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Abstract

IMPORTANCE People who complete more education live longer lives with better health. New

evidence suggests that these benefits operate through a slowed pace of biological aging. If so,

measurements of the pace of biological aging could offer intermediate end points for studies of how

interventions to promote education will affect healthy longevity.

OBJECTIVE To test the hypothesis that upward educational mobility is associated with a slower

pace of biological aging and increased longevity.

DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study analyzed data from 3

generations of participants in the FraminghamHeart Study: (1) the original cohort, enrolled beginning

in 1948; (2) the Offspring cohort, enrolled beginning in 1971; and (3) the Gen3 cohort, enrolled

beginning in 2002. A 3-generation database was constructed to quantify intergenerational

educational mobility. Mobility data were linked with blood DNA-methylation data collected from the

Offspring cohort in 2005 to 2008 (n = 1652) and the Gen3 cohort in 2009 to 2011 (n = 1449).

Follow-up is ongoing. Data analysis was conducted from June 2022 to November 2023 using data

obtained from the National Institutes of Health database of Genotypes and Phenotypes (dbGaP).

EXPOSURE Educational mobility was measured by comparing participants’ educational outcomes

with those of their parents.

MAINOUTCOMES ANDMEASURES The pace of biological aging wasmeasured fromwhole-blood

DNA-methylation data using the DunedinPACE epigenetic clock. For comparison purposes, the

analysis was repeated using 4 other epigenetic clocks. Survival follow-up was conducted

through 2019.

RESULTS This study analyzed data from 3101 participants from the FraminghamHeart Study; 1652

were in theOffspring cohort (mean [SD] age, 65.57 [9.22] years; 764 [46.2%]male) and 1449were in

the Gen3 cohort (mean [SD] age, 45.38 [7.83] years; 691 [47.7%]male). Participants who were

upwardly mobile in educational terms tended to have slower pace of aging in later life (r = −0.18

[95% CI, −0.23 to −0.13]; P < .001). This pattern of association was similar across generations and

held in within-family sibling comparisons. There were 402 Offspring cohort participants who died

over the follow-up period. Upward educational mobility was associated with lower mortality risk

(hazard ratio, 0.89 [95% CI, 0.81 to 0.98]; P = .01). Slower pace of aging accounted for

approximately half of this association.

CONCLUSIONS ANDRELEVANCE This cohort study’s findings support the hypothesis that

interventions to promote educational attainment may slow the pace of biological aging and promote
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Abstract (continued)

longevity. Epigenetic clocks have potential as near-term outcomemeasures of intervention effects

on healthy aging. Experimental evidence is needed to confirm findings.
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Introduction

People who complete more years of schooling tend to live longer, healthier lives. This educational

gradient is thought to arise through improvements in socioeconomic resources and resulting access

to health services, health-promoting social networks and communities, and healthy behaviors.1,2

Educational gradients are apparent in nearly every organ system and aging-related disease, including

heart disease, diabetes, cancer, Alzheimer disease, and so on3-11; people with higher levels of

education experience a lower prevalence of aging-related disease and later age of onset of disease.

This evidence ofmore rapid decline across organ systems suggests an overall acceleration of the pace

of biological aging.

Biological aging refers to a set of processes characterized by an accumulation of molecular

changes or hallmarks that progressively undermine the integrity and resilience capacity of our cells,

tissues, and organs as we grow older.12,13We recently developed a novel method to quantify the pace

of biological aging in humans. Our approach used longitudinal phenotyping of multiorgan system

decline to derive a DNA-methylation (DNAm) blood testmeasurement of the pace of biological aging,

DunedinPACE (pace of aging calculated in the epigenome).14

We recently found that the pace of aging, as measured by the DunedinPACE epigenetic clock,

was accelerated in individuals with low levels of education, and slowed in those with higher levels of

education.15,16 In this study, we build on these observations to test the hypothesis that higher

educational attainment promotes longevity by slowing the pace of aging. Because genetic and social

inheritances affect howmuch education a person completes17 andmay also affect their pace of

aging,18we focused analysis on educational mobility (ie, differences in education of children relative

to their parents). We further conducted analysis of sibling differences to address potential

confounding by other factors shared within families.19 These designs help isolate associations of

education with the pace of aging from effects of correlated family-level factors.

Wemeasured participants’ educational mobility by linking records across 3 generations of

FraminghamHeart Study (FHS) participants. This procedure allowed us to compute educational

mobility for members of the 2most recent generations (Offspring and Gen3 cohorts). For these

participants, wemeasured pace of aging from blood DNAm using the DunedinPACE epigenetic clock.

For the Offspring cohort, we also measured survival over 15 years of follow-up. Analysis proceeded

in 2 steps. We first tested associations of educational mobility with pace of aging and survival. We

then tested mediation of mobility-mortality associations through pace of aging. This analytic

framework allowed us to test the hypothesis that slower pace of aging mediates the association of

upward educational mobility with increased longevity.

Methods

Study protocols and results were reported following the Strengthening the Reporting of

Observational Studies in Epidemiology (STROBE) reporting guidelines for cohort studies. Analysis of

Database of Genotypes and Phenotypes (dbGaP) data was approved by the Columbia University

Medical Center institutional review board. Informed consent was waived because deidentified FHS

data were accessed through the dbGaP.
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Data and Participants

The FHS is an ongoing observational cohort study first initiated in 1948, spanning 3 generations. The

original cohort was a two-thirds population sample of Framingham, Massachusetts, and aimed to

identify risk factors for cardiovascular disease. Additional cohorts have since been recruited,

consisting of the children and grandchildren of the original cohort and their spouses. DNAm data

were available from blood tests administered during Offspring cohort examination 8 (2005-2008)

and Gen3 cohort examination 2 (2009-2011).

We analyzed data from all generations of the FHS (n = 14 106with available education data).

Our DNAm analysis sample consisted of participants with available education data who could be

linked to educational data from at least 1 parent andwho provided a blood sample for DNAm analysis.

This sample included 1652members of the Offspring cohort from 1025 families and 1449members

of the Gen3 cohort from 552 families (Figure 1). Race and ethnicity were not assessed becausemore

than 99% of the patients in the FHS wereWhite.

EducationalMobility

Educational Attainment

Participants reported their highest level of education to interviewers. For analysis, we converted

levels to years of schooling and standardized values within sex and 5-year birth cohort to account for

secular trends in educational attainment (details in the eMethods in Supplement 1).

EducationalMobility

Educational attainments were correlated between parents and their children (Pearson r = 0.35;

P < .001) (eFigure 1 in Supplement 1). We computedmobility values using residualized-change

scores, which quantify mobility as the difference between a participant’s educational attainment and

the attainment expected based on the educational levels of their parents, and difference scores,

which quantify mobility as the raw difference between parental and Offspring educational

attainment.16 Bothmetrics are denominated in sex-standardized and birth cohort–standardized units

of education which, on average, corresponded to approximately 2 years of schooling.

Biological Aging

Whole-genome DNAm profiles were obtained from dbGaP (phs000724.v9.p13). Details are

reported in the eMethods in Supplement 1.

DunedinPACE

Biological aging is the progressive loss of integrity and resilience capacity in our cells, tissues, and

organs that occurs with advancing chronological age.20,21 Pace of aging is a phenotype reflecting the

rate at which these biological changes occur.22We quantified pace of aging from DNAm using the

Figure 1. Offspring and Gen3 Participant FlowDiagrams
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The figure shows how the final analytic samples were developed from the larger set of all participants in the Offspring (n = 1652) and Gen3 (n = 1449) FraminghamHeart Study

cohorts (combined n = 3101). DNAm indicates DNA-methylation blood test.
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DunedinPACE epigenetic clock algorithm.14 This algorithmwas developed from analysis of a 20-year

longitudinal change in 19 biomarkers of organ-system integrity in the Dunedin Study 1972-to-1973

birth cohort at ages 26 years, 32 years, 38 years, and 45 years. A longitudinal pace-of-aging

phenotype derived from this analysis23was then distilled into a single-time point DNAm blood test

using elastic-net regression.24 In diverse cohorts in the US and around the globe, this algorithm has

been associated with incident morbidity and disability, survival, and a range of socioenvironmental

exposures including educational attainment.14,15,25-32We calculated participants’ clock values from

their DNAm data calculated using code available on GitHub.33

Other Epigenetic Clocks

Other candidatemeasures of aging can be computed fromDNAmdata. For comparison purposes, we

repeated analysis using 4 alternative epigenetic clocks widely studied in the literature and included

in our prior articles: the Horvath, Hannum, PhenoAge, and GrimAge clocks.34-37 These clocks were

calculated using the online calculator hosted by the Horvath Lab.38 Clock values were residualized for

chronological age prior to analysis.

Survival

Details of FHS survival andmortality follow-up are reported elsewhere.39 Briefly, FHS conducts

continuous mortality follow-up for all study participants. Date and cause of death are recorded for

each participant based on hospital records, death certificates, and next-of-kin interviews. The

present study includedmortality data accumulated through 2019 (mean follow-up fromDNAm

baseline was approximately 12 years).

Statistical Analysis

We tested associations of educational mobility with pace of biological aging as measured by

DunedinPACE using linear regressionmodels. We used generalized estimating equations to account

for nonindependence of observations of individuals within nuclear families.40We conducted within-

family analysis comparing sibling differences in educational attainment with sibling differences in

pace of aging using fixed effects regression.41We tested associations of educational mobility and

pace of aging with survival time using Cox proportional hazard regressionmodels. Mediation analysis

was conducted using the CMAverse package42 in R version 4.0.3 (R Project for Statistical

Computing)43 following the approach described by Valeri and Vanderweele.44 Clock values were

standardized to amean (SD) of 0 (1) for analysis. For regressionmodels, significance testing for

model coefficients was conducted using 2-sided t tests at the P < .05 level. For mediation analysis,

we used a regression-based estimation approach with bootstrap standard errors to obtain 95% CIs.

All models were adjusted for age and sex. Statistical analysis was performed from June 2022 to

November 2023.

Results

We analyzed data from 3101 participants from the Offspring cohort (n = 1652; mean [SD] age at

DNAmmeasurement, 65.57 [9.22] years; 764 [46.2%]male) and Gen3 cohort (n = 1449; mean [SD]

age at DNAmmeasurement, 45.38 [7.83] years; 691 [47.7%]male) of the FraminghamHeart Study

(FHS). Offspring cohort participants completed amean (SD) of 14.74 (2.31) years of education, which

was approximately 2 years more than their highest-educated parent (mean [SD] years of education,

12.35 [2.45] years). Gen3 cohort participants completed a mean (SD) of 15.24 (1.88) years of

education, which was similar with their highest-educated parent (mean [SD] years of education,

14.98 [2.26] years). In the Offspring cohort, 402 (24.3%) died over the 15-year follow-up period.

Participant characteristics are reported in the Table. Participants with data on education and

educational mobility were similar with the overall DNAm sample.
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EducationalMobility and Pace of Biological Aging

Participants who were upwardly mobile had slower pace of aging than those whowere downwardly

mobile (for residualized-changemobility, Offspring cohort Cohen d = −0.17 [95%CI, −0.22 to −0.12];

P < .001; Gen3 cohort Cohen d = −0.21 [95% CI, −0.26 to −0.15]; P < .001; for difference-score

mobility, Offspring cohort Cohen d = −0.06 [95% CI, −0.10 to −0.02]; P = .002; Gen3 cohort Cohen

d = −0.07 [95% CI, −0.11 to −0.02]; P = .006) (Figure 2; eTable 1, eFigure 3 in Supplement 1). As a

sensitivity analysis, we tested consistency of associations across participants who were born into

lower- and higher-educated families to evaluate whether returns to educational mobility were

concentrated at one end of the socioeconomic continuum. Effect sizes were similar across strata of

parental education (eFigure 2 in Supplement 1). In addition, effect sizes for educational mobility were

comparable across Offspring andGen3 cohorts, suggesting consistent returns to relative educational

mobility over time (Figure 2; eFigure 3 in Supplement 1). In comparative analysis of other epigenetic

clocks, associations were weaker and not statistically different from 0 for the Horvath, Hannum, and

PhenoAge clocks. Results for the GrimAge epigenetic clock, which was developed within the FHS,

were similar to those for DunedinPACE. Full results are reported in eTable 1 in Supplement 1.

Sibling Differences in Educational Attainment and Pace of Biological Aging

To the extent that there are social or environmental factors that affect both educational mobility and

aging trajectories, our resultsmay overstate the association ofmobility and healthy aging. To address

Table. Characteristics of DNA-Methylation, Education, andMobility Samplesa

Characteristic
Analytic sample
(n = 3101)

Offspring sample
(n = 1652)

Gen3 sample
(n = 1449)

Families, No. 1577 1025 552

Age, mean (SD), y 56.14 (13.25) 65.57 (9.22) 45.38 (7.83)

Sex, No. (%)

Female 1646 (53.1) 888 (53.8) 758 (52.3)

Male 1455 (46.9) 764 (46.2) 691 (47.7)

Died, No. (%) 419 (13.5) 402 (24.3) NA

Education, mean (SD), y 14.97 (2.13) 14.74 (2.31) 15.24 (1.88)

Parental education, mean (SD), y 13.58 (2.70) 12.35 (2.45) 14.98 (2.26)

Educational mobility (Δ), y 1.27 (2.66) 2.22 (2.62) 0.18 (2.27)

Educational mobility (RC), y 0.24 (1.98) 0.43 (2.15) 0.02 (1.73)

Educational mobility (Δ,
standardized)

−0.19 (1.13) −0.03 (1.17) −0.38 (1.06)

Educational mobility (RC,
standardized)

0.08 (0.91) 0.17 (0.90) −0.02 (0.91)

DunedinPACE 1.06 (0.12) 1.08 (0.12) 1.03 (0.11)

Abbreviations: NA, not applicable; RC,

residualized change.

a The table provides information on the composition

of our analytic sample (n = 3101, Offspring n = 1652,

Gen3 n = 1449). The analytic sample includes all

individuals who provided DNA-methylation data,

who reported their own educational attainment

levels, and for whom educational attainment data

was available for at least 1 parent.

Figure 2. Association of Educational MobilityWith Pace of Aging
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The figure shows effect estimates for associations of

educational mobility with pace of aging as measured

with the DunedinPACE epigenetic clock. The bars on

the left show differences in pace of aging z score per

1-SD unit of upward educational mobility (Offspring

effect size [ES], −0.17; P < .001; Gen3 ES, −0.21;

P < .001). The bars on the right show differences in

pace of aging z score per 1-SD difference in educational

attainment between siblings, as estimated using family

fixed-effects regression (Offspring ES, −0.21; P < .001;

Gen3 ES, −0.25; P < .001). All models included

covariate adjustment for participant age and sex.
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this potential confounder, we repeated our analysis within families. For participants with a sibling in

the data (n = 2437; Offspring cohort n = 1096; Gen3 cohort n = 1341), we tested whether the

difference in educational mobility between siblings was associated with differences in the pace of

biological aging. This design blocks confounding by all factors shared by siblings in a family. Results

were similar to our primary analysis. The sibling with higher educational mobility tended to have

slower pace of aging as measured by the DunedinPACE epigenetic clock as compared with their less-

educated sibling (Offspring cohort Cohen d = −0.21 [95%CI, −0.28 to −0.13]; P < .001; Gen3 cohort

Cohen d = −0.25 [95% CI, −0.32 to −0.19]; P < .001) (eTable 2 in Supplement 2). Again, results were

not statistically different from0 for the Horvath, Hannum, and PhenoAge epigenetic clocks. Results

for the GrimAge epigenetic clock, which was developed within the FHS, were similar to those for the

DunedinPACE epigenetic clock (eTable 2 in Supplement 2).

EducationalMobility, Pace of Aging, and Longevity

We next focused our attention on educational gradients in mortality in the Offspring cohort

(n = 1652; Gen3 participants were not included in this analysis because very few deaths occurred in

this younger cohort during the follow-up period). Participants who were more upwardly

educationally mobile had lower mortality risk (for residualized-changemobility: hazard ratio [HR],

0.87 [95% CI, 0.79 to 0.96]; P = .047; for difference-score mobility: HR, 0.92 [95% CI, 0.83 to 1.02];

P = .10). In parallel, as previously reported,14 participants with faster pace of agingwere at higher risk

of death than those with a slower pace of aging (mortality HR, 1.61 [95% CI, 1.49 to 1.74]; P < .001).

All DNAm clocks, with the exception of the Horvath clock, were associatedwithmortality; effect sizes

were attenuated relative to DunedinPACEwith the exception of the GrimAge clock, which was

developed to estimate mortality in the FHS sample. Full results are reported in eTable 3 in

Supplement 1.

Mediation Analysis of Educational Gradients inMortality by Pace of Aging

Finally, we tested whether differences in pace of agingmediated educational gradients in mortality

risk. We found that DunedinPACE mediated 50% of the association between educational mobility

andmortality risk (indirect effect HR, 0.93 [95% CI, 0.90 to 0.95]). Results were robust to methods

that allow relaxation of assumptions about exposure-mediator andmediator-outcome confounding

and exposure-mediator interactions.44 Full results are reported in eTable 4 in Supplement 2.

Sensitivity Analyses

Pace of aging wasmeasured from blood DNAmdata. Blood DNAm is affected by smoking history and

DNA-sample white-blood-cell composition.45,46 In turn, these factors may relate to mortality risk.

Therefore, we repeated analysis including covariate adjustment for these factors. Smoking history

was recorded from participant reports; white blood cell composition in the DNA sample was

estimated using the algorithms proposed by Houseman and colleagues.47 Covariate adjustment for

estimated cell counts and participant reports of smoking history resulted in modest attenuation of

some effect sizes; however, all analyses showed substantial mediation of educational gradients in

mortality risk by pace of aging, measured using DunedinPACE (eTable 4 in Supplement 2). Full results

are reported in eTables 5, 6, 7, and 8 in Supplement 1. Finally, we repeated our core analysis using

unstandardized versions of the education andmobility variables. Results were similar to those

reported in themain text (eTable 9 in Supplement 1).

Discussion

People with higher levels of education tend to live longer, healthier lives as comparedwith thosewith

less education.48-50We analyzed data from 3 generations of the FHS to test whether this educational

gradient in healthspan and lifespan could reflect effects of education on the pace of biological aging.

Participants who were upwardly mobile in educational terms had slower pace of aging, as measured
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by the DunedinPACE epigenetic clock and were less likely to die over the follow-up period.

Differences in pace of aging accounted for roughly half of the association between educational

mobility andmortality risk.

DunedinPACEwas developed as a surrogate end point for interventions targeting healthy

lifespan.51-53 Prior studies have reported associations between education and DunedinPACE, and

between DunedinPACE and aging-related disease andmortality.14,15,25,27Our study, to our

knowledge, is the first to follow individuals across the educational-origins to educational-attainment

to pace-of-aging tomortality pathway. Themagnitude of associations between education and pace

of biological aging we report in this sample (r of 0.19 to 0.24) are consistent with population-

representative studies in the US, UK, and New Zealand (r of 0.17 to 0.3815) and correspond to a 2%

to 3% slower pace of aging per unit of upward educational mobility (equivalent to approximately 2

years of additional schooling). In turn, our mediation analysis found that this magnitude of slowing in

pace of aging corresponded to an approximately 7% reduction in the hazard of mortality, half of the

overall effect of educational mobility. Collectively, these findings contribute evidence that

DunedinPACE is a candidate surrogate end point for the association of educational interventions

with aging.

A further contribution of our study is evidence that healthy-aging returns to education persist

into more recent birth cohorts, among whom higher levels of education are more common.

Educational gradients in mortality have grown steeper in recent years.54However, these trends

reflect outcomes primarily for the cohorts born across the early-to-middle 20th century. Across

these cohorts, the proportion of individuals completing high school and college education increased

dramatically.55Whether the trend ofwidening educational inequality in healthy agingwill persist for

later-20th century birth cohorts, for whom rates of high school and college graduation have been

more stable, is unknown. We found that effect sizes for associations between upward educational

mobility and slower pace of aging were similar for the Offspring and Gen3 cohorts, suggesting that

even in the context of relatively high educational attainment, upward mobility continues to yield

returns for healthy aging.

Limitations

We acknowledge that this study has limitations. There is no criterion standardmeasure of biological

aging.21We focused on the pace of aging measure DunedinPACE based on 3 lines of evidence. First,

the DunedinPACE algorithm is predictive of diverse aging-related outcomes, including disease,

disability, andmortality.14,25-27,29 Second, the algorithm is associated with social determinants of

healthy aging in young, midlife, and older adults.14,15,28,30,31,56 Third, the algorithm shows evidence

of being modified by calorie restriction,57 an intervention that modifies the basic biology of aging in

animal experiments.58 Confidence in results is further supported by the consistency of our findings

with those for alternative measurements of biological aging in independent cohorts.59 Additionally,

our results are robust to known confounds of DNAm-basedmeasurements of aging, specifically cell

composition of blood samples used to derive DNA and smoking history.46,60

There are many factors that may drive both educational attainment and slower biological aging,

such as childhood poverty.18,28,56,61,62 Confounding by such factors would lead simple associations

to overstate the potential of education interventions to modify biological aging. We addressed this

threat of confounding using 2 designs that control for differences between participants in their family

history and early-life environment. First, we analyzed educational mobility between generations of

a family. Second, we analyzed differences between siblings within a family. Across these

specifications, we found consistent evidence of slower pace of aging in people who were upwardly

educationally mobile andwho completedmore schooling as comparedwith their siblings. Ultimately,

evidence from randomized trials63 is needed to confirmwhether promoting educational attainment

slows the pace of aging. Furthermore, the path from educational mobility to healthy longevity

involves posteducation attainments. Studies of mediating mechanisms, including income and wealth
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accumulation, occupational characteristics, health literacy, and health care access, can help refine

understanding of how upward educational mobility slows the pace of aging.64,65

The FHS is predominantlyWhite-identifying and includes relatively few participants who did not

graduate fromhigh school. In data sets representative of the United States population, the difference

in mortality risk associated with having attended some college as compared with not is HR of 0.66

to 0.76.66 In the data we analyzed, the corresponding effect size is smaller (HR, 0.81).

Underrepresentation of individuals with low educational attainment could attenuate FHS education-

mortality associations. This bias should make our estimates of mediation by DunedinPACE

conservative. Nevertheless, replication inmore diverse cohorts is a priority. The FHSOffspring cohort

DNAmmeasurement occurred at the 8th examination, after approximately 4 decades of follow-up.

Survival bias could affect results. However, we observed similar effect sizes for associations of

educational mobility with pace of aging in the younger Gen3 cohort, for whomDNAm data were

generated from samples collected at their 2nd examination.

Conclusions

The healthier aging of individuals with more education and other social advantages is well

established. In this prospective cohort study of educational mobility in 2 generations of the FHS, we

found that an accelerated pace of biological aging is associated with this inequality. In addition,

findings suggest that newmethods to quantify the pace of aging can provide near-termmeasures of

health effects for programs and policies designed to promote educational attainment and other

socioeconomic assets. Because the pace of aging is variable from young adulthood, measurements

such as DunedinPACE can potentially illuminate intervention effects years or decades before aging-

related functional deficits and chronic diseases become apparent. Such information can, in turn, help

refine efforts to heal health disparities and build aging health equity.
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