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Abstract

Behavioral larval zebrafish screens leverage a high-throughput small molecule discovery

format to find neuroactive molecules relevant to mammalian physiology. We screened a library

of 650 central nervous system active compounds in high replicate to train a deep metric learning

model on zebrafish behavioral profiles. The machine learning initially exploited subtle artifacts

in the phenotypic screen, necessitating a complete experimental re-run with rigorous well-wise

randomization. These large matched phenotypic screening datasets (initial and well-randomized)

provided a unique opportunity to quantify and understand shortcut learning in a full-scale,

real-world drug discovery dataset. The final deep metric learning model substantially

outperforms correlation distance–the canonical way of computing distances between

profiles–and generalizes to an orthogonal dataset of novel druglike compounds. We validated

predictions by prospective in vitro radio-ligand binding assays against human protein targets,

achieving a hit rate of 58% despite crossing species and chemical scaffold boundaries. These

newly discovered neuroactive compounds exhibited diverse chemical scaffolds, demonstrating

that zebrafish phenotypic screens combined with metric learning achieve robust scaffold hopping

capabilities.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2024. ; https://doi.org/10.1101/2024.02.22.581657doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.22.581657
http://creativecommons.org/licenses/by/4.0/


Introduction

The mechanism of action of central nervous system (CNS) drugs remains poorly

understood, even for those used for decades (e.g., ketamine1). The complex nature of G-Protein

Coupled Receptor (GPCR) and ion channel-mediated pathways of the vertebrate nervous

system2–11 exacerbate the problem. Because of the prevalence of polypharmacology in

neuroactive drugs12, a “magic bullet” single-target approach to drug discovery13 falls short14.

Phenotypic screening circumvents these problems by identifying compounds that may interact

with individual or multiple targets15,16. These screens prioritize desired and often biologically

complex readouts of induced phenotypes on higher-level model systems. Despite historically

limited throughput, rapid phenotypic profiling of thousands of compounds in vivo is now

possible using larval zebrafish17–21. These vertebrates have high levels of shared genetics22,23 and

CNS anatomy24 (with humans) and scale to high-throughput testing of complex behavioral

readouts2–11. Phenotypic screening in larval zebrafish, combined with human-target-based

cheminformatic methods such as the Similarity Ensemble Approach (SEA25,26), and enrichment

factor (EF) calculations27,10,28,29, have enabled novel drug discovery and target deconvolution for

neuroactive phenotypes in mammals.

However, high-content zebrafish behavioral screening data are both a blessing and a

curse for pharmacological studies because of the challenges in extracting and comparing features

in the collected video data. In previous work, larval zebrafish, plated on 96-well plates, were

treated with various compounds, and various stimuli — including acoustic stimuli and

high-intensity light of different colors — elicited a broad spectrum of behavioral responses in the

fish 10,28. Videos recorded each well, from which a “motion-index” (MI) time series is computed

to measure bulk motion over time (Figure 1a-d, 7 Figure 1b and Eq 1). Traditionally, the

phenotypic distance between MI time series is computed using correlation distance28. Other

approaches have included classification and video analysis using machine learning2,30–34.

Correlation distance reliably discriminates antipsychotic28 and anesthetic10,28,29 phenotypes but

fails to distinguish more subtle phenotypes. Indeed, fish rarely respond to stimuli in a one-to-one

video frame correspondence when each frame is 1/30th of a second, breaking a basic assumption
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of how these MI distances are traditionally computed. In an experiment with various assays, the

strength of the response to each assay may vary in drug-treated fish; however, correlation

distance values all frame contributions equally.

We sought a distance metric that leveraged zebrafish phenotypic screens for a broader

range of induced behaviors. Specifically, we used a class of neural networks uniquely suited for

learning distances between pairs of inputs (twin neural networks, twin-NNs, Figure 1e). These

models were initially developed for biometric fingerprint verification35, subsequently finding use

in many machine learning (ML) tasks, such as “one-shot learning” on small datasets for image

classification36,37.

In this work, we screened a library of 650 ligands (from the SCREEN-WELL

Neurotransmitter Set, “NT-650”, Methods) in high-replicate and trained twin-NNs to relate drugs

via the phenotypes they induce in larval zebrafish. We constructed the screens from the ground

up with ML model training in mind, but the models still exploited unanticipated artifacts in the

resulting screen dataset via an undesirable process known more broadly as “shortcut learning” 38.

We studied the effect of retraining the deep metric learning models on synthetically randomized

datasets that we designed to test for confounding effects, ultimately driving the redesign and

re-collection of a new experimental screen. Models trained on the revised screen cluster diverse

neuroactive compounds in a way that corresponds strikingly well with known neuroactive

biology, and they phenotypically link structurally distinct compounds by scaffold hopping39,40.

Finally, the learned distance metric generalized to a screening dataset of novel compounds

unseen during training, automating the discovery of novel neuroactive compounds active on

human receptors when tested prospectively in vitro.

Results

Twin neural networks identify drug replicates from complex behavioral

readouts

We collect a high-throughput phenotypic dataset based on the NT-650 neurotransmitter

library screened in high replicate (7-10 replicates per drug) for training machine learning models.
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We plate larval zebrafish onto 96-well plates (8 fish per well) and dose wells with drugs at a 10

µM concentration, a reasonable dose for in-vivo primary screening of neuroactives (Figure 1).

Various stimuli, such as acoustic sounds, light stimulus, and physical tapping of the multi-well

plate stage, are performed to elicit diverse behavioral responses in the fish, as optimized

previously7. We record videos of the fish's behavior throughout the experiment. For each well,

we encode and convert videos of larval fish into aggregate motion over time, resulting in a

time-series vector, or “motion index” (MI).

We evaluate how well twin-NNs can identify whether two MI profiles, such as those

shown in Figure 3a-b, originate from the same category — specifically, whether they are caused

by the same drug. This is in contrast to other correlation metrics that often fail to reliably

recognize when different samples have been affected by the same drug, especially when the

resulting phenotypic changes are subtle. By necessity, a Twin-NN must learn which time points

are most informative and how to correct for slightly or partially misaligned MI traces to correctly

group same-drug replicates accurately across a diverse range of pharmacology and their

concomitant behavioral traces. Twin-NNs consist of “twin” encoding layers, which share model

weights and operate on a pair of different inputs (MI traces) to output a distance reflecting

whether the MIs represent replicates of the same drug (distance = 0) or traces from mismatched

drugs (distance > 1)35.

We filter the dataset to remove human drugs that do not alter zebrafish behavior, namely

those whose MI traces cannot be distinguished from vehicle controls with a simple random forest

model (see Methods, Supplementary Figure S1). Drugs can fail to induce strong behavioral

responses in zebrafish due to many factors, including differences in cross-species biology,

concentration, incubation time, absorption route, or other factors. The neural network embedding

architecture of each half of the model is a design choice; we implement a fully connected

multi-layer perceptron (Twin-NN) (Figure 1e) as a baseline model and a second architecture

motivated by DenseNet 41 (Twin-DN) as a more computationally expressive alternative. We

explore recurrent architectures – neural networks designed to operate on sequences, such as the

LSTM42 or GRU42,43 – but find that the relatively long length of our time series limited the

feasibility of these approaches (not shown).
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Prior work using zebrafish behavioral MI for scaffold-hopping and phenotypic drug

discovery predominantly uses vector distance calculations to compare MI traces without

warping, alignment, or relative weighting of individual time points. Compared to these

conventional correlation and Euclidean distance approaches, both the Twin-NN and Twin-DN

models discern positive (matched) and negative (mismatched) drug replicate pairs with

drastically improved performance (Figure 2a), with Twin-DN scores achieving 0.97 ROC-AUC

and 0.98 PRC-AUC (Figure 2b-c). We observe a near-perfect ability of the learned distance

metric to discern MIs of replicates from the same drug from MIs of different drugs. Further, a

Uniform Manifold Approximation and Projection (UMAP) 44 plot (Figure 2d), calculated over

the means of the time series for all replicates of all 650 drugs in the screen, yields pronounced,

discrete, and localized clusters. While heartening, this performance was substantially higher than

we had anticipated and to a suspicious degree: many compounds do not reliably induce larval

zebrafish behavioral phenotypes. Nevertheless, these results suggested that nearly all the

compound library’s experimental replicates could be grouped by the Twin-DN model with

near-perfect fidelity. We wondered whether the model’s exceptional performance might rely

instead on shortcut learning38 or the exploitation of hidden artifactual cues encoded within the

data that were invisible to human researchers but perceivable by the deep learning model.

Machine learning exploits high-frequency components and plate-location

effects

We evaluate the presence of shortcut learning in our model by testing how well the

learned distance metric generalizes to an archival quality control (QC) screen (Methods)

performed at an earlier time on data never seen by the metric-learning models. For this screen,

we select 14 drugs with diverse mechanisms of action (MOAs) and assay them, also in high

replicate, along with a vehicle (dimethyl sulfoxide; DMSO) control and lethal control (eugenol).

To test generalizability, we train a k-nearest neighbors classifier on the QC replicates using one

of three distance metrics: Twin-NN, Twin-DN, or correlation distance (Methods). For most

drugs, the Twin-DN distance metric underperforms correlation distance (Figure 2e, orange bars).

We suspected that the expressive Twin-DN models readily memorize the high-frequency
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components in the time series, which may come from artifacts such as plate vibrations or

high-frequency noise in the imaging sensor. Indeed, when we ablate the high-frequency

components of the time series (with a Hanning smoothing filter45 as implemented in the scipy

package46), Twin-DN performance drops precipitously on the original NT-650 screen, with

Twin-SN performance likewise dropping, but to a lesser extent (Figure 2 c-d). These results

indicate that the learned distance metrics exploit the high-frequency components of the NT-650

screen data and that these hidden “shortcut” patterns do not generalize to the separate QC screen.

Per standard practice, we had already attempted to address potential overfitting or data

leakage by splitting the training and validation sets by drug - leaving no replicates of any one

drug in common between train and validation splits. Additionally, we performed a set of further

machine-learning soundness checks (scrambling data labels and randomizing the training data

features (Supplementary Figure S2), so the Twin-DN model’s evident exploitation of

high-frequency signal was initially surprising. However, all compounds in the NT-650 library

arrived from the supplier in preset layouts, meaning all replicates of the same compounds (or all

positive pairs) in the dataset always corresponded to identical plate locations. In contrast,

mismatched pairs could come from any combination of compound locations across and within

the plates. Our original experimental design for the screen did not control for the potentially

confounding layout effect. Even a simple machine-learning architecture might be able to learn

light-based patterns for distinguishing different location pairs. The Twin-DN model performance

took the biggest hit with data smoothing, suggesting that the more expressive a model is, the

more readily it can exploit feature shortcuts.

An optimized experimental screening design

To unequivocally control for within-plate positional confounding effects, we perform a

second high replicate screen of NT-650, but this time with the treatments fully robotically

randomized across plates and wells (Methods). We also include wells treated with a high dose of

the anesthetic eugenol as a control7 baseline for lethality. We take a near-identical approach to

that of pre filter for drugs without effect as in the original screen, except that we use the random
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forest model to label the MI profile into three possible bins: “active,” “inactive,” and “lethal”

(Methods, Supplemental Figure S1).

We train new Twin-NN and Twin-DN models on the newly collected experimentally

randomized NT-650 dataset (NT-650-revised). While the SNN models achieved slightly lesser

performance on the randomized dataset than on the original non-randomized (NT-650-naive)

well layout dataset (e.g., 0.84 vs. 0.89 AUROC for Twin-NN and 0.84 vs. 0.97 AUROC for

Twin-DN), their performance still dramatically exceeded that of correlation distance and

Euclidean distance approaches (0.66 and 0.62 AUROC, respectively). Striking differences in the

distribution of Twin-NN and Twin-DN distances for the positive and negative pairs (Figure 3a)

agree with greater ROC-AUC and PRC-AUC performance (Figure 3b-c). Fast-DTW, a popular

dynamic time-warping approach for time series prediction that optimizes the alignment between

time series 47, marginally improves on Euclidean distance and falls short of correlation distance

in classifying positive versus negative pairs. Training these baseline models on the

NT-650-revised screen with computationally smoothed high-frequency components did not

significantly reduce performance, indicating the models no longer rely on high-frequency feature

components.

Another way of assessing model performance is by measuring its ability to identify

replicates of a compound. In the ideal case, a model can identify all replicates for compounds

that induce significant behavioral responses. In practice, experimental replicates will often be

ineffective for many reasons. However, the better a model performs, the more replicates across

drugs it can identify. Although correlation distance identified one replicate for most drugs, it

rarely identified three or more replicates, whereas Twin-NN did so frequently and sometimes

picked up all 7–8 replicates (Figure 3d). This effect is emphasized by the early plateauing of the

cumulative count curve for correlation distance.

Mapping a larval zebrafish “behaviorome”

Using the Twin-NN learned distance metric, we cluster the compounds’ MI traces from

the fully randomized NT-650 screen and visualize the resulting phenotypic landscape by UMAP
44 (Figure 4a). We observed defined clustering and structure within this “behaviorome” view,
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representing a behavior-based pharmacological map of 650 known human drugs in larval

zebrafish. Ineffective drugs populated the yellow region, while drugs inducing behavioral

readout changes favored the violet region. The most robust phenotypes appeared towards the

bottom of the plot, falling in the negative value range for principal component 2 (y-axis) of the

UMAP. One qualitative way to assess the behaviorome layout is whether drugs with similar

known MOAs and indications group together. We highlight several such drugs in this plot with

labels. The SSRIs fluoxetine and paroxetine clustered (labels 2,13) but distinctly separated from

the tricyclic antidepressant clomipramine (label 4), although these shared a broader

neighborhood as expected. This observation is consistent with the intuition that behaviors based

on different classes of antidepressants should be more closely related to each other than to other

classes of neuroactive drugs, such as stimulants. The dopamine D2/3 agonists lisuride and PD

128,907 also appeared in a similar region of space (labels 10,12). Antipsychotics clozapine and

mianserin appeared closely in phenotypic space (labels 1,7). Through the lens of correlation

distance instead (Supplementary Figure S3), we see some similar high-level patterns but less

behaviorome structure. For example, mianserin and loxapine are no longer neighbors; indeed,

mianserin (label 1) appears closer to paroxetine (label 2) than to loxapine (label 7). In other

words, correlation distance places an antipsychotic closer to an SSRI than another antipsychotic,

suggesting a lower clustering quality based on this region's canonical MOAs and indications.

Model generalization and novel drug discovery

We test the ability of the machine learning model to generalize to a library of “novel”

compounds from the DIVERSet, which had been screened months before the NT-650 set. The

goal of this prior screen was novel neuroactive compound discovery rather than quality control

or model training; thus, it traded fewer replicates for greater compound diversity. We previously

used a similar library to discover novel compounds that cause paradoxical excitation in larval

zebrafish 10,28,29. In that study, we performed the phenotypic screen with the novel library, and the

resulting MI traces were compared (using correlation distance) against a reference drug,

etomidate, that consistently induced a strong phenotype in the larval zebrafish.
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Here, we investigate if the learned distance model outperforms correlation distance in

identifying novel compounds from the DIVERSet library that cause similar phenotypes. Instead

of focusing on a single known reference drug, we calculate a distance matrix for every known

compound in the NT-650 set against every novel compound in the DIVERSet library. Figure 5a

shows an example of the top 5 compounds matching fluoxetine’s phenotype. Evaluating

performance in this context was challenging, as the novel compounds lack known bioactivity

ground-truth labels.

As one means of assessment, we use an established systems pharmacology tool, the

similarity ensemble approach (SEA25), to predict MOAs for all novel DIVERSet compounds

from their chemical structures alone and compare these predictions against the established

MOAs of NT-650 compounds that were their closest neighbors in the learned distance-metric

space (see Methods). While SEA predictions are not perfect, they illuminate an otherwise dark

MOA landscape of chemical matter. In a “phenosearch” approach, we rank-order and select the

top 500 novel compounds by phenotypic distance to each known drug using correlation distance

and the Twin-NN models.

We observe a striking enrichment for known-target MOAs for the Twin-NN distance over

correlation distance (Figure 5b, d) based on the phenotypic associations for these novel

compounds. Twin-NN identifies more novel compounds with similar MoAs to the drug queries

than correlation distance (Figure 5b). Unexpectedly, random selection (as a null hypothesis;

Figure 5b, violet line) typically outperforms correlation distance at identifying shared MOAs,

highlighting the limitations of correlation distance as a metric for time-series data such as MI.

We also compare distance metrics by examining how often negative control wells match up with

known drugs. With correlation distance, negative controls frequently rank in the top-500

phenosearch list for known drugs, but not by Twin-NN distance (Supplementary Figure S4 a-b).

These findings suggest that the Twin-NNs are more effective than correlation distance at

discovering novel compounds that induce similar phenotypes to known drugs and improve

scaffold-hopping and neuroactive drug discovery for novel chemical matter.
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Experimental validation of learned-distance metric in finding novel

compounds with shared pharmacology

Since the Twin NN models consistently enriched for predicted MOAs of novel

compounds shared with known compounds (Figure 5b), we sought to experimentally test these

learned-distance predictions prospectively in a scaffold-hopping drug-discovery scenario. We

select 12 neuroactive drugs from diverse regions in the behaviorome UMAP (Figure 4a). We

purchase the top 5 novel DIVERSet compounds ranked by Twin-NN distance for each drug (60

compounds in total). We hypothesized that the novel compounds acted through the same protein

targets as those known for the drugs that the novel compounds mimicked phenotypically.

This was a straightforward logic in some cases: for example, IMETIT is a human

Histamine H3 agonist with activity at Histamine H4
48. We purchase and test its five novel

“pheno-matched” compounds for direct binding to human Histamine H3 and H4, discovering

binding of three of the novels to H3, at 1.1µM, 0.99µM, and 2.7µM (binding affinity Ki), and of

one novel to H4 at 5.4 µM (Ki) (Figure 6c). In other cases, the choice of test targets was more

complex, such as for the tricyclic antidepressant clomipramine, an inhibitor of serotonin and

norepinephrine transporters with additional activity against other GPCRs, including serotonergic,

dopaminergic, adrenergic, and histaminergic receptors. Furthermore, a compound’s most potent

activity in humans may not always account for its observed behavior in zebrafish. Off-target or

side activities might cause the most pronounced response in the fish; this is an inherent limitation

in the cross-organism study’s design for polypharmacological drugs. Clomipramine’s phenotypic

location being closer to chlorpromazine than to the SSRIs fluoxetine and paroxetine in the

behaviorome (Figure 4a), illustrates one such case. In humans, the clinical timescales involved in

serotonin reuptake for behavioral modification are much longer 49 than the 1-hour treatment

duration used in our phenotypic screening, so we reasoned that the novel compounds

phenomatched with fluoxetine might have acted through a subset of the targets it shares with

chlorpromazine, such as serotonin 2B (5-HT2B) 50,51. Accordingly, two of clomipramine’s top 5

pheno-matched novel compounds achieve affinity (Ki) of 33 nM and 1.9 µM Kis at 5-HT2B in

prospective testing (Figure 6c).
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We test 216 new compound-target pairs based on 60 unique compounds and 17 unique

protein targets. Of these, 8.3% are active at 10 µM or better Ki (Figure 6a-b; Supp Table T2).

IMETIT has the highest hit rate; 3 of its top 5 novel compounds have at least 50% inhibition at

10 µM or better against at least one of the targets; in the dose-response assays, two yield Ki < 10

µM, and the most potent, compound 58040, has a Ki=0.99 µM for Histamine H3. Overall, 7 of

the 12 drug queries yield at least one novel hit for a 58% per-query hit rate; this corresponded to

a 22% hit rate on a per-compound basis. All the dose-response binding curves from the

secondary assays for the hits are provided (Supplementary Figs S5-S13). Where the tests failed,

we may have picked the wrong subset of a query drug’s protein targets to test against its novel

compounds. For instance, clomipramine has known activities at a substantially wider range of

targets than we could empirically test within the scope of this study, and this may account for

mechanisms of action for those of its novel compounds that did not bind to 5-HT2B.

Learned phenotypic distances enable chemical scaffold hopping

Despite strikingly different chemical structures, the learned distance metric identified

compounds that induced a similar behavioral phenotype in the case studies. We explored this

idea further by comparing ECFP452 (chemical fingerprint Tanimoto distance) versus Twin-NN

phenotypic distance for all possible combinations of two drugs from the randomized

highly-replicated library used for training (Figure 7). Here we define four quadrants: top-left

(low Tanimoto distance, high Twin-NN distance), top-right (high Tanimoto and high Twin-NN),

bottom-left (low Tanimoto and low Twin-NN), and bottom-right (high Tanimoto and low

Twin-NN). We color the dots by the average “drug-likeness” of the compound pair, which we

define as the strength of the phenotype (distance from control) minus the toxicity score (yellow

for non-drug-like/toxic to purple for very drug-like). Of potential interest in drug discovery

efforts, the bottom-right region (dark) highlights where the commonly used cheminformatic

means of comparing two molecules fail, but the Twin-NN distance succeeds.

Tanimoto chemical-structure distance does not correlate with phenotypic distance, except

for isolated cases in the lower left (Figure 7). Most pairs have Tanimoto chemical-structure

distances greater than 0.4, despite sometimes inducing similar phenotypes through putatively
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shared MOAs. Dot size reflects observed MOA similarity, computed as a separate Tanimoto

distance between the vectors of known-target activities for the two drugs derived from the

ChEMBL 23 pharmacology database 48, Methods). The highest concentration of

high-target-similarity compound pairs (large dots) favors regions where phenotypic distance is

low and chemical structure distance is average (0.3–0.7). This enrichment of known-MOA

matches in the presence of good (low) Twin-NN phenotypic distance pairs is consistent with

learned phenotypic distance predicting shared biological mechanisms. We hone in on these

known-drug pairs with several thresholds (>0.2 ChEMBL target-activity similarity, a

chemical-structure distance >0.5, and a Twin-NN phenotypic distance <0.3), which yields 51

known-drug pairs that we rank by biological target similarity (full table provided in

Supplementary Table T3). The drugs in the top pair (7-OH-DPAT and ropinirole) are potent

Dopamine D3 agonists and antiparkinsonian agents. Thus our Twin-NN phenotypic distance

associates known drugs with a shared mechanism of action but high chemical structure distance,

highlighting its usefulness for scaffold hopping.

On the other hand, some pairs of drugs with high phenotypic similarity and middling

structural similarity lack shared MOAs (small dots), which suggests these drugs induce similar

phenotypic effects in larval zebrafish through different, parallel, or unstudied MOAs. These pairs

correspond to a region of the known-drug space of particular interest for drug discovery, and

further studies might explore why these pairs of known drugs are linked phenotypically in our

study through potentially underexplored mechanisms.

Discussion

Deep metric learning models trained on high-replicate phenotypic larval zebrafish screens

identify pairs of drug-like compounds despite experimental variability, group human drugs based

on zebrafish effect, find connections among compounds that traditional chemical data analyses

fail to make, and group structurally distinct novel compounds by biological MOAs. These

observations support using metric learning on large phenotypic screening datasets for drug

discovery and scaffold hopping. Moreover, our first implementation of these complex

learned-distance models fell prey to “shortcut learning,”38 wherein they exploited experimental
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artifacts in the screening dataset to achieve misleadingly high performance that did not

generalize to similar but independent zebrafish screens. This deep mis-learning was nuanced and

eluded conventional cross-validation, soundness checks, and exploratory data analysis tests. We

believe the strategies described here to detect, correct, and stress-test the experimental screening

datasets and revised models will find use in other studies that combine complex biological data

with deep learning models.

Straightforward measurement methods like correlation, Euclidean, or dynamic

time-warping distance fall short when identifying drugs whose replicates induced perceptible but

subtle changes in zebrafish behavior (Figure 3a-b). The main issue is that these methods cannot

differentiate between irrelevant random variations and meaningful changes that illuminate the

underlying pharmacology. Conventional metrics take all time points into account without

weighting their importance. On the other hand, contrastive metric learning models disregard

irrelevant parts of the data (features) and concentrate on the segments that display significant

behavioral differences. For instance, clozapine- and DMSO-treated zebrafish exhibit periods of

reduced motion (Figure 1d, time points 600-700). Clozapine can look like a negative control by

standard correlation methods, which attribute equal importance to periods of inactivity and

activity. In an extreme example, correlation distance scores two traces as almost identical when

comparing a drug that sedates the fish except for a sudden movement spike versus a lethal

control such as eugenol. However, a metric learning model learns that sudden motion spikes

matter in differentiating drugs.

At a more global level, we construct a “behaviorome” - a visual map of drug similarity

based on zebrafish behavior. This landscape, created by pairing zebrafish phenotype with an

appropriate distance metric, reveals relationships between known neuroactive drugs and

identifies underexplored areas with potential for drug discovery. From high-throughput

behavioral screening data and the learned distance metric, we link human drugs directly to the in

vivo vertebrate behaviors they induce. Classical informatic methods falter on diverse chemical

structures, as they rely by necessity on the similar property principle of chemical informatics.53

This is particularly true at activity cliffs,54 where slight chemical structure changes drastically

affect bioactivity. Phenotypic screening, using behavior, circumvents these limitations. Different
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compounds triggering similar zebrafish behaviors may interact with the same targets and

pathways. The learned distance metric complements raw structural similarity (Figure 7),

underlining traditional cheminformatics limitations and opportunities for drug discovery and

scaffold hopping.

We attempted to automate the discovery of novel drug hits for disease-related

mechanisms and pathways in the CNS. For new compounds, such as those from the Chembridge

DIVERSet library, the Similarity Ensemble Approach25,26,54 predicted unknown experimental

MOAs. The metric learning models identified library compounds with marked enrichment in

their predicted MOAs to the MOAs of known drugs, indicating pharmacological similarities

(Figure 5b and d). Instead of relying on in silico validation, we experimentally tested the

predicted MOAs in vitro via prospective radio-ligand binding assays. We found that neuroactive

drugs successfully linked to novel library compounds by phenotype and MOA 58% of the time.

This hit rate surpassed early drug discovery hit rates using high throughput screening (HTS,

0.01-0.14%) or virtual screening (VS, 1-40%).55 Unlike typical HTS or VS hits, behavioral hits

may offer more robust lead series starting points because they, by definition, already trigger an in

vivo effect in zebrafish and show animal tolerance. Many in vitro hits fail in vivo due to

absorption, distribution, metabolism, excretion (ADME) issues, and pharmacodynamic/kinetic

properties such as blood-brain barrier penetration are crucial for neuroactive drugs. However,

deep metric learning on behavioral screening data quickly identified hits that could circumvent

these issues.

In an unintended but instructive project outcome, we grappled with the first metric

learning models silently exploiting shortcut learning on the original dataset, which had not used

randomized plate layouts. Despite passing conventional soundness check analyses, including

label randomization and scrambling input features (y- and x-scrambling), the learning models

exploited subtle experimental dataset artifacts. Pre-determined plate layouts from drug suppliers

might inadvertently teach the models positional effects by exploiting slight irregularities in the

experimental setup, such as minor differences in distance to directional light and sound sources

(Figure 1a). These effects, imprinted in high-frequency components of time-series traces, were

imperceptible to humans but perceptible to deep learning models. This generalizability limitation
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was not an overfitting issue and could not be rectified by refining training-test set splits, such as

scaffold-splitting drugs or time-series trace clustering. Consequently, we re-ran the full-scale

experimental screen with robotically randomized plate layouts on the same compound library to

assess this challenge unequivocally. Indeed, models trained on the original dataset deteriorated

when we computationally smoothed high-frequency components of the motion index traces

(Figure 2b), but those trained on the fit-to-purpose randomized screen remained unaffected

(Figure 3b). While we might instead have attempted to train generative adversarial networks

(GANs)56 to remove shortcut signals computationally,57 complex models such as GANs can be

brittle, and we sought a definitive analysis. As an intriguing challenge, follow-up studies by

those interested in mitigating shortcut learning might find value in comparing new algorithmic

versus the experimental plate-effect removal strategies on these two datasets.

We faced several practical caveats in the metric learning training procedures. Particularly,

mismatched compound pairs within the same pharmacological class may trigger similar

behaviors in zebrafish. We considered using Anatomical Therapeutic Chemical (ATC)58 class or

predicted protein target activity profiles by the Similarity Ensemble Approach (SEA)25,26 to

exclude misleading false-negative compound pairs from model training. However, ATC classes

operate across a hierarchy of varying branch depths, and it is likewise not clear what threshold to

use for SEA-prediction similarity, given the ~2,000 proteins in a target profile. Conversely, we

might incorrectly label compound pairs as positive (false-positives) if they do not elicit a strong

behavioral response. Inactive compounds could result from biological differences between

humans and zebrafish, inactive concentrations, or limited effects on zebrafish behavior in our

particular assay conditions. To tackle this, we deployed a separate random forest (Methods) to

remove inactive traces from positive-pair candidacy before metric learning training as a

provisional solution. Consequently, the ground truth labels of compound phenotypic similarity

used during model training are imperfect and noisy. Whereas improving these weak labels59 may

be an avenue for further refinement, we found them sufficient to train distance metrics robust to

this biological label noise.

Comparing our success rates with conventional single-target-based high throughput

screening (HTS) or virtual screening (VS) presents different hurdles. Since we do not know the
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protein MOA for novel neuroactive compounds a priori, we tested novel compounds against

multiple predicted protein targets. Consequently, we calculate a “best-of” hit rate, which provides

more identification opportunities than a single-target screen. However, the lack of knowledge

about which protein targets the novel compounds impact makes direct comparisons with

per-target success rates problematic. Our overall hit rate was 58%, which implies a 42% chance

that a given query using a known drug would result in no protein-matched hits. These represent

missed opportunities more than methodological failure. Here, errors in MOA prediction for novel

compounds or cryptic but shared protein off-targets may cause unexpected associations between

known and novel compounds. However, as cheminformatic target prediction accuracy improves,

this will further complement the phenotype-based metric learning approach. Finally, we

acknowledge that the larval zebrafish animal model for studying neuroactive drugs has

limitations due to genetic, anatomical and behavioral complexity differences with mammals.

Consequently, we must carefully vet the compounds, pathways, or behavioral phenomena

identified in the larval zebrafish in more advanced animal models and humans to establish their

therapeutic import, which is beyond our scope. This study’s blend of screening technology and

metric learning is thus a tool to complement but not replace accepted animal models and

methods.

Deep metric learning models with high-replicate behavioral zebrafish screens directly

reveal scaffold hopping opportunities. These models outperform traditional distance metrics and

cheminformatics methods, accurately classifying and grouping compounds from their zebrafish

behavior alone. Prospective testing confirmed most of the predicted neuroactive MOAs using

human receptors in vitro. Deep metric learning enriches phenotypic screening, yielding novel

compounds with actionable neuroactive effects despite different chemical structures. Despite the

challenges presented by experimental variability and shortcut learning—where models exploited

experimental artifacts—we successfully redeployed the screen and stress-tested the models,

creating a robust approach applicable to diverse investigations that pair complex biological data

with deep learning. Closely integrating fit-to-purpose larval zebrafish behavioral screening with

deep metric learning is an efficient and robust way to identify new neuroactive compounds in

vertebrates.
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Methods

Animal husbandry

Animal husbandry was performed according to UCSF’s Institutional Animal Care Use

Committee (IACUC) and the Guide to Care and Use of Laboratory Animals (National Institutes

of Health 1996). Eggs from a wild-type “Singapore” strain were collected by group matings and

raised on a 14/10-hour light/dark cycle at 28°C in egg water (GCULA) until 7 dpf. 8 healthy

larvae were then distributed by pipette into the wells of 96-well plates. They were then incubated

pre-treatment for 1 hr, dosed, incubated post-treatment for 1 hr, and then screened in the

behavioral instrument.

Chemical libraries

Two chemical libraries were used in our study: the SCREEN-WELL Neurotransmitter

Set (Enzo Life Sciences, Farmingdale, USA

https://www.enzolifesciences.com/BML-2810/screen-well-neurotransmitter-library-10-plate-set/

and the ChemBridge DIVERSet Screening Library

https://www.chembridge.com/screening_libraries/diversity_libraries/.

Screening platform

The screening platform is described in detail in doi:10.1101/2020.01.01.891432 (Figure 1

and Methods). The QC set screening methods are also described in that study. For the

randomized experiments using the Screen-Well Neurotransmitter Set, we randomized the plate

layouts with a custom code provided with this study. We transformed the physical layout of the

plates accordingly using a BioMek robot in the Arkin lab at UCSF.

Data collection

Larval zebrafish are plated onto 96-well plates (8 fish per well), and wells are dosed with

drugs at 10 µM for primary screening (Figure 1). Various stimuli such as acoustic sounds and
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physical tapping of the plate platforms are performed to elicit diverse behavioral responses in the

fish, as optimized by Myers-Turnbull et al.7 Videos are recorded of the fish behavior for the

duration of the experiment, which for the screens discussed in this work is around 14 minutes.

For each well, the videos are encoded and converted into bulk motion over time, resulting in a

one-dimensional time series or “motion index” (MI). Specifically, we used pre-interpolation m'

values7 defined by:

where It is the grayscale image matrix at 1-indexed frame t. These videos represent the

average motion across all 8 fish in each well. Since zebrafish movement can be uncoordinated,

averaging over multiple fish can greatly improve the signal-to-noise ratio for many classes of

drugs7,10.

Filtering ineffective and lethal compounds by Random Forest

For the first high-replicate screen, we trained a random forest classifier to identify

ineffective compounds (mimicking DMSO) using sci-kit learn60. The inputs are the MI of drugs

and DMSO-treated wells, and the output is a binary label (effective or ineffective). We first split

the entire dataset using an 80/20 train/test split. There were fewer DMSO-treated examples, so

we randomly undersampled from the drug-treated wells to match the number of DMSO-treated

wells. This resulted in 556 examples from each class in the training set, and 180 examples in

each class in the test set. For the randomized high-replicate screen, we include positive controls

(eugenol) which is lethal to the larval zebrafish. Here, the random forest is trained to label MI

into one of 3 possible bins (“effective,” “ineffective,” or “toxic”). As before, we first split the

entire dataset using an 80/20 train/test split. There were fewer “toxic” examples than in the other

2 classes, so we randomly undersampled from those classes to match the number of “toxic”

examples. This resulted in 100 examples for each class in the training set and 28 examples for

each class in the test set (using an 80/20 train/test split).

Conventional metrics used to calculate phenotypic distance
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We used the sci-py package 46 to compute correlation, euclidean, and the “fast-dtw”61

python library to compute the dynamic time warping distance between the 10500 long MI time

series traces.

Classifying quality control drugs with distance metrics

We trained a kNN (k-Nearest-Neighbors) 62 algorithm as implemented in the sklearn

KNeighborsClassifier package to classify the quality control (QC) 16 neuroactive drugs based on

their motion-index time-series traces using the implementation in the scikit-learn package 46,60.

Each QC compound was screened in replicates of 10, so we split the dataset into train and

validation splits (8 train, 2 validation) replicates for each drug. The task of the KNN was to

predict, for a given time series, which one of the 16 drugs it most closely corresponds to. We

chose 15 for the number of nearest neighbors parameter.

Training deep metric learning models for phenotypic distance:

In general, a dataset of positive and negative pairs is required to train a Twin-NN or

Twin-DN model. To construct such a dataset, we screened the SCREEN-WELL Neurotransmitter

Set (“NT-650”) in high replicate. We define any two replicates of the same compound to be

positive pairs, while a replicate of one compound paired with a replicate of another compound

was a negative pair. Each plate of 96 drugs was replicated 7-10 times, creating a sizable dataset

of positive and negative pairs. In practice, not all compounds will exhibit an observable effect in

larval zebrafish, so it can be misleading to label replicates of such drugs as “positive” (see

Discussion). Thus, we filtered all pairs where at least one pair member was “ineffective” or

“lethal” by the random forest. We trained the second round of Twin-NNs similarly but using the

fully randomized dataset instead.

To create the dataset of pairs, we first split the dataset by drug to minimize memorization

and over-fitting, allocating 80% of drugs for training and 20% for the test set. This scheme

naturally presents a generalizability challenge for the models, since phenotypes induced by the

training drugs might not be induced in the test drugs. Data splitting encourages the models to

learn fundamental features that are independent of drug or phenotype, which can lead to much
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better generalizability. Next, we performed a class balancing procedure. There are many more

pairs that can be enumerated across different drugs (negative pairs) than pairs from the same

drug (positive pairs), but this could lead to class-imbalance issues during training. Hence we

randomly subsampled the negative pairs to match the number of positive pairs for both the

training and test sets. Next we aimed to include additional commonly encountered pair types. For

positive pairs, we often encountered control-control and tox-tox pairs, and for the negative pairs,

we often encountered control-drug, control-tox, and tox-drug pairs. To ensure the models were

exposed to enough of these pairs, we ensured that 25% of the total positive pairs in the dataset

came from the control-control or tox-tox classes (allocated evenly), and that 25% of the total

negative pairs in the dataset came from the control-drug, control-tox, or tox-drug classes

(allocated evenly across these 3 classes). We saved pairs to numpy arrays of indices that

corresponded to indices of the time series data, and provided both the pair arrays and raw data in

our online data repository.

We used PyTorch to train the Twin-NN and Twin-DN models (see github repository).

Briefly, we loaded the positive and negative pairs using a Pytorch Dataloader, randomly swapped

the pair order, sampled at every 5th frame and min-max normalized them. Then we passed these

pairs of motion index time series through the MLP architecture (Twin-NN) or Dense architecture

(Twin-DN). The Twin architecture was a 6-layer feed-forward neural network. The input layer

size was 20250 (length of the input); each subsequent layer was 4000, 500, 250, 100, and 10,

respectively. After each linear layer (except the last) we performed batch normalization and

ReLU activation. We passed each time series from an input pair this feed-forward architecture,

after which we computed a contrastive loss from the 2 outputs (vectors of length 10 each). We

used a margin of 0.5 for the negative pairs in the contrastive loss. We back-propagated the

contrastive loss and updated model weights after each batch, until reaching convergence or the

maximum epoch count. We used the same training procedure for the Twin-DN models, except

that we based the architecture on DenseNets instead. The final output for each input from the

DenseNet was also a vector of length 10. To train the models, we used a learning rate of 5e-4

with the Adam optimizer and weight decay set to 1e-6. For the Twin-NN model, we used a batch

size of 32. For the Twin-DN model, we used a batch size of 8, as this was the largest batch size
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to fit in GPU memory. We used an ​​NVIDIA GeForce GTX 1080 Ti GPU on a CentOS Linux

kernel 3.10.0 operating system with an x86-64 architecture.

Stress-testing the metric learning models

We performed high-frequency signal filtering using a Hanning smoothing filter45 as

implemented in the scipy package46, using a window size of 11. We tried three adversarial

controls on our Twin-NN models: label-shuffling, input randomization, and predicting well

distance (Supplementary Figure S2). For label-shuffling, we randomly shuffled the labels while

keeping the input fixed. For input randomization, we generated random MI vectors of the

original length using the python numpy package63, while holding the labels fixed. For well

distance, we used the Twin-NN models to predict well distance (computed as the Euclidean

distance between pairs of wells). We define as “same” those pairs that are neighbors below a

certain distance cutoff (2 and 5.2 plate distance units), and as “different” those pairs that are

distant from each other (above the chosen cutoffs). The Twin-NN models appear to have no

ability to distinguish between pairs in this context at either of these cutoffs, suggesting a lack of

strong signal in the motion index time series attributable to plate location alone.

Chemical informatics and bioactivity prediction

Chemical structure similarity is computed from ECFP4 fingerprints and tanimoto

similarity using the rdkit package. Bioactivities of compounds of unknown indication or

mechanism of action (as for hits from the SCREEN-WELL Neurotransmitter Set) are computed

using the similarity ensemble approach (SEA 25,26) together with version 23 of ChEMBL 48. We

use a SEA p-value cutoff of 1e-25 for bioactivities.

In vitro binding assays against human receptors

The 60 novel compounds from the DIVERSet screen were tested in radioligand binding

assays (performed as previously described 64–66) against human receptors at the National Institute

of Mental Health Psychoactive Drug Screening Program at UNC (PDSP). Detailed assay

protocols and procedures are also available from the NIMH PDSP homepage
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(https://pdsp.unc.edu/pdspweb/?site=assays). Primary inhibition screens were performed at the

final dose of 10 µM and compounds passing a threshold of 50% inhibition were subjected to

secondary dose-response assays.

Use of Large Language Models (LLMs)

We used OpenAI ChatGPT 3.5 Turbo and ChatGPT 4 as scientific editing tools when

writing the manuscript. We prompted the LLMs to suggest revisions to our manually drafted text

for improved clarity and conciseness at the sentence and paragraph levels. We did not ask the

LLMs to generate content de novo. An example of a prompt we used was, “You are helping edit

papers for a broad scientific audience, emphasizing clarity and conciseness. Revise the following

paragraph: <draft text here>.” We manually reviewed the LLMs’ suggested revised text

word-by-word and decided whether to include parts, all, or none.
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Figure Legends

Figure 1. Zebrafish behavioral screening and architecture

Diagrammatic representation of zebrafish experimental screening setup, motion index

calculations, and deep metric learning model architectures. (a) Simplified representation of

zebrafish screening platform, with larval zebrafish in 96-well plates under a camera subject to

varied stimuli such as blue light, purple light, acoustic stimuli, and physical tapping. (b) Example

of a representative video frame. (c) Zoom view of a single well. (d) Example motion index (MI)

time series for clozapine-treated fish and negative control (DMSO) wells. The MIs are averaged

across all the drug- and control-treated well replicates. (e) Deep metric learning model

architectures: Twin-NN (top) and Twin-DN (bottom). In both models, the input is a pair of MI

time-series vectors passing through multiple neural net layers. A contrastive loss function 67

scores the two learned output vectors (y1 and y2) distances based on whether the input MI

vectors were from the same or different treatments.

Figure 2. Metric learning models exploit high-frequency components of

time-series signals in an initial non-randomized screen

We compare the Twin-NN and Twin-DN models against traditional methods such as

correlation and Euclidean distance on both raw and smoothed motion index (MI) time series data

and examine how well the models cluster drugs and generalize to a separate dataset not used for

training. (a) Separation of positive (treatment replicate) and negative (mismatched replicates) MI

vector pairs using the Twin-DN model (left), the Twin-NN model (2nd column), correlation

distance (“Correlation,” 3rd column), and Euclidean distance (“Euclidean,” right). The Twin-DN

and Twin-NN models exhibit a drastically improved ability to separate positive from negative

pairs, as evidenced by the strong distance separation (x-axis) between the positive and negative

pair distributions. Euclidean and correlation distances fail to separate the same- from

mismatched replicates for most MI pairs, except for those with minimal distances (e.g., the most

phenotypically similar pairs). (b) Receiver operator characteristic plots. Twin-DN achieves the
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best area under the curve (AUC=0.97), followed by Twin-NN (0.89). Performance dropped

drastically for both learning models using MI time-series inputs smoothed with a Hanning

window45 of size 11, particularly Twin-DN (from 0.97 to 0.78). Correlation and Euclidean

distance were robust to Hanning smoothing. (c) Precision recall curves, showing trends

consistent with (c). (d) A UMAP44 using the Twin-DN distances reveals extreme clustering with

distinct phenotypic islands; as many drugs are unlikely to induce strong phenotypes in the fish,

this was an unexpected and suspicious result. (e) We trained k-Nearest-Neighbor (kNN)

classifiers using scikit learn60 on a separate high-replicate MI trace dataset of 16 “quality control”

drugs never used for training or model evaluation. For many drugs (e.g., haloperidol), the

Twin-DN-based distance underperforms the zero-baseline defined by kNNs using correlation

distance. Twin-NN distance outperforms correlation distance on a few drugs (e.g., tiagabine and

lidocaine) and always matches or exceeds the Twin-DN model.

Figure 3. Metric learning operates actionably on a fully randomized screen

We investigate models trained on the second, fully randomized screen. (a) Separation of

positive and negative motion index (MI) trace pairs from the fully randomized screen with

Twin-NN (left), Twin-DN (2nd column), correlation (3rd column), euclidean (4th column), and

Fast-DTW (right) distances. Assessed as in Figure 2a, the revised deep learning models

significantly outperform correlation, euclidean, and fast-DTW distances. (b) Twin-NN and

Twin-DN receiver operator characteristic performance is similar (AUC=0.84 and 0.79,

respectively) and significantly exceeds correlation, euclidean, and fast-DTW (0.66, 0.62, and

0.64). Notably, models trained with and without Hanning smoothing no longer differ. (c)

Precision recall curves are consistent with (b). (d) The Twin-NN model identifies matched drug

replicates more effectively than correlation distance, which typically starts to fail beyond one

replicate.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2024. ; https://doi.org/10.1101/2024.02.22.581657doi: bioRxiv preprint 

https://paperpile.com/c/6YF6CQ/7HENa
https://paperpile.com/c/6YF6CQ/ldG65
https://paperpile.com/c/6YF6CQ/L2VQQ
https://doi.org/10.1101/2024.02.22.581657
http://creativecommons.org/licenses/by/4.0/


Figure 4. A learned phenotypic distance identifies islands of drugs by protein

target profile that correlation distance cannot

We investigate how well the learned phenotypic distance meaningfully clusters drugs

using a UMAP 44 on Twin-NN distances between the average time-series across all replicates of

each drug of the fully randomized NT-650 screen. Labeled example drugs represent anchor

points across the phenotypic landscape. Dot color changes by phenotype strength as determined

by a separate random forest classifier employed earlier in the dataset construction process

(Methods). A UMAP on correlation distances of the same data (Figure S3) fails to form

meaningful phenotypic clusters.

Figure 5. Learned distance is a good proxy for the target bioactivity profile of

novel compounds

Assessed in a scaffold-agnostic screening paradigm, we compare motion index (MI)

traces of NT-650 “query” compounds against a screened library of “novel” compounds

(Chembridge DIVERSet) using the Twin-NN learned distance and correlation distance, versus a

random baseline wherein the “matched” traces are randomly selected. (a) As an example, the

fluoxetine MI trace (purple) from the NT-650 agrees well with the top 5 matched library

compound traces (gold) ranked by Twin-NN distance. (b) We use a separate chemical informatic

method, the Similarity Ensemble Approach (SEA25,26), to assess the library compound hits.

Ranked by the similarity of their phenotypes to drugs from the NT-650 screen, we would expect

that the likelihood of SEA target profiles between a “query” (NT-650) and its closest-match

“library” (Chembridge) compounds will increase with the quality of the phenotypic distance

metric. “Hits” (y-axis) are the number of novel compounds in a given sample that match by their

separate SEA profiles. “Sample” (x-axis) is the percentage of the novel library examined, where

the analysis is limited to the top 500 matches from the library. The learned distance metric

enriches for SEA hits better than correlation and the random baseline across the entire range of

the screen. (c) Similar to (b); but for specific NT-650 compounds selected by phenotypic strength

(see Methods). Learned distance outperforms correlation and random distance, as with pindolol,
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imetit, and chlorpromazine. Correlation distance has significantly better enrichment for only one

NT-650 compound, MDL 72832 (4th row, 4th column in grid plot).

Figure 6. Prospective experimental validation against human receptors in vitro

Using a cheminformatic protein target prediction approach (SEA25,26) with the Twin-NN

phenotypic distance, we make mechanism of action predictions for NT-650 compounds and test

them experimentally by radioligand binding assays. (a) Left: Top 5 novel compounds

(represented by their motion index time-series, rows 2-6, gold) matched by Twin-NN distance to

the NT-650 drug Imetit (top row, purple). Right: Diagram of this “phenoblast” approach. NT-650

drugs are columns. DIVERSet novel compounds are rows, ordered by Twin-NN phenotypic

distance. Supplemental Table T1 maps compound IDs to supplier IDs. (b) Primary radioligand

binding assays (binding inhibition at 10 µM, %) for 7 known drugs. The heatmap shows 5 novel

compounds selected for testing (rows), with the SEA-predicted human protein targets as

columns. (c) Same as (b) for secondary assays (dose-response radioligand binding experiments).

(d) Representative dose-response curves from (c) for selected novel compounds tested against

two human targets: the histamine H3 receptor (left) and the 5-hydroxytryptamine 2B receptor

(right). Results (mean SEM) from a minimum of 3 independent assays (each in triplicate) were±

normalized, pooled, and fitted to the built-in one-site competition binding function in the

GraphPad Prism V10.

Figure 7. Phenotypic screening with learned distance reveals scaffold hopping

and drug prospecting opportunities

Learned phenotypic distance (Twin-NN, y-axis) complements conventional chemical

informatic distance based on chemical structure (Tanimoto coefficient on ECFP4 circular

fingerprints, x-axis). Scatterplot contains all pairwise combinations of 83 NT-650 compounds

(each pair is a dot), calculated from their average MI traces and chemical structures. Where the

phenotypic distance is low (< 0.3) but the tanimoto distance is average or high (> 0.4), molecular

structure dissimilarity misses neuroactive similarity. We illustrate each quadrant with examples.

Bottom left: low tanimoto and phenotypic distance (both metrics agree that molecules are
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similar). Bottom right: low phenotypic distance and high tanimoto distance (scaffold hopping

opportunity). Top-left: low tanimoto distance, but high phenotypic distance (classic “activity

cliff”: disparate activity despite high structural similarity). Top right: high tanimoto and

phenotypic distances (both metrics agree that molecules are unrelated).
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Figures

Figure 1
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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