87 cases. The Pvalue was calculated using a two-sided Wilcoxon
rank-sumtest. For the box plots, the box limits show the interquartile range, the
whiskersshow1.5x the interquartile interval, the centre line shows the median

associated with SNAP-a (Supplementary Fig.10) included eight genes
with roles in adhesion of cells to synapses (NRXN1, NTM, CTNND2,
LSAMP, GPM6A, LRRC4C, LRRTM4 and EPHBI) (reviewed previously™").
SNAP-a also appeared to strongly recruit genes encoding synaptic
neurotransmitter reuptake transporters: SLCIA2 and SLCIA3 (encoding

value and the notches show the confidence intervals around the median values.
f-j, Similar plots to thosein a-e, respectively, but for the L5IT glutamatergic
neuron contribution to SNAP (SNAP-n). n = 75,929 nuclei. Exc, excitatory
neuron subtype.k, Variationin the expression levels across 180 individual
persons (columns, ordered from left to right by SNAP expression levels) of a
selectset of strongly SNAP-recruited genes (rows) inastrocytes (left panel) and
LSIT glutamatergic neurons (right panel) of the 180 brain donors. One set of
genes (SNAP-a; top) exhibits co-regulationin astrocytes; and adistinct set of
genes (SNAP-n; bottom) exhibits co-regulationin neurons. Genes indicated

by asterisks and hashes are at genomic loci associated withcommon and rare
genetic variationin schizophrenia, respectively?’. The grey bars indicate that
regulonactivity was not detected.

glutamate transporters EAAT1 and EAAT2) and SLC6A1 and SLC6A11
(encoding GABA transporters GAT1 and GAT3) were all among the 1%
of genes most strongly associated with SNAP-a.

We soughttorelate SNAP-ato an emerging appreciation of astrocyte
heterogeneity and its basis in gene expression'. An earlier analysis of
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astrocyte molecular and morphological diversity in mice identified
gene-expression modules based on their co-expression relation-
ships™. SNAP-a exhibited the strongest overlap (P=3.5x10™, ¢ =0.015,
gene set enrichment analysis (GSEA)) (Supplementary Table 5) with
the module that had correlated most closely with the size of the terri-
tory covered by astrocyte processes (the turquoise modulein ref. 14,
with overlap driven by genes including EZR and NTM). A potential
interpretation is that SNAP-a supports these perisynaptic astrocytic
processes®.

Earlier studies identified reactive astrocyte states thatareinduced
by strong experimental perturbations and injuries, and were des-
cribed as polarized cell states'®. We found that more than half of the
human orthologues of markers for these states were expressed at
levels that correlated negatively and ina continuous, graded manner
with SNAP-aexpression (Extended Data Fig. 11). At the single-astrocyte
level, SNAP-a expression exhibited continuous, quantitative variation
rather than discrete state shifts (Extended Data Fig. 10f,g), consistent
with observations of abundant astrocyte biological variation less
extreme than experimentally polarized states".

We performed an analogous cNMF analysis on the RNA-expression
profiles of 75,929 glutamatergic neurons, focusing on a single, abun-
dant subtype so that the variation among individual cells would be
driven primarily by dynamic cellular programs rather than by sub-
typeidentity (Fig. 3f). One factor corresponded to the neuronal gene-
expression effects of SNAP; we refer to this factor as SNAP-n (Fig. 3g—j
and Supplementary Table 7). Like SNAP-a, the average expression of
SNAP-n was associated with age and with schizophrenia (Fig. 3i,j).
SNAP-nand SNAP-awere associated with each other still more strongly,
even in a control-only age-adjusted analysis, highlighting the close
coupling of neuronal and astrocyte gene expression (Extended Data
Fig.12). Although SNAP-n was associated with synaptic gene sets, the
specificgenes driving these enrichments were distinct fromthose driv-
ing SNAP-a (Fig. 3k, Supplementary Fig. 11 and Supplementary Table 8).

Expression of SNAP-aand SNAP-n was associated with the expression
of many transcription factors and their predicted targets, and engaged
distinct pathways in astrocytes and neurons (Fig. 3k and Extended
Data Figs. 12c and 13b): for example, SREBP1 and its well-known tran-
scriptional targets'® in astrocytes, and JUNB (AP-1) and its well-known
targets'?°in neurons (Extended Data Fig. 14) (the latter may reflect aver-
ageneuronal activity levelsin the PFC, which neuroimaging has found
to decline (hypofrontality) in schizophrenia®'). SNAP-a expression in
astrocytes wasalso associated withaRORB regulon (underexpressedin
SNAP" donors) and aKLF6 regulon (overexpressed in SNAP'°" donors)
(Fig.3k and Extended Data Fig.13b); common genetic variation at RORB
and KLFé6is associated with schizophrenia®.

Schizophreniagenetics and SNAP

A key question when studying disease through human post-mortem
tissue is whether observations involve disease-causing/disease-
exacerbating processes, or reactions to disease circumstances such
as medications. We found no relationship between SNAP expres-
sion and donor use of antipsychotic medications (Extended Data
Fig. 4j,k), or between cholesterol-biosynthesis gene expression in
astrocytes and donor statin intake (Extended Data Fig. 7b), but this
doesnotexclude the possibility that astrocytes are primarily reacting
to disease-associated synaptic hypofunction in neurons, as opposed
to contributing to such hypofunction.

Human genetic data provide more powerful evidence, as inherited
alleles affect risk or exacerbate disease processes rather than being
caused by disease. We therefore sought to evaluate the extent to which
SNAP-a and SNAP-n involved genes and alleles implicated by genetic
studies of schizophrenia.

Previous research®??*found that genes expressed most strongly by
neurons (relative to other cell types), but not genes expressed most
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Fig.4|Therelationship between SNAP and schizophrenia genetics.

a, Enrichment of schizophrenia genetic association (from common variants,
using MAGMA to generate aschizophreniaassociationzscore for each gene) in
the 2,000 genes most preferentially expressed in glutamatergic neurons and
astrocytes (cellidentity gene expression, upper bars), or the 2,000 genes of
which the expressionis most strongly recruited by SNAP-n and SNAP-a (cellular
programs, lower bars). Values plotted are -log,,[P] from ajoint regression
analysisinwhich eachgenesetis anindependentand competing predictive
factor.See also the Supplementary Note. b, The relationship between donor
SNAP expression (quantile normalized) and donor schizophrenia polygenic
riskscores (Spearman’s p; n =180 donors; PGC3 GWAS from ref. 22). The shaded
regions represent the 95% confidence intervals. c, NRXNI expression (per 10°
detected nuclear transcripts) in each cell type inindividual donors.n=93
controls, 87 cases. Pvalues were calculated using two-sided Wilcoxon rank-sum
tests. For the box plots, the box limits show the interquartile range, the whiskers
show1.5x theinterquartileinterval, the centre line shows the median value and
the notches show the confidence intervals around the median values d, NRXNI
expressioninindividual astrocytes (using the same projectionasin Fig.3a-c)
(left). The values represent Pearson residuals from variance stabilizing
transformation. Right, the relationship between the 180 donors’ NRXNI
expressionin astrocytesand SNAP-a expression (Spearman’s p). e,f, Similar
plotstothoseincandd, butfor C4.

strongly by glia, are enriched for the genes implicated by genetic analy-
sesinschizophrenia®?*; wereplicated these findings in our data (Fig. 4a
and Supplementary Note). However, such analyses treat cell types as
fixed levels of gene expression (cell identities), rather than as collec-
tions of dynamic transcriptional activities; SNAP-a involves a great
many genes that are also strongly expressed in other cell types.

We found that the genes that are dynamically recruited by SNAP-a
inastrocytes were enriched in genetic signals for schizophrenia: they
were 14 times more likely than other protein-coding genes toreside at
genomic lociimplicated by common genetic variation in schizophrenia
(P=5x%107%,95% confidence interval = 8.7-24, logistic regression)
and 7 times more likely to have strong evidence from rare variants in
schizophrenia (95% confidence interval =2.3-21, P=5x10*, logistic
regression) (Supplementary Note).

To evaluate whether common variation in the genes recruited by
SNAP-a contributes more broadly to schizophreniarisk, beyond these



strongest associations, we used gene-level association statistics from
the largest schizophrenia genome-wide association study to date?*%.
As expected, the strongest neuron-identity genes (as defined in the
earlier work) exhibited elevated schizophrenia association, whereas
the strongest astrocyte-identity genes did not (Fig. 4a and Supple-
mentary Note). However, in the same analysis, the genes most strongly
associated with SNAP-a and SNAP-n were highly significant as addi-
tional predictive factors, particularly the genes associated with SNAP-a
(Fig.4a). Analysis by linkage disequilibrium (LD) score regression* also
confirmed enrichment of schizophrenia risk factors among SNAP-a
genes (Supplementary Fig.12).

Polygenic risk involves thousands of common alleles across the
genome, of which the effects converge on unknown biological pro-
cesses. A polygenic risk score for schizophrenia was associated with
reduced expression of SNAP but not with the other latent factors
(Fig. 4b and Supplementary Fig. 13). Higher polygenic risk was also
associated withagreater decrease in SNAP among people with schizo-
phrenia (Fig. 4b).

Tobetter understand such relationships, we examined the relation-
ship between SNAP-a and genetic risk through two specific genes:
neurexin-1(NRXNI) and complement component 4 (C4).

Exonic deletions within NRXNI greatly increase the risk for schizo-
phrenia”?, Our dataindicate that astrocytic, but not neuronal, NRXNI
expressionwas reduced in people with schizophreniaand among peo-
pleaged over 70 years (Fig. 4c and Extended Data Fig.15a,b). Interindi-
vidual variationin astrocytic NRXNI expression was strongly associated
with SNAP-a (Fig. 4d).

Anincreased copy number of the complement component 4 (C4A)
gene more modestly increases the risk for schizophrenia®; however,
far moreinterindividual variationin C4 gene expression (>80%) arises
from unknown, dynamic effects on C4 expression®**°. We found that
astrocytes, rather than neurons or microglia, are the main site of C4
(including C44 and C4B) RNA expression in the human prefrontal cortex
(Fig. 4e and Extended Data Fig. 15c). Donors with lower-than-average
expression of SNAP-a tended to have greatly increased C4 expres-
sion: such donors included 43 out of the 44 donors with the highest
C4 expression levels, and their astrocytes expressed 3.2-fold more C4
compared with astrocytes of donors with above-average expression
of SNAP-a (Fig. 4f). C4 expression was also greatly increased among
donors aged over 70 years (Extended Data Fig. 15d,e).

Discussion

Here we identified SNAP—concerted gene-expression programs imple-
mented by cortical neurons and astrocytes to corresponding degrees in
the sameindividuals. SNAP expression varied even among unaffected
control brain donors and may be a core axis of human neurobiological
variation, with potentialimplications for cognition and plasticity that
will be important to understand.

SNAP appears to involve many genes that contribute to synapses and
to astrocyte-synapse interactions®* (Figs. 2 and 3k, Supplementary
Table 9 and Supplementary Figs.10 and 11). The genes associated with
SNAP-asuggested apotential role in supporting perisynaptic astrocyte
processes, motile, morphologically plastic astrocyte projections whose
interactions with synapses can promote synaptic stability®. Diverse
lines of study increasingly reveal a key role for astrocytes in regulat-
ing the ability of synaptic networks to acquire and learn new informa-
tion, for example, by lowering thresholds for activity and synaptic
plasticity®>*,

Anotable aspect of SNAP involved the astrocytic regulation of genes
withroles in fatty acid and cholesterol biosynthesis and cholesterol
export, which strongly correlated (across donors) with expression of
synaptic-component genes by neurons (Fig. 2d,e). Earlier research has
defined a potential rationale for this neuron-astrocyte coordination:
synapses and dendritic spines—synapse-containing morphological

structures—require large amounts of cholesterol, which astrocytes
supply®. Decreases in cholesterol biosynthesis have previously been
noted in mouse models of brain disorders®*** that (like schizophrenia
and ageing) involve cognitive losses, cortical thinning and reduction
inneuropil.

Schizophrenia and ageing both brought substantial reductions in
SNAP expression (Fig. 1i,j). Neuropsychological, neuroimaging and
neuronal microstructural studies have long noted similar changes
in schizophrenia and ageing****. Inherited genetic risk for schizo-
phreniais associated with decreased measures of cognition in older
individuals***, and schizophrenia greatly increases the risk of dementia
later in life’®. Our results suggest that these relationships between
schizophrenia and ageing arise from shared cellular and molecular
changes.

Underexpression of SNAP could, in principle, underlie longstanding
microstructural observations™ * of reduced numbers of dendritic
spineson cortical neuronsin older humans and primates andin people
with schizophrenia. These microstructural observations appear to
arise from highly plastic thin spines and may therefore reflect reduced
rates of continuous synapse formation and stabilization (rather than
pruning of mature synapses)*> *”. The gene-expression changes that we
observed in the human dIPFC (Fig. 2c) suggest that cortical neurons
of all types, including glutamatergic and GABAergic neurons, may be
affected by such changes.

Itis intriguing to consider whether pharmacotherapies or other
interventions could be developed to promote SNAP as away to address
cognitive symptom domainsin schizophreniaand ageing such as cog-
nitive flexibility, working memory and executive function deficits,
continuous and disabling features that are typically not improved by
available treatments’.

Animportant future direction will be to determine the extent to
whichSNAPis presentin other brainareas, and the relationship of SNAP
with molecular and physiological changesin dendrites, synapses and
perisynaptic astrocyte processes. Additional questions involve the
molecular mechanisms that accomplish neuron-astrocyte coordina-
tionand the extent to which SNAP supports learning and/or cognitive
flexibility.

SNAP was made visible by humaninterindividual biological variation.
Although controlled laboratory experiments usually try to eliminate
geneticand environmental variation, natural variation may be able to
reveal cell-cell coordination and regulatory programsin many tissues
andbiological contexts, offering new ways toidentify pathophysiologi-
cal processes within and beyond the human brain.
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Methods

Ethical compliance

Brain donors were recruited by the Harvard Brain Tissue Resource
Center/NIH NeuroBioBank (HBTRC/NBB), inacommunity-based man-
ner, across the United States. Human brain tissue was obtained from
the HBTRC/NBB. The HBTRC procedures for informed consent by the
donor’slegal next-of-kin and distribution of de-identified post-mortem
tissue samples and demographic and clinical data for research pur-
poses are approved by the Mass General Brigham Institutional Review
Board. Post-mortem tissue collection followed the provisions of the
United States Uniform Anatomical Gift Act of 2006 described in the
California Health and Safety Code section 7150 and other applicable
state and federal laws and regulations. Federal regulation 45 CFR 46
andtheassociated guidance indicate that the generation of datafrom
de-identified post-mortem specimens does not constitute human
participant research that requires institutional review board review.

Donors for snRNA-seq

Donor information with anonymized donor IDs is available in Sup-
plementary Table 1. Consensus diagnosis of schizophrenia was per-
formed by retrospective review of medical records and extensive
questionnaires concerning social and medical history provided by
family members. Several regions from each brain were examined by a
neuropathologist. We excluded participants with evidence for gross
and/or macroscopic brain changes, or with clinical history consistent
with cerebrovascular accident or other neurological disorders. Partici-
pants with Braak stage Ill or higher (modified Bielchowsky stain) were
excluded. None of the participants had substantial reported history of
substance dependence within 10 or more years from death, as further
corroborated by negative toxicology reports. The absence of recent
substance abuseis typical for samples from the HBTRC, which receives
exclusively community-based tissue donations.

Exposure to psychotropic and neurotropic medications was
assessed on the basis of medical records. Estimated daily milligram
doses of antipsychotic drugs were converted to the approximate
equivalent of chlorpromazine as a standard comparator®. These val-
uesarereported aslifetime, as well as last six months of life, grams per
patient. Exposure to other classes of psychotropic drugs was reported
as present or absent.

Single-nucleus library preparation and sequencing

We analysed the dIPFC (Brodmann area 46 (BA46)), which exhibits
functional and microstructural abnormalities in schizophrenia®>** and
in ageing*. Frozen tissue blocks containing BA46 were obtained from
the HBTRC. We used snRNA-seq rather thansingle-cell RNA-seq to avoid
effects of cell morphology on ascertainment, and because nuclear
(but not plasma) membranes remain intact in frozen post-mortem
tissue. Nuclear suspensions from frozen tissue were generated accord-
ing to a protocol that we have made available at Protocols.io (https://
doi.org/10.17504/protocols.io.4r3122e3xI1y/v1). To ensure that batch
compositions were balanced, researchers were not blinded to the batch
allocation or processing order of each specimen. To maximize the
technical uniformity of the snRNA-seq data, we processed sets of 20
brain specimens (each consisting of affected and control donors) at
onceasasingle pooled sample. Specimens were allocated into batches
of 20 specimens per batch, ensuring that the same number of cases
and age-matched controls (10 per group), and men and women (10
per group) were included in each batch. Some donors were resampled
across multiple batches to enable quality-control analyses (Extended
Data Fig. 2). Specimens from cases and age-matched controls were
also processed in alternating order within each batch. Researchers
had accessto unique numerical codes assigned to the donor-of-origin
ofeach specimen as well as basic donor metadata (for example, case-
control status, age, sex).

From each donor, 50 mg of tissue was dissected from the dIPFC—
sampling across the cortical layers and avoiding visible concentra-
tions of white matter—and used to extract nucleifor analysis. Genera-
tion of gel beads -in-emulsionand library preparation was performed
according to the10x Chromium Single Nuclei 3’ v3.1 protocol (version
CG000204_ChromiumNextGEMSingleCell3'v3.1_Rev D). We encapsu-
lated nucleiinto droplets using approximately 16,500 nuclei per reac-
tion, understanding that about 95% of all doublets (cases in which two
nucleiwere encapsulated inthe same droplet) would consist of nuclei
from distinct donors and therefore be recognized by the Dropula-
tion analysis’ as containing combinations of SNP alleles from distinct
donors. cDNA amplification was performed using 13 PCR cycles.

Raw sequencing reads were aligned to the hg38 reference genome
using the standard Drop-seq (v.2.4.1)>* workflow, modified so that reads
from C4transcripts would not be discarded as multi-mapping (see the
‘MetaGene discovery’ section below). Reads were assigned to annotated
genes if they mapped to exons or introns of those genes. Ambient/
background RNA was removed from digital gene expression (DGE)
matrices using CellBender (v.0.1.0)* remove-background.

Genotyping and donor assignment from snRNA-seq data

We used combinations of hundreds of transcribed SNPs to assign each
nucleus to its donor of origin using Dropulation (v.2.4.1)’. Previous
Dropulation analyses of stem cell experiments used whole-genome
sequencing (WGS) data on the individual donors for such analyses’.
For this study, we developed a cost-efficient approach based on SNP
array data with imputation. Genomic DNA from the individual brain
donors was genotyped by SNP array (Illumina GSA).

Raw Illumina IDAT files from the GSAMD-24v1-0_20011747 array
(2,085 samples) and GSAMD-24v3-0-EA_20034606 array (456 sam-
ples) were genotyped using GenCall (v.3.0.0)* and genotypes were
phased using SHAPEIT4 (v.4.2.2)% by processing the data through the
MoChA workflow (v.2022-12-21)%% (https://github.com/freeseek/
mochawdl) using the default settings and aligning markers against
the GRCh38 genome. APOE genotypes for marker rs429358 were
removed due to unreliable genotypes. To improve phasing, geno-
types from the McLean cohort were combined with genotypes from
the Genomic Psychiatry Cohort with IDAT files available also from
the GSAMD-24v1-0 20011747 array (5,689 samples)°. After remov-
ing 128 samples recognized as duplicates, phased genotypes were
thenimputed using IMPUTES (v.1.1.5)*' by processing the output data
from the MoChA workflow using the MoChA imputation workflow and
using the high-coverage 1000 Genomes reference panel for GRCh38%,
including 73,452,470 non-singleton variants across all the autosomes
and chromosome X. Only SNPs with imputation quality INFO > 0.95
were used for donor assignments. Using this approach, we found that
99.6% of nuclei could be assigned confidently to a donor (Extended
DataFig.2a).

To evaluate the accuracy of this method of donor assignment,
we genotyped a pilot cohort of 11 donors using both WGS and SNP
array. Importantly, the two methods had 100% concordance on the
assignment of individual nuclei to donors, validating both our com-
putational donor-assignment method and the sufficiency of the
SNPs-plus-imputation approach (Extended Data Fig. 2c). SNP data
for theindividual donors are available at NeMO (https://assets.nemo-
archive.org/dat-bmx7slt).

After donor assignment, DGE matrices fromalllibrariesin each batch
(7 to 8libraries per batch) were merged for downstream analyses.

Cell-type assignments

All classification models for cell assignments were trained using
scPred (v.1.9.2)%. DGE matrices were processed using the following R
and python packages: Seurat (v.3.2.2)%*, SeuratDisk (v.0.0.0.9010)%,
anndata (v.0.8.0)°, numpy (v.1.17.5)%, pandas (v.1.0.5)°®*° and Scanpy
(v.1.9.1)7,
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Cell types. Model training. The classification model used for cell-
type assignments was trained on the DGE matrix from batch 6
(BA46_2019-10-16), which was annotated as follows. Nuclei with
fewer than 400 detected genes and 100 detected transcripts were
removed from the DGE matrix from this batch. After normalization
and variable gene selection, the DGE matrix was processed through
aninitial clustering analysis using independent component analysis
(ICA, using fastICA (v.1.2-1))™ as previously described’. This analysis
produced clustering solutions with 43 clusters of seven major cell
types (astrocytes, endothelial cells, GABAergic neurons, glutamater-
gic neurons, microglia, oligodendrocytes and polydendrocytes)
that could be identified based on expression of canonical marker
genes (markers in Supplementary Fig. 1) (note that around 9% of
cells within clusters annotated as endothelial cells do not express
canonical endothelial cell markers but, rather, those of pericytes;
these ~1,400 cells have been grouped together with endothelial
cells for downstream analyses). scPred was trained on this anno-
tated DGE matrix, and the resulting model was subsequently used
to make cell-type assignments for the remaining batches’ DGE
matrices.

Filtering. After aninitial cell-type classification using the above model,
the DGE matrices were filtered further to remove any remaining hetero-
typicdoublets missed by scPred. First, raw DGE matrices from each of
the1lbatches were subsetted to form separate DGE matrices for each of
the 7 major cell types (77 subsetted DGE matrices total). Each subsetted
DGE matrix was normalized using sctransform (v.0.3.1)** with 7,000
variable features, scaling and centring. For each cell type, normalized
DGE matrices fromthe 11 batches were merged and clustered together
in Scanpy (v.1.9.1)’° using 50 principal components, batch correction
by donor using BBKNN (v.1.5.1)” and Leiden clustering using a range
ofresolutions. The most stable clustering resolution for each cell type
wasselected using clustree (v.0.4.4)™. Clusters expressing markers of
more than one cell type were determined to be heterotypic doublets;
cell barcodes in these clusters were discarded from the above DGE
matrices, and these filtered DGE matrices were then carried forward
forintegrated analyses across batches.

Neuronal subtypes. Classification models for neuronal subtypes were
trained using DGE matrices from a previous study” that were subset-
ted to glutamatergic or GABAergic neuron nuclei in middle temporal
gyrus (MTG). Although asimilar dataset exists for human brain nuclei
from the primary motor cortex (M1)”, we trained the model only on
the MTG dataset as the M1 lacks atraditional layer 4 (L4), whereas BA46
doeshaveal4.

The neuronal subtypes in this dataset include glutamatergic neu-
ron subtypes of distinct cortical layers and with predicted intratelen-
cephalic (IT), extratelencephalic (ET), corticothalamic (CT) and
near-projecting (NP) projection patterns, as well as the four cardinal
GABAergic neuron subtypes arising from the caudal (CGE: LAMPS",
VIP*) and medial (MGE: PVALB®, SST") ganglionic eminences.

We made the following adjustments to the MTG annotations before
model training. First, as subtype-level annotations (for example, L5IT,
as used previously” for M1) were not available for the MTG dataset,
we inferred these based on M1/MTG cluster correspondences (from
extended data figure 10 in ref. 76). Second, we reassigned the follow-
ing glutamatergic neurontypesinthe MTG from the L4 IT subtype (as
inferred by integration with Mlinref. 76) tothe L2/31IT subtype: ExcL3-5
RORB FILIP1L, Exc L3-5 RORB TWIST2 and Exc L3-5 RORB COL22Al.
This was done on the basis of their properties described in other
studies—for example, the Exc L3-5 RORB COL22A1 type has been
describedasadeep L3 typebyPatch-seq”’—and by the expression of their
marker genes on atwo-dimensional projection of the RNA-expression
profiles of glutamatergic neuron nuclei (Supplementary Fig. 2).

Feature plots for neuronal subtypes (Supplementary Figs. 2 and 3)
were generated using markers from the repository in https://bioportal.

bioontology.org/ontologies/PCL (v1.0,2020-04-26)7>""8, specifically
those for neuronal subtypes from MTG.

Astrocyte subtypes. Normalized, filtered DGE matrices from the 11
batches were merged and clustered together in scanpy using 8 princi-
pal components, batch correction by donor using bbknn’and Leiden
clustering using arange of resolutions. The most stable resolution that
created distinct clusters for putative astrocyte subtypes (resolution1.3)
was selected using clustree™. Feature plots for astrocyte subtypes
previously described in both the MTG and M177¢ (Extended Data Fig. 9)
were generated using markers from the repository at https://bioportal.
bioontology.org/ontologies/PCL (v.1.0,2020-04-26)>"78, Leiden clus-
ters were assigned to one of three astrocyte subtypes on the basis of
expression of these subtype markers.

Donor exclusion

Donors were excluded on the basis of unusual gene-expression profiles
and/or cell-type proportions (potentially related to agonal events) as
outlined below.

Expression. Donors with fewer than 1,000 total UMIs in any cell type
were first excluded. Next, for each cell type, gene-by-donor expression
matrices comprising the remaining donors were scaled to 100,000
UMIs per donor and filtered to the top expressing genes (defined as
having atleast 10 UMIs per 100,000 for at least one donor; these were
among the top 12-19% of expressed genes). These filtered expression
matrices by cell type were merged into asingle expression matrix that
was used to calculate each donor’s pairwise similarity to the other
donors (Pearson correlations of log,,-scaled expression values across
genes). Themedian of these pairwise correlation values was determined
to be the conformity score for each donor. To identify outliers, these
donor conformity scores were converted to modified zscores (M,) for
each donor as described previuously”:

M;=0.6745 x (x,~%)/MAD

wherex;is the donor’s conformity score, X is the median of donor con-
formity scores and MAD is the median absolute deviation of donor
conformity scores.

Donors whose modified z scores had absolute values of >5 were
excluded. This approach flagged a total of five donors (one who had
low UMI counts and four who were outliers on the basis of expression).

Cell-type proportions. Each donor’s pairwise similarity to the other
donors was determined on the basis of cell-type proportions (that
is, the values plotted in Supplementary Fig. 1c,d). Donor conformity
scores and modified zscores based on these values were calculated for
each donor using the same approach described above for expression
values. Donors whose modified zscores had absolute values of >15were
excluded. This approach flagged a total of nine donors, two of whom
were also flagged as expression outliers.

Between the two approaches, intotal, 11 unique donors were flagged
asoutliers (4 control, 7 schizophrenia) and excluded from downstream
analyses.

Latent factor analysis

snRNA-seq data. Our approach was to (1) create a gene-by-donor
matrix of expression measurements for each of seven cell types; (2)
concatenate these matricesinto alarger matrixinwhich each geneis
represented multiple times (once per celltype); and (3) perform latent
factor analysis®®® on this larger matrix. We selected probabilistic
estimation of expression residuals (PEER)® over other approaches
(such as principal component analysis (PCA)) for inferring latent
variables as it is more sensitive and less dependent on the number
of factors modelled. A major pitfall to avoid when performing latent
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factor analysis is obtaining highly correlated factors due to overfit-
ting. The latent factors that we have inferred are independent from
each other when we compare their gene loadings (Extended Data
Fig.3c), enabling us to proceed with downstream analyses based on
these factors.

Raw, filtered DGE matrices from each of the 11 batches were subset-
ted to form separate DGE matrices for each of the 7 major cell types
(77 subsetted DGE matrices total). For each subsetted DGE matrix,
cellbarcodes from outlier donors were excluded, the DGE matrix was
normalized using sctransform (v.0.3.1)**with 3,000 variable features,
and the output of Pearson residual expression values (with all input
genes returned) was exported to anew DGE matrix. For each cell type,
these new expression values in the 11 normalized DGE matrices were
summarized across donors (taking the sum of residual expression
values) to create a gene-by-donor expression matrix. Each of these
expression matrices was filtered to the top 50% of expressed genes
(based on feature counts scaled to 100,000 transcripts per donor),
yielding expression matrices with approximately 16,000 to 18,000
genes per cell type. Within each expression matrix, each gene name was
modified with a suffix to indicate the cell type of origin (for example,
ACAP3 to ACAP3 _astrocyte), and the seven expression matrices were
combined to produce a single expression matrix with expression val-
ues from all seven cell types for each donor (a schematic is shown in
Fig. 1f). This expression matrix was used as the input to latent factor
analysis with PEER (v.1.0)® using the default parameters and a range
of requested factors k.

Although we looked for correlations between these factors and tech-
nical variables, these analyses were negative, with one exception: latent
factor 2 (LF2) appeared to capture quantitative variationin therelative
representation of deep and superficial cortical layers in each dissection
(Extended DataFig. 3f).

Latent factor donor expression values were adjusted for age by tak-
ing the residuals from aregression of the donor expression values
againstage.

To improve the visualization of latent factor donor expression
values while leaving the results of statistical analyses unchanged,
quantile-normalized values were calculated in R using the function
gnorm(rank(x)/(Ilength(x) +1)). The figure legends indicate when these
quantile-normalized values are used.

Proteomics data. Proteinintensities from the LRRK2 Cohort Consor-
tium (LCC) cohort of a previous study®*were downloaded from the Pro-
teomeXchange Consortium (PXD026491) and subset to those peptides
that passed the g-value thresholdin atleast 25% of all analysed samples.
These were further subset to intensities from control donors without
the LRRK2(G2019S) mutation and without erythrocyte contamination
(n=22donors). After normalization of the protein intensities using
sctransform (v.0.3.1)%*, the output of Pearson residual expression val-
ues (with all input proteins returned) was exported to a new matrix.
This matrix of normalized protein intensities was used as the input to
latent factor analysis with PEER (v.1.0)®' using the default parameters.

For comparisons of CSF protein loadings to SNAP gene loadings in
Supplementary Fig. 7, each gene in SNAP was represented by a single
composite loading representing gene loadings fromall cell types. This
composite loading was determined for each gene by first calculating
the median expression of each gene (in each cell type), then calculating
anew loading onto SNAP weighted across cell types by these median
expression values.

Rhythmicity analysis
For Extended Data Fig. 4f, rhythmicity analyses were performed as
described previously®* using scripts available at GitHub (https://github.
com/KellyCahill/Circadian-Analysis-) and donor time of death in zeit-
geber time. Analyses also used the following packages: Ime4 (v.1.1-31)%,
minpack.lm (v.1.2-4)%,

GSEA

For GSEA®%¢ of latent factors inferred by PEER, the C5 Gene Ontol-

ogy collection (v.7.2)%”% from the Molecular Signatures Database**°

was merged with the SynGO (release 20210225)° biological process

(BP) and cell component (CC) gene lists. Gene sets from this merged

database that were enriched in each latent factor were identified with

GSEAPreranked in GSEA (v.4.0.3)%% using 10,000 permutations and

gene loadings as the ranking metric.

Forastrocyte latent factorsinferred by cNMF°, GSEA was performed
asdescribed above with the addition of the following custom gene sets
to the database:

+ PGC3_SCZ_GWAS_GENES_1TO2_AND_SCHEMAI GENES: a gene set
comprising genes implicated in human-genetic studies of schizo-
phrenia, including genes at 1-2 gene loci from GWAS (PGC3)? and
genes with rare coding variants (FDR < 0.05),

« Gene sets for each of the seven astrocyte subclusters identified in
ref. 14.

« Genesets for each of the 62 colour module eigengenes identified by
WGCNA inref. 14.

« Gene sets for each of the six astrocyte subcompartments analysed
inref. 92, comprising genes encoding the proteins that were unique
to or enriched in these subcompartments.

For L5IT glutamatergic neuron latent factors inferred by cNMF, GSEA
was performed as described above with the addition of the following
custom gene sets to the database:

+ PGC3_SCZ_GWAS_GENES_1TO2_ AND_SCHEMA1 GENES: a gene set
comprising genes implicated in human genetic studies of schizo-
phrenia, including genes at1-2 gene loci from GWAS (PGC3 (ref. 22))
and genes with rare coding variants (FDR < 0.05)%.

Selected gene sets

On the basis of the results of the GSEA described above, we selected
several of the top-enriched gene sets for further analyses. These are
referred to in the figures with labels modified for brevity, but are
described in further detail below. Lists of genes in each gene set are
provided in Supplementary Table 9.

« Integral component of postsynaptic density membrane (Extended
Data Figs. 6 and 8 and Supplementary Fig. 8): core genes contribut-
ing to the enrichment of GO:0099061 (v.7.2, integral component
of postsynaptic density membrane) in the glutamatergic neuron
component of LF4 (SNAP).

Neurotransmitter reuptake transporters (Fig. 2e, Extended Data
Figs. 6 and 8 and Supplementary Fig. 8): genes from among the 100
genes most strongly recruited by cNMF2 (SNAP-a) with known func-
tions as neurotransmitter-reuptake transporters. Theseinclude core
genes contributing to the enrichment of GO:0140161 (v.7.2, monocar-
boxylate: sodium symporter activity) in SNAP-a.

Presynapse (Extended Data Figs. 6 and 8 and Supplementary
Fig. 8): core genes contributing to the enrichment of GO:0098793
(v.7.2, presynapse) in the GABAergic neuron component of LF4
(SNAP).

Regulation of cholesterol biosynthesis (Fig. 2d,e, Extended Data
Figs. 6-8 and 13d and Supplementary Fig. 8): core genes contribut-
ingtothe enrichment of GO:0045540 (v.7.2, regulation of cholesterol
biosynthetic process) inthe astrocyte component of LF4 (SNAP). This
enrichmentis of interest as cholesterolis an astrocyte-supplied com-
ponent of synaptic membranes®?***, Products of this biosynthetic
pathway also include other lipids and cholesterol metabolites with
roles at synapses, including 24S-hydroxycholesterol, a positive allos-
teric modulator of NMDA receptors®. Although we refer to this gene
set by this label based on its annotation by GO, we note that subsets
of these genes contribute to cholesterol export and/or to synthesis
of additional fatty acids.
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- Schizophrenia genetics (Fig. 3k and Extended Data Fig. 13a): prior-
itized genes fromref. 23 (FDR < 0.05) or ref. 22.
« Synapse organization (Fig. 3k): core genes contributing to the
enrichment of GO:0050808 (v.7.2, synapse organization) in cNMF6
(SNAP-n).
Synaptic cell adhesion (Figs. 2e and 3k, Extended Data Figs. 6, 8 and
13aand Supplementary Fig. 8): genes from among the 20 genes most
strongly recruited by cNMF2 (SNAP-a) with known functions in syn-
aptic cell adhesion. This biological process was selected due to the
enrichment of GO:0099560 (v.7.2, synaptic membrane adhesion)
in SNAP-a.
Synaptic receptors and transporters (Fig. 3k and Extended Data
Fig.13a,c): genes from among the 100 genes most strongly recruited
by cNMF2 (SNAP-a) with known functions as synaptic receptors and
transporters.
Synaptic vesicle (Fig. 3k): core genes contributing to the enrichment
of GO:0008024 (v.7.2, synaptic vesicle) in cNMF6 (SNAP-n).
Synaptic vesicle cycle (Fig. 2c and Extended Data Fig. 5): core genes
contributing to the enrichment of GO:0099504 (v.7.2, synaptic vesi-
cle cycle) in the glutamatergic and GABAergic neuron components
of LF4 (SNAP).
Trans-synaptic signalling (Fig. 2e and Extended Data Figs. 6 and 8):
core genes contributing to the enrichment of GO:0099537 (v.7.2,
trans-synaptic signalling) in the glutamatergic neuron component
of LF4 (SNAP).

Gene sets displayed in Fig. 2b are the SynGO terms most strongly
enriched in each top-level category (among biological processes:
processin the presynapse, synaptic signalling, synapse organization,
processin the postsynapse, transport and metabolism, respectively).

Analysis of astrocyte and glutamatergic L5 IT neuron gene-
expression programs

Consensus nhon-negative matrix factorization. cNMF (v.1.2)"° was
performed onbothastrocyte and glutamatergic L5IT neurons. We used
cNMF owing to its scalability to the astrocyte and glutamatergic
L5 IT neuron datasets. The cNMF protocol detailed in the tutorial for
PBMCs at GitHub (https://github.com/dylkot/cNMF/blob/master/
Tutorials/analyze_pbmc_example_data.ipynb) was followed for the
initial data filtering and analysis. For both datasets, data were filtered to
remove cells with fewer than 200 genes or 200 UMIs. Genes expressed
in fewer than 10 cells were removed. Factorization was run on raw
counts data after filtering, withiterations of factorization run for each
k (factors requested), with a k ranging from 3 to 30.

The astrocyte raw counts data contained 179,764 cells and 42,651
genes, of which O cells and 9,040 genes were excluded. On the basis
of PCA of the gene expression matrix and the cNMF stability report,
factorization with k= 11was selected for further analysis. The 11 cNMF
factors together explained 25% of variation in gene expression levels
among single astrocytes.

The L5IT raw counts data contained 75,929 cells and 42,651 genes,
ofwhich O cellsand 8,178 genes were excluded. On the basis of the PCA
ofthe gene expression matrix and the cNMF stability report, factoriza-
tion with k=13 was selected for further analysis. The 13 cNMF factors
together explained 44% of variation in gene expression levels among
single LS IT glutamatergic neurons. To align the direction of interpre-
tation across all three analyses (SNAP, SNAP-a, and SNAP-n), we took
the negative of cNMF factor 6 (SNAP-n) cell scores, gene loadings and
donor scores.

Thelatent factor usage matrix (cell by factor) was normalized before
analysis to scale each cell’s total usage across all factors to 1.
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Co-varying neighbourhood analysis. To further assess the robust-
ness of the astrocyte gene-expression changes represented by SNAP
and SNAP-a, we used a third computational approach—co-varying

neighbourhood analysis (CNA, v.0.1.4)%. The protocol provided in
the CNA tutorial at GitHub (https://nbviewer.org/github/yakirr/cna/
blob/master/demo/demo.ipynb) was followed for data preprocessing
and analysis.

Pilot association tests to find transcriptional neighbourhoods asso-
ciated with schizophrenia case-control status were first performed
using the default value for N,,,;. These pilot analyses evaluated the
effects of batch correction (by batch or donor) and covariate cor-
rection (by age, sex, post-mortem interval, number of UMIs or num-
ber of expressed genes). Nearly all analyses yielded highly similar
neighbourhoods associated with case-control status with the same
global Pvalue (P=1x107*), with the exception of batch correction
by donor which yielded P=1. The final association test described
in Supplementary Fig. 9 was performed with an increased value for
Nout (N =1,000,000) and without additional batch or covariate
correction.

Regulatory network inference

The goal of pySCENIC**8is to infer transcription factors and regulatory
networks fromsingle-cell gene-expression data. The pySCENIC (v0.11.2)
protocol detailed in the tutorial for PBMCs at GitHub (https://github.
com/aertslab/SCENICprotocol/blob/master/notebooks/PBMC10k_
SCENIC-protocol-CLLipynb) was followed for the initial datafiltering
and analysis. For bothastrocytes and LS IT glutamatergic neurons, data
were filtered to remove cells with fewer than 200 genes, and genes with
fewer than 3 cells. Cells with high MT expression (>15% of their total
transcripts) were removed.

The gene regulatory network discovery adjacency matrix was
inferred by running Arboreto on the gene counts matrix and a list of
all transcription factors provided by the authors (https://resources.
aertslab.org/cistarget/tf lists/allTFs_hg38.txt) to generate an initial
set of regulons. This set was further refined using ctx, which removes
targets that are not enriched for a motifin the transcription factor
using a provided set of human specific motifs (https://resources.
aertslab.org/cistarget/motif2tf/motifs-v9-nr.hgnc-m0.001-00.0.tbl)
and cis targets (https://resources.aertslab.org/cistarget/databases/
homo_sapiens/hg38/refseq_r80/mc9nr/gene_based). Finally, aucell
wasrunto generate the per-cell enrichment scores for each discovered
transcription factor.

Super-enhancer analysis

Preparation of input BAM files was performed as follows. FASTQ files
of bulk H3K27ac HiChlIP data from the middle frontal gyrus®® were
downloaded from the Gene Expression Omnibus (GEO: GSM4441830
and GSM4441833). Demultiplexed FASTQ files were trimmed with
Trimmomatic (v.0.33)'° using the parameter SLIDINGWINDOW:5:30.
Trimmed reads were aligned to the hg38 reference genome with
Bowtie2 (v2.2.4)"*" using the default parameters. Uniquely mapped
reads were extracted with samtools (v.1.3.1)'* view using the param-
eters-h-b-F3844-q10.

Preparation of input constituent enhancers was performed as
follows. FitHiChIP interaction files for H3K27ac from the middle
frontal gyrus®® were downloaded from the GEO (GSM4441830 and
GSM4441833). These were filtered to interacting bins (atinteractions
with ¢ < 0.01) that overlap bulk H3K27ac peaks in the one-dimensional
HiChIP datain both replicates. Next, these bins were intersected with
IDR-filtered single-cell assay for transposase-accessible chromatin
using sequencing (scATAC-seq) peaks in isocortical and unclassified
astrocytes (peaks from clusters 13, 15 and 17, downloaded from the
GEO (GSE147672))%. Unique coordinates of these filtered regions were
converted to GFF files.

Super-enhancers were called with ROSE (v.1.3.1)1%*1%* using the
inputfiles prepared above and the parameters -s12500 -t 2500. Coor-
dinates of promoter elements for Homo sapiens (December 2013
GRCh38/hg38) were downloaded from the Eukaryotic Promoter


https://github.com/dylkot/cNMF/blob/master/Tutorials/analyze_pbmc_example_data.ipynb
https://github.com/dylkot/cNMF/blob/master/Tutorials/analyze_pbmc_example_data.ipynb
https://nbviewer.org/github/yakirr/cna/blob/master/demo/demo.ipynb
https://nbviewer.org/github/yakirr/cna/blob/master/demo/demo.ipynb
https://github.com/aertslab/SCENICprotocol/blob/master/notebooks/PBMC10k_SCENIC-protocol-CLI.ipynb
https://github.com/aertslab/SCENICprotocol/blob/master/notebooks/PBMC10k_SCENIC-protocol-CLI.ipynb
https://github.com/aertslab/SCENICprotocol/blob/master/notebooks/PBMC10k_SCENIC-protocol-CLI.ipynb
https://resources.aertslab.org/cistarget/tf_lists/allTFs_hg38.txt
https://resources.aertslab.org/cistarget/tf_lists/allTFs_hg38.txt
https://resources.aertslab.org/cistarget/motif2tf/motifs-v9-nr.hgnc-m0.001-o0.0.tbl
https://resources.aertslab.org/cistarget/motif2tf/motifs-v9-nr.hgnc-m0.001-o0.0.tbl
https://resources.aertslab.org/cistarget/databases/homo_sapiens/hg38/refseq_r80/mc9nr/gene_based/
https://resources.aertslab.org/cistarget/databases/homo_sapiens/hg38/refseq_r80/mc9nr/gene_based/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4441830
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4441833
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4441830
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4441833
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147672

Database (EPD)'® using the EPDnew selection tool (https://epd.expasy.
org/epd/EPDnew select.php)'®. Using these sets of coordinates, FitHi-
ChlIPloops that overlap bulk H3K27ac peaks and scATAC peaks in astro-
cytes were subset to those that contained a promoter in one anchor
and asuper-enhancerin the other anchor. Binomial smooth plots were
generated as described previously'”’.

Heritability analyses

MAGMA. Summary statistics fromref. 22 were uploaded to the FUMA
(v.1.5.6)'°% web server (https://fuma.ctglab.nl). Gene-level z scores
were calculated using SNP2GENE with the ‘Perform MAGMA'’ function
(MAGMA v.1.08) and the default parameter settings. The reference
panel population was set to ‘1000G Phase3 EUR’. The MHC region was
excluded due to its unusual genetic architecture and LD. MAGMA z
scores were then used for downstream analyses as described in the
Supplementary Note.

Stratified LD score regression. To partition SNP heritability, we used
stratified LD score regression (S-LDSC; v.1.0.1)*, which assesses the
contribution of gene expression programs to disease heritability.
First, for analysis of astrocyte-identity genes, we computed (within
the BA46 region only), a Wilcoxon rank-sum test on a per-gene basis
using presto (v.1.0.0)'*° between astrocytes and all other cell types;
for analysis of astrocyte-activity genes (SNAP-a), we sorted all genes
expressedinastrocytes by their SNAP-aloadings and took the top 2,000
genes. We then converted each gene set into annotations for S-LDSC
by extending the window size to 100 kb (from the transcription start
site and transcription end site), and ordered SNPs in the same order
as the .bim file (from phase 3 of the 1000 Genomes Project'°) used to
calculate the LD scores. We then computed LD scores for annotations
usingalcMwindow and restricted the analysis to Hapmap3 SNPs. We
excludedthe MHC regionduetobothits high LD and high gene density.
We used LD weights calculated for HapMap3 SNPs for the regression
weights. We then jointly modeled the annotations corresponding to
our gene expression program, as well as all protein-coding genes, and
the baseline model (baseline model v.1.2). We tested for enrichment of
SNP heritability onthe traits listed below. The LDSC script ‘munge_sum-
stats.py’ was used to prepare the summary statistics files. We used the
resultant Pvalues, which reflect aone-sided test that the coefficient (7)
isgreater than zero, as adeterminant as to whether our cell type gene
expression programs are enriched for SNP-heritability of agiven trait™.
We used summary statistics fromthe following studies in Supplemen-
tary Fig.12: ADHD"2, ALS™, Alzheimer’s disease™™, age of smoking initia-
tion™, autism™®, bipolar disorder (all, type |, and type II)', cigarettes
per day'®, educational attainment"®, epilepsy (all, focal, generalized)",
height'®, 1Q'%, insomnia'?, neuroticism'?, OCD'**, schizophrenia?,
PTSD'Z, risk'?, subjective well-being'®, smoking cessation™, smoking
initiation'”, Tourette’s™®® and ulcerative colitis®.
Polygenicrisk scores
Clumped summary statistics for schizophrenia (from ref. 22) across
99,194 autosomal markers were downloaded from the Psychiatric
Genomics Consortium portal (file PGC3_SCZ_wave3_public.clumped.
v2.tsv). After liftOver of markers to GRCh38 using customtools, 99,135
markers were available for scoring. We processed the output data
from the MoChA imputation workflow*®*® using BCFtools (v.1.16) and
the MoChA score (v.2022-12-21)%% workflow (https://github.com/
freeseek/score) tocompute schizophrenia polygenic scoresacrossall
2,413 imputed samples from the McLean cohort.

4

MetaGene discovery. Genes that have high sequence homology are
typically difficult to capture using standard UMI counting methods.
Reads from these regions map to multiple locations in the genome
with low mapping quality, and are ignored by many gene expression

algorithms. MetaGene discovery leverages that high sequence similar-
ity by looking for UMIs that consistently map to multiple genes at low
mapping quality consistently across many cells.

Each UMlIis associated withasingle geneif atleast oneread fromthe
UMI uniquely maps to a single gene model. If all reads are mapped at
low quality to multiple genes, then assignment of that UMI to a specific
gene model is ambiguous, and that UMl is associated with all gene
models. By surveying a large number of cells, a set of gene families
are discovered where UMIs are consistently associated with sets of
genes. Thisdiscovery process finds expected sets of gene families with
highsequence homology directly from the mapping, such as C44/C48B,
CSAG2/CSAG3and SERFIA/SERFIB.

These UMIs are then extracted in the counts matrix asajoint expres-
sionofallgenesineach set. We prefer to calculate expression as the joint
expression of allgenesin the setbecause the priorsinthe data prevent
confidently distributing these ambiguous UMIs. For example, C44 and
C4B have very few UMIs that map uniquely to either gene in the set
(8 UMIs, <0.5% of all UMIs captured for this set of genes), whichis aweak
prior to proportionally assign ambiguous UMIs to the correct model.

Thisapproach was validated for C4 expression by generating arefer-
ence genome that contained only one copy of C4. This allowed each
UMI to map uniquely to the single remaining copy of the gene using
standard tools. The custom reference approach and joint expression
of C4A/C4B on the basis of the metagene approach was concordant in
15,664 0f 15,669 cells tested (Extended Data Fig. 15c).

Imputation of C4 structural variation. Phased copy-number calls for
structural features of the C4 gene family were obtained by imputation
using Osprey, a method for imputing structural variation. The total
copy number of C4 genes, the number of copies of C44 and C4B, and
the copy number of the polymorphic HERV element that distinguishes
long from short forms of C4*° were imputed into the McLean cohort
using areference panel based on 1000 Genomes®.

Animputation reference panel was constructed for GRCh38 using
2,604 unrelated individuals (out of 3,202 total) from 1000 Genomes.
SNPs were included in the reference panel if (1) they were within the
locus chromosome 6: 24000000-34000000 but excluding the
copy-number variable region chromosome 6: 31980001-32046200;
and (2) they were not multi-allelicand (3) they had an allele count (AC)
of atleast 3 when subset to the 2,604 reference individuals.

Theimputation reference panel was merged with genotypes for the
McLean cohort obtained from the GSA genotyping arrays. Markers
not appearing in both datasets were dropped and the merged panel
was phased with SHAPEIT4 (v.4.2.0)* using the default parameters
plus --sequencing and the default GRCh38 genetic map supplied with
SHAPEIT.

Reference copy numbers for the C4 structural features on GRCh38
were obtained for the 3,202 1000 Genomes samples using a custom
pipeline based on Genome STRiP (v.2.0)"°. The source code for this
pipelineisavailable at Terra (http://app.terra.bio)™>. In brief, the pipe-
line uses Genome STRiP to estimate the total C4 copy number and HERV
copy number from normalized read depth of coverage, then estimates
the number of copies of C44 and C4B using maximum likelihood based
on reads that overlap the C4 active site (coordinates, chromosome
6:31996082-31996099 and chromosome 6: 32028820-32028837).
These copy-number genotypes were then subset to the 2,604 unre-
lated individuals.

The structural features were imputed into the merged imputation
panel using Osprey (v.0.1-9)**'** by running ospreyIBS followed by
osprey using the default parameters plus “-iter 100’, the SHAPEIT4
genetic map for GRCh38 chromosome 6 and atarget genome interval
of chromosome 6:31980500-32046500.

The output from Osprey was post-processed using a custom R
script (refine_C4_haplotypes.R) that enforces constraints between the
copy-number features and recalibrates the likelihoods considering only
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possible haplotypes. The enforced constraints are that the C4A4 + C4B
copies must equal the total C4 copy number and that the HERV copy
number must be less than or equal to C4 copy number.

Source data and visualization

In addition to the software cited above, we used Colour Oracle
(v.1.3)B2*3 as well as the following packages to prepare the source data
and figures in this manuscript.

Python (v.3.8.3): matplotlib (v.3.5.2)*¢ and seaborn (v.0.10.1)"*”. R
(v.4.1.3): cluster (v.2.1.2)"*8, ComplexHeatmap (v.2.10.0)****°, data.table
(v.1.14.8)*, DescTools (v.0.99.48)*, dplyr (v.1.1.2)*, gdata (v.2.19.0)'*,
ggforce (v.0.4.1)", ggplot2 (v.3.4.2)"*¢, ggpmisc (v.0.5.3)", ggpointden-
sity (v.0.1.0)"8, ggpubr (v.0.5.0)", ggrastr (v.1.0.2)*°, ggrepel (v.0.9.3)™,
grid (v.4.1.3)"?, gridExtra (v.2.3)'3, gtable (v.0.3.3)™*, matrixStats
(v.0.63.0)", pheatmap (v.1.0.12)", plyr (v.1.8.8)™, purrr (v.1.0.1)"%,
RColorBrewer (v.1.1-3)*°, readxl (v.1.4.2)'°, reshape2 (v.1.4.4)'!, scales
(v.1.2.1)'2, splitstackshape (v.1.4.8)'®, stats (v.4.1.3)'%2, stringi (v.1.7.12)'**,
stringr (v.1.5.0)'%, tidyr (v.1.3.0)'*® and viridis (v.0.6.2)'".

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Sequencing data generated in this study and processed sequenc-
ing files are available at the Neuroscience Multi-omic Data Archive
(NeMO) (https://assets.nemoarchive.org/dat-bmx7slt). The data are
available under controlled use conditions set by human privacy regula-
tions. To access the data, the requester must first create anaccountin
DUOS (https://duos.broadinstitute.org) using their institutional email
address. The signing official from the requester’sinstitution must also
register in DUOS to issue the requester a library card agreement. The
requester will then need tofill out adataaccess request through DUOS,
which will be reviewed by the Broad Institute’s Data Access Committee.
Oncearequestisapproved, NeMO will be notified to authorize access
to the data. Processed expression data can also be queried using the
interactive public web interface that we created (https://dIpfc.mcca-
rrolllab.org/app/dipfc). The following publicly available datasets were
also analysed: ProteomeXchange Dataset PXD026491 (ref. 82) and
Gene Expression Omnibus Series GSE147672 (ref. 99). Source data are
provided with this paper.

Code availability

Software and core computational analysis to align and process sequenc-
ingreads and perform donor assignment are freely available at GitHub
(https://github.com/broadinstitute/Drop-seq). Published or publicly
available software, tools, algorithms and packages are cited with their
version numbers in the text and Reporting Summary. Other custom
codeis available on request from the corresponding authors.
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Extended DataFig.3|Properties of the latentfactorsinferred from snRNA-
seqdata. a, Total % variance in expression explained by latent factors with
different numbers of requested factors k. b, Fraction of variance explained by
eachlatentfactorinananalysis with 10 requested factors. c-d, Independence
oflatent factors, visualized as Pearson correlation heatmaps of factors’ (c)
geneloadings (n=125,437 gene/cell-type combinations) and (d) donor scores
(n=180donors).e, Expression level of each latent factor (panels) ineach donor

(points), splitby batch (n =20 donors per batch). f, Relationship of latent
factors to markers of superficial and deep cortical layers from”. Markers label

Rank

dominant classes of glutamatergic neurons (superficial: LAMPS, LINCO0507,

RORB; deep: THEMIS, FEZF2) or spatially restricted subtypes (superficial: Exc L2

listed above (grey).
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Extended DataFig. 4 |See next page for caption.



Extended DataFig. 4 |Properties of Latent Factor 4 (LF4). a, Expression of
eachlatentfactor by case-controlstatus (n =93 controls and 87 cases). P-values
arefromatwo-sided Wilcoxon rank-sum test. Box plots show interquartile
ranges; whiskers, 1.5x the interquartile interval; central lines, medians;
notches, confidenceintervals around medians. b, Expression of LF4 by case-
controlstatus, split by sex (female: n=31controls and 39 cases; male:n= 62
controlsand 48 cases). P-values are from a two-sided Wilcoxon rank-sum test.
Box plots show interquartile ranges; whiskers, 1.5x the interquartile interval;
centrallines, medians; notches, confidence intervals around medians. Note
that the more-modest p-value for the females-only analysis relative to the males-
only analysis appearsto represent the smaller sample (70 females vs. 110 males)
rather thanaweaker relationship to schizophreniastatus; please see also
Extended DataFig.10h. ¢, Similar plots asinb, here displaying LF4 expression
values adjusted for donor age. d, Expression of LF4 by sex, split by case-control
status (controls: n =31females and 62 males; cases: n =39 femalesand 48
males). P-values are from a two-sided Wilcoxon rank-sum test. Box plots show
interquartile ranges; whiskers, 1.5x the interquartile interval; central lines,
medians; notches, confidenceintervalsaround medians. e, Similar plotsasind,

heredisplaying LF4 expression values adjusted for donor age. f-k, Relationship
of LF4 expression measurements to other available donor and tissue
characteristics: (f) time of death in zeitgeber time (ZT), with rhythmicity
analyses performed as in®?; (g) post-mortem interval; (h) number of nuclei
sampled; (i) number of UMIs sampled; (j) use of psychiatric medications (left
column) across each donor’slifespan or (right column) in the last 6 months
prior to death; and (k) use of clozapine. Correlation coefficientsing-jare
Spearman’s p. P-valuesink are from a two-sided Wilcoxon rank-sum test.

Box plotsshow interquartile ranges; whiskers, 1.5x theinterquartile interval;
centrallines, medians; notches, confidence intervals around medians. 1, See
also Fig.2a.LF4 involves broadly similar gene-expression effects in glutamatergic
and GABAergic neurons, and a distinct set of gene-expression effectsin
astrocytes. Genes plotted are the protein-coding genes that are expressed
(atlevels of atleast 10 UMIs per 10°) in both cell types (Spearman’s p; n=1,538,
1,067,and 1,131 genesrespectively). m, Concentrations of the strongest
enriched neuronal gene-expression changesin LF4 among synaptic functions
asannotated by SynGO?". Plots show categories of SynGO biological processes.
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Extended DataFig. 5| Relationship of synaptic vesicle cycle gene expression
inneuronal subtypes toadvancing age.a-b, See also Fig. 2c. Neuronal
expression of synaptic vesicle cycle genesin the most abundant subtypes

of () glutamatergic and (b) GABAergic neurons (across 180 donors), plotted
against donor age (Spearman’s p). Expression values are the fraction of all UMIs

ineach donor (fromtheindicated subtype) that are derived from these genes,
normalized to the median expression among control donors. Shaded regions
represent 95% confidenceintervals. The observed decline in schizophrenia
and aging was consistent with earlier observations that expression of genes for
synaptic componentsis reduced inschizophrenia'®®

andwithadvancing age'®’.
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Extended DataFig. 8| Concerted synapticinvestments by neurons and

Regulation of cholesterol biosynthesis
(Adjusted aggregated expression)

astrocytes, adjusted for age and schizophrenia case-control status.

a-c,Seealso Fig.2e. Relationship of donors’ neuronal gene expression to
astrocyte gene expression (Spearman’s p), adjusted for age and case-control
status. Astrocyte gene sets plotted on the x-axes represent (left) cholesterol

biosynthesis, (middle) synaptic adhesion, and (right) neurotransmitter

Synaptic cell adhesion
(Adjusted aggregated expression)

reuptake transporters. Neuronal gene sets plotted on the y-axes represent

(a) trans-synaptic signalling, (b) integral component of postsynaptic density,
and (c) presynapse genes. Expression values are the fraction of allUMIsineach
donor (fromtheindicated cell type) thatare derived from these genes, adjusted
for donor age and schizophrenia case-control status. Shaded regions represent

95% confidenceintervals.
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Extended DataFig.9|Astrocyte subtype classificationand proportions
acrossdonors. a, Two-dimensional projection of the RNA-expression profiles
0of 179,764 astrocyte nuclei from 180 donors, reproduced from Fig. 3a. Nuclei
are coloured by their assignments to subtypes of astrocytes using classifications
from” and’®. The same projectionisusedinpanelsb tod.b-d, Expression
levels of marker genes for subtypes of (b) protoplasmic astrocytes (SLC1A3+)
and non-protoplasmicastrocytes (SLCIA3-and GFAP+) comprising the (c)
fibrous (AQPI+) and (d) interlaminar (AQPI-and /D3+, SERPINI2+, and WDR49+)

a b Protoplasmic Non-protoplasmic
(SLC1A3+) (SLC1A3- and GFAP+)
Astrocyte subtype SLC1A3 GFAP

C Fibrous
(AQPT+)

AQP1

=2 0 =1 0 1

d Interlaminar
(AQP1- and ID3+; SERPINI2+; WDR49+)

ID3 SERPINI2 WDR49

0 1 0 1 0 2 0 2
e
_ Fibrous InterlaminarProtoplasmic fq_) Fibrous Interlaminar Protoplasmic
§100 p= 028 [p=0.20 S 50{p=0.095p=0.21 40{P=01,p=018 100 » A
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4 Case-control status [] Control [] SCZ a Donor age

Values represent Pearson residuals from variance stabilizing transformation
(VST). e, Proportions of astrocyte subtypes in BA46 by schizophreniastatus
(n=93 unaffected and 87 affected). P-values from a two-sided Wilcoxon
rank-sumtest comparingthe affected to the unaffected donors arereported
atthetop of each panel. Box plots show interquartile ranges; whiskers, 1.5x the
interquartile interval; central lines, medians; notches, confidence intervals
around medians. f, Relationship of sampled astrocyte subtype proportions to
donor age (Spearman’s p).

subtypes. Markers are from” or from transcriptomically similar subtypesin’.
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Extended DataFig.10|Astrocyte gene-expression programsinferred by
cNMF (SNAP-a) and their relationship to SNAP. a, Visualization of the trade-
offbetween error and stability of cNMF factors as a function of the number of
factors k.11factors wererequested based on these results. b, Clustergram of
consensus matrix factorization estimates. Each colour on the x- and y-axes
represents one of 11 cNMF factors. c-d, Relationship of SNAP-ato SNAP by (c)
geneloadings (n=33,611genes) and (d) donors’ expression levels of each factor
(n=180donors) (Spearman’s p). Shaded regions represent 95% confidence
intervals. e, UMAP of RNA-expression patterns from 179,764 astrocyte nuclei
from 180 donors, using the same projection from Fig.3a-c. Nuclei are coloured
by (left) each donor’s expression of SNAP or (right) each cell’s expression of the
astrocyte component of SNAP (c(NMF2, also referred to as SNAP-a). SNAP-ais
reproduced from Fig. 3c for comparison with SNAP. f, Distributions of SNAP-a
expression levelsamongastrocytesin each donor, split by experimental batch.
Box plots showinterquartile ranges; whiskers, 1.5x the interquartile interval;
centrallines, medians. g, Density plots showing distributions of SNAP-a
expression levels among astrocytesin each donor for one representative batch

(batch 4) out of 11batches. Labelsin top-right cornersindicate anonymized
researchIDs at the Harvard Brain Tissue Resource Center. Colours represent
case-control status (green: controls; purple: schizophrenia cases). At the
single-astrocyte level, SNAP-a expression exhibited continuous, quantitative
variation rather than discrete state shifts by asubpopulation of astrocytes,
supporting theideathatastrocyte biological variation extends beyond
polarized states7*"! particularly in genes strongly loading onto SNAP-a'7> 8!,
h, Distributions of SNAP-a expression levels by case-control status, split by sex.
P-values from atwo-sided Wilcoxon rank-sum test comparing the affected to
the unaffected donors are reported at the top of each panel. Box plots show
interquartile ranges; whiskers, 1.5x the interquartile interval; central lines,
medians; notches, confidence intervals around medians. i, Distributions of
SNAP-aexpression levels by case-control status, split by astrocyte subtype.
P-values from atwo-sided Wilcoxon rank-sum test comparing the affected to
theunaffected donorsarereported at the top of each panel. Box plots show
interquartile ranges; whiskers, 1.5x the interquartile interval; central lines,
medians; notches, confidence intervals around medians.
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Extended DataFig.12|Biological states and transcriptional programs of
L5IT glutamatergic neuronsinschizophrenia. a-b, Relationship of SNAP-a
to SNAP-n (Spearman’s p). Values plotted are (a) quantile-normalized and (b)
donorage-adjusted, quantile-normalized donor scores for each factor. Shaded
regionsrepresent 95% confidenceintervals.c, UMAP of regulon activity scores
(asinferred by pySCENIC®®) from L5 IT glutamatergic neuron nuclei from 180
donors, using the same projection from Fig. 3f~h. Regulons plotted are the
most strongly enriched in L5 1T glutamatergic neurons with high versus low
SNAP-nexpression. (+) indicates that the targets of the indicated regulon were
foundtobeupregulatedinexpression.
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around medians. e, Relationship of SNAP-a expression to association with
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SNAP-aloadings were compared between the two groups. (Left) Distributions
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Extended DataFig.14 |Expression of well-characterized transcriptional
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Software and code

Policy information about availability of computer code

Data collection  Software and core computational analysis for the following data collection steps are freely available at
https://github.com/broadinstitute/Drop-seq:
Drop-seq (v2.4.1) (Macosko et al. 2015) - align and process sequencing reads
Dropulation (v2.4.1) (Wells et al. 2023) - perform donor assignment

Data analysis Software/tools/algorithms/packages used for data analyses are listed below and also cited in the text.
anndata (v0.8.0) (Virshup et al. 2021) - https://anndata.readthedocs.io
BBKNN (v1.5.1) (Polariski et al. 2020) - https://github.com/Teichlab/bbknn
BCFtools (v1.16) (Danecek et al. 2021) - https://www.htslib.org
Bowtie2 (v2.2.4) (Langmead et al. 2012) - https://bowtie-bio.sourceforge.net/bowtie2
CellBender (v0.1.0) (Fleming et al. 2023) - https://github.com/broadinstitute/CellBender
cluster (v2.1.2) (Maechler et al. 2022) - https://CRAN.R-project.org/package=cluster
clustree (v0.4.4) (Zappia et al. 2018) - https://github.com/lazappi/clustree
CNA (v0.1.4) (Reshef et al. 2022) - https://github.com/immunogenomics/cna
cNMF (v1.2) (Kotliar et al. 2019) - https://github.com/dylkot/cNMF
Color Oracle (v1.3) (Jenny et al. 2006; Jenny et al. 2007) - https://github.com/nvkelso/color-oracle-java
ComplexHeatmap (v2.10.0) (Gu et al. 2016; Gu 2022) - https://github.com/jokergoo/ComplexHeatmap
data.table (v1.14.8) (Dowle et al. 2023) - https://CRAN.R-project.org/package=data.table
DescTools (v0.99.48) (Signorell 2023) - https://CRAN.R-project.org/package=DescTools
dplyr (v1.1.2) (Wickham et al. 2023) - https://CRAN.R-project.org/package=dplyr
fastICA (v1.2-1) (Marchini et al. 2017) - https://CRAN.R-project.org/package=fastICA
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FUMA (v1.5.6) (Watanabe et al. 2017) - https://fuma.ctglab.nl

gdata (v2.19.0) (Warnes et al. 2023) - https://CRAN.R-project.org/package=gdata

GenCall (v3.0.0) (Kermani 2006)

Genome STRiP (v2.0) (Handsaker et al. 2015) - https://software.broadinstitute.org/software/genomestrip
ggforce (v0.4.1) (Pedersen 2022) - https://CRAN.R-project.org/package=ggforce

ggplot2 (v3.4.2) (Wickham 2016) - https://ggplot2.tidyverse.org

ggpmisc (v0.5.3) (Aphalo 2023) - https://CRAN.R-project.org/package=ggpmisc

ggpointdensity (v0.1.0) (Kremer 2019) - https://CRAN.R-project.org/package=ggpointdensity
ggpubr (v0.5.0) (Kassambara 2022) - https://CRAN.R-project.org/package=ggpubr

ggrastr (v1.0.2) (Petukhov et al. 2023) - https://CRAN.R-project.org/package=ggrastr

ggrepel (v0.9.3) (Slowikowski 2023) - https://CRAN.R-project.org/package=ggrepel

grid (v4.1.3) (R Core Team 2022) - https://www.R-project.org

gridExtra (v2.3) (Auguie 2017) - https://CRAN.R-project.org/package=gridExtra

GSEA (v4.0.3) (Subramanian et al. 2005; Mootha et al. 2003) - https://www.gsea-msigdb.org/gsea/index.jsp
gtable (v0.3.3) (Wickham et al. 2023) - https://CRAN.R-project.org/package=gtable

IMPUTES (v1.1.5) (Rubinacci et al. 2020) - https://jmarchini.org/software/#impute-5

Ime4 (v1.1-31) (Bates et al. 2015) - https://github.com/Ime4/Ime4

MAGMA (v1.08) (de Leeuw et al. 2015) - http://ctglab.nl/software/magma

Matplotlib (v3.5.2) (Hunter et al. 2007) - https://matplotlib.org

matrixStats (v0.63.0) (Bengtsson 2022) - https://CRAN.R-project.org/package=matrixStats
minpack.Im (v1.2-4) (Elzhov et al. 2022) - https://CRAN.R-project.org/package=minpack.Im
MoChA WDL (v2022-12-21) (Loh et al. 2018; Loh et al. 2020) - https://github.com/freeseek/mochawd|
NumPy (v1.17.5) (Harris et al. 2020) - https://numpy.org

Osprey (v0.1-9) (Handsaker et al. 2022) - https://github.com/broadinstitute/Osprey

pandas (v1.0.5) (The pandas development team 2020; McKinney 2010) - https://pandas.pydata.org
PEER (v1.0) (Stegle et al. 2012) - https://github.com/PMBio/peer

pheatmap (v1.0.12) (Kolde 2019) - https://CRAN.R-project.org/package=pheatmap

plyr (v1.8.8) (Wickham 2011) - https://plyr.had.co.nz

presto (v1.0.0) (Korsunsky et al. 2022) - https://immunogenomics.github.io/presto

purrr (v1.0.1) (Wickham et al. 2023) - https://CRAN.R-project.org/package=purrr

pySCENIC (v0.11.2) (Aibar et al. 2017; Van de Sande et al. 2020) - https://github.com/aertslab/SCENICprotocol
RColorBrewer (v1.1-3) (Neuwirth 2022) - https://CRAN.R-project.org/package=RColorBrewer
readxl (v1.4.2) (Wickham et al. 2023) - https://CRAN.R-project.org/package=readx|

reshape2 (v1.4.4) (Wickham 2007) - https://github.com/hadley/reshape

ROSE (v1.3.1) (Whyte et al. 2013; Lin et al. 2013) - https://github.com/stjude/ROSE

S-LDSC (v1.0.1) (Finucane et al. 2015) - https://github.com/bulik/Idsc

samtools (v1.3.1) (Danecek et al. 2021) - https://www.htslib.org

scales (v1.2.1) (Wickham et al. 2023) - https://CRAN.R-project.org/package=scales

Scanpy (v1.9.1) (Wolf et al. 2018) - https://scanpy.readthedocs.io

score (v2022-12-21) (Loh et al. 2018; Loh et al. 2020) - https://github.com/freeseek/mochawd|
scPred (v1.9.2) (Alquicira-Hernandez et al. 2019) - https://github.com/powellgenomicslab/scPred
sctransform (v0.3.1) (Hafemeister et al. 2019) - https://github.com/satijalab/sctransform
seaborn (v0.10.1) (Waskom et al. 2021) - https://seaborn.pydata.org

Seurat (v3.2.2) (Stuart et al. 2019) - https://satijalab.org/seurat

SeuratDisk (v0.0.0.9010) (Hoffmann et al. 2022) - https://mojaveazure.github.io/seurat-disk
SHAPEIT4 (v4.2.2) (Delaneau et al. 2019) - https://github.com/odelaneau/shapeit4
splitstackshape (v1.4.8) (Mahto 2019) - https://CRAN.R-project.org/package=splitstackshape
stats (v4.1.3) (R Core Team 2022) - https://www.R-project.org

stringi (v1.7.12) (Gagolewski 2022) - https://stringi.gagolewski.com

stringr (v1.5.0) (Wickham 2022) - https://CRAN.R-project.org/package=stringr

tidyr (v1.3.0) (Wickham et al. 2023) - https://CRAN.R-project.org/package=tidyr

Trimmomatic (v0.33) (Bolger et al. 2014) - http://www.usadellab.org/cms/?page=trimmomatic
viridis (v0.6.2) (Garnier et al. 2021) - https://sjmgarnier.github.io/viridis
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For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Sequencing data generated in this study and processed sequencing files are available through the Neuroscience Multi-omic Data Archive (NeMO)
(RRID:SCR_016152) at https://assets.nemoarchive.org/dat-bmx7s1t. The data are available under controlled use conditions set by human privacy regulations. To
access the data, the requester must first create an account in DUOS (https://duos.broadinstitute.org) using their institutional email address. The Signing Official
from the requester's institution must also register in DUOS to issue the requester a Library Card Agreement. The requester will then need to fill out a Data Access
Request through DUQS, which will be reviewed by the Broad Institute's Data Access Committee. Once a request is processed, NeMO will be notified to authorize
access to the data. Processed expression data can also be queried using an interactive public web interface that we created (https://sz.mccarrolllab.org/app/SZ).
Source data with anonymized donor IDs are provided with this paper.




The following publicly available datasets were also analyzed: ProteomeXchange Dataset PXD026491 (Karayel et al. 2022) and Gene Expression Omnibus Series
GSE147672 (Corces et al. 2020).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Brain donors were selected for this study so that within every batch (containing 10 schizophrenia cases and 10 controls),
every donor with schizophrenia had a sex- and age-matched control. Information relevant to consent for sharing of
individual-level data is described under "Ethics oversight". Key findings from this paper apply to both sexes (i.e. SNAP, SNAP-
a).

Reporting on race, ethnicity, or  This study does not use socially constructed or socially relevant categorization variables.
other socially relevant
groupings

Population characteristics Brain tissue samples were obtained from 191 postmortem donors (97 controls, 94 schizophrenia cases). Median age, 64;
median postmortem interval, 22.7 hours; no significant differences in these covariates between cases and controls.

Recruitment Brain donors were recruited by the Harvard Brain Tissue Resource Center/NIH NeuroBioBank (HBTRC/NBB), in a community-
based manner, across the USA. To minimize biases for this specific study, donors unaffected by nervous system disorders
were selected as sex- and age-matched controls for donors with schizophrenia. Consensus diagnosis of schizophrenia was
carried out by retrospective review of medical records and extensive questionnaires concerning social and medical history
provided by family members. Several regions from each brain were examined by a neuropathologist. We excluded subjects
with evidence for gross and/or macroscopic brain changes, or with clinical history consistent with cerebrovascular accident or
other neurological disorders. Subjects with Braak stages Ill or higher (modified Bielchowsky stain) were not included. None of
the subjects had significant history of substance dependence within 10 or more years from death, as further corroborated by
negative toxicology reports. Absence of recent substance abuse is typical for samples from the HBTRC, which receives
exclusively community-based tissue donations.

Ethics oversight Human brain tissue was obtained from the HBTRC/NBB. The HBTRC procedures for informed consent by the donor's legal
next-of-kin and distribution of de-identified postmortem tissue samples and demographic and clinical data for research
purposes are approved by the Mass General Brigham Institutional Review Board. Post-mortem tissue collection followed the
provisions of the United States Uniform Anatomical Gift Act of 2006 described in the California Health and Safety Code
section 7150 and other applicable state and federal laws and regulations. Federal regulation 45 CFR 46 and associated
guidance indicates that the generation of data from de-identified post-mortem specimens does not constitute human
participant research that requires institutional review board review.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed. Sample size was determined by the limited availability of donors per diagnosis who met the study
criteria (as described in "Recruitment"); these sizes were sufficient as they are similar to or exceed sample sizes from published bulk RNA-seq
studies on postmortem human brain tissue. We aimed to analyze at least 50 donors per group (schizophrenia cases and age/sex-matched
controls) to account for potential drop-outs in the analysis pipeline, which could be due to factors such as poor tissue quality and genotyping
issues that prevented assignment of nuclei to an expected donor.

Data exclusions  Singlet nuclei were excluded if they could not be confidently assigned to a single expected donor (at FDR < 0.05), if they strongly expressed
markers of more than one cell type and grouped together in a distinct cluster in UMAP space, or were assigned to donors with gene-
expression profiles and/or cell-type-proportions that were distinct from the other donors in the cohort. Additional details are described in
Methods.

Replication Replication of the single-nucleus RNA-seq experiments was not attempted due to the limited availability of donors per diagnosis. We
attempted to validate our findings using an orthogonal approach, and found evidence that an analogous constellation of changes also
manifests at a protein level in variation among different individuals' cerebrospinal fluid protein profiles (analysis of data from Karayel et al.
2022).

Randomization  Randomization was not used. Specimens were allocated into batches of 20 specimens per batch, ensuring that the same number of cases and
age-matched controls (10 per diagnosis), and men and women (10 per sex) were included in each batch. Specimens from cases and age-
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matched controls were also processed in alternating order within each batch.
Blinding To ensure that batch compositions were balanced, investigators were not blinded to the batch allocation or processing order of each

specimen (as described for "Randomization"). Researchers had access to unique numerical codes assigned to the donor-of-origin of each
specimen as well as basic donor metadata (e.g. case-control status, age, sex).

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
Dual use research of concern

Plants

XXXNX XXX s
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Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied.
Authentication Desertbe-any-atthentication-proceduresfor-each-seed-stock-tised-or-novel-genotype-generated—Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.




