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Abstract

Recent research, such as BitNet [WMD+23], is paving the way for a new era of 1-
bit Large Language Models (LLMs). In this work, we introduce a 1-bit LLM variant,
namely BitNet b1.58, in which every single parameter (or weight) of the LLM is
ternary {-1, 0, 1}. It matches the full-precision (i.e., FP16 or BF16) Transformer
LLM with the same model size and training tokens in terms of both perplexity
and end-task performance, while being significantly more cost-effective in terms
of latency, memory, throughput, and energy consumption. More profoundly, the
1.58-bit LLM defines a new scaling law and recipe for training new generations of
LLMs that are both high-performance and cost-effective. Furthermore, it enables
a new computation paradigm and opens the door for designing specific hardware
optimized for 1-bit LLMs.

0.2961 -0.0495

0.0413 ...

… -0.4765

0.2812 0.2403

-0.1808 0.1304

-0.4809 …

… -0.1771

-0.1741 -0.3853

Transformer LLMs

16-bit Float (FP16/BF16)

Cost

P
e

rfo
rm

a
n

c
e

1 -1

0 …

… 1

-1 -1

-1 1

-1 …

… 0

0 -1

BitNet b1.58 (This Work)

{-1, 0, 1}

W=

Pareto Improvement

W=

0.0413 0.3397 0.2812 0.2403

-0.1808 0.1304

-0.4809 0.3244

0.4322 -0.1771

-0.1741 -0.3853

0.2961 -0.0495 -0.0924 -0.4765 �ÿ�Ā�ā�Ă

ÿ. ā�ąĀ�ÿ 2 ÿ.ÿă�Ą�Ā 2 ÿ.ÿ�āă�ā 2 ÿ.ăĆąĄ�Ă
…

1 -1

0 1

-1 1

-1 -1

-1 0

-1 1

1 -1

1 0

�ÿ 2 �Ā 2 �ā + �Ă
…

�ÿ�Ā�ā�Ă
1(.58)-bit

FP16

Model W Input X Output YY = f(W, X)

GPU

New 

Hardware 

Figure 1: 1-bit LLMs (e.g., BitNet b1.58) provide a Pareto solution to reduce inference cost (latency,
throughput, and energy) of LLMs while maintaining model performance. The new computation
paradigm of BitNet b1.58 calls for actions to design new hardware optimized for 1-bit LLMs.
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1 The Era of 1-bit LLMs

In recent years, the field of AI has seen a rapid growth in the size and capabilities of Large Language
Models (LLMs). These models have demonstrated remarkable performance in a wide range of natural
language processing tasks, but their increasing size has posed challenges for deployment and raised
concerns about their environmental and economic impact due to high energy consumption. One
approach to address these challenges is to use post-training quantization to create low-bit models
for inference [XLS+23, FAHA23, CCKS23, TCS+24]. This technique reduces the precision of
weights and activations, significantly reducing the memory and computational requirements of LLMs.
The trend has been to move from 16 bits to lower bits, such as 4-bit variants [FAHA23, LTT+23].
However, post-training quantization is sub-optimal, even though it is widely used in industry LLMs.

Recent work on 1-bit model architectures, such as BitNet [WMD+23], presents a promising direction
for reducing the cost of LLMs while maintaining their performance. Vanilla LLMs are in 16-bit
floating values (i.e., FP16 or BF16), and the bulk of any LLMs is matrix multiplication. Therefore,
the major computation cost comes from the floating-point addition and multiplication operations. In
contrast, the matrix multiplication of BitNet only involves integer addition, which saves orders of
energy cost for LLMs. As the fundamental limit to compute performance in many chips is power, the
energy savings can also be translated into faster computation.

In addition to computation, the process of transferring model parameters from DRAM to the memory
of an on-chip accelerator (e.g., SRAM) can be expensive during inference. There have been attempts
to enlarge SRAM to improve throughput, but this introduces significantly higher costs than DRAM.
Compared to full-precision models, 1-bit LLMs have a much lower memory footprint from both a
capacity and bandwidth standpoint. This can significantly reduce the cost and time of loading weights
from DRAM, leading to faster and more efficient inference.

In this work, we introduce a significant 1-bit LLM variant called BitNet b1.58, where every parameter
is ternary, taking on values of {-1, 0, 1}. We have added an additional value of 0 to the original 1-bit
BitNet, resulting in 1.58 bits in the binary system. BitNet b1.58 retains all the benefits of the original
1-bit BitNet, including its new computation paradigm, which requires almost no multiplication
operations for matrix multiplication and can be highly optimized. Additionally, it has the same energy
consumption as the original 1-bit BitNet and is much more efficient in terms of memory consumption,
throughput and latency compared to FP16 LLM baselines. Furthermore, BitNet b1.58 offers two
additional advantages. Firstly, its modeling capability is stronger due to its explicit support for feature
filtering, made possible by the inclusion of 0 in the model weights, which can significantly improve
the performance of 1-bit LLMs. Secondly, our experiments show that BitNet b1.58 can match full
precision (i.e., FP16) baselines in terms of both perplexity and end-task performance, starting from a
3B size, when using the same configuration (e.g., model size, training tokens, etc.).

2 BitNet b1.58

BitNet b1.58 is based on the BitNet architecture, which is a Transformer that replaces nn.Linear with
BitLinear. It is trained from scratch, with 1.58-bit weights and 8-bit activations. Compared to the
original BitNet, it introduces some modifications that we summarize below.

Quantization Function. To constrain the weights to -1, 0, or +1, we adopt an absmean quantization
function. It first scales the weight matrix by its average absolute value, and then round each value to
the nearest integer among {-1, 0, +1}:

W̃ = RoundClip(
W

µ + ϵ
,−1, 1), (1)

RoundClip(x, a, b) = max(a,min(b, round(x))), (2)

µ =
1

nm

∑

ij

|Wij |. (3)

The quantization function for activations follows the same implementation in BitNet, except that
we do not scale the activations before the non-linear functions to the range [0, Qb]. Instead, the
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Models Size Memory (GB)↓ Latency (ms)↓ PPL↓

LLaMA LLM 700M 2.08 (1.00x) 1.18 (1.00x) 12.33
BitNet b1.58 700M 0.80 (2.60x) 0.96 (1.23x) 12.87

LLaMA LLM 1.3B 3.34 (1.00x) 1.62 (1.00x) 11.25
BitNet b1.58 1.3B 1.14 (2.93x) 0.97 (1.67x) 11.29

LLaMA LLM 3B 7.89 (1.00x) 5.07 (1.00x) 10.04
BitNet b1.58 3B 2.22 (3.55x) 1.87 (2.71x) 9.91
BitNet b1.58 3.9B 2.38 (3.32x) 2.11 (2.40x) 9.62

Table 1: Perplexity as well as the cost of BitNet b1.58 and LLaMA LLM.

Models Size ARCe ARCc HS BQ OQ PQ WGe Avg.

LLaMA LLM 700M 54.7 23.0 37.0 60.0 20.2 68.9 54.8 45.5
BitNet b1.58 700M 51.8 21.4 35.1 58.2 20.0 68.1 55.2 44.3

LLaMA LLM 1.3B 56.9 23.5 38.5 59.1 21.6 70.0 53.9 46.2
BitNet b1.58 1.3B 54.9 24.2 37.7 56.7 19.6 68.8 55.8 45.4

LLaMA LLM 3B 62.1 25.6 43.3 61.8 24.6 72.1 58.2 49.7
BitNet b1.58 3B 61.4 28.3 42.9 61.5 26.6 71.5 59.3 50.2
BitNet b1.58 3.9B 64.2 28.7 44.2 63.5 24.2 73.2 60.5 51.2

Table 2: Zero-shot accuracy of BitNet b1.58 and LLaMA LLM on the end tasks.

activations are all scaled to [−Qb, Qb] per token to get rid of the zero-point quantization. This is
more convenient and simple for both implementation and system-level optimization, while introduces
negligible effects to the performance in our experiments.

LLaMA-alike Components. The architecture of LLaMA [TLI+23, TMS+23] has been the de-
facto backbone for open-source LLMs. To embrace the open-source community, our design
of BitNet b1.58 adopts the LLaMA-alike components. Specifically, it uses RMSNorm [ZS19],
SwiGLU [Sha20], rotary embedding [SAL+24], and removes all biases. In this way, BitNet b1.58
can be integrated into the popular open-source software (e.g., Huggingface, vLLM [KLZ+23], and
llama.cpp2) with minimal efforts.

3 Results

We compared BitNet b1.58 to our reproduced FP16 LLaMA LLM in various sizes. To ensure a fair
comparison, we pre-trained the models on the RedPajama dataset [Com23] for 100 billion tokens.
We evaluated the zero-shot performance on a range of language tasks, including ARC-Easy [YBS19],
ARC-Challenge [YBS19], Hellaswag [ZHB+19], Winogrande [SBBC20], PIQA [BZB+19], Open-
bookQA [MCKS18], and BoolQ [CLC+19]. We also reported the validation perplexity on the
WikiText2 [MXBS16] and C4 [RSR+19] datasets.

We compared the runtime GPU memory and latency of both LLaMA LLM and BitNet b1.58. The
results were measured using the FasterTransformer3 codebase, which is well-optimized for LLM
inference latency on GPU devices. The 2-bit kernel from Ladder [WMC+23] is also integrated for
BitNet b1.58. We reported the time per output token, as it is the major cost for inference.

Table 1 summarizes the perplexity and the cost for BitNet b1.58 and LLaMA LLM. It shows that
BitNet b1.58 starts to match full precision LLaMA LLM at 3B model size in terms of perplexity,
while being 2.71 times faster and using 3.55 times less GPU memory. In particular, BitNet b1.58 with
a 3.9B model size is 2.4 times faster, consumes 3.32 times less memory, but performs significantly
better than LLaMA LLM 3B.

2https://github.com/ggerganov/llama.cpp
3https://github.com/NVIDIA/FasterTransformer
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Figure 2: Decoding latency (Left) and memory consumption (Right) of BitNet b1.58 varying the
model size.

Models Size Max Batch Size Throughput (tokens/s)

LLaMA LLM 70B 16 (1.0x) 333 (1.0x)
BitNet b1.58 70B 176 (11.0x) 2977 (8.9x)

Table 3: Comparison of the throughput between BitNet b1.58 70B and LLaMA LLM 70B.

Table 2 reports the detailed results of the zero-shot accuracy on the end tasks. We followed the pipeline
from lm-evaluation-harness4 to perform the evaluation. The results show that the performance gap
between BitNet b1.58 and LLaMA LLM narrows as the model size increases. More importantly,
BitNet b1.58 can match the performance of the full precision baseline starting from a 3B size. Similar
to the observation of the perplexity, the end-task results reveal that BitNet b1.58 3.9B outperforms
LLaMA LLM 3B with lower memory and latency cost. This demonstrates that BitNet b1.58 is a
Pareto improvement over the state-of-the-art LLM models.

Memory and Latency We further scaled up the model size to 7B, 13B, and 70B and evaluated the
cost. Figure 2 illustrates the trends of latency and memory, showing that the speed-up increases as the
model size scales. In particular, BitNet b1.58 70B is 4.1 times faster than the LLaMA LLM baseline.
This is because the time cost for nn.Linear grows with the model size. The memory consumption
follows a similar trend, as the embedding remains full precision and its memory proportion is smaller
for larger models. Both latency and memory were measured with a 2-bit kernel, so there is still room
for optimization to further reduce the cost.

Energy We also estimate the arithmetic operations energy consumption of both BitNet b1.58 and
LLaMA LLM. We focus mainly on the calculation for matrix multiplication, since it contributes
the most to the cost of LLMs. Figure 3 illustrates the composition of the energy cost. The majority
of BitNet b1.58 is INT8 addition calculation, while LLaMA LLM consists of both FP16 addition
and FP16 multiplication. According to the energy model in [Hor14, ZZL22], BitNet b1.58 saves
71.4 times arithmetic operations energy consumption for matrix multiplication on 7nm chips. We
further reported the end-to-end energy cost for models with 512 tokens. Our results show that as the
model size scales, BitNet b1.58 becomes increasingly more efficient in terms of energy consumption
compared to the FP16 LLaMA LLM baseline. This is due to the fact that the percentage of nn.Linear
grows with the model size, while the cost from other components is smaller for larger models.

Throughput We compare the throughput of BitNet b1.58 and LLaMA LLM with 70B parameters
on two 80GB A100 cards, using pipeline parallelism [HCB+19] so that LLaMA LLM 70B could be
run on the devices. We increased the batch size until the GPU memory limit was reached, with a
sequence length of 512. Table 3 shows that BitNet b1.58 70B can support up to 11 times the batch
size of LLaMA LLM, resulting an 8.9 times higher throughput.

4https://github.com/EleutherAI/lm-evaluation-harness
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Figure 3: Energy consumption of BitNet b1.58 compared to LLaMA LLM at 7nm process nodes. On
the left is the components of arithmetic operations energy. On the right is the end-to-end energy cost
across different model sizes.

Models Tokens Winogrande PIQA SciQ LAMBADA ARC-easy Avg.

StableLM-3B 2T 64.56 76.93 90.75 66.09 67.78 73.22
BitNet b1.58 3B 2T 66.37 78.40 91.20 67.63 68.12 74.34

Table 4: Comparison of BitNet b1.58 with StableLM-3B with 2T tokens.

BitNet b1.58 is enabling a new scaling law with respect to model performance and inference
cost. As a reference, we can have the following equivalence between different model sizes in 1.58-bit
and 16-bit based on the results in Figure 2 and 3.

• 13B BitNet b1.58 is more efficient, in terms of latency, memory usage and energy consump-
tion, than 3B FP16 LLM.

• 30B BitNet b1.58 is more efficient, in terms of latency, memory usage and energy consump-
tion, than 7B FP16 LLM.

• 70B BitNet b1.58 is more efficient, in terms of latency, memory usage and energy consump-
tion, than 13B FP16 LLM.

Training with 2T Tokens The number of training tokens is a crucial factor for LLMs. To test
the scalability of BitNet b1.58 in terms of tokens, we trained a BitNet b1.58 model with 2T to-
kens following the data recipe of StableLM-3B [TBMR], which is the state-of-the-art open-source
3B model. Both models were evaluated on a benchmark that consists of Winogrande [SBBC20],
PIQA [BZB+19], SciQ [WLG17], LAMBADA [PKL+16], and ARC-easy [YBS19]. We reported
the zero-shot accuracy in Table 4. For tasks measured with accuracy and normalized accuracy, we
take the average of the two. The results of StableLM 3b at 2T tokens are taken directly from its
technical report. Our findings shows that BitNet b1.58 achieves a superior performance on all end
tasks, indicating that 1.58-bit LLMs also have strong generalization capabilities.

4 Discussion and Future Work

1-bit Mixture-of-Experts (MoE) LLMs

Mixture-of-Experts (MoE) have proven to be a cost-effective approach for LLMs. While it signifi-
cantly reduces the computation FLOPs, the high memory consumption and inter-chip communication
overhead limit its deployment and application. These challenges can be addressed by 1.58-bit LLMs.
Firstly, the reduced memory footprint reduces the number of devices required to deploy MoE models.
Moreover, it significantly reduces the overhead of transferring activations across networks. Ultimately,
there would be no overhead if the entire models could be placed on a single chip.

5



Native Support of Long Sequence in LLMs

In the era of LLMs, the ability to handle long sequence has become a critical demand. One major
challenge for long sequence inference is the memory consumption introduced by the KV caches.
BitNet b1.58 represents a significant step towards native support for long sequences, as it reduces the
activations from 16 bits to 8 bits, allowing the context length to be doubled given the same resources.
This can be further losslessly compressed to 4 bits or even lower for 1.58-bit LLMs, which we leave
as future work.

LLMs on Edge and Mobile

The use of 1.58-bit LLMs has the potential to greatly improve the performance of language models
on edge and mobile devices. These devices are often limited by their memory and computational
power, which can restrict the performance and the scale of LLMs. However, the reduced memory and
energy consumption of 1.58-bit LLMs allows them to be deployed on these devices, enabling a wide
range of applications that were previously not possible. This can greatly enhance the capabilities
of edge and mobile devices and enable new and exciting applications of LLMs. Moreover, 1.58-bit
LLMs are more friendly to CPU devices, which are the main processors used in edge and mobile
devices. This means that BitNet b1.58 can be efficiently executed on these devices, further improving
their performance and capabilities.

New Hardware for 1-bit LLMs

Recent work like Groq5 has demonstrated promising results and great potential for building specific
hardware (e.g., LPUs) for LLMs. Going one step further, we envision and call for actions to design
new hardware and system specifically optimized for 1-bit LLMs, given the new computation paradigm
enabled in BitNet [WMD+23].
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