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Single-neuronal elements of speech 
production in humans

Arjun R. Khanna1,6, William Muñoz1,6, Young Joon Kim2,6, Yoav Kfir1, Angelique C. Paulk3, 

Mohsen Jamali1, Jing Cai1, Martina L. Mustroph1, Irene Caprara1, Richard Hardstone3, 

Mackenna Mejdell1, Domokos Meszéna3, Abigail Zuckerman2, Jeffrey Schweitzer1, 

Sydney Cash3,7 & Ziv M. Williams1,4,5,7 ✉

Humans are capable of generating extraordinarily diverse articulatory movement 

combinations to produce meaningful speech. This ability to orchestrate specifc 

phonetic sequences, and their syllabifcation and infection over subsecond 

timescales allows us to produce thousands of word sounds and is a core component  

of language1,2. The fundamental cellular units and constructs by which we plan and 

produce words during speech, however, remain largely unknown. Here, using acute 

ultrahigh-density Neuropixels recordings capable of sampling across the cortical 

column in humans, we discover neurons in the language-dominant prefrontal cortex 

that encoded detailed information about the phonetic arrangement and composition 

of planned words during the production of natural speech. These neurons represented 

the specifc order and structure of articulatory events before utterance and refected 

the segmentation of phonetic sequences into distinct syllables. They also accurately 

predicted the phonetic, syllabic and morphological components of upcoming words 

and showed a temporally ordered dynamic. Collectively, we show how these mixtures 

of cells are broadly organized along the cortical column and how their activity 

patterns transition from articulation planning to production. We also demonstrate 

how these cells reliably track the detailed composition of consonant and vowel 

sounds during perception and how they distinguish processes specifcally related to 

speaking from those related to listening. Together, these fndings reveal a remarkably 

structured organization and encoding cascade of phonetic representations by 

prefrontal neurons in humans and demonstrate a cellular process that can support 

the production of speech.

Humans can produce a remarkably wide array of word sounds to con-

vey specific meanings. To produce fluent speech, linguistic analyses 

suggest a structured succession of processes involved in planning the 

arrangement and structure of phonemes in individual words1,2. These 

processes are thought to occur rapidly during natural speech and to 

recruit prefrontal regions in parts of the broader language network 

known to be involved in word planning3312 and sentence construc-

tion13316 and which widely connect with downstream areas that play 

a role in their motor production17319. Cortical surface recordings have 

also demonstrated that phonetic features may be regionally organ-

ized20 and that they can be decoded from local-field activities across 

posterior prefrontal and premotor areas21323, suggesting an underlying 

cortical structure. Understanding the basic cellular elements by which 

we plan and produce words during speech, however, has remained a 

significant challenge.

Although previous studies in animal models24326 and more recent 

investigation in humans27,28 have offered an important understanding 

of how cells in primary motor areas relate to vocalization movements 

and the production of sound sequences such as song, they do not reveal 

the neuronal process by which humans construct individual words and 

by which we produce natural speech29. Further, although linguistic 

theory based on behavioural observations has suggested tightly cou-

pled sublexical processes necessary for the coordination of articulators 

during word planning30, how specific phonetic sequences, their syl-

labification or inflection are precisely coded for by individual neurons 

remains undefined. Finally, whereas previous studies have revealed a 

large regional overlap in areas involved in articulation planning and 

production31335, little is known about whether and how these linguistic 

process may be uniquely represented at a cellular scale36, what their 

cortical organization may be or how mechanisms specifically related 

to speech production and perception may differ.

Single-neuronal recordings have the potential to begin reveal-

ing some of the basic functional building blocks by which humans 

plan and produce words during speech and study these processes at 
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spatiotemporal scales that have largely remained inaccessible37345. 

Here, we used an opportunity to combine recently developed 

ultrahigh-density microelectrode arrays for acute intraoperative 

neuronal recordings, speech tracking and modelling approaches to 

begin addressing these questions.

Neuronal recordings during natural speech

Single-neuronal recordings were obtained from the language-dominant 

(left) prefrontal cortex in participants undergoing planned intraop-

erative neurophysiology (Fig. 1a; section on 8Acute intraoperative 

single-neuronal recordings9). These recordings were obtained from 

the posterior middle frontal gyrus10,46350 in a region known to be 

broadly involved in word planning3312 and sentence construction13316 

and to connect with neighbouring motor areas shown to play a role 

in articulation17319 and lexical processing51353 (Extended Data Fig. 1a).  

This region was traversed during recordings as part of planned neuro-

surgical care and roughly ranged in distribution from alongside anterior 

area 55b to 8a, with sites varying by approximately 10)mm (s.d.) across 

subjects (Extended Data Fig. 1b; section on 8Anatomical localization 

of recordings9). Moreover, the participants undergoing recordings 

were awake and thus able to perform language-based tasks (section 

on 8Study participants9), together providing an extraordinarily rare 

opportunity to study the action potential (AP) dynamics of neurons 

during the production of natural speech.

To obtain acute recordings from individual cortical neurons and to 

reliably track their AP activities across the cortical column, we used 

ultrahigh-density, fully integrated linear silicon Neuropixels arrays that 

allowed for high throughput recordings from single cortical units54,55. 

To further obtain stable recordings, we developed custom-made 

software that registered and motion-corrected the AP activity of 

each unit and kept track of their position across the cortical column  
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Fig. 1 | Tracking phonetic representations by prefrontal neurons during 

the production of natural speech. a, Left, single-neuronal recordings were 

confirmed to localize to the posterior middle frontal gyrus of language- 

dominant prefrontal cortex in a region known to be involved in word planning 

and production (Extended Data Fig. 1a,b); right, acute single-neuronal 

recordings were made using Neuropixels arrays (Extended Data Fig. 1c,d); 

bottom, speech production task and controls (Extended Data Fig. 2a).  

b, Example of phonetic groupings based on the planned places of articulation 

(Extended Data Table 1). c, A ten-dimensional feature space was constructed to 

provide a compositional representation of all phonemes per word. d, Peri-event 

time histograms were constructed by aligning the APs of each neuron to word 

onset at millisecond resolution. Data are presented as mean (line) values)±)s.e.m. 

(shade). Inset, spike waveform morphology and scale bar (0.5)ms). e, Left, 

proportions of modulated neurons that selectively changed their activities to 

specific planned phonemes; right, tuning curve for a cell that was preferentially 

tuned to velar consonants. f, Average z-scored firing rates as a function of the 

Hamming distance between the preferred phonetic composition of the neuron 

(that producing largest change in activity) and all other phonetic combinations. 

Here, a Hamming distance of 0 indicates that the words had the same phonetic 

compositions, whereas a Hamming distance of 1 indicates that they differed  

by a single phoneme. Data are presented as mean (line) values)±)s.e.m. (shade).  

g, Decoding performance for planned phonemes. The orange points provide 

the sampled distribution for the classifier9s ROC-AUC; n)=)50 random test/train 

splits; P)=)7.1)×)10218, two-sided Mann3Whitney U-test. Data are presented as 

mean)±)s.d.
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(Fig. 1a, right)56. Only well-isolated single units, with low relative neigh-

bour noise and stable waveform morphologies consistent with that 

of neocortical neurons were used (Extended Data Fig. 1c,d; section 

on 8Acute intraoperative single-neuronal recordings9). Altogether, 

we obtained recordings from 272 putative neurons across five par-

ticipants for an average of 54)±)34 (s.d.) single units per participant  

(range 163115)units).

Next, to study neuronal activities during the production of natural 

speech and to track their per word modulation, the participants per-

formed a naturalistic speech production task that required them to 

articulate broadly varied words in a replicable manner (Extended Data 

Fig. 2a)57. Here, the task required the participants to produce words 

that varied in phonetic, syllabic and morphosyntactic content and to 

provide them in a structured and reproducible format. It also required 

them to articulate the words independently of explicit phonetic cues 

(for example, from simply hearing and then repeating the same words) 

and to construct them de novo during natural speech. Extra controls 

were further used to evaluate for preceding word-related responses, 

sensory3perceptual effects and phonetic3acoustic properties as well 

as to evaluate the robustness and generalizability of neuronal activities 

(section on 8Speech production task9).

Together, the participants produced 4,263 words for an average of 

852.6)±)273.5 (s.d.) words per participant (range 40631,252)words). The 

words were transcribed using a semi-automated platform and aligned 

to AP activity at millisecond resolution (section on 8Audio recordings 

and task synchronization9)51. All participants were English speakers 

and showed comparable word-production performances (Extended 

Data Fig. 2b).

Representations of phonemes by neurons

To first examine the relation between single-neuronal activities and 

the specific speech organs involved58,59, we focused our initial analy-

ses on the primary places of articulation60. The places of articulation 

describe the points where constrictions are made between an active 

and a passive articulator and are what largely give consonants their 

distinctive sounds. Thus, for example, whereas bilabial consonants 

(/p/ and /b/) involve the obstruction of airflow at the lips, velar conso-

nants are articulated with the dorsum of the tongue placed against the 

soft palate (/k/ and /g/; Fig. 1b). To further examine sounds produced 

without constriction, we also focused our initial analyses on vowels 

in relation to the relative height of the tongue (mid-low and high vow-

els). More phonetic groupings based on the manners of articulation 

(configuration and interaction of articulators) and primary cardinal 

vowels (combined positions of the tongue and lips) are described in 

Extended Data Table 1.

Next, to provide a compositional phonetic representation of each 

word, we constructed a feature space on the basis of the constituent 

phonemes of each word (Fig. 1c, left). For instance, the words 8like9 and 

8bike9 would be represented uniquely in vector space because they dif-

fer by a single phoneme (8like9 contains alveolar /l/ whereas 8bike9 con-

tains bilabial /b/; Fig. 1c, right). The presence of a particular phoneme 

was therefore represented by a unitary value for its respective vector 

component, together yielding a vectoral representation of the constitu-

ent phonemes of each word (section on 8Constructing a word feature 

space9). Generalized linear models (GLMs) were then used to quantify 

the degree to which variations in neuronal activity during planning 

could be explained by individual phonemes across all possible combi-

nations of phonemes per word (section on 8Single-neuronal analysis9).

Overall, we find that the firing activities of many of the neurons 

(46.7%, n)=)127 of 272 units) were explained by the constituent pho-

nemes of the word before utterance (2500 to 0)ms); GLM likelihood 

ratio test, P)<)0.01); meaning that their activity patterns were informa-

tive of the phonetic content of the word. Among these, the activities of 

56 neurons (20.6% of the 272 units recorded) were further selectively 

tuned to the planned production of specific phonemes (two-sided Wald 

test for each GLM coefficient, P)<)0.01, Bonferroni-corrected across 

all phoneme categories; Fig. 1d,e and Extended Data Figs. 2 and 3). 

Thus, for example, whereas certain neurons changed their firing rate 

when the upcoming words contained bilabial consonants (for exam-

ple, /p/ or /b/), others changed their firing rate when they contained 

velar consonants. Of these neurons, most encoded information both 

about the planned places and manners of articulation (n)=)37 or 66% 

overlap, two-sided hypergeometric test, P)<)0.0001) or planned places 

of articulation and vowels (n)=)27 or 48% overlap, two-sided hypergeo-

metric test, P)<)0.0001; Extended Data Fig. 4). Most also reflected the 

spectral properties of the articulated words on a phoneme-by-phoneme 

basis (64%, n)=)36 of 56; two-sided hypergeometric test, P)=)1.1)×)10210; 

Extended Data Fig. 5a,b); together providing detailed information 

about the upcoming phonemes before utterance.

Because we had a complete representation of the upcoming pho-

nemes for each word, we could also quantify the degree to which neu-

ronal activities reflected their specific combinations. For example, we 

could ask whether the activities of certain neurons not only reflected 

planned words with velar consonants but also words that contained the 

specific combination of both velar and labial consonants. By aligning 

the activity of each neuron to its preferred phonetic composition (that 

is, the specific combination of phonemes to which the neuron most 

strongly responded) and by calculating the Hamming distance between 

this and all other possible phonetic compositions across words (Fig. 1c, 

right; section on 8Single-neuronal analysis9), we find that the relation 

between the vectoral distances across words and neuronal activity 

was significant (two-sided Spearman9s ρ)=)20.97, P)=)5.14)×)1027; Fig. 1f). 

These neurons therefore seemed not only to encode specific planned 

phonemes but also their specific composition with upcoming words.

Finally, we asked whether the constituent phonemes of the word 

could be robustly decoded from the activity patterns of the neuronal 

population. Using multilabel decoders to classify the upcoming pho-

nemes of words not used for model training (section on 8Population 

modelling9), we find that the composition of phonemes could be 

predicted from neuronal activity with significant accuracy (receiver 

operating characteristic area under the curve; ROC-AUC)=)0.75)±)0.03) 

mean)±)s.d. observed versus 0.48)±)0.02)chance, P)<)0.001, two-sided 

Mann3Whitney U-test; Fig. 1g). Similar findings were also made when 

examining the planned manners of articulation (AUC)=)0.77)±)0.03, 

P)<)0.001, two-sided Mann3Whitney U-test), primary cardinal vow-

els (AUC)=)0.79)±)0.04, P)<)0.001, two-sided Mann3Whitney U-test) 

and their spectral properties (AUC)=)0.75)±)0.03, P)<)0.001, two-sided 

Mann3Whitney U-test; Extended Data Fig. 5a, right). Taken together, 

these neurons therefore seemed to reliably predict the phonetic com-

position of the upcoming words before utterance.

Motoric and perceptual processes

Neurons that reflected the phonetic composition of the words during 

planning were largely distinct from those that reflected their composi-

tion during perception. It is possible, for instance, that similar response 

patterns could have been observed when simply hearing the words. 

Therefore, to test for this, we performed an extra 8perception9 con-

trol in three of the participants whereby they listened to, rather than 

produced, the words (n)=)126 recorded units; section on 8Speech pro-

duction task9). Here, we find that 29.3% (n)=)37) of the neurons showed 

phonetic selectively during listening (Extended Data Fig. 6a) and that 

their activities could be used to accurately predict the phonemes being 

heard (AUC)=)0.70)±)0.03 observed versus 0.48)±)0.02 chance, P)<)0.001, 

two-sided Mann3Whitney U-test; Extended Data Fig. 6b). We also find, 

however, that these cells were largely distinct from those that showed 

phonetic selectivity during planning (n)=)10; 7.9% overlap) and that 

their activities were uninformative of phonemic content of the words 

being planned (AUC)=)0.48)±)0.01, P)=)0.99, two-sided Mann3Whitney 
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U-test; Extended Data Fig. 6b). Similar findings were also made when 

replaying the participant9s own voices to them (8playback9 control; 0% 

overlap in neurons); together suggesting that speaking and listening 

engaged largely distinct but complementary sets of cells in the neural 

population.

Given the above observations, we also examined whether the activi-

ties of the neurons could have been explained by the acoustic3phonetic 

properties of the preceding spoken words. For example, it is possible 

that the activities of the neuron may have partly reflected the pho-

netic composition of the previous articulated word or their motoric 

components. Thus, to test for this, we repeated our analyses but now 

excluded words in which the preceding articulated word contained the 

phoneme being decoded (section on 8Single-neuronal analysis9) and 

find that decoding performance remained significant (AUC)=)0.72)±)0.1, 

P)<)0.001, two-sided Mann3Whitney U-test). We also find that decoding 

performance remained significant when constricting (2400 to 0)ms 

window instead of 2500:0)ms; AUC)=)0.72)±)0.1, P)<)0.001, two-sided 

Mann3Whitney U-test) or shifting the analysis window closer to utter-

ance (2300 to +200)ms window results in AUC)=)0.76)±)0.1, P)<)0.001, 

two-sided Mann3Whitney U-test); indicating that these neurons coded 

for the phonetic composition of the upcoming words.

Syllabic and morphological features

To transform sets of consonants and vowels into words, the planned 

phonemes must also be arranged and segmented into distinct 

syllables61. For example, even though the words 8casting9 and 8stack-

ing9 possess the same constituent phonemes, they are distinguished 

by their specific syllabic structure and order. Therefore, to examine 

whether neurons in the population may further reflect these sublexi-

cal features, we created an extra vector space based on the specific 

order and segmentation of phonemes (section on 8Constructing a 

word feature space9). Here, focusing on the most common syllables to 

allow for tractable neuronal analysis (Extended Data Table 1), we find 

that the activities of 25.0% (n)=)68 of 272) of the neurons reflected the 

presence of specific planned syllables (two-sided Wald test for each 

GLM coefficient, P)<)0.01, Bonferroni-corrected across all syllable 

categories; Fig. 2a,b). Thus, whereas certain neurons may respond 

selectively to a velar-low-alveolar syllable, other neurons may respond 

selectively to an alveolar-low-velar syllable. Together, the neurons 

responded preferentially to specific syllables when tested across 

words (two-sided Spearman9s ρ)=)20.96, P)=)1.85)×)1026; Fig. 2c) and 

accurately predicted their content (AUC)=)0.67)±)0.03 observed ver-

sus 0.50)±)0.02 chance, P)<)0.001, two-sided Mann3Whitney U-test; 

Fig. 2d); suggesting that these subsets of neurons encoded informa-

tion about the syllables.

Next, to confirm that these neurons were selectively tuned to specific 

syllables, we compared their activities for words that contained the 

preferred syllable of each neuron (for example, /d-iy/) to words that 

simply contained their constituent phonemes (for example, d or iy). 

Thus, for example, if these neurons reflected individual phonemes 

irrespective of their specific order, then we would observe no difference 
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in response. On the basis of these comparisons, however, we find that 

the responses of the neurons to their preferred syllables was signifi-

cantly greater than to that of their individual constituent phonemes 

(z-score difference 0.92)±)0.04; two-sided Wilcoxon signed-rank test, 

P)<)0.0001; Fig. 2e). We also tested words containing syllables with the 

same constituent phonemes but in which the phonemes were simply 

in a different order (for example, /g-ah-d/ versus /d-ah-g/) but again 

find that the neurons were preferentially tuned to specific syllables 

(z-score difference 0.99)±)0.06; two-sided Wilcoxon signed-rank test, 

P)<)1.0)×)1026; Fig. 2e). Then, we examined words that contained the 

same arrangements of phonemes but in which the phonemes them-

selves belonged to different syllables (for example, /r-oh-b/ versus 

r-oh/b-; accounting prosodic emphasis) and similarly find that the neu-

rons were preferentially tuned to specific syllables (z-score difference 

1.01)±)0.06; two-sided Wilcoxon signed-rank test, P)<)0.0001; Fig. 2e). 

Therefore, rather than simply reflecting the phonetic composition of 

the upcoming words, these subsets of neurons encoded their specific 

segmentation and order in individual syllables.

Finally, we asked whether certain neurons may code for the inclu-

sion of morphemes. Unlike phonemes, bound morphemes such as 

83ed9 in 8directed9 or 8re39 in 8retry9 are capable of carrying specific 

meanings and are thus thought to be subserved by distinct neural 

mechanisms62,63. Therefore, to test for this, we also parsed each word 

on the basis of whether it contained a suffix or prefix (controlling for 

word length) and find that the activities of 11.4% (n)=)31 of 272) of the 

neurons selectively changed for words that contained morphemes 

compared to those that did not (two-sided Wald test for each GLM 

coefficient, P)<)0.01, Bonferroni-corrected across morpheme catego-

ries; Extended Data Fig. 5c). Moreover, neural activity across the popu-

lation could be used to reliably predict the inclusion of morphemes 

before utterance (AUC)=)0.76)±)0.05 observed versus 0.52)±)0.01 for 

shuffled data, P)<)0.001, two-sided Mann3Whitney U-test; Extended 

Data Fig. 5c), together suggesting that the neurons coded for this 

sublexical feature.

Spatial distribution of neurons

Neurons that encoded information about the sublexical components 

of the upcoming words were broadly distributed across the cortex and 

cortical column depth. By tracking the location of each neuron in rela-

tion to the Neuropixels arrays, we find that there was a slightly higher 

preponderance of neurons that were tuned to phonemes (one-sided χ2 

test (2))=)0.7 and 5.2, P)>)0.05, for places and manners of articulation, 

respectively), syllables (one-sided χ2 test (2))=)3.6, P)>)0.05) and mor-

phemes (one-sided χ2 test (2))=)4.9, P)>)0.05) at lower cortical depths, 

but that this difference was non-significant, suggesting a broad distribu-

tion (Extended Data Fig. 7). We also find, however, that the proportion of 

neurons that showed selectivity for phonemes increased as recordings 

were acquired more posteriorly along the rostral3caudal axis of the 

cortex (one-sided χ2 test (4))=)45.9 and 52.2, P)<)0.01, for places and man-

ners of articulation, respectively). Similar findings were also made for 

syllables and morphemes (one-sided χ2 test (4))=)31.4 and 49.8, P)<)0.01, 

respectively; Extended Data Fig. 7); together suggesting a gradation 

of cellular representations, with caudal areas showing progressively 

higher proportions of selective neurons.

Collectively, the activities of these cell ensembles provided richly 

detailed information about the phonetic, syllabic and morphological 

components of upcoming words. Of the neurons that showed selec-

tivity to any sublexical feature, 51% (n)=)46 of 90 units) were signifi-

cantly informative of more than one feature. Moreover, the selectivity 

of these neurons lay along a continuum and were closely correlated 

(two-sided test of Pearson9s correlation in D2 across all sublexical fea-

ture comparisons, r)=)0.80, 0.51 and 0.37 for phonemes versus sylla-

bles, phonemes versus morphemes and syllables versus morphemes, 

respectively, all P)<)0.001; Fig. 2b), with most cells exhibiting a mixture 

of representations for specific phonetic, syllabic or morphological 

features (two-sided Wilcoxon signed-rank test, P)<)0.0001). Figure 3a 

further illustrates this mixture of representations (Fig.  3a, left; 

t-distributed stochastic neighbour embedding (tSNE)) and their hier-

archical structure (Fig. 3a, right; D2 distribution), together revealing a 

detailed characterization of the phonetic, syllabic and morphological 

components of upcoming words at the level of the cell population.
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Temporal organization of representations

Given the above observations, we examined the temporal dynamic 

of neuronal activities during the production of speech. By tracking 

peak decoding in the period leading up to utterance onset (peak AUC; 

50 model testing/training splits)64, we find these neural populations 

showed a consistent morphological3phonetic3syllabic dynamic in 

which decoding performance first peaked for morphemes. Peak decod-

ing then followed for phonemes and syllables (Fig. 3b and Extended 

Data Fig. 8a,b; section on 8Population modelling9). Overall, decoding 

performance peaked for the morphological properties of words at 

2405)±)67)ms before utterance, followed by peak decoding for pho-

nemes at 2195)±)16)ms and syllables at 270)±)62)ms (s.e.m.; Fig. 3b). This 

temporal dynamic was highly unlikely to have been observed by chance 

(two-sided Kruskal3Wallis test, H)=)13.28, P)<)0.01) and was largely dis-

tinct from that observed during listening (two-sided Kruskal3Wallis 

test, H)=)14.75, P)<)0.001; Extended Data Fig. 6c). The activities of these 

neurons therefore seemed to follow a consistent, temporally ordered 

morphological3phonetic3syllabic dynamic before utterance.

The activities of these neurons also followed a temporally structured 

transition from articulation planning to production. When compar-

ing their activities before utterance onset (2500:0)ms) to those after 

(0:500)ms), we find that neurons which encoded information about 

the upcoming phonemes during planning encoded similar information 

during production (P)<)0.001, Mann3Whitney U-test for phonemes and 

syllables; Fig. 4a). Moreover, when using models that were originally 

trained on words before utterance onset to decode the properties of 

the articulated words during production (model-switch approach), we 

find that decoding accuracy for the phonetic, syllabic and morphologi-

cal properties of the words all remained significant (AUC)=)0.76)±)0.02 

versus 0.48)±)0.03 chance, 0.65)±)0.03 versus 0.51)±)0.04 chance, 

0.74)±)0.06 versus 0.44)±)0.07 chance, for phonemes, syllables and 

morphemes, respectively; P)<)0.001 for all, two-sided Mann3Whitney 

U-tests; Extended Data Fig. 8c). Information about the sublexical fea-

tures of words was therefore reliably represented during articulation 

planning and execution by the neuronal population.

Utilizing a dynamical systems approach to further allow for the unsu-

pervised identification of functional subspaces (that is, wherein neural 

activity is embedded into a high-dimensional vector space; Fig. 4b, 

left; section on 8Dynamical system and subspace analysis9)31,34,65,66, we 

find that the activities of the population were mostly low-dimensional, 

with more than 90% of the variance in neuronal activity being captured 

by its first four principal components (Fig. 4b, right). However, when 

tracking how the dimensions in which neural populations evolved over 

time, we also find that the subspaces which defined neural activity 

during articulation planning and production were largely distinct. In 

particular, whereas the first five subspaces captured 98.4% of variance 

in the trajectory of the population during planning, they captured 

only 11.9% of variance in the trajectory during articulation (two-sided 

permutation test, P)<)0.0001; Fig. 4b, bottom and Extended Data Fig. 9). 

Together, these cell ensembles therefore seemed to occupy largely 

separate preparatory and motoric subspaces while also allowing for 

information about the phonetic, syllabic and morphological contents 

of the words to be stably represented during the production of speech.
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Discussion

Using Neuropixels probes to obtain acute, fine-scaled recordings 

from single neurons in the language-dominant prefrontal cortex3364

in a region proposed to be involved in word planning3312 and pro-

duction133164we find a strikingly detailed organization of phonetic 

representations at a cellular level. In particular, we find that the activi-

ties of many of the neurons closely mirrored the way in which the word 

sounds were produced, meaning that they reflected how individual 

planned phonemes were generated through specific articulators58,59. 

Moreover, rather than simply representing phonemes independently 

of their order or structure, many of the neurons coded for their com-

position in the upcoming words. They also reliably predicted the 

arrangement and segmentation of phonemes into distinct syllables, 

together suggesting a process that could allow the structure and order 

of articulatory events to be encoded at a cellular level.

Collectively, this putative mechanism supports the existence of 

context-general representations of classes of speech sounds that 

speakers use to construct different word forms. In contrast, coding 

of sequences of phonemes as syllables may represent a context-specific 

representation of these speech sounds in a particular segmental con-

text. This combination of context-general and context-specific rep-

resentation of speech sound classes, in turn, is supportive of many 

speech production models which suggest that speakers hold abstract 

representations of discrete phonological units in a context-general 

way and that, as part of speech planning, these units are organized into 

prosodic structures that are context-specific1,30. Although the present 

study does not reveal whether these representations may be stored in 

and retrieved from a mental syllabary1 or are constructed from abstract 

phonology ad hoc, it lays a groundwork from which to begin explor-

ing these possibilities at a cellular scale. It also expands on previous 

observations in animal models such as marmosets67,68, singing mice69 

and canaries70 on the syllabic structure and sequence of vocalization 

processes, providing us with some of the earliest lines of evidence for 

the neuronal coding of vocal-motor plans.

Another interesting finding from these studies is the diversity of 

phonetic feature representations and their organization across corti-

cal depth. Although our recordings sampled locally from relatively 

small columnar populations, most phonetic features could be reliably 

decoded from their collective activities. Such findings suggest that pho-

netic information necessary for constructing words may be potentially 

fully represented in certain regions along the cortical column10,46350. 

They also place these populations at a putative intersection for the 

shared coding of places and manners of articulation and demonstrate 

how these representations may be locally distributed. Such redundancy 

and accessibility of information in local cortical populations is consist-

ent with that observed from animal models31335 and could serve to allow 

for the rapid orchestration of neuronal processes necessary for the 

real-time construction of words; especially during the production of 

natural speech. Our findings are also supportive of a putative 8mirror9  

system that could allow for the shared representation of phonetic 

features within the population when speaking and listening and for 

the real-time feedback of phonetic information by neurons during 

perception23,71.

A final notable observation from these studies is the temporal suc-

cession of neuronal encoding events. In particular, our findings are 

supportive of previous neurolinguistic theories suggesting closely 

coupled processes for coordination planned articulatory events that 

ultimately produces words. These models, for example, suggest that 

the morphology of a word is probably retrieved before its phonologic 

code, as the exact phonology depends on the morphemes in the word 

form1. They also suggest the later syllabification of planned phonemes 

which would enable them to be sequentially arranged in specific order 

(although different temporal orders have been suggested as well)72. 

Here, our findings provide tentative support for a structured sublexical 

coding succession that could allow for the discretization of such infor-

mation during articulation. Our findings also suggest (through dynami-

cal systems modelling) a mechanism that, consistent with previous 

observations on motor planning and execution31,34,65,66, could enable 

information to occupy distinct functional subspaces34,73 and therefore 

allow for the rapid separation of neural processes necessary for the 

construction and articulation of words.

Taken together, these findings reveal a set of processes and frame-

work in the language-dominant prefrontal cortex by which to begin 

understanding how words may be constructed during natural speech at 

a single-neuronal level through which to start defining their fine-scale 

spatial and temporal dynamics. Given their robust decoding perfor-

mances (especially in the absence of natural language processing-based 

predictions), it is interesting to speculate whether such prefrontal 

recordings could also be used for synthetic speech prostheses or for 

the augmentation of other emerging approaches21,22,74 used in brain3

machine interfaces. It is important to note, however, that the produc-

tion of words also involves more complex processes, including semantic 

retrieval, the arrangement of words in sentences, and prosody, which 

were not tested here. Moreover, future experiments will be required 

to investigate eloquent areas such as ventral premotor and superior 

posterior temporal areas not accessible with our present techniques. 

Here, this study provides a prospective platform by which to begin 

addressing these questions using a combination of ultrahigh-density 

microelectrode recordings, naturalistic speech tracking and acute 

real-time intraoperative neurophysiology to study human language 

at cellular scale.
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Methods

Study participants

All aspects of the study were carried out in strict accordance with and 

were approved by the Massachusetts General Brigham Institutional 

Review Board. Right-handed native English speakers undergoing awake 

microelectrode recording-guided deep brain stimulator implantation 

were screened for enrolment. Clinical consideration for surgery was 

made by a multidisciplinary team of neurosurgeons, neurologists and 

neuropsychologists. Operative planning was made independently by 

the surgical team and without consideration of study participation. 

Participants were only enroled if: (1) the surgical plan was for awake 

microelectrode recording-guided placement, (2) the patient was at least 

18 years of age, (3) they had intact language function with English flu-

ency and (4) were able to provide informed consent for study participa-

tion. Participation in the study was voluntary and all participants were 

informed that they were free to withdraw from the study at any time.

Acute intraoperative single-neuronal recordings

Single-neuronal prefrontal recordings using Neuropixels probes. As 

part of deep brain stimulator implantation at our institution, participants 

are often awake and microelectrode recordings are used to optimize 

anatomical targeting of the deep brain structures46. During these cases, 

the electrodes often traverse part of the posterior language-dominant 

prefrontal cortex336 in an area previously shown be involved in word 

planning3312 and sentence construction13316 and which broadly connects 

with premotor areas involved in their articulation51353 and lexical process-

ing17319 by imaging studies (Extended Data Fig. 1a,b). All microelectrode 

entry points and placements were based purely on planned clinical tar-

geting and were made independently of any study consideration.

Sterile Neuropixels probes (v.1.0-S, IMEC, ethylene oxide sterilized 

by BioSeal54) together with a 3B2 IMEC headstage were attached to 

cannula and a manipulator connected to a ROSA ONE Brain (Zimmer 

Biomet) robotic arm. Here, the probes were inserted into the cortical 

ribbon under direct robot navigational guidance through the implanted 

burr hole (Fig. 1a). The probes (width 70)µm; length 10)mm; thickness 

100)µm) consisted of a total of 960 contact sites (384 preselected 

recording channels) laid out in a chequerboard pattern with approxi-

mately 25)µm centre-to-centre nearest-neighbour site spacing. The 

IMEC headstage was connected through a multiplexed cable to a PXIe 

acquisition module card (IMEC), installed into a PXIe Chassis (PXIe-1071 

chassis, National Instruments). Neuropixels recordings were performed 

using SpikeGLX (v.20201103 and v.20221012-phase30; http://billkarsh.

github.io/SpikeGLX/) or OpenEphys (v.0.5.3.1 and v.0.6.0; https://

open-ephys.org/) on a computer connected to the PXIe acquisition 

module recording the action potential band (AP, band-pass filtered 

from 0.3 to 10)kHz) sampled at 30)kHz and a local-field potential band 

(LFP, band-pass filtered from 0.5 to 500)Hz), sampled at 2,500)Hz. Once 

putative units were identified, the Neuropixels probe was briefly held 

in position to confirm signal stability (we did not screen putative neu-

rons for speech responsiveness). Further description of this recording 

approach can be found in refs. 54,55. After single-neural recordings 

from the cortex were completed, the Neuropixels probe was removed 

and subcortical neuronal recordings and deep brain stimulator place-

ment proceeded as planned.

Single-unit isolation. Single-neuronal recordings were performed in 

two main steps. First, to track the activities of putative neurons at high 

spatiotemporal resolution and to account for intraoperative corti-

cal motion, we use a Decentralized Registration of Electrophysiology 

Data software (DREDge; https://github.com/evarol/DREDge) and inter-

polation approach (https://github.com/williamunoz/Interpolation-

AfterDREDge). Briefly, and as previously described54356, an automated  

protocol was used to track LFP voltages using a decentralized correla-

tion technique that re-aligned the recording channels in relation to 

brain movements (Fig. 1a, right). Following this step, we then inter-

polated the AP band continuous voltage data using the DREDge  

motion estimate to allow the activities of the putative neurons to be 

stably tracked over time. Next, single units were isolated from the 

motion-corrected interpolated signal using Kilosort (v.1.0; https://

github.com/cortex-lab/KiloSort) followed by Phy for cluster curation 

(v.2.0a1; https://github.com/cortex-lab/phy; Extended Data Fig. 1c,d). 

Here, units were selected on the basis of their waveform morphologies 

and separability in principal component space, their interspike interval 

profiles and similarity of waveforms across contacts. Only well-isolated 

single units with mean firing rates g0.1)Hz were included. The range of 

units obtained from these recordings was 163115)units per participant.

Audio recordings and task synchronization

For task synchronization, we used the TTL output and audio output to 

send the synchronization trigger through the SMA input to the IMEC 

PXIe acquisition module card. To allow for added synchronizing, trig-

gers were also recorded on an extra breakout analogue and digital input/

output board (BNC2110, National Instruments) connected through a 

PXIe board (PXIe-6341 module, National Instruments).

Audio recordings were obtained at 44)kHz sampling frequency 

(TASCAM DR-40×4-Channel/ 4-Track Portable Audio Recorder and 

USB Interface with Adjustable Microphone) which had an audio input. 

These recordings were then sent to a NIDAQ board analogue input in 

the same PXIe acquisition module containing the IMEC PXIe board for 

high-fidelity temporal alignment with neuronal data. Synchronization 

of neuronal activity with behavioural events was performed through 

TTL triggers through a parallel port sent to both the IMEC PXIe board 

(the sync channel) and the analogue NIDAQ input as well as the paral-

lel audio input into the analogue input channels on the NIDAQ board.

Audio recordings were annotated in semi-automated fashion 

(Audacity; v.2.3). Recorded audio for each word and sentence by the 

participants was analysed in Praat75 and Audacity (v.2.3). Exact word 

and phoneme onsets and offsets were identified using the Montreal 

Forced Aligner (v.2.2; https://github.com/MontrealCorpusTools/

Montreal-Forced-Aligner)76 and confirmed with manual review of 

all annotated recordings. Together, these measures allowed for the 

millisecond-level alignment of neuronal activity with each produced 

word and phoneme.

Anatomical localization of recordings

Pre-operative high-resolution magnetic resonance imaging and post-

operative head computerized tomography scans were coregistered by 

combination of ROSA software (Zimmer Biomet; v.3.1.6.276), Mango 

(v.4.1; https://mangoviewer.com/download.html) and FreeSurfer 

(v.7.4.1; https://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAn-

dInstall) to reconstruct the cortical surface and identify the cortical 

location from which Neuropixels recordings were obtained77381. This 

registration allowed localization of the surgical areas that underlaid 

the cortical sites of recording (Fig. 1a and Extended Data Fig. 1a)54356. 

The MNI transformation of these coordinates was then carried out to 

register the locations in MNI space with Fieldtrip toolbox (v.20230602; 

https://www.fieldtriptoolbox.org/; Extended Data Fig. 1b)82.

For depth calculation, we estimated the pial boundary of recordings 

according to the observed sharp signal change in signal from channels 

that were implanted in the brain parenchyma versus those outside the 

brain. We then referenced our single-unit recording depth (based on 

their maximum waveform amplitude channel) in relation to this esti-

mated pial boundary. Here, all units were assessed on the basis of their 

relative depths in relation to the pial boundary as superficial, middle 

and deep (Extended Data Fig. 7).

Speech production task

The participants performed a priming-based naturalistic speech 

production task57 in which they were given a scene on a screen that 

http://billkarsh.github.io/SpikeGLX/
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consisted of a scenario that had to be described in specific order and 

format. Thus, for example, the participant may be given a scene of a 

boy and a girl playing with a balloon or they may be given a scene of a 

dog chasing a cat. These scenes, together, required the participants to 

produce words that varied in phonetic, syllabic and morphosyntactic 

content. They were also highlighted in a way that required them to 

produce the words in a structured format. Thus, for example, a scene 

may be highlighted in a way that required the participants to produce 

the sentence <The mouse was being chased by the cat= or in a way that 

required them to produce the sentence <The cat was chasing the mouse= 

(Extended Data Fig. 2a). Because the sentences had to be constructed 

de novo, it also required the participants to produce the words without 

providing explicit phonetic cues (for example, from hearing and then 

repeating the word 8cat9). Taken together, this task therefore allowed 

neuronal activity to be examined whereby words (for example, 8cat9), 

rather than independent phonetic sounds (for example, /k/), were 

articulated and in which the words were produced during natural 

speech (for example, constructing the sentence <the dog chased the 

cat=) rather than simply repeated (for example, hearing and then repeat-

ing the word 8cat9).

Finally, to account for the potential contribution of sensory3 

perceptual responses, three of the participants also performed a 8per-

ception9 control in which they listened to words spoken to them. One 

of these participants further performed an auditory 8playback9 control 

in which they listened to their own recorded voice. For this control, all 

words spoken by the participant were recorded using a high-fidelity 

microphone (Zoom ZUM-2 USM microphone) and then played back to 

them on a word-by-word level in randomized separate blocks.

Constructing a word feature space

Phonemes. To allow for single-neuronal analysis and to provide a com-

positional representation for each word, we grouped the constituent 

phonemes on the basis of the relative positions of articulatory organs 

associated with their production60. Here, for our primary analyses, 

we selected the places of articulation for consonants (for example,  

bilabial consonants) on the basis of established IPA categories  

defining the primary articulators involved in speech production. For 

consonants, phonemes were grouped on the basis of their places of 

articulation into glottal, velar, palatal, postalveolar, alveolar, den-

tal, labiodental and bilabial. For vowels, we grouped phonemes on 

the basis of the relative height of the tongue with high vowels being 

produced with the tongue in a relatively high position and mid-low 

(that is, mid+low) vowels being produced with it in a lower position. 

Here, this grouping of phonemes is broadly referred to as 8places of 

articulation9 together reflecting the main positions of articulatory 

organs and their combinations used to produce the words58,59. Finally, 

to allow for comparison and to test their generalizability, we examined 

the manners of articulation stop, fricative, affricate, nasal, liquid and 

glide for consonants which describe the nature of airflow restriction by 

various parts of the mouth and tongue. For vowels, we also evaluated 

the primary cardinal vowels i, e, [, a, ³, V, o and u which are described, 

in combination, by the position of the tongue relative to the roof of 

the mouth, how far forward or back it lies and the relative positions 

of the lips83,84. A detailed summary of these phonetic groupings can 

be found in Extended Data Table 1.

Phoneme feature space. To further evaluate the relationship between 

neuronal activity and the presence of specific constituent phonemes 

per word, the phonemes in each word were parsed according to their 

precise pronunciation provided by the English Lexicon Project (or the 

Longman Pronunciation Dictionary for American English where neces-

sary) as described previously85. Thus, for example, the word 8like9 (l-aɪ-k) 

would be parsed into a sequence of alveolar-mid-low-velar phonemes, 

whereas the word 8bike9 (b-aɪ-k) would be parsed into a sequence of 

bilabial-mid-low-velar phonemes.

These constituent phonemes were then used to represent each word 

as a ten-dimensional vector in which the value in each position reflected 

the presence of each type of phoneme (Fig. 1c). For example, the word 

8like9, containing a sequence of alveolar-mid-low-velar phonemes, was 

represented by the vector [0 0 0 1 0 0 1 0 0 1], with each entry represent-

ing the number of the respective type of phoneme in the word. Together, 

such vectors representing all words defined a phonetic 8vector space9. 

Further analyses to evaluate the precise arrangement of phonemes 

per word are described further below. Goodness-of-fit and selectivity 

metrics used to evaluate single-neuronal responses to these phonemes 

and their specific combination in words are described further below.

Syllabic feature space. Next, to evaluate the relationship between 

neuronal activity and the specific arrangement of phonemes in sylla-

bles, we parsed the constituent syllables for each word using American 

pronunciations provided in ref. 85. Thus, for example, 8back9 would 

be defined as a labial-low-velar sequence. Here, to allow for neuronal 

analysis and to limit the combination of all possible syllables, we selec-

ted the ten most common syllable types. High and mid-low vowels 

were considered as syllables here only if they reflected syllables in 

themselves and were unbound from a consonant (for example, /ih/ 

in 8hesitate9 or /ah-/ in 8adore9). Similar to the phoneme space, the syl-

lables were then transformed into an n-dimensional binary vector in 

which the value in each dimension reflected the presence of specific 

syllables (similar to construction of the phoneme space). Thus, for 

the n-dimensional representation of each word in this syllabic feature 

space, the value in each dimension could be also interpreted in relation 

to neuronal activity.

Morphemes. To account for the functional distinction between pho-

nemes and morphemes62,63, we also parsed words into those that con-

tained bound morphemes which were either prefixed (for example, 

8re39) or suffixed (for example, 83ed9). Unlike phonemes, morphemes 

such as 83ed9 in 8directed9 or 8re39 in 8retry9 are the smallest linguistic units 

capable of carrying meaning and, therefore, accounting for their pres-

ence allowed their effect on neuronal responses to be further examined. 

To allow for neuronal analysis and to control for potential differences 

in neuronal activity due to word lengths, models also took into account 

the total number of phonemes per word.

Spectral features. To evaluate the time-varying spectral features of the 

articulated phonemes on a phoneme-by-phoneme basis, we identified 

the occurrence of each phoneme using a Montreal Forced Aligner (v.2.2; 

https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner). 

For pitch, we calculated the spectral power in ten log-spaced frequency 

bins from 200 to 5,000)Hz for each phoneme per word. For amplitude, we 

took the root-mean-square of the recorded waveform of each phoneme.

Single-neuronal analysis

Evaluating the selectivity of single-neuronal responses. To inves-

tigate the relationship between single-neuronal activity and specific 

word features, we used a regression analysis to determine the degree 

to which variation in neural activity could be explained by phonetic, 

syllabic or morphologic properties of spoken words86389. For all analy-

ses, neuronal activity was considered in relation to word utterance 

onset (t)=)0) and taken as the mean spike count in the analysis window 

of interest (that is, 2500 to 0)ms from word onset for word planning 

and 0 to +500)ms for word production). To limit the potential effects 

of preceding words on neuronal activity, words with planning periods 

that overlapped temporally were excluded from regression and selec-

tivity analyses. For each neuron, we constructed a GLM that modelled 

the spike count rate as the realization of a Poisson process whose rate 

varied as a function of the linguistic (for example, phonetic, syllabic 

and morphologic) or acoustic features (for example, spectral power 

and root-mean-square amplitude) of the planned words.

https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner


Models were fit using the Python (v.3.9.17) library statsmodels 

(v.0.13.5) by iterative least-squares minimization of the Poisson nega-

tive log-likelihood function86. To assess the goodness-of-fit of the mod-

els, we used both the Akaike information criterion ( k LAIC = 2 2 2ln( ) 

where k is the number of estimated parameters and L is the maximized 

value of the likelihood function) and a generalization of the R2 score 

for the exponential family of regression models that we refer to as D2 

whereby87:
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y is a vector of realized outcomes, µ is a vector of estimated means 

from a full (including all regressors) or restricted (without regressors 

of interest) model and K µµ µµ( , ) = 2 llf( ; ) 2 2 llf( ; ); ;y y y y  where µµllf( ; )y  is 

the log-likelihood of the model and y yllf( ; ) is the log-likelihood of the 

saturated model. The D2 value represents the proportion of reduction 

in uncertainty (measured by the Kullback3Leibler divergence) due to 

the inclusion of regressors. The statistical significance of model fit was 

evaluated using the likelihood ratio test compared with a model with 

all covariates except the regressors of interest (the task variables).

We characterized a neuron as selectively 8tuned9 to a given word fea-

ture if the GLM of neuronal firing rates as a function of task variables 

for that feature exhibited a statistically significant model fit (likelihood 

ratio test with ³ set at 0.01). For neurons meeting this criterion, we 

also examined the point estimates and confidence intervals for each 

coefficient in the model. A vector of these coefficients (or, in our fea-

ture space, a vector of the sign of these coefficients) indicates a word 

with the combination of constituent elements expected to produce 

a maximal neuronal response. The multidimensional feature spaces 

also allowed us to define metrics that quantified the phonemic, syl-

labic or morphologic similarity between words. Here, we calculated 

the Hamming distance between the vector describing each word u 

and the vector of the sign of regression coefficients that defines each 

neuron9s maximal predicted response v, which is equal to the number 

of positions at which the corresponding values are different:

u vi i nHamming distance = count{ : b , = 1… }i i

For each 8tuned9 neuron, we compared the Z-scored firing rate elic-

ited by each word as a function of the Hamming distance between the 

word and the 8preferred word9 of the neuron to examine the 8tuning9 

characteristics of these neurons (Figs. 1f and 2c). A Hamming distance 

of zero would therefore indicate that the words have phonetically 

identical compositions. Finally, to examine the relationship between 

neuronal activity and spectral features of each phoneme, we extracted 

the acoustic waveform for each phoneme and calculated the power in 

ten log-spaced spectral bands. We then constructed a 8spectral vector9 

representation for each word based on these ten values and fit a Poisson 

GLM of neuronal firing rates against these values. For amplitude analy-

sis, we regressed neuronal firing rates against the root-mean-square 

amplitude of the waveform for each word.

Controlling for interdependency between phonetic and syllabic 

features. Three more word variations were used to examine the inter-

dependency between phonetic and syllabic features. First, we com-

pared firing rates for words containing specific syllables with words 

containing individual phonemes in that syllable but not the syllable 

itself (for example, simply /d/ in 8god9 or 8dog9). Second, we examined 

words containing syllables with the same constituent phonemes but 

in a different order (for example, /g-ah-d/ for 8god9 versus /d-ah-g/ for 

8dog9). Thus, if neurons responded preferentially to specific syllables, 

then they should continue to respond to them preferentially even when 

comparing words that had the same arrangements of phonemes but in 

different or reverse order. Third, we examined words containing the 

same sequence of syllables but spanning a syllable boundary such that 

the cluster of phonemes did not constitute a syllable (that is, in the same 

syllable versus spanning across syllable boundaries).

Visualization of neuronal responses within the population. To allow 

for visualization of groupings of neurons with shared representational 

characteristics, we calculated the AIC and D2 for phoneme, syllable and 

morpheme models for each neuron and conducted tSNE procedure 

which transformed these data into two dimensions such that neurons 

with similar feature representations are spatially closer together than 

those with dissimilar representations90. We used the tSNE implantation 

in the scikit-learn Python module (v.1.3.0). In Fig. 3a left, a tSNE was fit 

on the AIC values for phoneme, syllable and morpheme models for 

each neuron during the planning period with the following parameters: 

perplexity)=)35, early exaggeration)=)2 and using Euclidean distance 

as the metric. In Fig. 3a right and Fig. 4a bottom, a different tSNE was 

fit on the D2 values for all planning and production models using the 

following parameters: perplexity)=)10, early exaggeration)=)10 and  

using a cosine distance metric. The resulting embeddings were mapped 

onto a grid of points according to a linear sum assignment algorithm 

between embeddings and grid points.

Population modelling

Modelling population activity. To quantify the degree to which the 

neural population coded information about the planned phonemes, 

syllables and morphemes, we modelled the activity of the entire pseu-

dopopulation of recorded neurons. To match trials across the differ-

ent participants, we first labelled each word according to whether 

it contained the feature of interest and then matched words across 

subjects based on the features that were shared. Using this procedure, 

no trials or neural data were duplicated or upsampled, ensuring strict 

separation between training and testing sets during classifier training 

and subsequent evaluation.

For decoding, words were randomly split into training (75%) and test-

ing (25%) trials across 50 iterations. A support vector machine (SVM) as 

implemented in the scikit-learn Python package (v.1.3.0)91 was used to 

construct a hyperplane in n-dimensional space that optimally separates 

samples of different word features by solving the following minimiza-

tion problem:


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 for all i n* {1, …, }, where w 

is the margin in feature space, C is the regularization strength, ·i is the 

distance of each point from the margin, yi is the predicted class for each 

sample and ×(xi) is the image of each datapoint in transformed feature 

space. A radial basis function kernel with coefficient ³)=)1/272 was 

applied. The penalty term C was optimized for each classifier using a 

cross-validation procedure nested in the training set.

A separate classifier was trained for each dimension in a task space 

(for example, separate classifiers for bilabial, dental and alveolar 

consonants) and scores for each of these classifiers were averaged 

to calculate an overall decoding score for that feature type. Each 

decoder was trained to predict whether the upcoming word contained 

an instance of a specific phoneme, syllable or morpheme arrange-

ment. For phonemes, we used nine of the ten phoneme groups (there 

were insufficient instances of palatal consonants to train a classifier; 

Extended Data Table 1). For syllables, we used ten syllables taken from 

the most common syllables across the study vocabulary (Extended 

Data Table 1). For morpheme analysis, a single classifier was trained 

to predict the presence or absence of any bound morpheme in the  

upcoming word.

Finally, to assess performance, we scored classifiers using the area 

under the curve of the receiver operating characteristic (AUC-ROC) 
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model. With this scoring metric, a classifier that always guesses the 

most common class (that is, an uninformative classifier) results in 

a score of 0.5 whereas a perfect classification results in a score of 1.  

The overall decoding score for a particular feature space was the 

mean score of the classifier for each dimension in the space. The 

entire procedure was repeated 50 times with random train/test 

splits. Summary statistics for these 50 iterations are presented in the  

main text.

Model switching. Assessing decoder generalization across different 

experimental conditions provides a powerful method to evaluate the 

similarity of neuronal representations of information in different con-

texts64. To determine how neurons encoded the same word features but 

under different conditions, we trained SVM decoders using neuronal 

data during one condition (for example, word production) but tested 

the decoder using data from another (for example, no word produc-

tion). Before decoder training or testing, trials were split into disjoint 

training and testing sets, from which the neuronal data were extracted 

in the epoch of interest. Thus, trials used to train the model were never 

used to test the model while testing either native decoder performance 

or decoder generalizability.

Modelling temporal dynamic. To further study the temporal dynamic 

of neuronal response, we trained decoders to predict the phonemes, 

syllables and morpheme arrangement for each word across successive 

time points before utterance64. For each neuron, we aligned all spikes 

to utterance onset, binned spikes into 5)ms windows and convolved 

with a Gaussian kernel with standard deviation of 25)ms to generate 

an estimated instantaneous firing rate at each point in time during 

word planning. For each time point, we evaluated the performance 

of decoders of phonemes, syllables and morphemes trained on these 

data over 50 random splits of training and testing trials. The distribu-

tion of times of peak decoding performance across the planning or 

perception period revealed the dynamic of information encoding by 

these neurons during word planning or perception and we then cal-

culated the median peak decoding times for phonemes, syllables or  

morphemes.

Dynamical system and subspace analysis

To study the dimensionality of neuronal activity and to evaluate the 

functional subspaces occupied by the neuronal population, we used 

dynamical systems approach that quantified the time-dependent 

changes in neural activity patterns31. For the dynamical system analy-

sis, activity for all words were averaged for each neuron to come up 

with a single peri-event time projection (aligned to word onset) which 

allowed all neurons to be analysed together as a pseudopopulation. 

First, we calculated the instantaneous firing rates of the neuron which 

showed selectivity to any word feature (phonemes, syllables or mor-

pheme arrangement) into 5)ms bins convolved with a Gaussian filter 

with standard deviation of 50)ms. We used equal 500)ms windows set 

at 2500 to 0)ms before utterance onset for the planning phase and 0 

to 500)ms following utterance onset for the production phase to allow 

for comparison. These data were then standardized to zero mean and 

unit variance. Finally, the neural data were concatenated into a T)×)N 

matrix of sampled instantaneous firing rates for each of the N neurons 

at every time T.

Together, these matrices represented the evolution of the system 

in N-dimensional space over time. A principal component analysis 

revealed a small set of five principal components (PC) embedded 

in the full N-dimensional space that captured most of the variance 

in the data for each epoch (Fig. 4b). Projection of the data into this 

space yields a T)×)5 matrix representing the evolution of the system in 

five-dimensional space over time. The columns of the N)×)5 principal 

components form an orthonormal basis for the five-dimensional sub-

space occupied by the system during each epoch.

Next, to quantify the relationship between these subspaces during 

planning and production, we took two approaches. First, we calculated 

the alignment index from ref. 66:
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where DA is the matrix defined by the orthonormal basis of subspace 

A, CB is the covariance of the neuronal data as it evolves in space B, Ã i( )B  

is the ith singular value of the covariance matrix CB and Tr(∙) is the matrix 

trace. The alignment index A ranges from 0 to 1 and quantifies the frac-

tion of variance in space B recovered when the data are projected into 

space A. Higher values indicate that variance in the data is adequately 

captured by either subspace.

As discussed in ref. 66, subspace misalignment in the form 

of low alignment index A can arise by chance when considering 

high-dimensional neuronal data because of the probability that two 

randomly selected sets of dimensions in high-dimensional space may 

not align well. Therefore, to further explore the degree to which our 

subspace misalignment was attributable to chance, we used the Monte 

Carlo analysis to generate random subspaces from data with the same 

covariance structure as the true (observed) data:
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where V is a random subspace, U and S are the eigenvectors and eigenval-

ues of the covariance matrix of the observed data across all epochs being 

compared, v is a matrix of white noise and orth(∙) orthogonalizes the 

matrix. The alignment index A of the subspaces defined by the resulting 

basis vectors V was recalculated 1,000 times to generate a distribution of 

alignment index values A attributable to chance alone (compare Fig. 4b).

Finally, we calculated the projection error between each pair of sub-

spaces on the basis of relationships between the three orthonormal 

bases (rather than a projection of the data into each of these subspaces). 

The set of all (linear) subspaces of dimension k)<)n embedded in an 

n-dimensional vector space V forms a manifold known as the Grass-

mannian, endowed with several metrics which can be used to quantify 

distances between two subspaces on the manifold. Thus, the subspaces 

(defined by the columns of a T)×)N2 matrix, where N2 is the number of 

selected principal components; five in our case) explored by the sys-

tem during planning and production are points on the Grassmannian 

manifold of the full N-neuron dimensional vector space. Here, we used 

the Grassmannian chordal distance92:

A B AA BBd( , ) =
1

2
2

F
º º

where A and B are matrices whose columns are the orthonormal basis 

for their respective subspaces and ç F is the Frobenius norm. By normal-

izing this distance by the Frobenius norm of subspace A, we scale the 

distance metric from 0 to 1, where 0 indicates a subspace identical to A 

(that is, completely overlapping) and increasing values indicate greater 

misalignment from A. Random sampling of subspaces under the null 

hypothesis was repeated using the same procedure outlined above.

Participant demographics

Across the participants, there was no statistically significant differ-

ence in word length based on sex (three-way analysis of variance, 

F(1,4257))=)1.78, P)=)0.18) or underlying diagnosis (essential tremor ver-

sus Parkinson9s disease; F(1,4257))=)0.45, P)=)0.50). Among subjects with 

Parkinson9s disease, there was a significant difference based on disease 

severity (both ON score and OFF score) with more advanced disease 

(higher scores) correlating with longer word lengths (F(1,3295))=)145.8, 

P)=)7.1)×)10233 for ON score and F(1,3295))=)1,006.0, P)=)6.7)×)102193 for OFF 



score, P)<)0.001) and interword intervals (F(1,3291))=)14.9, P)=)1.1)×)1024 

for ON score and F(1,3291))=)31.8, P)=)1.9)×)1028 for OFF score). Model-

ling neuronal activities in relation to these interword intervals (bot-

tom versus top quartile), decoding performances were slightly higher 

for longer compared to shorter delays (0.76)±)0.01 versus 0.68)±)0.01, 

P)<)0.001, two-sided Mann3Whitney U-test).

Reporting summary

Further information on research design is available in the Nature Port-

folio Reporting Summary linked to this article.

Data availability

All the primary data supporting the main findings of this study are avail-

able online at https://doi.org/10.6084/m9.figshare.24720501. Source 

data are provided with this paper.

Code availability

All codes necessary for reproducing the main findings of this study 

are available online at https://doi.org/10.6084/m9.figshare.24720501.
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Extended Data Fig. 1 | Single-unit isolations from the human prefrontal 

cortex using Neuropixels recordings. a. Individual recording sites on a 

standardized 3D brain model (FreeSurfer), on side (top), zoomed-in oblique 

(inset) and top (bottom) views. Recordings lay across the posterior middle 

frontal gyrus of the language-dominant prefrontal cortex and roughly ranged 

in distribution from alongside anterior area 55b to 8a. b. Recording coordinates 

for the five participants are given in MNI space. c. Left, representative example 

of raw, motion-corrected action potential traces recorded across 

neighbouring channels over time. Right, an example of overlayed spike 

waveform morphologies and their distribution across neighbouring channels 

recorded from a Neuropixels array. d. Isolation metrics for the recorded 

population (n)=)272 units) together with an example of spikes from four 

concomitantly recorded units (labelled red, blue, cyan and yellow) in principal 

component space.



Extended Data Fig. 2 | Naturalistic speech production task performance 

and phonetic selectivity across neurons and participants. a. A priming- 

based speech production task that provided participants with pictorial 

representations of naturalistic events and that had to be verbally described in 

specific order. The task trial example is given here for illustrative purposes 

(created with BioRender.com). b. Mean word production times across 

participants and their standard deviation of the mean. The blue bars and dots 

represent performances for the five participants in which recordings were 

acquired (n)=)964, 1252, 406, 836, 805 words, respectively). The grey bar and 

dots represent healthy control (n)=)1534 words). c. Percentage of modulated 

neurons that responded selectively to specific planned phonemes across 

participants. All participants possessed neurons that responded to various 

phonetic features (one-sided Ç2)=)10.7, 6.9, 7.4, 0.5 and 1.3, p)=)0.22, 0.44, 0.49, 

0.97, 0.86, for participants 135, respectively).
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Extended Data Fig. 3 | Examples of single-neuronal activities and their 

temporal dynamics. a. Peri-event time histograms were constructed by 

aligning the action potentials of each neuron to word onset. Data are presented 

as mean (line) values ± standard error of the mean (shade). Examples of three 

representative neurons that selectively changed their activity to specific 

planned phonemes. Inset, spike waveform morphology and scale bar (0.5)ms). 

b. Peri-event time histogram and action potential raster for the same neurons 

above but now aligned to the onset of the articulated phonemes themselves. 

Data are presented as mean (line) values ± standard error of the mean (shade). 

c. Sankey diagram displaying the proportions of neurons (n)=)56) that displayed 

a change in activity polarity (increases in orange and decreases in purple) from 

planning to production.



Extended Data Fig. 4 | Generalizability of explanatory power across 

phonetic groupings for consonants and vowels. a. Scatter plots of the  

model explanatory power (D2) for different phonetic groupings across the cell 

population (n)=)272 units). Phonetic groupings were based on the planned  

(i) places of articulation of consonants and/or vowels (ii) manners of articulation 

of consonants and (iii) primary cardinal vowels (Extended Data Table 1).  

Model D2 explanatory power across all phonetic groupings were significantly 

correlated (from top left to bottom right, p)=)1.6×102146, p)=)2.8×10270, 

p)=)6.1×10254, p)=)1.4×10257, p)=)2.3×10243 and p)=)5.9×10243, two-sided tests  

of Spearman rank-order correlations). Spearman9s Ã are 0.96, 0.83, 0.77, 

respectively for left to right top panels and 0.78, 0.71, 0.71, respectively for left 

to right bottom panels (dashed regression lines). Among phoneme-selective 

neurons, the planned places of articulation provided the highest explanatory 

power (two-sided Wilcoxon signed-rank test of model D2 values, W)=)716, 

p)=)7.9×10216) and the best model fits (two-sided Wilcoxon signed-rank test of 

AIC, W)=)2255, p)=)1.3×1025) compared to manners of articulation. They also 

provided the highest explanatory power (two-sided Wilcoxon signed-rank  

test of model D2 values, W)=)846, p)=)9.7×10215) and fits (two-sided Wilcoxon 

signed-rank test of AIC, W)=)2088, p)=)2.0×1026) compared to vowels.  

b. Multidimensional scaling (MDS) representation of all neurons across phonetic 

groupings. Neurons with similar response characteristics are plotted closer 

together. The hue of each point reflects the degree of selectivity to specific 

phonetic features. Here, the colour scale for places of articulation is provided 

in red, manners of articulation in green and vowels in blue. The size of each 

point reflects the magnitude of the maximum explanatory power in relation  

to each cell9s phonetic selectivity (maximum D2 for places of articulation of 

consonants and/or vowels, manners of articulation of consonants and primary 

cardinal vowels).
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Extended Data Fig. 5 | Explanatory power for the acoustic–phonetic 

properties of phonemes and neuronal tuning to morphemes. a. Left, scatter 

plot of the D2 explanatory power of neurons for planned phonemes and their 

observed spectral frequencies during articulation (n)=)272 units; Spearman9s 

Ã)=)0.75, p)=)9.3×10250, two-sided test of Spearman rank-order correlation). 

Right, decoding performances for the spectral frequency of phonemes (n)=)50 

random test/train splits; p)=)7.1×10218, two-sided Mann3Whitney U-test). Data 

are presented as mean values ± standard error of the mean. b. Venn diagrams of 

neurons that were modulated by phonemes during planning and those that 

were modulated by the spectral frequency (left) and amplitude (right) of the 

phonemes during articulation. c. Left, peri-event time histogram and raster for 

a representative neuron exhibiting selectivity to words that contained bound 

morphemes (for example, –ing, –ed) compared to words that did not. Data are 

presented as mean (line) values ± standard error of the mean (shade). Inset, 

spike waveform morphology and scale bar (0.5)ms). Right, decoding 

performance distribution for morphemes (n)=)50 random test/train splits; 

p)=)1.0×10217, two-sided Mann3Whitney U-test). Data are presented as mean 

values ± standard deviation.



Extended Data Fig. 6 | Phonetic representations of words during speech 

perception and the comparison of speaking to listening. a. Left, Venn 

diagrams of neurons that selectively changed their activity to specific 

phonemes during word planning (2500:0)ms from word utterance onset) and 

perception (0:500)ms from word utterance onset). Right, average z-scored 

firing rate for selective neurons during word planning (black) and perception 

(grey) as a function of the Hamming distance. Here, the Hamming distance was 

based on the neurons9 preferred phonetic compositions during production 

and compared for the same neurons during perception. Data are presented as 

mean (line) values ± standard error of the mean (shade). b. Left, classifier 

decoding performances for selective neurons during word planning. The 

points provide the sampled distribution for the classifier9s ROC-AUC values 

(black) compared to random chance (grey; n)=)50 random test/train splits; 

p)=)7.1×10218, two-sided Mann3Whitney U-test). Middle, decoding performance 

for selective neurons during perception (n)=)50 random test/train splits; 

7.1×10218, two-sided Mann3Whitney U-test). Right, word planning-perception 

model-switch decoding performances for selective neurons. Here, models 

were trained on neural data for specific phonemes during planning and then 

used to decode those same phonemes during perception (n)=)50 random  

test/train splits; p)>)0.05, two-sided Mann3Whitney U-test; Methods). The 

boundaries and midline of the boxplots represent the 25th and 75th percentiles 

and the median, respectively. c. Peak decoding performance for phonemes, 

syllables and morphemes as a function of time from perceived word onset. 

Peak decoding for morphemes was observed significantly later than for 

phonemes and syllables during perception (n)=)50 random test/train splits; 

two-sided Kruskal3Wallis, H)=)14.8, p)=)0.00062). Data are presented here as 

median (dot) values ± bootstrapped standard error of the median.
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Extended Data Fig. 7 | Spatial distribution of representations based on 

cortical location and depth. a. Relationship between recording location 

along the rostral3caudal axis of the prefrontal cortex and the proportion of 

neurons that displayed selectivity to specific phonemes, syllables and 

morphemes. Neurons that displayed selectivity were more likely to be found 

posteriorly (one-sided Ç2 test, p)=)2.6×1029, 3.0×10211, 2.5×1026, 3.9×10210, for 

places of articulation, manners of articulation, syllables and morpheme, 

respectively). b. Relationship between recording depth along the cortical 

column and the proportion of neurons that display selectivity to specific 

phonemes, syllables and morphemes. Neurons that displayed selectivity were 

broadly distributed along the cortical column (one-sided Ç2 test, p)>)0.05). 

Here, S indicates superficial, M middle and D deep.



Extended Data Fig. 8 | Receiver operating characteristic curves across 

planned phonetic representations and decoding model-switching 

performances for word planning and production. a. ROC-AUC curves for 

neurons across different phonemes, grouped by placed of articulation, during 

planning (there were insufficient palatal consonants to allow for classification 

and are therefore not displayed here). b. Average (solid line) and shuffled 

(dotted line) data across all phonemes. Data are presented as mean (line) values 

± standard error of the mean (shade). c. Planning-production model-switch 

decoding performance sample distribution (n)=)50 random test/train splits) for 

all selective neurons. Here, models were trained on neuronal data recorded 

during planning and then used to decode those same phoneme (left), syllable 

(middle), or morpheme (right) on neuronal data recorded during production. 

Slightly lower decoding performances were noted for syllables and morphemes 

when comparing word planning to production (p)=)0.020 for syllable comparison 

and p)=)0.032 for morpheme comparison, two-sided Mann3Whitney U-test). 

Data are presented as mean values ± standard deviation.
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Extended Data Fig. 9 | Example of phonetic representations in planning 

and production subspaces. Modelled depiction of the neuronal population 

trajectory (bootstrap resampled) across averaged trials with (green) and 

without (grey) mid-low phonemes, projected into a plane within the <planning= 

subspace (y-axis) and a plane within the <production= subspace (z-axis). 

Projection planes within planning and production subspaces were chosen to 

enable visualization of trajectory divergence. Zero indicates word onset on  

the x-axis. Separation between the population trajectory during trials with  

and without mid-low phonemes is apparent in the planning subspace (y-axis) 

independently of the projection subspace (z-axis) because these subspaces  

are orthogonal. The orange plane indicates a hypothetical decision boundary 

learned by a classifier to separate neuronal activities between mid-low and 

non-mid-low trials. Because the classifier decision boundary is not constrained 

to lie within a particular subspace, classifier performance may therefore 

generalize across planning and production epochs, despite the near- 

orthogonality of these respective subspaces.



Extended Data Table 1 | Phonetic groupings

To provide a compositional representation of each word for the main analyses, phonemes were grouped based on their places of articulation for consonants (for example, velar and bilabial) and 

relative height of the tongue for vowels (for example, high and mid-low). For comparison, phonemes were also grouped based on the manners of articulation (for example, plosive and fricative) 

as well as the combined position of the tongue and lips for vowels (for example, front-close or back-open). Finally, we used the ten most common syllables in the study9s vocabulary to study the 

words9 syllabic structures.








