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Abstract. The technology of Homomorphic Encryption (HE) has
improved rapidly in a few years. The newest HE libraries are efficient
enough to use in practical applications. For example, Cheon et al. (ASI-
ACRYPT’17) proposed an HE scheme with support for arithmetic of
approximate numbers. An implementation of this scheme shows the best
performance in computation over the real numbers. However, its imple-
mentation could not employ a core optimization technique based on the
Residue Number System (RNS) decomposition and the Number Theo-
retic Transformation (NTT).

In this paper, we present a variant of approximate homomorphic
encryption which is optimal for implementation on standard computer
system. We first introduce a new structure of ciphertext modulus which
allows us to use both the RNS decomposition of cyclotomic polynomials
and the NTT conversion on each of the RNS components. We also sug-
gest new approximate modulus switching procedures without any RNS
composition. Compared to previous exact algorithms requiring multi-
precision arithmetic, our algorithms can be performed by using only word
size (64-bit) operations.

Our scheme achieves a significant performance gain from its full RNS
implementation. For example, compared to the earlier implementation,
our implementation showed speed-ups 17.3, 6.4, and 8.3 times for decryp-
tion, constant multiplication, and homomorphic multiplication, respec-
tively, when the dimension of a cyclotomic ring is 32768. We also give
experimental result for evaluations of some advanced circuits used in
machine learning or statistical analysis. Finally, we demonstrate the prac-
ticability of our library by applying to machine learning algorithm. For
example, our single core implementation takes 1.8 min to build a logistic
regression model from encrypted data when the dataset consists of 575
samples, compared to the previous best result 3.5 min using four cores.
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1 Introduction

As the growth of big data analysis have led to many concerns about security and
privacy of data, researches on secure computation have been highlighted in cryp-
tographic community. Homomorphic Encryption (HE) is a cryptosystem that
allows an arbitrary circuit to be evaluated on encrypted data without decryp-
tion. It has been one of the most promising solutions that make it possible to
outsource computation and securely aggregate sensitive information of individu-
als. After the first construction of fully homomorphic encryption by Gentry [20],
several researches [7,11,16-18] have improved the efficiency of HE schemes.

There are a few software implementations of HE schemes based on the Ring
Learning with Errors (RLWE) problem such as HE1ib [25] of the BGV scheme [7]
and SEAL [32] of the BFV scheme [6,18]. These HE schemes are constructed
over the residue ring of a cyclotomic ring (with a huge characteristic) so they
manipulate modulo operations between high-degree polynomials, resulting in a
performance degradation. For an efficient implementation of polynomial arith-
metic, Gentry et al. [21] suggested a representation of cyclotomic polynomials,
called the double-CRT representation, based on the Chinese Remainder Theorem
(CRT). The first CRT layer uses the Residue Number System (RNS) in order to
decompose a polynomial into a tuple of polynomials with smaller moduli. The
second layer converts each of small polynomials into a vector of modulo integers
via the Number Theoretic Transform (NTT). In the double-CRT representation,
an arbitrary polynomial is identified with a matrix consisting of small integers,
and this enables an efficient polynomial arithmetic by performing component-
wise modulo operations. This technique became one of the core optimization
techniques used in the implementations of HE schemes [1,25,32].

Cheon et al. [11] recently suggested an HE scheme for arithmetic of approx-
imate numbers, called HEAAN. The main idea of their construction is to consider
an RLWE error as a part of an error occurring during approximate computations.
Besides homomorphic addition and multiplication, it supports an approximate
rounding operation of significant digits on packed ciphertexts. This approximate
HE scheme shows remarkable performance in real-world applications that require
arithmetic over the real numbers [27,28].

However, the original scheme had one significant problem in the use of the
double-CRT representation. The rounding operation of HEAAN can be done by
dividing an encrypted plaintext by a ratio of two consecutive ciphertext moduli,
so a ciphertext modulus should be chosen as a power of two (or some prime).
This parameter choice makes it hard to implement the HE scheme on the RNS
representation. Consequently, the previous implementation [10] took a longer
time to perform homomorphic operations than other implementations of HE
schemes under the same parameter setting.

Our Contribution. In this paper, we present a variant of HEAAN based on the
double-CRT representation of cyclotomic polynomial ring elements. The main
idea is to exploit a basis consisting of some approximate values of a fixed base
as our moduli chain. Every encrypted message in HEAAN contains a small noise
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from approximate computations. The approximate rounding operation of our
scheme yields an additional error from approximation, but it does not destroy
the significant digits of an encrypted message as long as the precision of the
approximate bases is higher than the precision of the plaintexts. In addition, by
selecting approximate bases satisfying some condition for the NTT conversion,
we take the advantages of double-CRT representation while maintaining the
functionalities of the original scheme.

We also introduce some modulus switching algorithms that can be computed
without RNS composition. To be more precise, some homomorphic operations
of the original HEAAN scheme (e.g. homomorphic multiplication) require non-
arithmetic operations such as modulus raising and reduction, which are difficult
to perform based on the RNS representation. As a result, the previous implemen-
tation required multi-precision arithmetics instead of working on typical word-
size integers in hardware architecture (e.g. 64-bit processor). Our new modulus
switching techniques can substitute the non-arithmetic operations in the previ-
ous scheme. These algorithms are RNS-friendly, that is, they can be represented
using only word operations without RNS composition.

We implemented our scheme and compared with the original one to show
the performance benefit from a full RNS system. For efficient implementation
in the NTT and modulus operations, we adapt harvey’s butterfly and barrett
modulus reduction techniques. Our full RNS variant improves the performance
of basic operations by nearly ten times compared to the original HEAAN [10,11].
The decryption and homomorphic multiplication timings are reduced from 135
and 1,355 ms down to 7.8 and 164 ms, respectively, when evaluating a circuit of
depth 10.

We also present experimental results for homomorphic evaluation of analytic
functions and statistic functions. It took 160 ms to compute the multiplicative
inverse, exponential function, or sigmoid function with inputs of 32-bit precision
on 2'3 slots, yielding an amortized time of 20 ms per slot. In the case of statistic
functions, it took 307 and 518 ms to obtain the mean and variance of 23 real
numbers, respectively.

Finally, we implemented a variant of the gradient descent algorithm to show
that our HE library can perform complex computations in real-world appli-
cations. Our single-core implementation took about 1.8 min to obtain a logistic
regression model from homomorphically encrypted dataset consisting of 575 sam-
ples each of which has eight features and a binary class information, compared
to previous best result of 3.5 min using a machine with four cores [27].

Technical Details. Let N be a power-of-two integer and R = Z[X]/(X~ +1) be
the ring of integers of the (2IV)-th cyclotomic field. For a fixed base ¢, we choose
an RNS basis {qo,...,qr} which is a set of coprime integers of approximately
the same size as the base ¢. For an integer 0 < ¢ < L, a ciphertext at level-¢
is a pair of polynomials in Rg, = R/(Q; - R) for Q; = Hf:() ¢;- The rescaling
procedure transforms a level £ encryption of m into a level (¢ — 1) encryption of
q L. m, which is an approximation of ¢! - m with almost the same precision.
The original scheme is more flexible in choice of ciphertext modulus since it can
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rescale a plaintext by an arbitrary number compared to the fixed base ¢ of our
RNS variant. However, our scheme has a significant improvement in performance.

Our scheme can support the NTT representation of RNS decomposed poly-
nomials as the double-CRT representation in the BGV scheme [7,21]. The NTT
conversion can be done efficiently when the approximate bases ¢;’s are prime
numbers satisfying g = 1 (mod 2N). We give a list of candidate bases to show
that there are sufficiently many distinct primes satisfying both conditions for
the double-CRT representation.

The homomorphic multiplication algorithm of HEAAN includes modulus
switching procedures that convert an element of Ry into Rp.g for a sufficiently
large integer P and switch back to the original modulus ). These non-arithmetic
operations are difficult to perform on the RNS system, so one should recover the
coefficient representation of an input polynomial. For an optimization, we adapt
an idea of Barjard et al. [3] to suggest approximate modulus switching algo-
rithms with small errors. Instead of exact computation in the original scheme,
our approximate modulus raising algorithm finds an element a € Rp.¢ satisfying
a =a (mod Q) and ||a]] < P - Q for a given polynomial a € Rg. Conversely,
the approximate modulus reduction algorithm returns an element b € Rg such
that P-b~ b for an input polynomial be Rp.g. These procedures give relaxed
conditions on output polynomials, but we can construct algorithms that can be
performed on the RNS representation. In addition, we show that the correctness
of the HE system is still guaranteed with some small additional error.

Related Works. There have been several studies [5,8,14,15] about homomor-
phic arithmetic over real or integral numbers besides the HEAAN scheme. However,
these approaches do not support the rounding operation which is a core algo-
rithm in approximate computation, and consequently, the required bit-size of a
ciphertext modulus grows exponentially on the depth of a circuit to be evaluated.

Many of HE schemes use a polynomial ring structure with large coefficients.
Some recent researches accelerated expensive ring operations by exploiting the
RNS representation. Bajard et al. [3] proposed a full RNS variant of the BFV
scheme [6,18]. Their implementation could avoid the need of conversion between
RNS and coefficient representations of an ring element during homomorphic
computations. After that, Halevi et al. [24] presented a simplified method with
reduced noise growth. Based on this idea, one can implement an HE scheme
without any numerical library for big integer arithmetics. This technique has
been applied to SEAL [32] after v2.3.1.

Road-Map. In Sect. 2, we review the basics of the HEAAN scheme and introduce
fast base conversion. In Sect. 3, we present a method to improve overall homo-
morphic operations from RNS representation. In Sect. 4, we describe a full RNS
variant of HEAAN. Finally, Sect.5 shows experimental results with optimization
techniques.
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2 Background

All logarithms are base 2 unless otherwise indicated. We denote vectors in bold,
e.g. a, and every vector in this paper will be a column vector. We denote by (-, -)
the usual dot product of two vectors. For a real number r, | ] denotes the nearest
integer to r, rounding upwards in case of a tie. For an integer ¢, we identify
ZN(—q/2,q/2] as a representative of Z, and use [a], to denote the reduction of
the integer a modulo ¢ into that interval. We use « <— D to denote the sampling
x according to a distribution D and U(S) denotes the uniform distribution over
S when S is a finite set. We let A denote the security parameter throughout the
paper: all known valid attacks against the cryptographic scheme under scope
should take £2(2*) bit operations. A finite ordered set B = {pg,p1,. .-, prx_1} of
integers is called a basis if it is pairwise coprime.

2.1 Approximate Homomorphic Encryption

Cheon et al. [11] proposed an HE scheme that supports an approximate arith-
metic on encrypted data. The main idea is to consider an error of homomor-
phic operation (e.g. encryption, multiplication) as part of computational error
in approximate computation.

For a power-of-two integer N, we denote by K = Q[X]/(X~ +1) the (2N)-th
cyclotomic field and R = Z[X]/(X" + 1) its ring of integers. The residue ring
modulo an integer ¢ is denoted by R, = R/qR. The HEAAN scheme uses a fixed
base integer ¢ and constructs a chain of moduli Q, = ¢’ for 1 < ¢ < L. For a
polynomial m(X) € K, a ciphertext ct is called an encryption of m(X) at level
lLifct e R?Qz and [(ct, sk)]g, = m(X). Homomorphic operations between cipher-
texts of HEAAN can be done by the key-switching with special modulus suggested
in [21]. For input encryptions of m(X) and mq(X) at a level £, their homomor-
phic addition and multiplication satisfy [(Ctadd,sk)]g, =~ m1(X) + mo(X) and
[{Ctmuits sk)] @, & m1(X) - ma(X), respectively.

The main advantage of this scheme comes from its intrinsic operation called
the rescaling procedure. The rescaling algorithm, denoted by RS(-), transforms
a level £ encryption of m(X) into an encryption of ¢! - m(X) at level (£ — 1).
It can be considered as an approximate rounding operation or an approximate
extraction of the most significant bits of the encrypted plaintext. By reducing
the size of the plaintext, we can reduce the speed of modulus consumption in
the following computation.

For packing of multiple messages, there has been suggested a method to
identify an element of a cyclotomic field with a complex vector via a vari-
ant of the canonical embedding. Let ( = exp(—mi/N) be a (2N)-th root of
unity in C. Recall that the canonical embedding of K is defined by a(X) —
(a(¢),a(¢?),...,a(¢*N~1)). Note that there is no need to store all entries of o(a)
to recover a(X) since a(¢?) = a(¢2N—7). We denote by 7 : K — CN/? a variant
of the canonical embedding, defined by

7 a(X) = (a(¢), al¢®), .., alC*N ))o< 2,
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and use it as a decoding function for HEAAN. The inverse of this homomorphism
7 is used as the encoding function to pack (IN/2) complex numbers in a single
polynomial.

This HE scheme can be applied to fixed-point arithmetic on real (complex)
numbers. We multiply a scale factor of ¢ to a number z with finite precision
and use the value m = ¢ - z for encryption. Then encryption of m will satisfy
[{ct,sk)]g, =~ gz, which is an approximate and a scaled value of z. A product of
two encryptions of ¢- z; and -z will return an encryption of ¢2- z1 z», which is a
scaled value of z; - zo by ¢?. We can perform the rescaling procedure to maintain
the original scaling factor q.

2.2 The RNS Representation

Let B = {po,...,pr—1} be a basis and let P = Hf;olp,». We denote by [
the map from Zp to Hf;ol Zp,, defined by a — [a]g = ([a]p,)o<i<k- It is a ring
isomorphism from the Chinese Remainder Theorem (CRT) and [a]g is called the
residue number system (RNS) representation of a € Zp. The main advantage
of the RNS representation is to perform component-wise arithmetic operations
in the small rings Z,,, which reduces the asymptotic and practical computation
cost. This ring isomorphism over the integers can be naturally extended to a
ring isomorphism [-|g : Rp — Ry, X -+ x Ry, _, by applying it coefficient-wise
over the cyclotomic rings.

2.3 Fast Basis Conversion

Brakerski [6] introduced a scale-invariant HE scheme based on the LWE prob-
lem, and Fan and Vercauteren [18] suggested its ring-based variant called BFV.
Barjard et al. [3] proposed a variant of the BFV scheme that maintains the RNS
representation of ciphertexts during homomorphic computation. This scheme
presents a new algorithm, called the fast basis conversion, to convert the residue
of a polynomial into a new basis that is coprime to the original basis.

More precisely, for a basis {pg, ..., Pr—1,90,--,qe—1}, let B={po,...,pr—1}
and C = {qo,...,q—1} be its subbases. Let us denote their products by
P = Hf:_ol p; and Q = H?;(l) gj, respectively. Then one can convert the RNS
representation [a]c = (a(?),...,a*"V) € Z, x -+ x Z,,_, of an integer a € Zg
into an element of Z,, X --- x Z,, , by computing

-1
conve_p([ale) = | Y [ ¢y, -4 (mod p;) :

J=0 0<i<k
where ¢; = [[;/; qj» € Z. We note that Zﬁ;é[am ~(j;1]q]. -§; = a+ Q- e for some
small e € Z satistying |[a + @ - e| < (¢/2) - Q. This implies that Conve_([alc) =
[a + Q - €] can be considered as the RNS representation of the integer a + Q - e
with respect to the basis B.
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3 Approximate Bases and Full RNS Modulus Switching

The approximate HE scheme of Cheon et al. [11] has its own advantages in
arithmetic of approximate numbers. However, a ciphertext modulus could not
be chosen as a product of coprime integers, so its implementation [10] requires
expensive multi-precision modular arithmetic. In this section, we introduce an
idea to avoid the use of a power-of-two base ciphertext modulus and enable the
RNS decomposition in the HEAAN scheme. We also propose new algorithms to
switch a ciphertext modulus on the RNS components.

3.1 Approximate Basis

The main advantage of HEAAN comes from the rescaling algorithm RS(-). It allows
us to perform the rounding of an encrypted plaintext, that is, we can efficiently
convert an encryption of m into a ciphertext encrypting the scaled message
g~ - m. In the case of its application to fixed-point arithmetic, for example, we
multiply fixed-point numbers z; by a common scale factor of ¢ to maintain the
precision of plaintexts. After homomorphic multiplication, we obtain an encryp-
tion of the product ¢? - 2122 of two numbers ¢ - z; and ¢ - zo. Then we perform
the rescaling algorithm to get an encryption of ¢ - 2129 and maintain the original
scale factor ¢. For this reason, the ciphertext modulus should be chosen as a
power of a fixed base Q; = ¢° to have the same scaling ratio. This point made
it difficult to use the RNS representation on HEAAN.

To overcome this obstacle, we propose an idea to use an RNS basis consisting
of approximate values of a fixed base. In more detail, given the scale factor ¢ and
bit precision 7, we find a basis C = {qo, ..., qr,} such that ¢/q, € (1—-27"7,14+277)
for  =1,..., L. This approximate basis allows us to use the RNS representation
of polynomials while keeping the functionality of the HE scheme. We set the
level ¢ ciphertext modulus as Q; = Hf:o qi, so that the ciphertext moduli in the
consecutive levels have almost the same ratio Q¢/Q¢—1 = q¢ =~ g. The rescaling
algorithm with a factor of ¢, converts an encryption of m at level ¢ into an
encryption of g, * -m at level (£—1). This operation has an additional error from
the approximation of ¢, but we can manage the size of an error not to destroy
the significant digits of a plaintext. An approximation error is bounded by

1 1 -1,

g m—q " m|=[1=q gl |q"m| <277 fg " ml,
so it does not destroy the significant digits of an encrypted plaintext when 7 is

sufficiently larger than the bit precision of an encrypted plaintext.

3.2 Approximate Modulus Switching

The use of an approximate basis enables an implementation of the HEAAN scheme
using the RNS representation. However, HEAAN includes some non-arithmetic
operations that cannot be directly implemented on the RNS components. Specif-
ically, homomorphic multiplication and rescaling procedure require an exact
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Algorithm 1. Approximate Modulus Raising

1: procedure ModUp D(a(0)7a(1)7.”7a(£—1))
2 (@®,...,a%*"Y) — conves([ale).

3 return (3%, 0., alD),
4: end procedure

modulus switching algorithm, and the key-switching technique for rotation and
conjugation also contains the same operation (see [9,11] for details).

We remark that the goal of modulus switching algorithms in [11] can
be reduced to a problem that finds a ciphertext with a small error while
keeping the correctness of the HE scheme. In this section, we propose an
idea to approximately perform the modulus switching algorithms on the RNS
representation. A full RNS variant of HEAAN will be described in the next
section based on this method. Throughout this paper, we will denote by

D = {po,---sPk-1,90,---,qe—1}, B={po,---,pr—1}, andC—{Qo,---7qe 1} an
RNS basis and its subbases, respectively, with P = ]_L o Pi and Q = H = 0 q;-

Approximate Modulus Raising. Suppose that we are given the RNS repre-
sentation [a]c of an integer a € Zg. The purpose of the approximate modulus
raising algorithm, denoted by ModUp, is to find the RNS representation of an
integer a € Zpg with respect to the basis D satisfying two conditions a = a
(mod Q) and |a] < P - Q. From the first condition [a]¢c = [a]c, we only need to
generate the RNS representation of a with the basis B and it can be done by
applying the fast conversion algorithm. See Algorithm 1 for a description of the
approximate modulus raising.

As described i 1n Sect 2.3, the fast conversion algorithm in Algorithm 1 returns
[a+Q - e]p € Hl o Ly, for some integer e with |e| < £/2. Therefore, the output
of ModUp algorithm is the RNS representation of @ := a + @ - e with respect to
the basis D = BUC, as desired.

Approximate Modulus Reduction. Contrary to the modulus raising algo-
rithm, the approximate modulus reduction algorithm, denoted by ModDown, takes
an RNS representation [b]p of an integer b € Zp.q as an input and aims to com-
pute [b]c for some integer b € Z¢ satisfying b ~ P! -b.

We point out that the goal of approximate modulus reduction is reduced
to a problem of finding small a = b—P-b satisfying a = b (mod P). The
RNS representation Lb p is the concatenation of [b]g and [ble. We first take
the first component [b]g = (0¥, ...,b* 1), which is the same as [a]g for a =
[l;] p € Zp. Then we apply the fast conversion algorithm to compute the RNS
representation [a]c of @ = a + P - e for some small e. Note that a = b (mod P)
and |a| < P - @ from the property of Convp_,c(:). Finally, we derive the RNS

representation of b = P~!. (b — @) with respect to the basis C by computing
—1 -
(Hf:_ol pz') . ([b]c — [d]c> € H?;(l] Zq;. See Algorithm 2 for a description.
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Algorithm 2. Approximate Modulus Reduction
1: procedure ModDownp ¢ (b, E(I)N, o B(kf[’l)
2: @®,...,a" V) — conv_c(?,..., bt"1)
for 0 <j</{do
; -1 )
b = (IS p) - (6% =a) (mod ).
end for
return (b, ... p=Y),
end procedure

Word Operations. In the rest of the paper, the arithmetic operations
(e.g. addition and multiplication) modulo a “word-size” integer will be called
the word operations. Now suppose that p;’s and g;’s are word-size integers.
As mentioned before, the fast conversion algorithm Conve_.5([a]c) outputs the

L=1( (j) A . .
tuple (Zj:é[a(”'qj' 1}% ~g;j (mod pi)>0<i<k for ¢; = [l;.;q- Each com-

ponent can be computed using the values [q;l]qj = Il qj_,1 (mod ¢;) and
[G;]p; = I1;2; 9 (mod p;) while avoiding the computation of big integers ;.
In addition, if we pre-compute and store these values, which depend only on
the bases B and C, then the computation cost of Conve_,(-) algorithm can be
reduced down to O(k - £) word operations.

Complexity of Approximate Modulus Switching. Our modulus switching
algorithms have an advantage, in that they can be computed only using word
operations. For example, ModUp._, ([a]¢) requires exactly the same computation
as Conve_,5([a)e), so its total complexity is bounded by O(k-¢) word operations.
The approximate modulus reduction algorithm needs to compute b = p-1.
(b9 — @)) (mod ¢;) for 0 < j < £ as well as the fast conversion algorithm.
The computation of b)’s can be done in O(¢) word operations using the pre-

-1
computable constants [P~1], = (Hi:ol pi) (mod g;). Therefore, the total

complexity of ModDown is bounded by O(k - £ 4 £) = O(k - £) word operations.
The approximate modulus switching algorithms can be extended to algo-
rithms over the polynomial rings as

-1 k—1 -1
MOdUPCHD(') :H qu - H sz‘ x H wa
=0 i=0 =0

k—1 -1 -1
ModDownp_,¢(+) : H Ry, x H Ry, — H Ry,
=0 3=0 §=0

by applying them coefficient-wise. These operations require O(k - £ - N) word
operations where NN is a degree of a power-of-two cyclotomic ring.
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4 A Full RNS Variant of the Approximate HE

In this section, we propose a variant of HEAAN based on the full RNS representa-
tion. For simplicity, we choose a power-of-two integer N and consider the (2N)-th
cyclotomic field K = Q[X]/(XY +1) and its ring of integers R = Z[X]/(XN +1).
An arbitrary element of K is expressed as a polynomial with rational coefficients
of degree strictly less than N, and identified with the vector of its coefficients
in QV. The rounding operation on K and the modulo operation on R will be
defined by the coefficient-wise rounding and modulo operations, respectively. In
the following, we present a concrete description of a full RNS variant of HEAAN.

Setup(q, L, n; 1*). A base integer ¢, the number of levels L, and the bit precision
7 are given as inputs with the security parameter .

e Choose a basis D = {po, ..., Pr—1,90,q1,- - -,qr} such that ¢; /g € (1-27",1+
27M) for 1 < j < L. We write B = {po,...,pk-1}, Ce = {qo,-..,qe}, and
Dy =BUCr={po,--yPk—1,90,---,q¢} for 0 <L < L. Let P = Hf;olp, and

L
Q= szo ;-

e Choose a power-of-two integer N.

e Choose a secret key distribution xey, an encryption key distribution Xenc,
and an error distribution e, over R.

o Let pi = [[ocircpipi Pir for 0 < i < k. Compute the constants [p;]y, and
[p; M]p, for 0 <i<k,0<j<L.

-1

o Compute the constants [P~!], = (Hf;ol pi) (mod g;) for 0 < j < L.

o Let Grj = [lo<jicsjiny g for 0 < j < £ < L. Compute the constants [gr,;]p,
and [q;;]qj for0<i<k,0<j<t<L.

The constants [p;]y, and [p; '],, are necessary to compute the conversion
Convi_c,(-) in the ModDownp,_c,(-) algorithm. The constants [P~!],, are also
used in the algorithm. On the other hand, the constants [y, ], and [(j(zjl]q]. are
used to compute Conve, .5(+) for the ModUpe, ,p, () algorithm.

We choose an RNS basis D consisting of word-size integers, so that every
homomorphic arithmetic can be expressed using word operations (e.g. uint64_t).
The elements of B are called the special primes and used in the key-switching
procedure. They do not have to be close to g, but their product P should be large
enough to get a small key-switching error. The zero-level ciphertext modulus
Qo = qo is not necessarily approximate to the base integer ¢, but it should
be larger than the modulus of the encrypted plaintext for the correctness of
decryption.

KSGen(s1, s2). For given secret polynomials sq, s € R, sample uniform elements
(@O, ... o)) — U (Hi:ol R,, x Hf:o qu) and an error €’ + Yer. Output
the switching key swk as

k—1 L
(swk® = (10,0, ... swk 0 = (040 @40 ) ¢ TT R2 < [ 2,
i=0 =0
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where b’ — —a/() . 554+ ¢’ (mod p;) for 0 < i < k and b'*+7) — —q/k+7) .5, 4
[Plg, - 51 +¢€ (mod g;) for 0 < j < L.

This procedure generates a switching key to convert a ciphertext with the
secret key s into a ciphertext encrypting the same message with the secret key
s9. If @’ is the element of Rp.g such that [a']p = (a’(),...,a’*+L)) then the
switching key swk can be seen as the RNS representation of (b',a’) € Rp.g in
the basis D for b’ = —a’ - so+ P-s1 + € (mod P- Q).

KeyGen.

e Sample s « xkey and set the secret key as sk «— (1, s).
e Sample (a(?,...,aM)) U (HJL:() qu) and e < Yerr. Set the public key as

K ( KO — (p@) g 2 )
pk — (p (07 a) € Ry, ) _on
where b0) « —al) . s+ e (mod g;) for 0 < j < L.
e Set the evaluation key as evk < KSGen(s?, s).

The encryption key is the RNS representation of an RLWE sample (b =
—a-s+e,a)€ R2QL in the basis Cr. The evaluation key evk can be used to per-
form the relinearization operation during homomorphic multiplication. One can
generate additional public keys for more functionalities. For example, we need
to publish a rotation key (resp. conjugation key) to compute the permutation
(resp. conjugation) on plaintext slots as described in [11].

Encpi(m). For m € R, sample v < Xenc and eg, €1 < Xerr. Output the ciphertext
ek N ' '

ct= <Ct(]))0§ng S jo where ct@ — v pk' + (m 4 e, e1) (mod g;) for
0<j<L.

Dece(ct). For ct = (ct(j))oﬁg, output (ct(®), sk) (mod gp).

The encryption algorithm generates the RNS representation of a ciphertext
ct satisfying [(ct,sk)]q, &~ m. Thus its decryption returns an approximate value

of the input plaintext. The encrypted plaintext should satisfy ||m||e < go/2 in
order to recover a correct value.

Add(ct,ct’). Given two ciphertexts ct = (ct(o), . ,ct(e)) ,ct' = (ct’(o), ey ct’(e))
€ ngo jo, output a ciphertext ctyqgq = (Ctgjl')oqq where ctgﬁz — ctl) 4’
(mod g;) for 0 < j < /.

Multes(ct,ct’). Given two ciphertexts ct = (ct(j) = (c(()j),cgj))) and ct’ =
—_— 0<j<e
ct’'t) = (c/(]),cl(])) , perform the following procedures and return a
0 0<j<t

ciphertext ctmu € Hﬁ:o Rﬁj.
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1. For 0 < j </, compute

& e (mod g,

4D — DD 4 D LD (mod g5,

d(Qj) — cgj)cl(j) (mod g;).
2. Compute ModUp;, ,p, (dé0)7.. d(e)) (d( ). d(k 2 d( ). d(e))
3. Compute

k-1 14
&= (@ =@",d”),....a"" = @ &) e [T r2, < [[ RS,
i=0 =0

where ¢t = czg) -evk® (mod p;) and Sl dgj) -evk®*7) (mod q;) for
0<i<hk, 0<j<C
4. Compute

(é(()o), . ,é((f)) «— ModDownp,_.¢, (5(()0)’ o é(()k+€)> 7

(650)7 . éﬁ‘)) «— ModDownp,_.¢, (550)’ o Egk-i-e)) .

5. Output the ciphertext ctmue = (Ctr(‘nl)Jlt)OSjSe where ctfgg,t — (é(()j) + d(()j), égj) +

dgj)) (mod g;) for 0 < j < 2.

We first generate an extended ciphertext (dg,d;,ds) that decrypts to the
product of the input plaintexts under the extended secret key (1, s, s?). As men-
tioned before, we use the evaluation key to transform ds into a normal ciphertext.
Our homomorphic multiplication algorithm is somewhat more complicated com-
pared to the ordinary HEAAN because we switch the ciphertext moduli approxi-
mately using our approximate algorithms.

L 2
€ [l;—o Ry, com-

RS(ct). For a level-¢ ciphertext ct = (ct(j ) = (c(()j ), c(lj )))

0<j<e
pute 02(3) — q[l . (cl(-j) — cE”) (mod g;) for ¢ = 0,1 and 0 < j < £. Output the
; ’ 1GG) — (/@) 1) ) =1 p2
ciphertext ct’ «— (ct (cg”e1”) 0<j<tot €[l;-0 R,

For a ciphertext ct encrypting a plaintext m, the rebcahng algorithm returns
an encryption of q[l -m ~ q~-m at level ({—1). The output ciphertext contains
an additional error from the approximation of ¢ to ¢ and the rounding of the
input ciphertext. The correctness of our scheme will be shown in Appendix A
with noise analysis.

5 Software Implementation

In this section, we provide experimental results with parameter sets. In our
implementation, every number is stored as an unsigned 64-bit integer, which
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is standard on computer system. All homomorphic operations provided in our
scheme are expressed as word size operations defined on this standard variable
type, so our HE library does not depend on any multi-precision numerical library.
Our implementation was performed on a machine with an Intel Core i5 running
at 2.9 GHz processor on a single-threaded mode, and its source code is publicly
available at https://github.com/HanKyoohyung/FullRNS-HEAAN.

We adapt the discrete Fourier transformation to transform a polynomial
represented by its coefficient vector into the vector of evaluations at primitive
roots of unity modulo a prime. The modulus switching algorithms require the
coefficient representation, but we can manipulate the NTT representation for
arithmetic operations. Consequently, the complexity of homomorphic operations
mainly depends on this transformation between two representations. We imple-
mented the NTT conversion and its inverse based on the butterfly techniques of
Cooley-Tukey [12] and Gentleman-Sande [19], respectively. We also optimized
these algorithms using Montgomery modular multiplication and butterfly algo-
rithms [26] and Barrett reduction algorithm [4].

5.1 Parameter Sets and Benchmark

We propose parameter sets for multiplicative depths L from 5 to 15 in Table 1.
It also shows experimental results for encryption, decryption, addition, scalar-
multiplication, and multiplication (together with the rescaling operation) of the
original implementation HEAAN and our RNS variant denoted by HEAAN-RNS.

The smallest ciphertext modulus ¢y should be larger than an encrypted
plaintext for the correctness of the decryption circuit. We use log ¢y ~ 61 and
logq; =~ 55 for i = 1,..., L. We present a list of primes in Appendix B. For a
fair comparison, we choose a power-of-two integer @), of the same bit size as the
implementation of the original HEAAN. The coefficients of error polynomials are
sampled from the discrete Gaussian distribution of standard deviation o = 3.2
and a secret key is chosen randomly from the set of signed binary polynomials
with the Hamming weight h = 64. We used the estimator of Albrecht et al. [2]
to guarantee that the proposed parameter sets achieve at least 80-bit security
level against the known attacks against the LWE problem.

Our implementation of the RNS variant improved the performance of basic
operations by approximately ten times compared to the original HEAAN [10,11].
For example, the encryption, decryption, addition, and multiplication are
speedups of 9.1, 17.3, 7.4, and 8.3 times, respectively, when evaluating a cir-
cuit of depth L = 10.

In Appendix A, we analyze the growth of errors and provide theoretical
upper bounds on the growth during homomorphic operations. Figure 1 depicts
the bit precisions of an encrypted plaintext during an evaluation of homomorphic
multiplications for L = 10 with the parameter set in Table 1. We also provide
an empirical result on the precision loss.

Our scheme exploits the approximate rounding operation which introduces
an additional error. We observed that the precision of an output value is reduced
by about three bits compared to the original HEAAN scheme. However, this small
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Table 1. Comparison of experimental results of HEAAN and HEAAN-RNS

Variant L |N |logq [logQL] |Enc Dec |Add |Cmult |Mult&RS
(ms) | (ms) | (ms) | (ms) | (ms)
HEAAN 521 55 [336 332|106 |30 |204 740
10| 21° 611 530 [135 |32 [281 |1,355
15 | 216 886 1,465 | 344 |70 |762 | 4,169
HEAAN-RNS | 52|55 |336 31 146 |29 25 85
10 215 611 58 |7.8 4.3 | 44 164
15| 216 886 177 |10.0 | 15.5 | 125 563

38

—e— Theoretical lower bound

—m—  Experimental result

Output precision (bit)

01 2 3 4 5 6 7 8 910
Consumed level

Fig. 1. Bit precision of encrypted plaintext

gap is not an critical issue in most of applications where an approximate result
is sufficient for their purposes. In addition, we can easily increase the precision
by setting a larger basis while still keeping advantages in the efficiency.

5.2 Homomorphic Evaluation of Statistical and Analytic Functions

The HEAAN scheme can evaluate an arbitrary analytic function by exploiting its
polynomial approximation. Table 2 shows a parameter set and evaluation timings
for the multiplicative inverse, the exponential function, and the sigmoid function
o(z) = (1+exp(—x))~!. We adapt the approximation method for multiplicative
inverse of [11, Algorithm 2] and evaluate the approximate polynomial of degree
15. For the exponential and sigmoid functions, we use the Taylor expansions
up to degree 7. The output ciphertexts have at least 32 bits of precision. These
computations can be performed over multiple slots simultaneously, yielding a
better amortized performance per slot.

We also evaluated mean and variance functions that are the most common
quantities in statistical analysis. There have been a few attempts to evaluate
these measurements on an HE system. For example, Lauter et al. [30] took
about six seconds to obtain the square sum of 100 integers without division by
the number of elements.
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Table 2. Homomorphic evaluation of analytic functions

Function | Degree | N | logq | [log QL] | Total time | Amortized time
x7 1 15 2t 55 | 281 167 ms 21 s
exp 7 2t |55 | 281 164 ms 20 s
Sigmoid | 7 2|55 281 161 ms 19 s

For computation of mean and variance of n numbers, we encrypt all the num-
bers in a single ciphertext and compute their summation by applying the partial
sum algorithm [9, Algorithm 2]. It repeats to rotate an encrypted plaintext vec-
tor and add it to the original ciphertext. The resulting ciphertext encrypts the
mean value in every plaintext slot. The following example describes the partial
sum algorithm when n = 4.

(m17m27m37m4) = (m1>m2am3>m4) + (m37m47m17m2>

= (mi1 + mg, mg + mg, mq + msz, ma + Mmy)
4 4 4 4

— E my, E mi, E my, E m;
i=1 i=1 i=1 i=1

Contrary to previous work, the approximate HE scheme can perform a division
by n by multiplying the constant |g/n] and rescaling by one level. In the case
of the variance function, we first square an input ciphertext and apply the same
procedure to get a ciphertext encrypting the mean square in its plaintext slots.
Then the variance of input data can be computed by subtracting the square
of the encrypted mean value. We summarize the parameter and experimental
results for homomorphic evaluation of statistical functions on n = 2'3 numbers
in Table 3.

5.3 Homomorphic Training of Logistic Regression Model

The security and privacy issues have arisen on machine learning because the
training of a model requires a large database consisting of sensitive informa-
tion while the prediction phase is based on private information of individuals.
The technology of an HE system is a promising solution to address these issues
by aggregating encrypted personal data and building a model without informa-
tion leakage. ML Confidential [23] and CryptoNets [22] are notable examples
of leveraging the technology of HE for secure outsourcing of machine learning
applications.

In particular, HEAAN [9,11] is a strong candidate for machine learning tasks
since most of training and prediction algorithms contain an arithmetic over the
real numbers. For example, iDASH Security and Privacy Competition in 2017!

! http://www.humangenomeprivacy.org/2017/.
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Table 3. Homomorphic evaluation of statistic functions

Number of elements (n) | N |loggq | [log QL] | Total time
Mean | 2" 2155 171 307 ms
Variance 518 ms

announced a task which aims to build a logistic regression model from homomor-
phically encrypted genomic data. To be precise, for a given dataset consisting of
n samples (x;,y;) € R? x {1} of d features and a binary class, the goal was to
find a weight vector 8 € R4 which minimizes the loss function

J(B) = log(1+exp(—B"z))
=1

where z; = y; - (1, 2;) for 1 < i < n. The best solution [27] adapted the HEAAN
library [10] to evaluate Nesterov’s accelerated gradient descent method [31].

We implemented the same algorithm based on HEAAN-RNS to show its versa-
tility and efficiency. For a fair comparison, we adapt the previous encoding and
evaluation strategies: the whole database is encrypted in a single ciphertext and
the sigmoid function of the gradient descent algorithm is approximated to its
least squares approximation. Our implementation took about 1.8 min to train a
model based on Low Birth Weight Study (Ibw) [29] and Umaru Impact Study
(uis) [33] datasets using a single core processor, compared to 3.5 min of the pre-
vious best solution [27] using four cores, while maintaining the accuracy and
area under the ROC curve (AUC) of the resulting classifier (Table4).

Table 4. Homomorphic training of logistic regression model

Dataset | Num | Num Num of | N |loggq | [logQL] | Total Accuracy | AUC
of fea- | of sam- | itera- time
tures ples tions
lbw 9 189 5 216 140 | 1061 1.82min | 69.73% | 0.62
uis 8 575 5 216 1 40 1061 1.83min | 74.43% 0.59

6 Conclusions and Future Work

In this article, we demonstrate a variant of HEAAN based on the RNS represen-
tation of polynomials. In the previous implementation, ciphertext moduli were
selected as powers of a fixed base for the correctness of rescaling process. We
resolve the issue by taking an RNS basis consisting of primes close to the base
integer. In addition, we propose variants of modulus switching algorithms which
can be computed without any RNS conversion or multi-precision arithmetic.
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One disadvantage of our method is that it makes a trade-off between per-
formance and accuracy. Because of the approximation error of an RNS basis,
our scheme may have less accuracy compared to the original scheme when using
the same parameter. Recently, SEAL version 3.0 [32] has been released. It sup-
ports a full RNS variant of HEAAN, which is slightly different from our scheme.
The main difference is that a ciphertext of SEAL contains a scaling factor which
can be changed during computation. In other words, it continuously tracks the
computation and updates the scaling factor information. This method does not
have the above accuracy issue, but it is less intuitive and causes new problems
related to the management of scaling factors. For example, the addition (resp.
multiplication) of ciphertexts of different scaling factors (resp. levels) requires
pre (resp. post) processing. It would be an interesting future work to combine the
two methods to design a new scheme with enhanced functionality and flexibility.
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Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT) (No.
2017R1A5A1015626). M. Kim was supported by the National Institute of Health (NIH)
under award number U01EB023685 and R0O1GM118574 as well as Cancer Prevention
Research Institute of Texas (CPRIT) grant RR180012.

A Correctness and Noise Estimation

Our improved HE scheme is based on two main techniques- approximate basis
and modulus switching, and both of them induce some additional errors. In
this section, we estimate the size of errors and show that they can be managed
by choosing a proper HE parameter set. For convenience, we adapt the same
notations as in Sect. 4.

A.1 Approximate Modulus Switching

Fast Conversion. Our modulus switching algorithms are based on the fast
basis conversion algorithm introduced in [3]. For the RNS representation [a]c of

an integer a € Zg,, the fast conversion algorithm Conve_.g([alc) computes the

RNS representation of a’ = Zf;é [ald) . qj—l]qj - §; with respect to the basis B.

Then there exists an integer e € [—£/2,¢/2] satisfying a’ = a+ Q - e since @’ = a
(mod Q) and |a'| < (¢/2) - Q.

Approximate Modulus Raising. Let [a]c be the RNS representation of an
integer a € Zg. The approximate modulus raising algorithm ModUp._,([alc)
returns the concatenation of Conve_.z(Jalc) and [ae, which is the RNS repre-
sentation of a + @ - e for some integer e € [—¢/2,¢/2] from the property of the
fast conversion algorithm.

Approximate Modulus Reduction. Let [b]
be the RNS representation of an integer

= (0D) for 0<i<k+0—1

D
b € Zpgq. It satisfies that
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(@, ..., b*=D) = [a]g for a = [b]p. From the property of the fast conver-
sion algorithm, we have that (a?),...,a~1) «— Convg_c([a]g) is the RNS
representation of @ := a + P - e for some integer e such that |a| < (k/2) - P.

Let b = P~ . (b—a). It is an integer from b = a = a (mod P). Then
the output of ModDownp_¢([b]p) is equal to [ble since b = P~ . (b —a) =

1 5 ) )
(Hf:_ol pi) (0% +) — @) (mod g;). Note that the integer b € Zg satisfies
lb—P~1.b| =P 1.|a| < k/2.

A.2 Homomorphic Operations

In this paragraph, we will focus on homomorphic operations provided in
our scheme. We define |la||s and |ja|l; by the relevant norms on the coeffi-
cients vector (ag,...,an—1) of a(X). Let { = exp(—mi/N). Recall that the
canonical embedding map on K = Q[X]/(X™ + 1) is defined by a(X) —
(a(¢),a(¢?),...,a(¢®N=1)). Its £oo-norm is called the canonical embedding norm,
and denoted by ||a]|2" = ||o(a)|leo- Note that ||a||2" = ||7(a)]|e for the decoding
map 7 and for any a € K.

We specify the distributions Xkey, Xerr, and Xenc for noise analysis of our
scheme. For an positive integer h, the secret key distribution e, follows a
uniform distribution over the set of signed binary vectors in {0,41}" whose
Hamming weight (the number of nonzero coefficients) is exactly h. The error
distribution ye, chooses a polynomial s by sampling its coefficients indepen-
dently from the discrete Gaussian distribution of variance o2 for a real o > 0.
The encryption key distribution yenc draws each entry in the vector from {0, £1},
with probability 1/4 for each of 41 and —1, and probability being zero 1/2.

We follow the same methodology for noise estimation as in [11,13,21]. Assume
that a polynomial a(X) is sampled from one of the distributions used in our
HE scheme. Since a(¢) is the inner product of coefficient vector of a and the
fixed vector (1,¢,...,¢N 1) of Euclidean norm v/N, the random variable a(¢)
has variance Vi, = 02 - N, where o2 is the variance of each coefficient of a.
Similarly, a(¢) a the variance of V, = ¢?N/12 (resp. N/2), when a is sampled
from U(R,) (resp. Xenc)- In particular, it has variance h when a(X) is chosen from
Xkey- Moreover, we can assume that a(¢) is distributed similarly to a Gaussian
random variable over complex plane since it is a sum of many independent and
identically distributed random variables. Every evaluations at root of unity ¢/
share the same variance. Hence, we will use 6 - v/V as a high-probability bound
on the canonical embedding norm of a when each coefficient has a variance
V. For a multiplication of two independent random variables close to Gaussian
distributions with variances V; and Vs, we will use a high-probability bound

16 -/ V1 Va.

Encryption. Our encryption algorithm does not use any approximate modulus
switching algorithms. Therefore, it has exactly the same noise with the original
implementation of HEAAN scheme. For a plaintext m € R, it returns a ciphertext
ct € Ry, which satisfies (ct,sk) = m + e (mod Q) for some e € R such that

le]|2" < Bene = 8v/20 N + 60V N + 160vhN from Lemma 1 of [11].
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Addition. It does not induce any additional error since (ctadd, sk) = (ct,sk) +

(ct/, sk} (mod Q).

Rescaling. Let ct = (ct(j) = (cgj), cgj))>0§j§€ € Hf‘:o jo be an input cipher-

text of level ¢, and ct’ «— (ct’(j) = (cg(j), cll(j)))0< e T RS(ct) be the output
<j<e-

ciphertext obtained by cg(j) — q[l . (cz(-j) - cgé)) fori=0,1and 0 < j < /.

Let ¢; € Rg, be the polynomials satisfying [¢;]c, = (cgo)7 . ,cy)) fori=0,1.
Then we have that [¢le, , = (c;(o),..wc;(hl)) for ¢, = q; ' (¢ — [cilg) =
Lq[l - ¢; ], that is, our rescaling procedure computes the exactly same ciphertext
as in the original HEAAN scheme with RNS representation. Therefore, we have
[(ct’,sk)]q, , = q; ' - [{ct,sk)]q, + ers for some e, € K satisfying |[e]|2" < By =

N/3 - (3 +8v/h) from Lemma 2 of [11].

Multiplication. Suppose that we are given two level-£ ciphertext ct and ct’. The
output of the first step in the multiplication algorithm is the RNS representation
of (do, d1,da) € R, such that do+d;-s+dy-s* = (ct,sk)-(ct’,sk) (mod Q). The
output of the second step is the RNS representation of do = da+Q,-e with respect
to the basis Dy for some e € R satisfying ||da oo < 1(€+1)- Q. We may assume
that the integral polynomial dy behaves like the sum of (¢ + 1) independent and
uniform random variables over R, , so its variance is V = 2(¢41)- (Q? - N/12).

Since the first (k+£¢+1) components of the evaluation key evk can be viewed
as an encryption of P - s?2 modulo P - Q, the output ct of the third step is
an encryption of P -dy - 5% = P -dy - s? (mod P - Q). Its error is bounded by
16-VV - VNo2=8,/({+1)/6-Q; 0N =/({+1)/2 Bis - Qs.

The fourth step reduces the modulus of ct using the modulus reduction algo-
rithm. Tt returns a ciphertext ct € R, such that P-ct ~ ct. The error P-ct —ct
behaves as if it is a sum of k£ independent and uniform random variables on Rp,
so its variance is k- Vp = k- P2N/12. Finally, dividing by P, we obtain the error
after modulus reduction. Therefore, ct is an encryption of dy - s? with an error
bounded by /(£ +1)/2- P™! - B Q¢ + Vk - Bis.

B List of Primes

A ciphertext modulus is chosen to be a product of distinct primes and each of
them satisfies the following conditions:

|27N 45 — ]'| <277
¢; =1 (mod 2N),

for some integers «, 17, and V. In other words, g; is an approximation of 2% with
n-bit precision, and there is a (2N)-th primitive root of unity modulo g;. All
primes are expressed using hexadecimal system to show how close they are to
powers of two.
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There are 22 primes including gy = 0x20000000000b0001 satisfying these
conditions for k = 61, n = 37, and N = 2'5. We have 33 primes when (x,7, N) =
(55,31,2%%), and 26 prime numbers when (k,7n, N) = (49,25, 21%). The following
is a list of 15 primes (among 33 primes for the second parameter) that were used
in the implementation described in Table 1.

[80000000080001, 80000000130001, 7fffffffe90001,
80000000190001,800000001d0001, 7££££££fbf0001,
7££££££fbd0001,80000000440001, 7££££££ffba0001,
80000000490001,80000000500001, 7f££fffffaa0001,
TEff£f££a50001,800000005e0001, 7Tf£ff££F9F0001]
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