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Humans are capable of generating extraordinarily diverse articulatory movement
combinations to produce meaningful speech. This ability to orchestrate specific
phonetic sequences, and their syllabification and inflection over subsecond
timescales allows us to produce thousands of word sounds and is a core component
of language'?. The fundamental cellular units and constructs by which we planand
produce words during speech, however, remain largely unknown. Here, using acute
ultrahigh-density Neuropixels recordings capable of sampling across the cortical
columnin humans, we discover neurons in the language-dominant prefrontal cortex
that encoded detailed information about the phonetic arrangement and composition
of planned words during the production of natural speech. These neurons represented
the specificorder and structure of articulatory events before utterance and reflected
the segmentation of phonetic sequencesinto distinct syllables. They also accurately
predicted the phonetic, syllabic and morphological components of upcoming words
and showed a temporally ordered dynamic. Collectively, we show how these mixtures
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of cells are broadly organized along the cortical column and how their activity
patterns transition from articulation planning to production. We also demonstrate
how these cells reliably track the detailed composition of consonant and vowel
sounds during perception and how they distinguish processes specifically related to
speaking from those related to listening. Together, these findings reveal aremarkably
structured organization and encoding cascade of phonetic representations by
prefrontal neuronsin humans and demonstrate a cellular process that can support
the production of speech.

Humans can produce aremarkably wide array of word sounds to con-
vey specific meanings. To produce fluent speech, linguistic analyses
suggest astructured succession of processes involved in planning the
arrangement and structure of phonemes inindividual words'2. These
processes are thought to occur rapidly during natural speech and to
recruit prefrontal regions in parts of the broader language network
known to be involved in word planning®'? and sentence construc-
tion®® and which widely connect with downstream areas that play
arolein their motor production” ™, Cortical surface recordings have
also demonstrated that phonetic features may be regionally organ-
ized® and that they can be decoded from local-field activities across
posterior prefrontal and premotor areas® %, suggesting an underlying
cortical structure. Understanding the basic cellular elements by which
we plan and produce words during speech, however, has remained a
significant challenge.

Although previous studies in animal models**~*® and more recent
investigation in humans®?have offered animportant understanding
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of how cells in primary motor areas relate to vocalization movements
andthe production of sound sequences such as song, they do not reveal
the neuronal process by which humans constructindividual words and
by which we produce natural speech®. Further, although linguistic
theory based on behavioural observations has suggested tightly cou-
pled sublexical processes necessary for the coordination of articulators
during word planning®, how specific phonetic sequences, their syl-
labification orinflection are precisely coded for by individual neurons
remains undefined. Finally, whereas previous studies have revealed a
large regional overlap in areas involved in articulation planning and
production® % little is known about whether and how these linguistic
process may be uniquely represented at a cellular scale®®, what their
cortical organization may be or how mechanisms specifically related
to speech production and perception may differ.

Single-neuronal recordings have the potential to begin reveal-
ing some of the basic functional building blocks by which humans
plan and produce words during speech and study these processes at
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Fig.1| Tracking phoneticrepresentations by prefrontal neurons during
the production of natural speech. a, Left, single-neuronal recordings were
confirmed tolocalize to the posterior middle frontal gyrus of language-
dominantprefrontal cortexinaregionknowntobeinvolved in word planning
and production (Extended Data Fig.1a,b); right, acute single-neuronal
recordings were made using Neuropixels arrays (Extended Data Fig. 1c,d);
bottom, speech production task and controls (Extended Data Fig. 2a).

b, Example of phonetic groupings based on the planned places of articulation
(Extended DataTable1). c, Aten-dimensional feature space was constructed to
provide acompositional representation of allphonemes per word. d, Peri-event
time histograms were constructed by aligning the APs of each neuron toword
onsetatmillisecond resolution. Dataare presented as mean (line) values +s.e.m.
(shade). Inset, spike waveform morphology and scale bar (0.5 ms). e, Left,

spatiotemporal scales that have largely remained inaccessible® .
Here, we used an opportunity to combine recently developed
ultrahigh-density microelectrode arrays for acute intraoperative
neuronal recordings, speech tracking and modelling approaches to
begin addressing these questions.

Neuronal recordings during natural speech

Single-neuronal recordings were obtained from the language-dominant
(left) prefrontal cortex in participants undergoing planned intraop-
erative neurophysiology (Fig. 1a; section on ‘Acute intraoperative
single-neuronal recordings’). These recordings were obtained from
the posterior middle frontal gyrus'®*¢-° in a region known to be
broadly involved in word planning®*? and sentence construction
and to connect with neighbouring motor areas shown to play a role
in articulation " and lexical processing®™ > (Extended Data Fig. 1a).
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proportions of modulated neurons that selectively changed their activities to
specific planned phonemes; right, tuning curve for a cell that was preferentially
tunedto velar consonants. f, Average z-scored firing rates as afunction of the
Hamming distance between the preferred phonetic composition of the neuron
(that producinglargest changein activity) and all other phonetic combinations.
Here,aHamming distance of O indicates that the words had the same phonetic
compositions, whereasaHamming distance of lindicates that they differed

by asingle phoneme. Data are presented as mean (line) values + s.e.m. (shade).
g,Decoding performance for planned phonemes. The orange points provide
thesampled distribution for the classifier’'sROC-AUC; n = 50 random test/train
splits; P=7.1x107"%, two-sided Mann-Whitney U-test. Data are presented as
mean +s.d.

Thisregionwas traversed during recordings as part of planned neuro-
surgical careand roughly rangedin distribution from alongside anterior
area55bto 8a, with sites varying by approximately 10 mm (s.d.) across
subjects (Extended Data Fig. 1b; section on ‘Anatomical localization
of recordings’). Moreover, the participants undergoing recordings
were awake and thus able to perform language-based tasks (section
on ‘Study participants’), together providing an extraordinarily rare
opportunity to study the action potential (AP) dynamics of neurons
during the production of natural speech.

To obtain acute recordings from individual cortical neurons and to
reliably track their AP activities across the cortical column, we used
ultrahigh-density, fully integrated linear silicon Neuropixels arrays that
allowed for high throughput recordings from single cortical units***,
To further obtain stable recordings, we developed custom-made
software that registered and motion-corrected the AP activity of
each unit and kept track of their position across the cortical column



(Fig.1a, right)*®. Only well-isolated single units, with low relative neigh-
bour noise and stable waveform morphologies consistent with that
of neocortical neurons were used (Extended Data Fig. 1¢,d; section
on ‘Acute intraoperative single-neuronal recordings’). Altogether,
we obtained recordings from 272 putative neurons across five par-
ticipants for an average of 54 + 34 (s.d.) single units per participant
(range 16-115 units).

Next, to study neuronal activities during the production of natural
speech and to track their per word modulation, the participants per-
formed a naturalistic speech production task that required them to
articulate broadly varied wordsin areplicable manner (Extended Data
Fig. 2a)”’. Here, the task required the participants to produce words
that varied in phonetic, syllabic and morphosyntactic content and to
provide theminastructured and reproducible format. It also required
them to articulate the words independently of explicit phonetic cues
(forexample, from simply hearing and then repeating the same words)
and to construct them de novo during natural speech. Extra controls
were further used to evaluate for preceding word-related responses,
sensory-perceptual effects and phonetic-acoustic properties as well
astoevaluate therobustness and generalizability of neuronal activities
(section on ‘Speech production task’).

Together, the participants produced 4,263 words for an average of
852.6 +273.5(s.d.) words per participant (range 406-1,252 words). The
words were transcribed using asemi-automated platformand aligned
to AP activity at millisecond resolution (section on ‘Audio recordings
and task synchronization’)>.. All participants were English speakers
and showed comparable word-production performances (Extended
DataFig. 2b).

Representations of phonemes by neurons

To first examine the relation between single-neuronal activities and
the specific speech organs involved®®*, we focused our initial analy-
ses on the primary places of articulation®. The places of articulation
describe the points where constrictions are made between an active
and a passive articulator and are what largely give consonants their
distinctive sounds. Thus, for example, whereas bilabial consonants
(/p/ and/b/) involve the obstruction of airflow at the lips, velar conso-
nants arearticulated with the dorsum of the tongue placed against the
soft palate (/k/ and /g/; Fig. 1b). To further examine sounds produced
without constriction, we also focused our initial analyses on vowels
inrelationto therelative height of the tongue (mid-low and high vow-
els). More phonetic groupings based on the manners of articulation
(configuration and interaction of articulators) and primary cardinal
vowels (combined positions of the tongue and lips) are described in
Extended Data Table1.

Next, to provide a compositional phonetic representation of each
word, we constructed a feature space on the basis of the constituent
phonemes of eachword (Fig. 1c, left). For instance, the words ‘like’ and
‘bike’ would be represented uniquely in vector space because they dif-
fer by asingle phoneme (‘like’ contains alveolar/I/ whereas ‘bike’ con-
tains bilabial /b/; Fig. 1c, right). The presence of a particular phoneme
was therefore represented by a unitary value for its respective vector
component, together yielding a vectoral representation of the constitu-
ent phonemes of each word (section on ‘Constructing a word feature
space’). Generalized linear models (GLMs) were then used to quantify
the degree to which variations in neuronal activity during planning
couldbe explained by individual phonemes across all possible combi-
nations of phonemes per word (section on ‘Single-neuronal analysis’).

Overall, we find that the firing activities of many of the neurons
(46.7%, n =127 of 272 units) were explained by the constituent pho-
nemes of the word before utterance (-500 to O ms); GLM likelihood
ratio test, P < 0.01); meaning that their activity patterns wereinforma-
tive of the phonetic content of the word. Among these, the activities of
56 neurons (20.6% of the 272 units recorded) were further selectively

tunedto the planned production of specific phonemes (two-sided Wald
test for each GLM coefficient, P < 0.01, Bonferroni-corrected across
all phoneme categories; Fig. 1d,e and Extended Data Figs. 2 and 3).
Thus, for example, whereas certain neurons changed their firing rate
when the upcoming words contained bilabial consonants (for exam-
ple, /p/ or /b/), others changed their firing rate when they contained
velar consonants. Of these neurons, most encoded information both
about the planned places and manners of articulation (n =37 or 66%
overlap, two-sided hypergeometric test, P < 0.0001) or planned places
ofarticulation and vowels (n =27 or 48% overlap, two-sided hypergeo-
metric test, P< 0.0001; Extended Data Fig. 4). Most also reflected the
spectral properties of the articulated words on aphoneme-by-phoneme
basis (64%, n =36 of 56; two-sided hypergeometric test, P=1.1x107;
Extended Data Fig. 5a,b); together providing detailed information
about the upcoming phonemes before utterance.

Because we had a complete representation of the upcoming pho-
nemes for each word, we could also quantify the degree to which neu-
ronal activities reflected their specific combinations. For example, we
could ask whether the activities of certain neurons not only reflected
planned words with velar consonants but also words that contained the
specific combination of both velar and labial consonants. By aligning
theactivity of each neurontoits preferred phonetic composition (that
is, the specific combination of phonemes to which the neuron most
strongly responded) and by calculating the Hamming distance between
thisand all other possible phonetic compositions across words (Fig. 1c,
right; section on ‘Single-neuronal analysis’), we find that the relation
between the vectoral distances across words and neuronal activity
was significant (two-sided Spearman’s p =—0.97, P= 5.14 x 107; Fig. 1f).
These neurons therefore seemed not only to encode specific planned
phonemes but also their specific composition with upcoming words.

Finally, we asked whether the constituent phonemes of the word
could be robustly decoded from the activity patterns of the neuronal
population. Using multilabel decoders to classify the upcoming pho-
nemes of words not used for model training (section on ‘Population
modelling’), we find that the composition of phonemes could be
predicted from neuronal activity with significant accuracy (receiver
operating characteristicareaunder the curve; ROC-AUC = 0.75 + 0.03
mean = s.d. observed versus 0.48 + 0.02 chance, P< 0.001, two-sided
Mann-Whitney U-test; Fig. 1g). Similar findings were also made when
examining the planned manners of articulation (AUC = 0.77 £ 0.03,
P<0.001, two-sided Mann-Whitney U-test), primary cardinal vow-
els (AUC=0.79 £ 0.04, P< 0.001, two-sided Mann-Whitney U-test)
and their spectral properties (AUC = 0.75 + 0.03, P< 0.001, two-sided
Mann-Whitney U-test; Extended Data Fig. 5a, right). Taken together,
these neurons therefore seemed to reliably predict the phonetic com-
position of the upcoming words before utterance.

Motoric and perceptual processes

Neurons that reflected the phonetic composition of the words during
planning were largely distinct from those that reflected their composi-
tionduring perception. Itis possible, for instance, that similar response
patterns could have been observed when simply hearing the words.
Therefore, to test for this, we performed an extra ‘perception’ con-
trolin three of the participants whereby they listened to, rather than
produced, the words (n =126 recorded units; section on ‘Speech pro-
ductiontask’). Here, we find that 29.3% (n = 37) of the neurons showed
phoneticselectively during listening (Extended Data Fig. 6a) and that
theiractivities could be used to accurately predict the phonemes being
heard (AUC = 0.70 + 0.03 observed versus 0.48 + 0.02 chance, P< 0.001,
two-sided Mann-Whitney U-test; Extended Data Fig. 6b). We also find,
however, that these cells were largely distinct from those that showed
phonetic selectivity during planning (n =10; 7.9% overlap) and that
their activities were uninformative of phonemic content of the words
being planned (AUC = 0.48 + 0.01, P = 0.99, two-sided Mann-Whitney
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Fig.2|Cellsthatencode thearrangement and segmentation of phonemes
intodistinctsyllables. a, Peri-event time histograms were constructed by
aligning the APs of each neuron toword onset. Data are presented as mean
(line) values + s.e.m. (shade). Examples of two representative neurons which
selectively changed their activity to specific planned syllables. Inset, spike
waveformmorphology and scale bar (0.5 ms). b, Scatter plots of D* values (the
degree towhich specific features explained neuronal response, n =272 units) in
relation to planned phonemes, syllables and morphemes. ¢, Average z-scored
firingrates as afunction of the Hamming distance between the preferred
syllabic composition and all other compositions of the neuron. Dataare
presented as mean (line) values + s.e.m. (shade). d, Decoding performance for
planned syllables. The orange points provide the sampled distribution for the
classifier’sROC-AUC values (n = 50 random test/train splits; P= 7.1 x 1078

U-test; Extended Data Fig. 6b). Similar findings were also made when
replaying the participant’s own voices to them (‘playback’ control; 0%
overlap in neurons); together suggesting that speaking and listening
engaged largely distinct but complementary sets of cellsin the neural
population.

Giventhe above observations, we also examined whether the activi-
ties of the neurons could have been explained by the acoustic-phonetic
properties of the preceding spoken words. For example, it is possible
that the activities of the neuron may have partly reflected the pho-
netic composition of the previous articulated word or their motoric
components. Thus, to test for this, we repeated our analyses but now
excludedwordsinwhichthe precedingarticulated word contained the
phoneme being decoded (section on ‘Single-neuronal analysis’) and
find that decoding performance remained significant (AUC=0.72+ 0.1,
P<0.001, two-sided Mann-Whitney U-test). We also find that decoding
performance remained significant when constricting (400 to O ms
window instead of -500:0 ms; AUC =0.72+ 0.1, P< 0.001, two-sided
Mann-Whitney U-test) or shifting the analysis window closer to utter-
ance (-300 to +200 ms window results in AUC =0.76 + 0.1, P< 0.001,
two-sided Mann-Whitney U-test); indicating that these neurons coded
for the phonetic composition of the upcoming words.

Syllabic and morphological features

To transform sets of consonants and vowels into words, the planned
phonemes must also be arranged and segmented into distinct
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two-sided Mann-Whitney U-test). Data are presented asmean +s.d. e, To
evaluate the selectivity of neuronsto specific syllables, their activities were
further compared for words that contained the preferred syllable of each
neuron (thatis, the syllable to which they responded most strongly; green)
to (i) words that contained one or more of same individual phonemes but
not necessarily their preferred syllable, (ii) words that contained different
phonemes and syllables, (iii) words that contained the same phonemes but
divided across different syllables and (iv) words that contained the same
phonemesinasyllable butin different order (grey). Neuronal activities across
all comparisons (to green points) were significant (n=113; P= 6.2 x107%,
8.8x107%°,4.2x107*°and 1.4 x107%°, for the comparisons above, respectively;
two-sided Wilcoxon signed-rank test). Data are presented as mean (dot)
values +s.e.m.

syllables®. For example, even though the words ‘casting’ and ‘stack-
ing’ possess the same constituent phonemes, they are distinguished
by their specific syllabic structure and order. Therefore, to examine
whether neuronsin the population may further reflect these sublexi-
cal features, we created an extra vector space based on the specific
order and segmentation of phonemes (section on ‘Constructing a
word feature space’). Here, focusing on the most common syllables to
allow for tractable neuronal analysis (Extended Data Table 1), we find
that the activities 0f 25.0% (n = 68 0of 272) of the neurons reflected the
presence of specific planned syllables (two-sided Wald test for each
GLM coefficient, P< 0.01, Bonferroni-corrected across all syllable
categories; Fig. 2a,b). Thus, whereas certain neurons may respond
selectively to avelar-low-alveolar syllable, other neurons may respond
selectively to an alveolar-low-velar syllable. Together, the neurons
responded preferentially to specific syllables when tested across
words (two-sided Spearman’s p =—-0.96, P=1.85 x 107¢; Fig. 2¢) and
accurately predicted their content (AUC = 0.67 + 0.03 observed ver-
sus 0.50 + 0.02 chance, P < 0.001, two-sided Mann-Whitney U-test;
Fig.2d); suggesting that these subsets of neurons encoded informa-
tion about the syllables.

Next, to confirm that these neurons were selectively tuned to specific
syllables, we compared their activities for words that contained the
preferred syllable of each neuron (for example, /d-iy/) to words that
simply contained their constituent phonemes (for example, d or iy).
Thus, for example, if these neurons reflected individual phonemes
irrespective of their specific order, then we would observe no difference



inresponse. On the basis of these comparisons, however, we find that
the responses of the neurons to their preferred syllables was signifi-
cantly greater than to that of their individual constituent phonemes
(z-score difference 0.92 + 0.04; two-sided Wilcoxon signed-rank test,
P<0.0001; Fig.2e). We also tested words containing syllables with the
same constituent phonemes but in which the phonemes were simply
in a different order (for example, /g-ah-d/ versus /d-ah-g/) but again
find that the neurons were preferentially tuned to specific syllables
(z-score difference 0.99 + 0.06; two-sided Wilcoxon signed-rank test,
P<1.0 x107% Fig. 2e). Then, we examined words that contained the
same arrangements of phonemes but in which the phonemes them-
selves belonged to different syllables (for example, /r-oh-b/ versus
r-oh/b-; accounting prosodic emphasis) and similarly find that the neu-
rons were preferentially tuned to specific syllables (z-score difference
1.01+ 0.06; two-sided Wilcoxon signed-rank test, P < 0.0001; Fig. 2e).
Therefore, rather than simply reflecting the phonetic composition of
the upcoming words, these subsets of neurons encoded their specific
segmentation and order inindividual syllables.

Finally, we asked whether certain neurons may code for the inclu-
sion of morphemes. Unlike phonemes, bound morphemes such as
‘~ed’in ‘directed’ or ‘re-"in ‘retry’ are capable of carrying specific
meanings and are thus thought to be subserved by distinct neural
mechanisms®*®*, Therefore, to test for this, we also parsed each word
onthebasis of whether it contained a suffix or prefix (controlling for
word length) and find that the activities 0f 11.4% (n = 31 0f 272) of the
neurons selectively changed for words that contained morphemes
compared to those that did not (two-sided Wald test for each GLM
coefficient, P< 0.01, Bonferroni-corrected across morpheme catego-
ries; Extended Data Fig. 5c). Moreover, neural activity across the popu-
lation could be used to reliably predict the inclusion of morphemes
before utterance (AUC = 0.76 + 0.05 observed versus 0.52 + 0.01 for
shuffled data, P < 0.001, two-sided Mann-Whitney U-test; Extended
DataFig. 5¢), together suggesting that the neurons coded for this
sublexical feature.

Spatial distribution of neurons

Neurons thatencoded information about the sublexical components
of the upcoming words were broadly distributed across the cortex and
cortical column depth. By tracking the location of each neuroninrela-
tionto the Neuropixels arrays, we find that there was a slightly higher
preponderance of neurons that were tuned to phonemes (one-sided x*
test (2) =0.7and 5.2, P> 0.05, for places and manners of articulation,
respectively), syllables (one-sided x* test (2) = 3.6, P> 0.05) and mor-
phemes (one-sided y* test (2) =4.9, P> 0.05) at lower cortical depths,
but that this difference was non-significant, suggesting abroad distribu-
tion (Extended DataFig.7). We also find, however, that the proportion of
neurons that showed selectivity for phonemesincreased as recordings
were acquired more posteriorly along the rostral-caudal axis of the
cortex (one-sided y* test (4) =45.9 and 52.2, P< 0.01, for places and man-
ners of articulation, respectively). Similar findings were also made for
syllables and morphemes (one-sided y* test (4) = 31.4 and 49.8,P< 0.01,
respectively; Extended Data Fig. 7); together suggesting a gradation
of cellular representations, with caudal areas showing progressively
higher proportions of selective neurons.

Collectively, the activities of these cell ensembles provided richly
detailed information about the phonetic, syllabicand morphological
components of upcoming words. Of the neurons that showed selec-
tivity to any sublexical feature, 51% (n = 46 of 90 units) were signifi-
cantly informative of more than one feature. Moreover, the selectivity
of these neurons lay along a continuum and were closely correlated
(two-sided test of Pearson’s correlation in D? across all sublexical fea-
ture comparisons, r=0.80, 0.51 and 0.37 for phonemes versus sylla-
bles, phonemes versus morphemes and syllables versus morphemes,
respectively, all P < 0.001; Fig. 2b), with most cells exhibiting a mixture
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Fig.3| Temporal structure and organization of phonetic, syllabicand
morphological representations. a, Left, response selectivity of neurons to
specific word features (phonemes, syllables and morphemes) is visualized
acrossthe population using atSNE procedure (thatis, neurons with similar
response characteristics were plotted in closer proximity). The hue of each
pointreflects the degree of selectivity toa particular sublexical feature
whereasthesize of each pointreflects the degree to which those features
explained neuronal response. Inset, the relative proportions of neurons
showing selectivity and their overlap. Right, the D’ metric (the degree to which
specific features explained neuronal response) for each cell shown individually
per feature.b, Therelative degree towhich the activities of the neurons were
explained by the phonetic, syllabic and morphological features of the words
(D*metric) and their hierarchical structure (agglomerative hierarchical
clustering). ¢, Distribution of peak decoding performances for phonemes,
syllables and morphemes aligned to word utterance onset. Significant
differencesin peak decodingtimings across sample distribution are labelled
inbrackets above (n =50 random test/trainsplits; P=0.024,0.002 and 0.002;
pairwise, two-sided permutation tests of differences in medians for phonemes
versus syllables, syllables versus morphemes and phonemes versus
morphemes, respectively; Methods). Data are presented as median (dot)
values + bootstrapped standard error of the median.

of representations for specific phonetic, syllabic or morphological
features (two-sided Wilcoxon signed-rank test, P < 0.0001). Figure 3a
further illustrates this mixture of representations (Fig. 3a, left;
t-distributed stochastic neighbour embedding (tSNE)) and their hier-
archicalstructure (Fig. 3a, right; D*distribution), together revealing a
detailed characterization of the phonetic, syllabic and morphological
components of upcoming words at the level of the cell population.
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Fig.4 |Neuronal population transition fromarticulation planning to
production. a, Top, the D*value of neuronal activity (the degree to which
specific features explained neuronal response, n =272 units) during word
planning (green) and production (orange) sorted across all population
neurons. Middle, relationship between explanatory power (D?) of neuronal
activity (n =272 units) for phonemes (Spearman’s p = 0.69), syllables
(Spearman’s p = 0.40) and morphemes (Spearman’s p = 0.08) during planning
andproduction (P=1.3x107%°,P=6.6 x107'2, P=0.18, respectively, two-sided
test of Spearman rank-order correlation). Bottom, the D* metric for each cell
during production per feature (n =272 units). b, Top left, schematicillustration

Temporal organization of representations

Given the above observations, we examined the temporal dynamic
of neuronal activities during the production of speech. By tracking
peak decodinginthe periodleading up to utterance onset (peak AUC;
50 model testing/training splits)®*, we find these neural populations
showed a consistent morphological-phonetic-syllabic dynamicin
whichdecoding performance first peaked for morphemes. Peak decod-
ing then followed for phonemes and syllables (Fig. 3b and Extended
Data Fig. 8a,b; section on ‘Population modelling’). Overall, decoding
performance peaked for the morphological properties of words at
—-405 + 67 ms before utterance, followed by peak decoding for pho-
nemesat-195 + 16 ms and syllables at —70 + 62 ms (s.e.m.; Fig. 3b). This
temporal dynamic was highly unlikely to have been observed by chance
(two-sided Kruskal-Wallis test, H =13.28, P < 0.01) and was largely dis-
tinct from that observed during listening (two-sided Kruskal-Wallis
test, H=14.75,P < 0.001; Extended Data Fig. 6¢). The activities of these
neuronstherefore seemed to follow a consistent, temporally ordered
morphological-phonetic-syllabic dynamic before utterance.
Theactivities of these neurons also followed a temporally structured
transition from articulation planning to production. When compar-
ing their activities before utterance onset (-500:0 ms) to those after
(0:500 ms), we find that neurons which encoded information about
the upcoming phonemes during planning encoded similar information
during production (P < 0.001, Mann-Whitney U-test for phonemes and
syllables; Fig. 4a). Moreover, when using models that were originally
trained on words before utterance onset to decode the properties of
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of speech planning (blue plane) and production (red plane) subspaces as
traversed by aneuron for different phonemes (yellow arrows; Extended Data
Fig.9). Topright, subspace misalignment quantified by an alignmentindex
(red) or Grassmannian chordal distance (red) compared to that expected from
chance (grey), demonstrating that the subspaces occupied by the neural
population (n =272 units) during planning and production were distinct.
Bottom, projection of neural population activity (n =272 units) during word
planning (blue) and production (red) onto the first three PCs for the planning
(upperrow) and production (lower row) subspaces.

thearticulated words during production (model-switch approach), we
find that decoding accuracy for the phonetic, syllabic and morphologi-
cal properties of the words all remained significant (AUC = 0.76 + 0.02
versus 0.48 £ 0.03 chance, 0.65 + 0.03 versus 0.51+ 0.04 chance,
0.74 £ 0.06 versus 0.44 + 0.07 chance, for phonemes, syllables and
morphemes, respectively; P< 0.001for all, two-sided Mann-Whitney
U-tests; Extended Data Fig. 8c). Information about the sublexical fea-
tures of words was therefore reliably represented during articulation
planning and execution by the neuronal population.

Utilizing adynamical systems approach to further allow for the unsu-
pervised identification of functional subspaces (thatis, wherein neural
activity is embedded into a high-dimensional vector space; Fig. 4b,
left; section on ‘Dynamical system and subspace analysis’)*3*65¢¢ we
find that the activities of the population were mostly low-dimensional,
with more than 90% of the variance in neuronal activity being captured
by its first four principal components (Fig. 4b, right). However, when
tracking how the dimensions inwhich neural populations evolved over
time, we also find that the subspaces which defined neural activity
during articulation planning and production were largely distinct. In
particular, whereas the first five subspaces captured 98.4% of variance
in the trajectory of the population during planning, they captured
only11.9% of variance in the trajectory during articulation (two-sided
permutationtest, P< 0.0001; Fig.4b, bottom and Extended Data Fig. 9).
Together, these cell ensembles therefore seemed to occupy largely
separate preparatory and motoric subspaces while also allowing for
information about the phonetic, syllabicand morphological contents
ofthewords tobe stably represented during the production of speech.



Discussion

Using Neuropixels probes to obtain acute, fine-scaled recordings
from single neurons in the language-dominant prefrontal cortex®*—
in a region proposed to be involved in word planning®*? and pro-
duction®"—we find a strikingly detailed organization of phonetic
representations atacellular level. In particular, we find that the activi-
ties of many of the neurons closely mirrored the way in which the word
sounds were produced, meaning that they reflected how individual
planned phonemes were generated through specific articulators®**.
Moreover, rather than simply representing phonemes independently
of their order or structure, many of the neurons coded for their com-
position in the upcoming words. They also reliably predicted the
arrangement and segmentation of phonemes into distinct syllables,
together suggesting a process that could allow the structure and order
of articulatory events to be encoded at a cellular level.

Collectively, this putative mechanism supports the existence of
context-general representations of classes of speech sounds that
speakers use to construct different word forms. In contrast, coding
of sequences of phonemes as syllables may represent a context-specific
representation of these speech sounds in a particular segmental con-
text. This combination of context-general and context-specific rep-
resentation of speech sound classes, in turn, is supportive of many
speech production models which suggest that speakers hold abstract
representations of discrete phonological units in a context-general
way and that, as part of speech planning, these units are organized into
prosodicstructures that are context-specific*°. Although the present
study does notreveal whether these representations may be storedin
andretrieved fromamental syllabary or are constructed fromabstract
phonology ad hoc, it lays a groundwork from which to begin explor-
ing these possibilities at a cellular scale. It also expands on previous
observations in animal models such as marmosets® 8, singing mice®
and canaries’ on the syllabic structure and sequence of vocalization
processes, providing us with some of the earliest lines of evidence for
the neuronal coding of vocal-motor plans.

Another interesting finding from these studies is the diversity of
phoneticfeature representations and their organization across corti-
cal depth. Although our recordings sampled locally from relatively
small columnar populations, most phonetic features could be reliably
decoded fromtheir collective activities. Such findings suggest that pho-
neticinformation necessary for constructing words may be potentially
fully represented in certain regions along the cortical column'©4¢-°,
They also place these populations at a putative intersection for the
shared coding of places and manners of articulation and demonstrate
how these representations may be locally distributed. Suchredundancy
and accessibility of informationinlocal cortical populationsis consist-
entwith that observed from animal models® **and could serve to allow
for the rapid orchestration of neuronal processes necessary for the
real-time construction of words; especially during the production of
natural speech. Our findings are also supportive of a putative ‘mirror’
system that could allow for the shared representation of phonetic
features within the population when speaking and listening and for
the real-time feedback of phonetic information by neurons during
perception®7!,

Afinal notable observation from these studies is the temporal suc-
cession of neuronal encoding events. In particular, our findings are
supportive of previous neurolinguistic theories suggesting closely
coupled processes for coordination planned articulatory events that
ultimately produces words. These models, for example, suggest that
the morphology of awordis probably retrieved before its phonologic
code, as the exact phonology depends onthe morphemesinthe word
form’. They also suggest the later syllabification of planned phonemes
which would enable them to be sequentially arranged in specific order
(although different temporal orders have been suggested as well)”.
Here, our findings provide tentative support for astructured sublexical

coding succession that could allow for the discretization of suchinfor-
mation duringarticulation. Our findings also suggest (through dynami-
cal systems modelling) a mechanism that, consistent with previous
observations on motor planning and execution®>*¢%¢ could enable
information to occupy distinct functional subspaces*”*and therefore
allow for the rapid separation of neural processes necessary for the
construction and articulation of words.

Taken together, these findings reveal a set of processes and frame-
work in the language-dominant prefrontal cortex by which to begin
understanding how words may be constructed during natural speech at
asingle-neuronallevel through which to start defining their fine-scale
spatial and temporal dynamics. Given their robust decoding perfor-
mances (especially inthe absence of natural language processing-based
predictions), it is interesting to speculate whether such prefrontal
recordings could also be used for synthetic speech prostheses or for
the augmentation of other emerging approaches*#’* used in brain-
machineinterfaces. Itisimportant to note, however, that the produc-
tion of words also involves more complex processes, including semantic
retrieval, the arrangement of words in sentences, and prosody, which
were not tested here. Moreover, future experiments will be required
to investigate eloquent areas such as ventral premotor and superior
posterior temporal areas not accessible with our present techniques.
Here, this study provides a prospective platform by which to begin
addressing these questions using a combination of ultrahigh-density
microelectrode recordings, naturalistic speech tracking and acute
real-time intraoperative neurophysiology to study human language
at cellular scale.

Online content

Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competinginterests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-023-06982-w.

1. Levelt, W. J. M., Roelofs, A. & Meyer, A. S. A Theory of Lexical Access in Speech Production
Vol. 22 (Cambridge Univ. Press, 1999).

2. Kazanina, N., Bowers, J. S. & Idsardi, W. Phonemes: lexical access and beyond. Psychon.
Bull. Rev. 25, 560-585 (2018).

3. Bohland, J. W. & Guenther, F. H. An fMRI investigation of syllable sequence production.
Neurolmage 32, 821-841(2006).

4. Basilakos, A., Smith, K. G., Fillmore, P., Fridriksson, J. & Fedorenko, E. Functional characterization
of the human speech articulation network. Cereb. Cortex 28, 1816-1830 (2017).

5. Tourville, J. A., Nieto-Castafon, A., Heyne, M. & Guenther, F. H. Functional parcellation of
the speech production cortex. J. Speech Lang. Hear. Res. 62, 3055-3070 (2019).

6. Lee, D.K. etal. Neural encoding and production of functional morphemes in the posterior
temporal lobe. Nat. Commun. 9, 1877 (2018).

7.  Glanz, O., Hader, M., Schulze-Bonhage, A., Auer, P. & Ball, T. A study of word complexity
under conditions of non-experimental, natural overt speech production using ECoG.
Front. Hum. Neurosci. 15, 711886 (2021).

8. Yellapantula, S., Forseth, K., Tandon, N. & Aazhang, B. NetDI: methodology elucidating
the role of power and dynamical brain network features that underpin word production.
eNeuro 8, ENEURO.0177-20.2020 (2020).

9. Hoffman, P. Reductions in prefrontal activation predict off-topic utterances during
speech production. Nat. Commun. 10, 515 (2019).

10. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536,
171-178 (2016).

1. Chang, E. F. et al. Pure apraxia of speech after resection based in the posterior middle
frontal gyrus. Neurosurgery 87, E383-E389 (2020).

12.  Hazem, S.R. et al. Middle frontal gyrus and area 55b: perioperative mapping and
language outcomes. Front. Neurol. 12, 646075 (2021).

13. Fedorenko, E. et al. Neural correlate of the construction of sentence meaning. Proc. Natl
Acad. Sci. USA 113, E6256-E6262 (2016).

14.  Nelson, M. J. et al. Neurophysiological dynamics of phrase-structure building during
sentence processing. Proc. Natl Acad. Sci. USA 114, E3669-E3678 (2017).

15.  Walenski, M., Europa, E., Caplan, D. & Thompson, C. K. Neural networks for sentence
comprehension and production: an ALE-based meta-analysis of neuroimaging studies.
Hum. Brain Mapp. 40, 2275-2304 (2019).

16. Elin, K. et al. A new functional magnetic resonance imaging localizer for preoperative
language mapping using a sentence completion task: validity, choice of baseline
condition and test-retest reliability. Front. Hum. Neurosci. 16, 791577 (2022).

17.  Duffau, H. et al. The role of dominant premotor cortex in language: a study using
intraoperative functional mapping in awake patients. Neuroimage 20, 1903-1914 (2003).

Nature | Vol 626 | 15 February 2024 | 609


https://doi.org/10.1038/s41586-023-06982-w

Article

18.

19.

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Ikeda, S. et al. Neural decoding of single vowels during covert articulation using
electrocorticography. Front. Hum. Neurosci. 8,125 (2014).

Ghosh, S. S., Tourville, J. A. & Guenther, F. H. A neuroimaging study of premotor
lateralization and cerebellar involvement in the production of phonemes and syllables.
J. Speech Lang. Hear. Res. 51,1183-1202 (2008).

Bouchard, K. E., Mesgarani, N., Johnson, K. & Chang, E. F. Functional organization of
human sensorimotor cortex for speech articulation. Nature 495, 327-332 (2013).
Anumanchipalli, G. K., Chartier, J. & Chang, E. F. Speech synthesis from neural decoding
of spoken sentences. Nature 568, 493-498 (2019).

Moses, D. A. et al. Neuroprosthesis for decoding speech in a paralyzed person with
anarthria. N. Engl. J. Med. 385, 217-227 (2021).

Wang, R. et al. Distributed feedforward and feedback cortical processing supports
human speech production. Proc. Natl Acad. Sci. USA 120, e2300255120 (2023).
Coudé, G. et al. Neurons controlling voluntary vocalization in the Macaque ventral
premotor cortex. PLoS ONE 6, 26822 (2011).

Hahnloser, R. H. R., Kozhevnikov, A. A. & Fee, M. S. An ultra-sparse code underlies the
generation of neural sequences in a songbird. Nature 419, 65-70 (2002).

Aronov, D., Andalman, A. S. & Fee, M. S. A specialized forebrain circuit for vocal babbling
in the juvenile songbird. Science 320, 630-634 (2008).

Stavisky, S. D. et al. Neural ensemble dynamics in dorsal motor cortex during speech in
people with paralysis. eLife 8, e46015 (2019).

Tankus, A., Fried, I. & Shoham, S. Structured neuronal encoding and decoding of human
speech features. Nat. Commun. 3, 1015 (2012).

Basilakos, A., Smith, K. G., Fillmore, P., Fridriksson, J. & Fedorenko, E. Functional
characterization of the human speech articulation network. Cereb. Cortex 28, 1816-1830
(2018).

Keating, P. & Shattuck-Hufnagel, S. A prosodic view of word form encoding for speech
production. UCLA Work. Pap. Phon. 101, 112-156 (1989).

Vyas, S., Golub, M. D., Sussillo, D. & Shenoy, K. V. Computation through neural population
dynamics. Ann. Rev. Neurosci. 43, 249-275 (2020).

Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Ryu, S. I. & Shenoy, K. V. Cortical
preparatory activity: representation of movement or first cog in a dynamical machine?
Neuron 68, 387-400 (2010).

Shenoy, K. V., Sahani, M. & Churchland, M. M. Cortical control of arm movements: a
dynamical systems perspective. Ann. Rev. Neurosci. 36, 337-359 (2013).

Kaufman, M. T., Churchland, M. M., Ryu, S. I. & Shenoy, K. V. Cortical activity in the null
space: permitting preparation without movement. Nat. Neurosci. 17, 440-448 (2014).
Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation
by recurrent dynamics in prefrontal cortex. Nature 503, 78-84 (2013).

Vitevitch, M. S. & Luce, P. A. Phonological neighborhood effects in spoken word
perception and production. Ann. Rev. Linguist. 2, 75-94 (2016).

Jamali, M. et al. Dorsolateral prefrontal neurons mediate subjective decisions and their
variation in humans. Nat. Neurosci. 22, 1010-1020 (2019).

Mian, M. K. et al. Encoding of rules by neurons in the human dorsolateral prefrontal
cortex. Cereb. Cortex 24, 807-816 (2014).

Patel, S. R. et al. Studying task-related activity of individual neurons in the human brain.
Nat. Protoc. 8, 949-957 (2013).

Sheth, S. A. et al. Human dorsal anterior cingulate cortex neurons mediate ongoing
behavioural adaptation. Nature 488, 218-221(2012).

Williams, Z. M., Bush, G., Rauch, S. L., Cosgrove, G. R. & Eskandar, E. N. Human anterior
cingulate neurons and the integration of monetary reward with motor responses. Nat.
Neurosci. 7,1370-1375 (2004).

Jang, A. |., Wittig, J. H. Jr., Inati, S. K. & Zaghloul, K. A. Human cortical neurons in the
anterior temporal lobe reinstate spiking activity during verbal memory retrieval. Curr.
Biol. 27,1700-1705 (2017).

Ponce, C. R. et al. Evolving images for visual neurons using a deep generative network
reveals coding principles and neuronal preferences. Cell 177, 999-1009 (2019).

Yoshor, D., Ghose, G. M., Bosking, W. H., Sun, P. & Maunsell, J. H. Spatial attention does
not strongly modulate neuronal responses in early human visual cortex. J. Neurosci. 27,
13205-13209 (2007).

Jamali, M. et al. Single-neuronal predictions of others’ beliefs in humans. Nature 591,
610-614 (2021).

Patel, S. R. et al. Studying task-related activity of individual neurons in the human brain.
Nat. Protoc. 8, 949-957 (2013).

Hickok, G. & Poeppel, D. Dorsal and ventral streams: a framework for understanding
aspects of the functional anatomy of language. Cognition 92, 67-99 (2004).
Poologaindran, A., Lowe, S. R. & Sughrue, M. E. The cortical organization of language:
distilling human connectome insights for supratentorial neurosurgery. J. Neurosurg. 134,
1959-1966 (2020).

Genon, S. et al. The heterogeneity of the left dorsal premotor cortex evidenced by
multimodal connectivity-based parcellation and functional characterization. Neuroimage
170, 400-411 (2018).

610 | Nature | Vol 626 | 15 February 2024

50.

51

52.

53.

54.

55.

56.

57.

58.

59.
60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

7.

72.

73.

74.

Milton, C. K. et al. Parcellation-based anatomic model of the semantic network. Brain
Behav. 11, e02065 (2021).

Basilakos, A., Smith, K. G., Fillmore, P., Fridriksson, J. & Fedorenko, E. Functional
characterization of the human speech articulation network. Cereb. Cortex 28, 1816-1830
(2018).

Sun, H. et al. Functional segregation in the left premotor cortex in language processing:
evidence from fMRI. J. Integr. Neurosci. 12, 221-233 (2013).

Peeva, M. G. et al. Distinct representations of phonemes, syllables and supra-syllabic
sequences in the speech production network. Neuroimage 50, 626-638 (2010).

Paulk, A. C. et al. Large-scale neural recordings with single neuron resolution using
Neuropixels probes in human cortex. Nat. Neurosci. 25, 252-263 (2022).

Coughlin, B. et al. Modified Neuropixels probes for recording human neurophysiology in
the operating room. Nat. Protoc. 18, 2927-2953 (2023).

Windolf, C. et al. Robust online multiband drift estimation in electrophysiology data.In
Proc. ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) 1-5 (IEEE, Rhodes Island, 2023).

Mebhri, A. & Jalaie, S. A systematic review on methods of evaluate sentence production
deficits in agrammatic aphasia patients: validity and reliability issues. J. Res. Med. Sci. 19,
885-898 (2014).

Abbott, L. F. & Sejnowski, T. J. Neural Codes and Distributed Representations: Foundations
of Neural Computation (MIT, 1999).

Green, D. M. & Swets, J. A. Signal Detection Theory and Psychophysics (Wiley, 1966).
Association, I. P. & Staff, I. P. A. Handbook of the International Phonetic Association: A
Guide to the Use of the International Phonetic Alphabet (Cambridge Univ. Press, 1999).
Indefrey, P. & Levelt, W. J. M. in The New Cognitive Neurosciences 2nd edn

(ed. Gazzaniga, M. S.) 845-865 (MIT, 2000).

Slobin, D. I. Thinking for speaking. In Proc. 13th Annual Meeting of the Berkeley Linguistics
Society (eds Aske, J. et al.) 435-445 (Berkeley Linguistics Society, 1987).

Pillon, A. Morpheme units in speech production: evidence from laboratory-induced
verbal slips. Lang. Cogn. Proc. 13, 465-498 (1998).

King, J. R. & Dehaene, S. Characterizing the dynamics of mental representations: the
temporal generalization method. Trends Cogn. Sci. 18, 203-210 (2014).

Machens, C. K., Romo, R. & Brody, C. D. Functional, but not anatomical, separation of
“what” and “when” in prefrontal cortex. J. Neurosci. 30, 350-360 (2010).

Elsayed, G.F., Lara, A. H., Kaufman, M. T., Churchland, M. M. & Cunningham, J. P.
Reorganization between preparatory and movement population responses in motor
cortex. Nat. Commun. 7, 13239 (2016).

Roy, S., Zhao, L. & Wang, X. Distinct neural activities in premotor cortex during natural
vocal behaviors in a New World primate, the Common Marmoset (Callithrix jacchus).

J. Neurosci. 36, 12168-12179 (2016).

Eliades, S. J. & Miller, C. T. Marmoset vocal communication: behavior and neurobiology.
Dev. Neurobiol. 77, 286-299 (2017).

Okobi, D. E. Jr, Banerjee, A., Matheson, A. M. M., Phelps, S. M. & Long, M. A. Motor cortical
control of vocal interaction in neotropical singing mice. Science 363, 983-988 (2019).
Cohen, Y. et al. Hidden neural states underlie canary song syntax. Nature 582, 539-544
(2020).

Hickok, G. Computational neuroanatomy of speech production. Nat. Rev. Neurosci. 13,
135-145 (2012).

Sahin, N. T., Pinker, S., Cash, S. S., Schomer, D. & Halgren, E. Sequential processing of
lexical, grammatical and phonological information within Broca’s area. Science 326,
445-449 (2009).

Russo, A. A. et al. Neural trajectories in the supplementary motor area and motor cortex
exhibit distinct geometries, compatible with different classes of computation. Neuron
107, 745-758 (2020).

Willett, F. R. et al. A high-performance speech neuroprosthesis. Nature 620, 1031-1036
(2023).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution
By 4.0 International License, which permits use, sharing, adaptation, distribution

and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024


http://creativecommons.org/licenses/by/4.0/

Methods

Study participants

Allaspects of the study were carried out in strict accordance withand
were approved by the Massachusetts General Brigham Institutional
Review Board. Right-handed native English speakers undergoing awake
microelectrode recording-guided deep brain stimulatorimplantation
were screened for enrolment. Clinical consideration for surgery was
made by amultidisciplinary team of neurosurgeons, neurologists and
neuropsychologists. Operative planning was made independently by
the surgical team and without consideration of study participation.
Participants were only enroled if: (1) the surgical plan was for awake
microelectroderecording-guided placement, (2) the patient was at least
18 years of age, (3) they had intact language function with English flu-
ency and (4) were able to provide informed consent for study participa-
tion. Participation inthe study was voluntary and all participants were
informed that they were free to withdraw from the study at any time.

Acute intraoperative single-neuronal recordings
Single-neuronal prefrontal recordings using Neuropixels probes. As
partof deep brainstimulatorimplantation at ourinstitution, participants
are often awake and microelectrode recordings are used to optimize
anatomical targeting of the deep brain structures*®. During these cases,
the electrodes often traverse part of the posterior language-dominant
prefrontal cortex®in an area previously shown be involved in word
planning®*2and sentence construction”**and which broadly connects
with premotor areasinvolvedin their articulation®**and lexical process-
ing”* by imaging studies (Extended DataFig.1a,b). Allmicroelectrode
entry points and placements were based purely on planned clinical tar-
geting and were made independently of any study consideration.

Sterile Neuropixels probes (v.1.0-S, IMEC, ethylene oxide sterilized
by BioSeal**) together with a 3B2 IMEC headstage were attached to
cannula and a manipulator connected to a ROSA ONE Brain (Zimmer
Biomet) robotic arm. Here, the probes were inserted into the cortical
ribbon under direct robot navigational guidance through theimplanted
burr hole (Fig.1a). The probes (width 70 pm; length 10 mm; thickness
100 pm) consisted of a total of 960 contact sites (384 preselected
recording channels) laid out ina chequerboard pattern with approxi-
mately 25 pm centre-to-centre nearest-neighbour site spacing. The
IMEC headstage was connected through a multiplexed cable to a PXle
acquisition module card (IMEC), installed into a PXle Chassis (PXle-1071
chassis, National Instruments). Neuropixels recordings were performed
using SpikeGLX (v.20201103 and v.20221012-phase30; http://billkarsh.
github.io/SpikeGLX/) or OpenEphys (v.0.5.3.1 and v.0.6.0; https://
open-ephys.org/) on acomputer connected to the PXle acquisition
module recording the action potential band (AP, band-pass filtered
from0.3t010 kHz) sampled at 30 kHz and alocal-field potential band
(LFP, band-passfiltered from 0.5to 500 Hz), sampled at 2,500 Hz. Once
putative units were identified, the Neuropixels probe was briefly held
in position to confirm signal stability (we did not screen putative neu-
rons for speechresponsiveness). Further description of this recording
approach can be found in refs. 54,55. After single-neural recordings
fromthe cortex were completed, the Neuropixels probe was removed
andsubcortical neuronal recordings and deep brain stimulator place-
ment proceeded as planned.

Single-unitisolation. Single-neuronal recordings were performedin
twomain steps. First, totrack the activities of putative neurons at high
spatiotemporal resolution and to account for intraoperative corti-
cal motion, we use a Decentralized Registration of Electrophysiology
Datasoftware (DREDge; https://github.com/evarol/DREDge) and inter-
polation approach (https://github.com/williamunoz/Interpolation-
AfterDREDge). Briefly, and as previously described** ¢, anautomated
protocol was used to track LFP voltages using a decentralized correla-
tion technique that re-aligned the recording channels in relation to

brain movements (Fig. 1a, right). Following this step, we then inter-
polated the AP band continuous voltage data using the DREDge
motion estimate to allow the activities of the putative neurons to be
stably tracked over time. Next, single units were isolated from the
motion-corrected interpolated signal using Kilosort (v.1.0; https://
github.com/cortex-lab/KiloSort) followed by Phy for cluster curation
(v.2.0al; https://github.com/cortex-lab/phy; Extended Data Fig. 1c,d).
Here, units were selected onthe basis of their waveform morphologies
and separability in principal component space, their interspike interval
profiles and similarity of waveforms across contacts. Only well-isolated
single units with mean firing rates >0.1 Hz were included. The range of
units obtained from these recordings was 16-115 units per participant.

Audio recordings and task synchronization

For task synchronization, we used the TTL output and audio output to
send the synchronization trigger through the SMA input to the IMEC
PXle acquisition module card. To allow for added synchronizing, trig-
gerswerealsorecorded onanextrabreakoutanalogue and digital input/
output board (BNC2110, National Instruments) connected through a
PXle board (PXle-6341 module, National Instruments).

Audio recordings were obtained at 44 kHz sampling frequency
(TASCAM DR-40x4-Channel/ 4-Track Portable Audio Recorder and
USB Interface with Adjustable Microphone) which had anaudio input.
These recordings were then sent to a NIDAQ board analogue input in
the same PXle acquisition module containing the IMEC PXle board for
high-fidelity temporal alignment with neuronal data. Synchronization
of neuronal activity with behavioural events was performed through
TTLtriggers through a parallel port sent to both the IMEC PXle board
(the sync channel) and the analogue NIDAQ input as well as the paral-
lel audio input into the analogue input channels on the NIDAQ board.

Audio recordings were annotated in semi-automated fashion
(Audacity; v.2.3). Recorded audio for each word and sentence by the
participants was analysed in Praat” and Audacity (v.2.3). Exact word
and phoneme onsets and offsets were identified using the Montreal
Forced Aligner (v.2.2; https://github.com/MontrealCorpusTools/
Montreal-Forced-Aligner)” and confirmed with manual review of
all annotated recordings. Together, these measures allowed for the
millisecond-level alignment of neuronal activity with each produced
word and phoneme.

Anatomical localization of recordings

Pre-operative high-resolution magnetic resonance imaging and post-
operative head computerized tomography scans were coregistered by
combination of ROSA software (Zimmer Biomet; v.3.1.6.276), Mango
(v.4.1; https://mangoviewer.com/download.html) and FreeSurfer
(v.7.4.1; https://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAn-
dInstall) to reconstruct the cortical surface and identify the cortical
location from which Neuropixels recordings were obtained” ®'. This
registration allowed localization of the surgical areas that underlaid
the cortical sites of recording (Fig. 1a and Extended Data Fig. 1a)>*~°.
The MNItransformation of these coordinates was then carried out to
register the locationsin MNIspace with Fieldtrip toolbox (v.20230602;
https://www.fieldtriptoolbox.org/; Extended Data Fig. 1b)*.

For depth calculation, we estimated the pial boundary of recordings
accordingto the observed sharp signal change in signal from channels
that were implanted in the brain parenchymaversus those outside the
brain. We then referenced our single-unit recording depth (based on
their maximum waveform amplitude channel) in relation to this esti-
mated pialboundary. Here, all units were assessed on the basis of their
relative depths in relation to the pial boundary as superficial, middle
and deep (Extended DataFig. 7).

Speech production task
The participants performed a priming-based naturalistic speech
production task® in which they were given a scene on a screen that
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consisted of a scenario that had to be described in specific order and
format. Thus, for example, the participant may be given a scene of a
boy and a girl playing with a balloon or they may be given a scene of a
dogchasing a cat. These scenes, together, required the participants to
produce words that varied in phonetic, syllabic and morphosyntactic
content. They were also highlighted in a way that required them to
produce the words in a structured format. Thus, for example, a scene
may be highlighted inaway that required the participants to produce
the sentence “The mouse was being chased by the cat” orin away that
required themto produce the sentence “The cat was chasing the mouse”
(Extended Data Fig.2a). Because the sentences had to be constructed
denovo,italsorequiredthe participantsto produce the words without
providing explicit phonetic cues (for example, from hearing and then
repeating the word ‘cat’). Taken together, this task therefore allowed
neuronal activity to be examined whereby words (for example, ‘cat’),
rather than independent phonetic sounds (for example, /k/), were
articulated and in which the words were produced during natural
speech (for example, constructing the sentence “the dog chased the
cat”) rather thansimply repeated (for example, hearing and then repeat-
ing the word ‘cat’).

Finally, to account for the potential contribution of sensory-
perceptual responses, three of the participants also performed a ‘per-
ception’ control in which they listened to words spoken to them. One
ofthese participants further performed an auditory ‘playback’ control
inwhich they listened to their own recorded voice. For this control, all
words spoken by the participant were recorded using a high-fidelity
microphone (Zoom ZUM-2 USM microphone) and then played back to
them on a word-by-word level in randomized separate blocks.

Constructing a word feature space

Phonemes. To allow for single-neuronal analysis and to provide acom-
positional representation for each word, we grouped the constituent
phonemes on the basis of the relative positions of articulatory organs
associated with their production®. Here, for our primary analyses,
we selected the places of articulation for consonants (for example,
bilabial consonants) on the basis of established IPA categories
defining the primary articulatorsinvolved in speech production. For
consonants, phonemes were grouped on the basis of their places of
articulation into glottal, velar, palatal, postalveolar, alveolar, den-
tal, labiodental and bilabial. For vowels, we grouped phonemes on
the basis of the relative height of the tongue with high vowels being
produced with the tongue in a relatively high position and mid-low
(that is, mid+low) vowels being produced with it in a lower position.
Here, this grouping of phonemes is broadly referred to as ‘places of
articulation’ together reflecting the main positions of articulatory
organs and their combinations used to produce the words***°. Finally,
to allow for comparisonand to test their generalizability, we examined
the manners of articulation stop, fricative, affricate, nasal, liquid and
glide for consonants which describe the nature of airflow restriction by
various parts of the mouth and tongue. For vowels, we also evaluated
the primary cardinal vowelsi, e, ¢, a, a,0,0and uwhich are described,
in combination, by the position of the tongue relative to the roof of
the mouth, how far forward or back it lies and the relative positions
of the lips®*#*. A detailed summary of these phonetic groupings can
be found in Extended Data Table 1.

Phoneme feature space. To further evaluate the relationship between
neuronal activity and the presence of specific constituent phonemes
per word, the phonemes in each word were parsed according to their
precise pronunciation provided by the English Lexicon Project (or the
Longman Pronunciation Dictionary for American English where neces-
sary) as described previously®. Thus, for example, the word ‘like’ (I-ar-k)
would be parsedinto asequence of alveolar-mid-low-velar phonemes,
whereas the word ‘bike’ (b-ar-k) would be parsed into a sequence of
bilabial-mid-low-velar phonemes.

These constituent phonemes were then used to represent each word
asaten-dimensional vector in whichthe value in each position reflected
the presence of eachtype of phoneme (Fig.1c). For example, the word
‘like’, containing asequence of alveolar-mid-low-velar phonemes, was
represented by thevector[0001001001], witheachentryrepresent-
ing the number of the respective type of phoneme in the word. Together,
such vectors representing all words defined a phonetic ‘vector space’.
Further analyses to evaluate the precise arrangement of phonemes
per word are described further below. Goodness-of-fit and selectivity
metrics used to evaluate single-neuronal responses to these phonemes
and their specific combination in words are described further below.

Syllabic feature space. Next, to evaluate the relationship between
neuronal activity and the specific arrangement of phonemes in sylla-
bles, we parsed the constituent syllables for each word using American
pronunciations provided in ref. 85. Thus, for example, ‘back’ would
be defined as a labial-low-velar sequence. Here, to allow for neuronal
analysis and to limit the combination of all possible syllables, we selec-
ted the ten most common syllable types. High and mid-low vowels
were considered as syllables here only if they reflected syllables in
themselves and were unbound from a consonant (for example, /ih/
in‘hesitate’ or /ah-/in ‘adore’). Similar to the phoneme space, the syl-
lables were then transformed into an n-dimensional binary vector in
which the value in each dimension reflected the presence of specific
syllables (similar to construction of the phoneme space). Thus, for
the n-dimensional representation of each word in this syllabic feature
space, the valueineach dimension could be alsointerpretedinrelation
to neuronal activity.

Morphemes. To account for the functional distinction between pho-
nemes and morphemes®>, we also parsed words into those that con-
tained bound morphemes which were either prefixed (for example,
‘re-’) or suffixed (for example, ‘~ed’). Unlike phonemes, morphemes
suchas‘~ed’in‘directed’ or ‘re-"in ‘retry’ are the smallest linguistic units
capable of carrying meaning and, therefore, accounting for their pres-
ence allowed their effect on neuronal responses to be further examined.
To allow for neuronal analysis and to control for potential differences
inneuronal activity due to word lengths, models also took into account
the total number of phonemes per word.

Spectral features. To evaluate the time-varying spectral features of the
articulated phonemes on aphoneme-by-phoneme basis, we identified
the occurrence of each phoneme using aMontreal Forced Aligner (v.2.2;
https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner).
For pitch, we calculated the spectral power intenlog-spaced frequency
binsfrom200t05,000 Hzfor each phoneme per word. Foramplitude, we
took theroot-mean-square of the recorded waveform of each phoneme.

Single-neuronal analysis

Evaluating the selectivity of single-neuronal responses. To inves-
tigate the relationship between single-neuronal activity and specific
word features, we used a regression analysis to determine the degree
to which variation in neural activity could be explained by phonetic,
syllabic or morphologic properties of spoken words®®. For all analy-
ses, neuronal activity was considered in relation to word utterance
onset (¢ = 0) and taken as the mean spike count in the analysis window
of interest (that is, =500 to 0 ms from word onset for word planning
and 0 to +500 ms for word production). To limit the potential effects
of preceding words on neuronal activity, words with planning periods
that overlapped temporally were excluded fromregression and selec-
tivity analyses. For each neuron, we constructed a GLM that modelled
the spike count rate as the realization of a Poisson process whose rate
varied as a function of the linguistic (for example, phonetic, syllabic
and morphologic) or acoustic features (for example, spectral power
and root-mean-square amplitude) of the planned words.
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Models were fit using the Python (v.3.9.17) library statsmodels
(v.0.13.5) by iterative least-squares minimization of the Poisson nega-
tive log-likelihood function®. To assess the goodness-of-fit of the mod-
els, we used both the Akaike information criterion (AIC = 2k - 2In(L)
where kis the number of estimated parameters and L is the maximized
value of the likelihood function) and a generalization of the R? score
for the exponential family of regression models that we refer to as D*
whereby®”:

K@y, 1)

D*=1-
K(y’ l‘I'restri(:ted)
yisavector of realized outcomes, pis a vector of estimated means
fromafull (including all regressors) or restricted (without regressors
ofinterest) modeland K(y, p) = 2.lIf(y; y) — 2.llf(p; y) wherellf(p; y) is
thelog-likelihood of the model andlif(y; y) is the log-likelihood of the
saturated model. The D*value represents the proportion of reduction
inuncertainty (measured by the Kullback-Leibler divergence) due to
theinclusion of regressors. The statistical significance of model fit was
evaluated using the likelihood ratio test compared with a model with
all covariates except the regressors of interest (the task variables).
We characterized aneuron as selectively ‘tuned’to agivenword fea-
ture if the GLM of neuronal firing rates as a function of task variables
for that feature exhibited a statistically significant model fit (likelihood
ratio test with a set at 0.01). For neurons meeting this criterion, we
also examined the point estimates and confidence intervals for each
coefficient in the model. A vector of these coefficients (or, in our fea-
ture space, a vector of the sign of these coefficients) indicates aword
with the combination of constituent elements expected to produce
amaximal neuronal response. The multidimensional feature spaces
also allowed us to define metrics that quantified the phonemic, syl-
labic or morphologic similarity between words. Here, we calculated
the Hamming distance between the vector describing each word u
and the vector of the sign of regression coefficients that defines each
neuron’s maximal predicted response v, whichis equal to the number
of positions at which the corresponding values are different:

Hamming distance=count{i:u;#v, i=1...n}

For each ‘tuned’ neuron, we compared the Z-scored firing rate elic-
ited by each word as afunction of the Hamming distance between the
word and the ‘preferred word’ of the neuron to examine the ‘tuning’
characteristics of these neurons (Figs. 1fand 2c). AHamming distance
of zero would therefore indicate that the words have phonetically
identical compositions. Finally, to examine the relationship between
neuronal activity and spectral features of each phoneme, we extracted
the acoustic waveformfor each phoneme and calculated the powerin
tenlog-spaced spectral bands. We then constructed a ‘spectral vector’
representation for each word based on these ten values and fit a Poisson
GLM of neuronal firing rates against these values. For amplitude analy-
sis, we regressed neuronal firing rates against the root-mean-square
amplitude of the waveform for each word.

Controlling for interdependency between phonetic and syllabic
features. Three more word variations were used to examine the inter-
dependency between phonetic and syllabic features. First, we com-
pared firing rates for words containing specific syllables with words
containing individual phonemes in that syllable but not the syllable
itself (for example, simply /d/ in ‘god’ or ‘dog’). Second, we examined
words containing syllables with the same constituent phonemes but
inadifferent order (for example, /g-ah-d/ for ‘god’ versus /d-ah-g/ for
‘dog’). Thus, if neurons responded preferentially to specific syllables,
thenthey should continue to respond to them preferentially even when
comparing words that had the same arrangements of phonemes butin
different or reverse order. Third, we examined words containing the

same sequence of syllables but spanning a syllable boundary such that
the cluster of phonemes did not constitute asyllable (thatis, inthe same
syllable versus spanning across syllable boundaries).

Visualization of neuronal responses within the population. To allow
for visualization of groupings of neurons with shared representational
characteristics, we calculated the AIC and D? for phoneme, syllable and
morpheme models for each neuron and conducted tSNE procedure
which transformed these datainto two dimensions such that neurons
with similar feature representations are spatially closer together than
those with dissimilar representations®. We used the tSNE implantation
inthe scikit-learn Python module (v.1.3.0). In Fig. 3a left, a tSNE was fit
on the AIC values for phoneme, syllable and morpheme models for
each neuron during the planning period with the following parameters:
perplexity = 35, early exaggeration = 2 and using Euclidean distance
as the metric. In Fig. 3a right and Fig. 4a bottom, a different tSNE was
fit on the D? values for all planning and production models using the
following parameters: perplexity = 10, early exaggeration =10 and
using a cosine distance metric. Theresultingembeddings were mapped
onto agrid of points according to alinear sum assignment algorithm
between embeddings and grid points.

Population modelling

Modelling population activity. To quantify the degree to which the
neural population coded information about the planned phonemes,
syllables and morphemes, we modelled the activity of the entire pseu-
dopopulation of recorded neurons. To match trials across the differ-
ent participants, we first labelled each word according to whether
it contained the feature of interest and then matched words across
subjects based on the features that were shared. Using this procedure,
notrials or neural datawere duplicated or upsampled, ensuring strict
separation between training and testing sets during classifier training
and subsequent evaluation.

For decoding, words were randomly splitinto training (75%) and test-
ing (25%) trials across 50 iterations. A support vector machine (SVM) as
implemented in the scikit-learn Python package (v.1.3.0)* was used to
constructahyperplane in n-dimensional space that optimally separates
samples of different word features by solving the following minimiza-
tion problem:

n
min[lwrw+ cy ('J
2 i=1

subject to y, (w' ¢(x;) +b) 21-and ;> Oforalli € {1, ..., n}, where w
is the margininfeature space, Cis the regularization strength, {;is the
distance of each point from the margin, y,is the predicted class for each
sample and ¢(x;) is theimage of each datapointin transformed feature
space. A radial basis function kernel with coefficient y =1/272 was
applied. The penalty term C was optimized for each classifier using a
cross-validation procedure nested in the training set.

A separate classifier was trained for each dimension in a task space
(for example, separate classifiers for bilabial, dental and alveolar
consonants) and scores for each of these classifiers were averaged
to calculate an overall decoding score for that feature type. Each
decoder was trained to predict whether the upcoming word contained
an instance of a specific phoneme, syllable or morpheme arrange-
ment. For phonemes, we used nine of the ten phoneme groups (there
were insufficient instances of palatal consonants to train a classifier;
Extended Data Table1). For syllables, we used ten syllables taken from
the most common syllables across the study vocabulary (Extended
Data Table 1). For morpheme analysis, a single classifier was trained
to predict the presence or absence of any bound morpheme in the
upcoming word.

Finally, to assess performance, we scored classifiers using the area
under the curve of the receiver operating characteristic (AUC-ROC)
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model. With this scoring metric, a classifier that always guesses the
most common class (that is, an uninformative classifier) results in
ascore of 0.5 whereas a perfect classification results in a score of 1.
The overall decoding score for a particular feature space was the
mean score of the classifier for each dimension in the space. The
entire procedure was repeated 50 times with random train/test
splits. Summary statistics for these 50 iterations are presented in the
main text.

Model switching. Assessing decoder generalization across different
experimental conditions provides a powerful method to evaluate the
similarity of neuronal representations of information in different con-
texts®*. To determine how neurons encoded the same word features but
under different conditions, we trained SVM decoders using neuronal
dataduring one condition (for example, word production) but tested
the decoder using data from another (for example, no word produc-
tion). Before decoder training or testing, trials were split into disjoint
training and testing sets, from which the neuronal data were extracted
intheepoch ofinterest. Thus, trials used to train the model were never
used to test the model while testing either native decoder performance
or decoder generalizability.

Modelling temporal dynamic. To further study the temporal dynamic
of neuronal response, we trained decoders to predict the phonemes,
syllablesand morpheme arrangement for each word across successive
time points before utterance®. For each neuron, we aligned all spikes
to utterance onset, binned spikes into 5 ms windows and convolved
with a Gaussian kernel with standard deviation of 25 ms to generate
an estimated instantaneous firing rate at each point in time during
word planning. For each time point, we evaluated the performance
of decoders of phonemes, syllables and morphemes trained on these
data over 50 random splits of training and testing trials. The distribu-
tion of times of peak decoding performance across the planning or
perception period revealed the dynamic of information encoding by
these neurons during word planning or perception and we then cal-
culated the median peak decoding times for phonemes, syllables or
morphemes.

Dynamical system and subspace analysis

To study the dimensionality of neuronal activity and to evaluate the
functional subspaces occupied by the neuronal population, we used
dynamical systems approach that quantified the time-dependent
changes in neural activity patterns®. For the dynamical system analy-
sis, activity for all words were averaged for each neuron to come up
withasingle peri-event time projection (aligned to word onset) which
allowed all neurons to be analysed together as a pseudopopulation.
First, we calculated the instantaneous firing rates of the neuron which
showed selectivity to any word feature (phonemes, syllables or mor-
pheme arrangement) into 5 ms bins convolved with a Gaussian filter
with standard deviation of 50 ms. We used equal 500 ms windows set
at —500 to 0 ms before utterance onset for the planning phase and O
to 500 ms following utterance onset for the production phase to allow
for comparison. These data were then standardized to zero mean and
unit variance. Finally, the neural data were concatenated intoa Tx N
matrix of sampled instantaneous firing rates for each of the Nneurons
ateverytime 7.

Together, these matrices represented the evolution of the system
in N-dimensional space over time. A principal component analysis
revealed a small set of five principal components (PC) embedded
in the full N-dimensional space that captured most of the variance
in the data for each epoch (Fig. 4b). Projection of the datainto this
spaceyields a T x 5 matrix representing the evolution of the systemin
five-dimensional space over time. The columns of the N x 5 principal
components forman orthonormalbasis for the five-dimensional sub-
space occupied by the system during each epoch.

Next, to quantify the relationship between these subspaces during
planning and production, we took two approaches. First, we calculated
the alignmentindex from ref. 66:

_ Tr(DLGDY)

A7 0

where D, is the matrix defined by the orthonormal basis of subspace
A, Gzisthe covariance of the neuronal data asit evolves in space B, o(i)
istheith singular value of the covariance matrix Cyand Tr(-) is the matrix
trace. Thealignmentindex A ranges from O to1and quantifies the frac-
tion of variancein space Brecovered when the dataare projected into
space A. Higher valuesindicate that variance in the datais adequately
captured by either subspace.

As discussed in ref. 66, subspace misalignment in the form
of low alignment index A can arise by chance when considering
high-dimensional neuronal data because of the probability that two
randomly selected sets of dimensions in high-dimensional space may
not align well. Therefore, to further explore the degree to which our
subspace misalignment was attributable to chance, we used the Monte
Carlo analysis to generate random subspaces from data with the same
covariance structure as the true (observed) data:

UJSv
\Y Orth[UﬁwZ]
where Visarandomsubspace, Uand Sare the eigenvectors and eigenval-
ues of the covariance matrix of the observed dataacross allepochs being
compared, vis a matrix of white noise and orth(-) orthogonalizes the
matrix. The alignmentindexA of the subspaces defined by the resulting
basis vectors Vwasrecalculated 1,000 times to generate a distribution of
alignmentindex values A attributable to chance alone (compare Fig.4b).
Finally, we calculated the projection error between each pair of sub-
spaces on the basis of relationships between the three orthonormal
bases (rather than aprojection of the datainto each of these subspaces).
The set of all (linear) subspaces of dimension k< n embedded in an
n-dimensional vector space V forms a manifold known as the Grass-
mannian, endowed with several metrics which canbe used to quantify
distances between two subspaces on the manifold. Thus, the subspaces
(defined by the columns of a Tx N’ matrix, where NV is the number of
selected principal components; five in our case) explored by the sys-
tem during planning and production are points on the Grassmannian
manifold of the full N-neuron dimensional vector space. Here, we used
the Grassmannian chordal distance®:
1
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where A and B are matrices whose columns are the orthonormal basis
for theirrespective subspacesand]|| - ||-is the Frobenius norm.By normal-
izing this distance by the Frobenius norm of subspace A, we scale the
distance metric from O to1, where O indicates a subspace identical to A
(thatis, completely overlapping) and increasing values indicate greater
misalignment from A. Random sampling of subspaces under the null
hypothesis was repeated using the same procedure outlined above.

Participant demographics

Across the participants, there was no statistically significant differ-
ence in word length based on sex (three-way analysis of variance,
F(1,4257) =1.78, P=0.18) or underlying diagnosis (essential tremor ver-
sus Parkinson’s disease; F(1,4257) = 0.45, P= 0.50). Among subjects with
Parkinson’s disease, there was asignificant difference based on disease
severity (both ON score and OFF score) with more advanced disease
(higher scores) correlating with longer word lengths (F(1,3295) = 145.8,
P=7.1%x10"3for ONscoreand F(1,3295) =1,006.0,P= 6.7 x 10™**for OFF



score, P< 0.001) and interword intervals (F(1,3291) =14.9,P=1.1x10™*
for ON score and F(1,3291) =31.8, P=1.9 x 10°® for OFF score). Model-
ling neuronal activities in relation to these interword intervals (bot-
tom versus top quartile), decoding performances were slightly higher
forlonger compared to shorter delays (0.76 + 0.01versus 0.68 + 0.01,
P <0.001, two-sided Mann-Whitney U-test).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.
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Extended DataFig.1|Single-unitisolations from the human prefrontal
cortexusing Neuropixelsrecordings. a. Individual recording sitesona
standardized 3D brain model (FreeSurfer), onside (top), zoomed-in oblique
(inset) and top (bottom) views. Recordings lay across the posterior middle
frontal gyrus of the language-dominant prefrontal cortex and roughly ranged
indistribution from alongside anteriorarea 55b to 8a.b. Recording coordinates
for the five participants are givenin MNIspace. c. Left, representative example

of raw, motion-corrected action potential traces recorded across
neighbouring channels over time. Right, an example of overlayed spike
waveformmorphologies and their distribution across neighbouring channels
recorded fromaNeuropixelsarray. d.Isolation metrics for therecorded
population (n =272 units) together with an example of spikes from four
concomitantly recorded units (labelled red, blue, cyan and yellow) in principal
componentspace.



a Task trial example
Participant 1

Total units = 31
Phoneme selective = 24

¢ Phonetic representation per participant
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Total units = 62
Phoneme selective = 26

Participant 2
Total units = 16
Phoneme selective = 12

& | glottal glottal glottal

J velar velar velar

| alatal alatal palatal

“ post-alveolar post-alveolar post- alveolar
alveolar alveolar alveolar
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Extended DataFig.2|Naturalistic speech production task performance
and phoneticselectivity across neurons and participants. a. A priming-
based speech production task that provided participants with pictorial
representations of naturalistic events and that had to be verbally described in
specificorder. The task trial example is given here for illustrative purposes
(created with BioRender.com). b. Mean word production times across
participants and their standard deviation of the mean. The blue bars and dots

% selective neurons

% selective neurons

represent performances for the five participantsin which recordings were
acquired (n=964,1252,406, 836,805 words, respectively). The grey bar and
dotsrepresent healthy control (n =1534 words). c. Percentage of modulated
neurons that responded selectively to specific planned phonemes across
participants. All participants possessed neurons thatresponded to various
phoneticfeatures (one-sided x*=10.7,6.9,7.4,0.5and 1.3,p = 0.22,0.44, 0.49,
0.97,0.86, for participants 1-5, respectively).
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Extended DataFig. 3 | Examples of single-neuronal activities and their b. Peri-event time histogram and action potential raster for the same neurons
temporaldynamics. a. Peri-event time histograms were constructed by abovebutnowaligned tothe onset of the articulated phonemes themselves.
aligning the action potentials of each neurontoword onset. Dataare presented  Dataare presented as mean (line) values + standard error of the mean (shade).
asmean (line) values + standard error of the mean (shade). Examples of three c.Sankey diagram displaying the proportions of neurons (n =56) that displayed
representative neurons thatselectively changed their activity to specific achangeinactivity polarity (increasesin orange and decreases in purple) from

planned phonemes. /nset, spike waveform morphology and scale bar (0.5 ms). planning to production.



a Decoding across phonetic groupings

b Multidimensional scaling
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Extended DataFig. 4 |Generalizability of explanatory power across
phoneticgroupingsfor consonants and vowels. a. Scatter plots of the
model explanatory power (D?) for different phonetic groupings across the cell
population (n =272 units). Phonetic groupings were based on the planned

(i) places of articulation of consonants and/or vowels (ii) manners of articulation
of consonants and (iii) primary cardinal vowels (Extended Data Table 1).

Model D?explanatory power across all phonetic groupings were significantly
correlated (from top left to bottomright, p=1.6x107*¢, p=2.8x107°,
p=6.1x10"%,p=1.4x10",p=2.3x10"* and p = 5.9x10 %, two-sided tests

of Spearman rank-order correlations). Spearman’sp are 0.96,0.83,0.77,
respectively for left to right top panelsand 0.78, 0.71, 0.71, respectively for left
torightbottom panels (dashed regression lines). Among phoneme-selective
neurons, the planned places of articulation provided the highest explanatory
power (two-sided Wilcoxon signed-rank test of model D*values, W =716,

consonants (manners)

p=7.9x107%) and the best model fits (two-sided Wilcoxon signed-rank test of
AIC, W =2255,p =1.3x10"%) compared to manners of articulation. They also
provided the highest explanatory power (two-sided Wilcoxon signed-rank
testof model D*values, W =846, p = 9.7x107) and fits (two-sided Wilcoxon
signed-rank test of AIC, W =2088, p =2.0x10"°) compared to vowels.

b. Multidimensional scaling (MDS) representation of all neurons across phonetic
groupings. Neurons with similar response characteristics are plotted closer
together. The hue of each pointreflects the degree of selectivity to specific
phoneticfeatures. Here, the colour scale for places of articulationis provided
inred, mannersof articulationingreenand vowelsin blue. The size of each
pointreflects the magnitude of the maximum explanatory power in relation
toeachcell’'s phonetic selectivity (maximum D?for places of articulation of
consonants and/or vowels, manners of articulation of consonants and primary
cardinal vowels).
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a Phoneme decoding based on their acoustic spectral profile

b Venn diagrams

C Morpheme selectivity and decoding
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Extended DataFig. 5| Explanatory power for the acoustic-phonetic
properties of phonemes and neuronal tuning to morphemes. a. Left, scatter
plot of the D*explanatory power of neurons for planned phonemes and their
observed spectral frequencies during articulation (n = 272 units; Spearman’s
p=0.75,p=9.3x10"%°, two-sided test of Spearman rank-order correlation).
Right, decoding performances for the spectral frequency of phonemes (n =50
random test/train splits; p = 7.1x107'8, two-sided Mann-Whitney U-test). Data
arepresented as mean values + standard error of the mean. b. Venn diagrams of
neurons that were modulated by phonemes during planning and those that

time (s)

were modulated by the spectral frequency (left) and amplitude (right) of the
phonemes duringarticulation. c. Left, peri-event time histogram and raster for
arepresentative neuron exhibiting selectivity to words that contained bound
morphemes (for example, -ing, -ed) compared to words that did not. Data are
presented as mean (line) values + standard error of the mean (shade). Inset,
spike waveform morphology and scale bar (0.5 ms). Right, decoding
performance distribution for morphemes (n = 50 random test/train splits;
p=1.0x10"7, two-sided Mann-Whitney U-test). Data are presented as mean
values +standard deviation.



a Prefrontal neuronal phonetic tuning during word planning and perception
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Extended DataFig. 6 | Phoneticrepresentations of words duringspeech
perception and the comparison of speakingto listening. a. Left, Venn
diagrams of neurons that selectively changed their activity to specific
phonemes during word planning (~500:0 ms from word utterance onset) and
perception (0:500 ms from word utterance onset). Right, average z-scored
firingrate for selective neurons during word planning (black) and perception
(grey) asafunction of the Hamming distance. Here, the Hamming distance was
based ontheneurons’ preferred phonetic compositions during production
and compared for the same neurons during perception. Data are presented as
mean (line) values + standard error of the mean (shade). b. Left, classifier
decoding performances for selective neurons during word planning. The
points provide the sampled distribution for the classifier's ROC-AUC values
(black) compared torandom chance (grey; n =50 random test/train splits;

p =7.1x107%8, two-sided Mann-Whitney U-test). Middle, decoding performance

forselective neurons during perception (n =50 random test/train splits;
7.1x1078, two-sided Mann-Whitney U-test). Right, word planning-perception
model-switch decoding performances for selective neurons. Here, models
were trained on neural datafor specific phonemes during planning and then
used to decode those same phonemes during perception (n =50 random
test/trainsplits; p > 0.05, two-sided Mann-Whitney U-test; Methods). The
boundaries and midline of the boxplots represent the 25" and 75" percentiles
and the median, respectively. c. Peak decoding performance for phonemes,
syllables and morphemes as a function of time from perceived word onset.
Peak decoding for morphemes was observed significantly later than for
phonemes and syllables during perception (n =50 random test/train splits;
two-sided Kruskal-Wallis, H=14.8, p=0.00062). Data are presented here as
median (dot) values + bootstrapped standard error of the median.
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Extended DataFig.7|Spatial distribution of representations based on
corticallocation and depth. a. Relationship between recordinglocation
alongtherostral-caudal axis of the prefrontal cortex and the proportion of
neurons thatdisplayed selectivity to specific phonemes, syllables and
morphemes. Neurons that displayed selectivity were more likely to be found
posteriorly (one-sided x*test, p=2.6x107°,3.0x10™", 2.5x107%,3.9x107°, for
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placesofarticulation, manners of articulation, syllables and morpheme,
respectively). b. Relationship between recording depth along the cortical
columnandthe proportion of neurons that display selectivity to specific
phonemes, syllables and morphemes. Neurons that displayed selectivity were
broadly distributed along the cortical column (one-sided X test, p > 0.05).
Here, Sindicates superficial, Mmiddleand D deep.
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Extended DataFig. 8| Receiver operating characteristic curves across
planned phoneticrepresentations and decoding model-switching
performances for word planning and production.a. ROC-AUC curves for
neurons across different phonemes, grouped by placed of articulation, during
planning (there were insufficient palatal consonants to allow for classification
and aretherefore not displayed here). b. Average (solid line) and shuffled
(dottedline) dataacross all phonemes. Data are presented as mean (line) values
+standard error of the mean (shade). c. Planning-production model-switch

decoding performance sample distribution (n =50 random test/train splits) for
allselective neurons. Here, models were trained on neuronal datarecorded
during planning and then used to decode those same phoneme (left), syllable
(middle), or morpheme (right) on neuronal datarecorded during production.
Slightly lower decoding performances were noted for syllables and morphemes
when comparing word planning to production (p = 0.020 for syllable comparison
and p = 0.032 for morpheme comparison, two-sided Mann-Whitney U-test).
Dataare presented as mean values + standard deviation.
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Extended DataFig.9 | Example of phoneticrepresentationsinplanning
and productionsubspaces. Modelled depiction of the neuronal population
trajectory (bootstrap resampled) across averaged trials with (green) and
without (grey) mid-low phonemes, projectedinto a plane within the “planning”
subspace (y-axis) and a plane within the “production” subspace (z-axis).
Projection planes within planning and production subspaces were chosen to
enablevisualization of trajectory divergence. Zeroindicates word onset on

the x-axis. Separation between the population trajectory during trials with

and without mid-low phonemes is apparentin the planning subspace (y-axis)
independently of the projection subspace (z-axis) because these subspaces
areorthogonal. The orange plane indicates a hypothetical decisionboundary
learned by a classifier to separate neuronal activities between mid-low and
non-mid-low trials. Because the classifier decision boundaryis not constrained
toliewithina particular subspace, classifier performance may therefore
generalize across planning and production epochs, despite the near-
orthogonality of these respective subspaces.



Extended Data Table 1| Phonetic groupings

Group labels Phonemes
Bilabial b, p, m
Labiodental f,v
Dental 0,0
Alveolar ntds,zlr
Consonants — places Postalveolar 134 d
Palatal j
Velar k,g,n,w
Glottal h
. High i,I,e,0,U, U, au
Vowels — height Mid & low €, &, D,02,9,A 3 al
Plosive (Stop) b,p,t d kg
Nasal m,n,n
Trill (Liquid rhotic) r
Consonants — manners Fricative f,v,0,8,s,z,h[, 3
Lateral fricative (Affricate) tf, d3
Approximant (Glide) jw
Lateral approximant (Liquid lateral) |
Front-close i1
Front-close-mid e
Front-open-mid €
: Front-open a
Vowels — primary Back-clzse u
Back-close-mid o
Back-open-mid k)
Back-open h

Dental — mid-low

Bilabial — mid-low

High — alveolar

Velar — mid-low - alveolar
Bilabial — high

Alveolar — mid-low — velar
Mid-low — alveolar — alveolar
Bilabial — mid-low — alveolar
Alveolar — high — velar

High — velar

Syllables

To provide a compositional representation of each word for the main analyses, phonemes were grouped based on their places of articulation for consonants (for example, velar and bilabial) and
relative height of the tongue for vowels (for example, high and mid-low). For comparison, phonemes were also grouped based on the manners of articulation (for example, plosive and fricative)
as well as the combined position of the tongue and lips for vowels (for example, front-close or back-open). Finally, we used the ten most common syllables in the study’s vocabulary to study the
words’ syllabic structures.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

|Z| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
/N 0nly common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

El A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
/N Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  SpikeGLX (release v20201103-phase30 and release_v20221012-phase30; http://billkarsh.github.io/SpikeGLX/) and OpenEphys (versions
0.5.3.1 and 0.6.0; https://open-ephys.org/gui) were employed.

Data analysis Recording motion estimation was carried out with DREDge (https://github.com/evarol/dredge), motion correction with (https://github.com/
williamunoz/InterpolationAfterDREDge), single-unit activity isolation with Kilosort (version 1.0; https://github.com/cortex-lab/KiloSort) and
curation with Phy (version 2.0a1; https://github.com/cortex-lab/phy). Speech analysis was carried out with Audacity (version 2.3.0), and exact
word and phoneme onsets and offsets were identified using the Montreal Forced Aligner (version 2.2; https://github.com/
MontrealCorpusTools/Montreal-Forced-Aligner). Anatomical analysis was carried out with ROSA (Zimmer Biomet, version 3.1.6.276), Mango
(version 4.1; https://mangoviewer.com/download.html), FreeSurfer (version 7.4.1; https://surfer.nmr.mgh.harvard.edu/fswiki/
DownloadAndinstall) and Fieldtrip (version 20230602; https://www.fieldtriptoolbox.org/). Python (version 3.9.17; statsmodels version 0.13.5,
scikit-learn module version 1.3.0) and Matlab (version R2023a) custom routines were employed for neuronal activity analysis and
visualization, as well as statistical analysis.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

The data and primary codes that support the findings of this study are deposited in figshare (10.6084/m?9.figshare.24720501).
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size A total of 5 participants underwent single-neuronal recordings. Our main neuronal analysis is based on data from 272 neurons. The sample
size is large enough for the statistical analyses we have performed in our study consistent with previously published data.

Data exclusions | No subjects were excluded from analysis. For neuronal analysis, prospective units that did not demonstrate waveform stability over the
course of the experiment were excluded from the analysis based on standard criteria for off-line single unit sorting. Units that displayed
overlap with neighboring across channels were excluded as well.

Replication Similar results were observed across study participants for neuronal analyses. Other core analyses were performed on the population level,
across individuals, in which case the variation in subject responses was incorporated into statistical testing/modeling. This variability in

response is also shown through the plotting of individual raw data or data ranges in the figures as applicable.

Randomization  There was no randomization procedure for subject selection/enroliment since all participants performed the same task. Within a given
experimental session, trial stimuli order was randomly generated to avoid effects potentially attributable to trial order.

Blinding Blinding of analysis was not relevant since all subjects underwent similar task design. Blinding to clinical condition was performed.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
Antibodies g |:| ChiIP-seq
Eukaryotic cell lines g |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data

XXX XXX
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Dual use research of concern

Human research participants

Policy information about studies involving human research participants
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Population characteristics The participants were recruited for the study independently of underlying neuropathology, age or sex. The participants were
drawn from the same population undergoing planned intraoperative neurophysiology for deep brain stimulator placement.

Recruitment For neuronal recordings, participants underwent intraoperative neurophysiology as part of their planned deep brain
stimulator (DBS) placement. Prior to consideration, candidates for the study were evaluated by a multidisciplinary team of
neurologists, neurosurgeons, and neuropsychologists and decisions for surgery were unrelated to study participation. Once




and only after a patient was consented and scheduled for surgery, their candidacy for participation in the study was reviewed
with respect to the following inclusion criteria: 18 years of age or older, right-hand dominant, capable to providing informed
consent to study participation and intact language function with demonstration of English fluency by preoperative testing. All
patients meeting inclusion criteria for intraoperative recordings were approached regarding study enrollment solely based on
these criteria and not based on other features (e.g. study team's anticipated likelihood of patient choosing to enroll) in order
to prevent selection bias as best possible. Only individuals who had planned awake microelectrode recording for target
mapping were included.

After surgical consent was obtained and the participants were scheduled for surgery, an independent member of the
research team approached the patient for study participation. They then filled a separate research consent if they wished to
participate in the study. At any point in the study, including during the intraoperative phase, patients were freely able to
withdraw from the study without any consequence to their clinical care.

Ethics oversight Massachusetts General Hospital Institutional Review Board

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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