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Monkeys engage in visual simulation to solve complex
problems

Aarit Ahuja"?, Nadira Yusif Rodriguez’', Alekh Karkada Ashok?, Thomas Serre®**, Theresa
Desrochers'**, David Sheinberg'*

Visual simulation — i.e., using internal reconstructions of the world to experience potential future
versions of events that are not currently happening — is among the most sophisticated capacities of the
human mind. But is this ability in fact uniquely human? To answer this question, we tested monkeys on
a series of experiments involving the 'Planko’ game, which we have previously used to evoke visual
simulation in human participants. We found that monkeys were able to successfully play the game using
a simulation strategy, predicting the trajectory of a ball through a field of planks while demonstrating a
level of accuracy and behavioral signatures comparable to humans. Computational analyses further
revealed that the monkeys' strategy while playing Planko aligned with a recurrent neural network (RNN)
that approached the task using a spontaneously learned simulation strategy. Finally, we carried out
awake functional magnetic resonance imaging while monkeys played Planko. We found activity in
motion-sensitive regions of the monkey brain during hypothesized simulation periods, even without any
perceived visual motion cues. This neural result closely mirrors previous findings from human research,
suggesting a shared mechanism of visual simulation across species. In all, these findings challenge
traditional views of animal cognition, proposing that nonhuman primates possess a complex cognitive
landscape, capable of invoking imaginative and predictive mental experiences to solve complex everyday

problems.

Consider the following scenario: it's a Monday
morning, and you’re driving to work. You’ve taken this
route dozens of times and can navigate without a
second thought. Yet today, as you approach your
destination, you encounter construction blocking your
usual path. You stop, and start to think: “Maybe | could
turn right here and head north on a parallel road?
Although, that does lead to a one-way street. Perhaps
I'll have better luck if | take a left? That should take me
past the bakery, around the school crossing, and
eventually direct me back to my destination”. In just a
few seconds, you have managed to simulate potential
alternate paths and chart a new course for your
journey.

This process of problem solving via “mental
simulation” takes place entirely in your head, without
the need to move a single muscle. You can imagine
how things might play out in the future to help you
arrive at a solution. Importantly, you need not actually
experience the things you are simulating (or their

potentially negative consequences, such as going
down a one-way street). Your internally generated
mental recreations are sufficient to guide your actions.
When harnessed effectively, mental simulation is one
of the most sophisticated and useful cognitive
capacities at your disposal.

Mental simulations can take various forms. For
instance, past research has shown that imagining
bodily movements relies on a form of mental
simulation, as indicated by the overlap in neural
circuits involved in imagination and execution of motor
actions. This phenomenon is referred to as "action
simulation"’. Similarly, mental simulation strategies
can also explain how we predict outcomes in physical
scenes, such as the collapse of a Jenga tower?°. In
recent experiments, we have built upon previous
intuitive physics studies to provide evidence for a
specific type of mental simulation called visual
simulation*®. As the name implies, visual simulation
involves imagined visual representations

"Department of Neuroscience, Brown University, Providence, RI, USA. 2Exponent, Natick, MA, USA. 3Department of Cognitive, Linguistic, and Psychological Science,
Brown University, Providence, RI, USA. “Robert J. and Nancy D. Carney Institute for Brain Sciences, Brown University, Providence, RI, USA. ®Department of

Psychiatry and Human Behavior, Brown University, Providence, RI, USA.

email: david_sheinberg@brown.edu


https://doi.org/10.1101/2024.02.21.581495
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.21.581495; this version posted February 26, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

corresponding to the objects involved in the mental
simulation, similar to how action simulation involves
imagined motor representations. In other words, visual
simulation incorporates a distinctly visual component
into the simulation process. Supporting this idea, we
have developed a novel task called Planko (Figure 1)
and demonstrated that when people are asked to
predict the likely trajectory of a ball falling through an
obstacle-filled display, their behaviors and eye
movements indicate that they are simulating the ball’s
path®. Furthermore, we have shown that during these
simulations of the ball's trajectory, motion-sensitive
brain regions like the middle temporal area (area MT)
respond as if the ball's motion were being literally
seen, even though the stimulus remains static
throughout the simulation®. Collectively, these findings
suggest that humans are indeed capable of visual
simulation, and the neural correlates of this process
can be observed in visual brain areas.

Despite the growing body of behavioral and
neuroimaging work on simulations in the brain, several
questions about the underlying neural mechanisms
that support these phenomena remain. Why is this?
We suggest that a major obstacle to progress derives
from the lack of a compelling animal model. The
absence of research on mental and visual simulation
in animals is not surprising, given the complexity,
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introspection, and subjectivity associated with these
phenomena. While some recent evidence suggests
that computational models of simulation align with
nonhuman primate behavior, it remains unclear
whether animals are capable of mental simulation, let
alone visual simulation®. In our current experiments,
we aimed to address these questions by replicating
our human studies on visual simulation with
nonhuman primates (NHPs). We found that when
macaques play Planko, their behavioral patterns can
be accurately accounted for by models assuming a
simulation strategy. Using awake monkey fMRI, we
further discovered that when monkeys engage in a
simulation of the ball's trajectory, motion-sensitive
brain regions become active, indicating an explicitly
visual aspect of the simulation process. Previously, we
provided evidence for these same findings with human
participants. Together, these results demonstrate that
monkeys not only possess the ability for visual
simulation but also share the biological foundations of
this capability with humans and other nonhuman
primates.

Can monkeys play Planko?

We have developed a task paradigm called Planko
to probe visual simulation. During the task,
participants are shown displays (also referred to as
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Figure 1: A - Examples of Planko boards used in the task. Monkeys were required to predict which catcher the ball would
land in, if dropped. In the present example, the three boards in the left column lead to the left catcher, and the three boards
in the right column lead to the right catcher. B - A schematic of one complete trial, including the pre-response period when
the monkeys could potentially simulate the ball’'s trajectory and the post-response period when they saw the ball fall. C - A
diagram of the NHP upright rig setup that was used for training and behavioral testing on the task. Monkeys indicated their
responses using one of the two provided buttons, and were given juice reward for correct responses.
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boards) like the ones shown in Figure 1A and asked
to predict which of the two bottom “catchers” the ball
will end up in, were it to be dropped through a field of
randomly arranged “planks”. While the participants
make this prediction (i.e., during the “pre-response
period”), the ball remains completely static,
suspended in place. Once the participants indicate
their choice with a button press, the ball is then in fact
dropped during the “post-response period”, thus
providing participants with feedback on their
responses. While we have been successful in using
this task to probe simulation in humans®, we wondered
if monkeys would be capable of learning it, and if so,
would they, too, rely on visual simulation?

We thus set out to train two monkeys (referred to
here as Monkey G and Monkey A) to play Planko. We
started with extremely simple displays, containing very
few planks (Figure 2B). During the early stages of
training, we also introduced a “shadow ball” which
would reveal a persistent, light gray trace of the ball’'s
trajectory on certain trials at random (Figure 2A). The
shadow ball thus gave away the correct answer on
these trials but was nonetheless a useful tool for
demonstrating to the monkeys what they were
expected to focus on (i.e., the ball’s trajectory). Over
time, we gradually increased the number of on screen
planks while simultaneously reducing the proportion of
trials containing a shadow ball, as well as fading away
the shadow ball such that it would reveal progressively
lesser amounts of the ball’s trajectory (Figure 2A, 2B).
We assessed training success by analyzing monkeys’
task accuracy on non-shadow ball trials.

The progression of each monkey’s task accuracy
through the aforementioned training (non-shadow
trials only) is shown in Figure 2C. Initially, both
monkeys struggled with the task whenever we
attempted to increase the number of planks on the
screen. This is especially apparent in the first 25
sessions. For instance, while Monkey G was able to
rapidly learn a one-plank version of the task, his
performance fell back down to chance when shown
boards with two planks. Similarly, Monkey A
demonstrated a progressive reduction in task
accuracy as we advanced from one to four onscreen
planks. These setbacks suggest that, at least at first,
both monkeys relied on strategies that were not robust
to changes to the visual properties of the display. This
pattern of behavior would not be expected were they
relying on simulation to solve the task. Importantly,

however, both monkeys eventually modified their
approach such that changes to plank number no
longer impacted their task accuracy, even when
seeing a particular plank count for the very first time.
This is most apparent in Figure 2C from session 25
onwards, where we rapidly progressed from two to ten
on-screen planks. This newfound invariance to the
visual properties of the scene is striking and suggests
that the monkeys were able to arrive at a more
sophisticated strategy (like simulation) for solving the
task (Supplementary Video 1).

Behavioral Evidence for Simulation in Monkeys

While we were encouraged by the fact that the
monkeys were able to play Planko with higher than
chance accuracy, that by itself does not provide
compelling evidence that they were doing so by using
simulation. We thus set out to ascertain whether their
behavior on the task was in line with what might be
expected, were they engaging in visual simulation. In
our previous work, we have shown that human
participants’ accuracy on the task depends on the
degree of “simulation uncertainty” created by the plank
configuration on any board (for details on simulation
uncertainty, see Methods and Figure 2D/E). In the
present study, monkeys were shown boards that fell
into one of two discrete simulation uncertainty
categories — low, or high (Figure 2F). We predicted
that if monkeys were engaging in visual simulation,
then their task accuracy would decrease as simulation
uncertainty increased. Figure 2G shows both
monkeys’ task performance as a function of simulation
uncertainty (high vs low). As with humans (Figure 2J),
we found that both monkeys were significantly worse
at the task when simulation uncertainty increased
(Monkey G: tigo = 2.75, p < 0.005; Monkey A: tigo =
3.27, p < 0.005), suggesting that they were employing
a simulation strategy to approach the task.

We also compared monkeys' eye movements
before and after their response on each trial. In the
pre-response period, they made saccades while
looking at the static image of the board. In the post-
response period, they followed the falling ball with
smooth pursuit eye movements. Our goal was to
determine if the eye movements made while trying to
determine the ball's final position significantly
overlapped with the eye movements made while
perceiving the ball's actual falling trajectory (see
Methods and Figure 2H). We predicted that if
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monkeys were visually simulating the ball's movement  between pre and post-response eye movements,
path to solve the task, then there would be significant  relative to overlap predicted by chance (see
overlap between pre-response and post-response eye  Methods). For both monkeys, we found that the
movements. Figure 2| shows both monkeys’ overlap  degree of observed spatial overlap was greater than
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Figure 2: A - Examples of the “shadow ball” that was used to train the monkeys on Planko. Shadow ball trials were always
intermixed with non-shadow ball trials. Over the course of training, the shadow ball gradually faded away until it (contd. ->)
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(contd. ->) revealed none of the ball’s trajectory, in the hopes that monkeys would continue to extrapolate the ball's
trajectory, even when not given. B - Examples of various onscreen plank counts that were used during training. Both
monkeys began with one plank boards and were gradually progressed along until they were able to navigate ten onscreen
planks. C - The progression of each monkey’s task accuracy across multiple training sessions in which onscreen planks
were progressively increased (non-shadow ball trials only). Both monkeys initially struggled with increasing plank numbers,
before arriving at a generalizable strategy that allowed them to maintain consistent task accuracy. D - An example of a board
where slightly jittering the position of each plank (three jittered examples j2,3.4 shown with the original j1 underlaid) had a
minimal impact on the ball’s final position. Outcome changes were assigned a penalty (in this example, only penalties of 0
were assigned), and used to calculate a simulation uncertainty score. Boards like this one were classified as having a low
simulation uncertainty. E - An example of a board where slightly jittering the position of each plank (three jittered examples
j2.3,4 shown with the original j1 underlaid) had a significant impact on the ball’s final position. Outcome changes were assigned
a penalty between 0 and 1 and used to calculate a simulation uncertainty score. Such boards were classified as having a
high simulation uncertainty. F - A histogram of all the simulation uncertainty scores assigned to boards from the two
monkeys’ task test days. G - Task accuracy for Monkey G and Monkey A as a function of simulation uncertainty. Both
monkeys were affected by this metric, suggesting that they might be using a simulation strategy. H - A schematic depicting
the analysis of eye movement overlap between pre-response and post-response trial periods. | - Eye movement spatial
overlap for Monkey G and Monkey A, relative to a shuffled chance. Both monkeys showed a higher than chance degree of
overlap between pre and post response eye movements, consistent with a simulation strategy. J - Data from G and |
compared to past findings from human subjects. Both monkeys showed behavioral and oculomotor trends that are in line

with what we have previously observed in humans (see text for details).

chance (Monkey G: to39 = 3.49, p < 0.001; Monkey A:
to40 = 4.17, p < 0.001), suggesting that they may have
relied on visual simulation to arrive at the correct
answer. This result also precisely mirrors what we
have previously observed with human participants
(Figure 2J).
Computational Evidence for Simulation in
Monkeys

To develop a computational explanation for
playing Planko using simulation and non-simulation
strategies, we trained two neural networks: a shallow
convolutional neural network (CNN) and a recurrent
neural network (RNN) (Figure 3A). We opted for this
approach because in previous work, we have shown
that such networks (especially RNNs) are capable of
spontaneously developing task strategies that
resemble visual simulation’. The CNN architecture we
used in the present study was based on a previous
model used in our human research®, while the RNN
model drew inspiration from neuroscience-inspired
motion perception models®. Despite inherent
architectural differences, we attempted to match the
parameters of both networks for consistency. Figure
3B displays the task accuracy of each network when
tested on the same boards as Monkey A and Monkey
G. Like the monkeys, both networks achieved task
accuracy greater than chance (CNN: tzs2 = 15.39, p <
0.001; RNN: tzg2 = 25.27, p < 0.001).

Having established that neural networks could
predict the ball’s final catcher, we aimed to understand
the strategy employed by the two networks by probing
the activity of their hidden layers (Figure 3C). The top
row shows activity maps of both networks, while the
bottom row presents the activity maps overlaid with
the original board. At first glance, the CNN's activity
predominantly appears to represent the spatial
properties of the planks. Conversely, the RNN seems
to focus on the ball's trajectory rather than the planks
themselves. Notably, the RNN naturally emerges with
this trajectory representation, despite not explicitly
requiring or being trained to do so. This observation
aligns with the behavior one would expect from a
system relying on simulation.

To quantitatively confirm these impressions and
investigate whether either the CNN or RNN had
represented the ball's trajectory, we trained 16 position
decoders to predict equidistant points along the
trajectory. We used the hidden layer activity from each
network to assess if these representations contained
information about the ball's path. As a control, we
repeated the decoding process using the board
images themselves, which explicitly lack path
information (Figure 3D). Comparing the decoder
outputs to the ground truth trajectory, we found that
several of the RNN-trained decoders made better
predictions that were closer to the ground truth points
than the null-trained decoders. Specifically, significant
results were observed for 12 of the 16 decoders after
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applying  Bonferroni  correction for  multiple
comparisons (Figure 3E; see Supplementary Table 1
for detailed statistics). It is also notable that the
divergence in prediction ability between the RNN and
null-trained decoders appears to be most pronounced
towards the latter half of the ball’s trajectory, where the
variability in the ball’s hypothetical position is highest.

In contrast, only one of the CNN-trained decoders
made better predictions than the null-trained
decoders. Instead, most of the CNN-trained decoders

made similar predictions to the null-trained decoders
(Figure 3E; see Supplementary Table 1 for detailed
statistics). These findings confirm our initial suspicion
from the activity maps in Figure 3C — that the RNN
represents the ball's trajectory, consistent with a
simulation-based approach, while the CNN adopts an
alternate strategy based on the statistical regularities
of the planks.

Finally, we analyzed whether the boards that
caused the highest uncertainty for the networks
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Figure 3: A - Examples of two types of networks, a feedforward convolutional neural network (CNN) and a feedback
recurrent neural network (RNN) that were trained to solve the Planko task. B - Each network’s task accuracy when tested
on the same board sets from the monkeys’ task test days. Like the monkeys (M and Ma), both networks achieved above
chance accuracy. C - A heat map showing the average activity of the hidden units on an example board for both the CNN
and the RNN. The second row shows the same activity again, but with the input board image overlaid. D - A schematic
depicting how we quantified whether the ball’s trajectory was represented in the network hidden layer activity. E - Average
RMSE values for each predicted vs actual position for the CNN and RNN trained decoders, relative to the board image
trained (null/chance) model. While the CNN trained decoders almost never achieved greater than chance prediction
accuracy, the RNN trained decoders consistently predicted the position of the ball with a high degree of accuracy. F - Network
uncertainty for the CNN and the RNN as a function of whether each monkey gave the correct or incorrect response on a
given board. The CNN’s average network uncertainty was no different for boards that the monkeys got correct vs boards
that they got incorrect, whereas the RNN’s average network uncertainty was significantly higher on boards that the monkeys
got incorrect compared to boards they got correct.
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corresponded to the ones on which the monkeys
made mistakes. We did this to determine which
network approach, simulation-like (RNN) or not
(CNN), best aligned more with monkey behavior. By
calculating each network’s board-wise uncertainty
(see Methods), we found that the RNN displayed
significantly higher uncertainty on boards where
monkeys responded incorrectly compared to those
where they answered correctly (Monkey G: tigo = 3.79,
p <0.001; Monkey A: tigo = 2.35, p < 0.05). This result
suggests that the monkeys struggled with the same
boards for which the answer was unclear to the RNN.
Conversely, we found that the CNN exhibited no
significant difference in certainty between boards that
the monkeys got correct compared to the ones they
got incorrect (Monkey G: t1g0 = 1.31, p = 0.18; Monkey
A: tieo = 1.21, p = 0.22), suggesting that the CNN and
monkeys struggled with distinct boards. Overall, this
result indicates that the RNN's simulation-like task
approach (as depicted in Figures 3C-3E) successfully
captures the monkeys' approach whereas the CNN’s
plank analysis approach does not, supporting the idea
that the monkeys also engaged in simulation.

Neural Evidence for Visual Simulation in Monkeys
In the previous experiments, we laid the foundation
for the idea that monkeys may possess the ability to
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engage in simulation. To investigate whether these
simulations are indeed visual, we recorded neural
responses from the monkeys using an MRI scanner
while they played Planko. We achieved this by training
the monkeys to play Planko in a setup novel to the
monkeys — seated in a horizontal chair in the sphinx
position. Our primary hypothesis was that the neural
circuits involved in perceiving the falling ball would
also be activated during visual simulation. Based on
prior human evidence, we predicted that a) motion-
sensitive brain regions would be active while the
monkeys simulated the motion trajectory of the ball,
and b) that this activity would bear voxel-wise pattern
similarity to periods when the monkeys actually
perceived the ball falling.

To assess these predictions within the MRI
environment, we first defined a region of interest (ROI)
that was sensitive to motion. We carried out a motion
localizer task (see Methods) at the beginning and end
of each scanning session, in which the monkeys
fixated on a central yellow dot while a field of white
dots either flickered or moved coherently in the
background (Figure 4B). Any brain regions exhibiting
stronger responses to moving dots compared to
flickering dots, including well-known areas involved in
motion processing such as area MT, MST, and V4d
(Figure 5A), were deemed motion-sensitive. For
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Figure 4: A - A diagram of the NHP fMRI setup. Monkeys were seated in the “sphinx” position and placed inside the scanner,
where they viewed a screen at the end of the bore and indicated their response using MRI compatible button boxes. B - A
schematic of the motion localizer task we used to isolate motion sensitive ROls. C - A schematic of the three variants of the
main Planko task that monkeys were trained to perform inside the scanner. D - An example of one complete scanning
session, containing motion localizer blocks at the beginning and end, and several blocks of each task variant randomly
interspersed throughout (grey regions indicate interblock intervals).
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subsequent analyses related to the main Planko task,
we focused specifically on these motion-sensitive
brain regions as our ROI (Figure 5D).

To accommodate the spatial and temporal
characteristics of the signals acquired in the scanner,
we created three distinct task variants of Planko that
were administered in a blocked pattern (Figure 4C,
4D). The first variant, referred to as the "simulation
variant," served as the primary experimental condition.
In this variant, monkeys were presented with a series
of boards and were asked to predict the final catcher
for the ball. However, unlike the original Planko task,
immediate feedback regarding their choice was not

provided. We intentionally removed feedback
regarding the ball's trajectory to ensure that monkeys
did not perceive any onscreen motion throughout the
simulation block. This design choice was crucial to
ensure that any activity related to motion perception
would not be mistakenly attributed to simulation.
Consequently, we introduced a new "perception
variant" that served as a positive control. In the
perception variant, monkeys were not required to
predict the ball's trajectory; instead, as soon as the
board appeared on the screen, the ball automatically
began to fall. The monkeys were then tasked with
retrospectively reporting the catcher in which the ball
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Figure 5: A - The result of the Motion > Flicker contrast from the motion localizer task. We observed activity in canonically
motion-sensitive brain areas, such as MT, MST, V4d, and 45b. B - The result of the Perception > Control contrast from the
Planko task variants. Once again, we observed activity in many of the same motion-sensitive areas, such as MT, MST, and
V4d. C - The result of the Simulation > Control contrast from the Planko task variants. Here too, we observed striking activity
in motion-sensitive areas such as MT, MST, and V4d. D - A depiction of the motion-sensitive ROI that were used for
subsequent representational similarity analyses. All voxels that survived cluster correction at a p < 0.05 FWE threshold were
selected. E - A schematic showing our main comparisons of interest. We compared the pattern of activity (relative to
baseline) in the Simulation condition to both the Perception condition (S-P) and the Control condition (S-C). G (Left) - A
comparison of S-P and S-C representational similarities. As with the human participants in our previous study (Ahuja et al.,
2022), Monkey G’s data also showed an elevated voxel-wise pattern similarity for the S-P comparison relative to the S-C
comparison. (Right) S-P — S-C similarity for human participants and Monkey G.
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landed. By examining neural responses within our
defined ROI from this task variant, we established a
template for motion-related activity associated with the
ball's trajectory. This template served as a basis of
comparison for the simulation-related activity
observed in the previous variant.

Additionally, we developed a "control variant" to
serve as a negative control condition. In this variant,
monkeys were presented with static boards (similar to
the simulation variant). However, unlike the previous
variants, monkeys' responses were no longer
dependent on the ball's trajectory. Instead, the
orientations of the planks on the screen were
manipulated to be predominantly horizontal or
predominantly vertical. Monkeys were required to use
the orientation property to provide a response (e.g.,
pressing left for mostly horizontal or pressing right for
mostly vertical). Hence, in this variant, monkeys'
subjective experience during the task closely
resembled that of the simulation variant (i.e., making
decisions about a static board during naturalistic free
viewing). However, the cognitive processes employed
were no longer related to predicting the ball's motion

trajectory.
The experimental design described above is
consistent with our past human research®.

Unfortunately, during the course of scanning, one of
the monkeys developed a fear response to the MRI
machine, which meant that only one of the two animals
(Monkey G) adapted to the altered environment of the
scanner. The subsequent results thus all belong to
Monkey G but are contextualized relative to our
previous human findings.

Our results revealed two significant findings.
Firstly, within the motion-sensitive ROI, we observed
increased activity during the perception variant
compared to the control variant (Figure 5B). This
finding is expected, since the monkeys viewed the
falling ball in the perception variant, whereas no
motion was present on screen during the control
variant. Strikingly, however, we also found increased
neural activity in these same motion-sensitive brain
regions during the simulation variant relative to the
control variant, despite the absence of any onscreen
motion in the simulation variant (Figure 5C). The key
distinction between the simulation and control variants
lies in the fact that the monkeys engaged in a
simulation of the ball's trajectory exclusively during the
simulation variant (and only performed orientation

discrimination during the control variant). It thus
appears that the act of simulating the ball's path is
capable of eliciting activity in motion-sensitive brain
areas, as would be expected in the case of visual
simulation. Complete activation coordinates for the
motion localizer task and Planko task variants can be
found in Supplementary Tables 1 - 3.

Second, we used representational similarity
analyses (RSA) to conduct a comparison of voxel-
level activity patterns between the simulation variant
and both the perception and control variants (Figure
5E). Our goal was to examine whether the activity
patterns in the simulation variant exhibited a greater
resemblance to those in the perception variant
compared to the control variant. Such a pattern
resemblance would support the notion that the
observed activity during the simulation variant was
indeed related to a simulation of the ball's motion. We
found this to be the case, observing a higher pattern
resemblance between the simulation and perception
variants (r = 0.45, p < 0.001), compared to the pattern
resemblance between the simulation and control
variants (r = 0.2, p < 0.001) (Figure 5G). Since only
one monkey was able to perform the task in the
scanner, we assessed the robustness of this result by
analyzing how consistent it was with our previous
human findings showing evidence of visual simulation.
To this end, we pooled the monkey and human results,
and then carried out a series of leave-one-out t-tests
where one set of observations (either human or
monkey) was excluded. Across all iterations, we
observed a consistent effect size (d = 1.76; SD = 0.14)
irrespective of the identity of the excluded observation,
indicating a stable and robust effect that was
comparable between humans and monkeys.
Additionally, all t-tests yielded significant differences
(p < 0.001 for all), further supporting the reliability of
our monkey results. Collectively, these findings
provide compelling evidence that the simulation of the
ball's trajectory in monkeys evokes perception-like
activity in motion-sensitive brain regions, supporting
the notion that, like humans, nonhuman primates may
be capable of visual simulation.

Discussion

The results of our study represent significant
advancements in understanding nonhuman primate
cognition,  both  behaviorally and  neurally.
Behaviorally, monkeys demonstrated remarkable
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proficiency in the complex Planko game, showcasing
not just an understanding of its mechanics but also
employing a sophisticated strategy beyond mere
gestalt-style stimulus response mappings. This
behavior also aligns with the performance of a
recurrent neural network (RNN) that represents the
ball’'s trajectory in the activity of its hidden layers,
further suggesting that monkeys were engaged in
mental simulation. Neurally, we observed notable
activation in the motion-sensitive region when
monkeys mentally simulated the ball's trajectory,
mirroring the neural activity seen when they saw the
ball move — a result consistent with previous human
studies. Such similar patterns of neural activity during
both perceived and simulated events suggests that
monkeys are capable of visual simulation, highlighting
the profound capacity of their brains to emulate or
predict sensory experiences without external stimuli.

Historically, visual simulation — a cognitive
process akin to imagination that can be used to predict
and plan for the future — has primarily been studied in
humans. Nonetheless, the notion that animals might
be capable of some form of simulation has gained
prominence in recent years. For example, studies on
action simulation have suggested that mirror neurons
in the motor cortex can internally mimic observed or
inferred actions®'°, while studies on intuitive physics
have demonstrated that when monkeys are asked to
intercept a moving virtual ball, their behavior on the
task is consistent with a simulation strategy'"'?. Mazes
have also been used to explore simulation in animals.
In the visual domain it has been shown that when
monkeys are asked to determine the location of the
maze’s exit, spatially tuned neurons in parietal area 7a
respond with vectors consistent with the path to the
solution'. Similarly, rodents trained to physically
traverse a maze are known to exhibit patterns of
neural responses in the hippocampus that reflect the
animal's upcoming path, as if the animals were
simulating their future journey''°.

Despite these previous pieces of evidence hinting
at simulation abilities in animals, definitive conclusions
have been elusive due to the complexity and
introspection associated with this cognitive process.
Moreover, the simplicity of past paradigms has often
left room for alternative interpretations, such as
memory recall instead of active simulation. For
instance, recent studies revisiting hippocampal replay
in rodents question the idea that the observed patterns

of neural responses reflect future progression through
the maze', especially since such experiments
necessarily re-use previously trained mazes. Similarly,
in previous maze studies with monkeys, the maze’s
exit was generally found within one direction change,
making it hard to read out a true, temporally extended
simulation. The same can be said about intuitive
physics research with primates, as the tasks used in
these studies usually involve “simulating” two direction
vectors at most, at least one of which is often shown
at the beginning of each trial.

In the present study, we addressed several of
these limitations. For instance, the configuration of
boards on each trial was completely novel, limiting
the potential influence of past memory. The ball’s
trajectories were also complex, incorporating several
motion vectors from start to finish. Finally, no
information about the ball’s path was provided (even
in the early stages of each trial) leaving it entirely up
to the monkey to determine the complete solution. Our
findings are thus derived from a more challenging
experimental paradigm than used in previous studies
and bolster the sparse, existing literature on animal
simulation while also introducing the possibility that
such simulations are characterized by an imagery-like
visual aspect.

The Planko task we have used relies on some
understanding of physics, at least at an intuitive level.
Based on the current data, we cannot say for sure
whether monkeys’ ability to learn the task was driven
by prior experience, or an innate core understanding
of the physical properties of the real world. Our choice
of physics as a testbed, however, was less a matter of
emphasizing the role of physics, and more motivated
by the need to create a system where simulation could
be easily moved between a computational and
behavioral space. As a first step, we limited the
physical worlds to simple rigid body interactions
between a falling ball and a series of static planks.
Extending these worlds to include constraints like
joints and gears or other dynamic forces could induce
even richer internal simulations than those explored
here.

Further, if one accepts that humans and other
animals carry out internal mental simulations, as our
data suggest, then it is important to ask if that holds for
simulation environments not rooted in actual physics.
Our task could be extended to non-physics based
worlds, including arbitrary rule based systems or
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social interactions. Indeed, from a cognitive science
perspective, mental simulation has generally been
associated with the ability of one to simulate the
thoughts and planned actions of others'~'°, providing
one means by which humans, and possibly other
animals, can predict how others might act in a
particular situation. While our study focused on
predicting the action of an inanimate ball in a highly
simplified environment, it remains important to
understand if a similar process may underlie monkeys’
ability to predict the thoughts and actions of other
animate entities.

Our use of functional neuroimaging in this and a
previous study* provide one window into the internal
process by which people and monkeys may visually
simulate events in the world. This method has many
well-known advantages, including its non-invasive
nature and its whole brain view. At the same time, it
leaves many questions unanswered. Given the spatial
and temporal limits of fMRI, we cannot say how
detailed the sensory activation in motion areas is.
Recordings from populations of the individual neurons
in these activated regions could, however, be used to
provide a real time readout of the internal state of the
simulation in order to directly explore the detailed
circuitry supporting this ability.

A significant limitation of the present study was the
analysis of neural data from only one animal, despite
successfully training two for the Planko task. This
issue, while notable, does not substantially detract
from the value of our findings, considering the
challenges inherent in monkey research and the small
sample sizes typically involved. The neural findings
observed align closely with past human fMRI research
on visual simulation, underscoring the reliability of the
results despite the limited data set. Another limitation
is the extensive training required for monkeys to
achieve high task accuracy. This raises concerns
about the impact of experience on the likelihood of
engaging in visual simulation. However, training is an
indispensable part of teaching cognitive tasks to
monkeys. An interesting future research direction
could be to explore whether prolonged practice or
long-term exposure influence any neural or behavioral
effects related to simulation.

In conclusion, our study using the Planko game
demonstrates more than monkeys' understanding of
game mechanics; it reveals their capacity for mental
simulation to predict outcomes. This insight is a

significant leap in comprehending the relationship
between the visual brain and mental experience in
nonhuman primates. Moving beyond traditional
studies focused on simplified tasks, our findings
suggest that animal cognition might encompass

complex thought processes akin to human
experiences, involving contemplation, simulation, or
even ‘imagination' of potential scenarios. This

revelation challenges our current understanding of
animal intelligence, indicating that monkeys, and
possibly other animals, can weave together past
experiences, current observations, and future
possibilities. It opens new avenues in cognitive
neuroscience, hinting at a rich, imaginative mental
landscape in the animal kingdom. As we continue to
explore these capabilites, we deepen our
understanding of the diverse spectrum of intelligence
across species, bridging the gap in our
comprehension of cognitive processes in the animal
world.
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Methods

Subjects and Surgical Procedures

Two adult male rhesus macaque monkeys
(Macaca mulatta; Monkey A and Monkey G) were
included in the study. Both monkeys weighed
approximately 15kg. Each monkey was surgically
implanted with an MRI-safe Peek headpost to help
reduce head motion in the behavioral and MRI
experimental setups. Surgeries were performed under
isoflurane anesthesia, in accordance with the
guidelines published in the National Institutes of
Health Guide for the Care and Use of Laboratory
Animals. Surgical procedures were approved by the
Brown University Institutional Animal Care and Use
Committee.

Behavioral Experimental Design

Both monkeys were trained to perform the Planko
task (as described in Figure 2A-C). Following training,
we carried out behavioral test days with each monkey
during which they were shown 192 unique boards over
the span of 6-8 blocks from 3 sessions. Each ftrial
began with the presentation of a fixation point,
following which a Planko board consisting of one ball,
ten pseudo-randomly arranged planks, and two
catchers was presented on screen. Monkeys had to
determine which of the two catchers, left or right, the
ball would fall into, were it to be dropped. Monkeys
indicated their choice with a button press. The ball was
then in fact dropped, revealing the correct answer.
Once the ball landed in its catcher, correct responses
were rewarded with a few drops of juice. The
proportion of boards on which the ball fell into the left
or the right catcher was matched (i.e., 0.565 for each).
We used an Eyelink-1000 camera (SR Research) to
track monkeys’ eye movements for the entirety of the
session. Eye position was sampled at 1 kHz and
stored to disk at 200 Hz.

Simulation Uncertainty Analysis

To explore simulation uncertainty, we modeled the
potential for different ball trajectories on each board by
introducing positional jitter to the planks and
recalculating the ball’s path with a physics engine, as
shown in Figures 2D and 2E. Some boards showed
significant path deviations with slight plank jitter, while
others were unaffected. We used this data to calculate
a metric for simulation uncertainty by jittering and

recalculating the ball's path 500 times for each board,
then measuring how often the jittered configurations
resulted in a different outcome. Boards were then
classified as low or high uncertainty based on these
outcomes, with the results transformed into a 0-100
scale.

Eye Movement Analysis

To assess whether monkeys’ eye movements
were suggestive of a simulation strategy, we
compared their pre-response eye movements (i.e.,
during hypothesized simulation) to their post-response
eye movements (i.e., during perception of the falling
ball). It is important to note, however, that eye
movements in the pre-response period occurred with
a static board presentation, leading to only saccades,
while those in the post-response period involved both
saccades and smooth pursuit. Due to the distinct
nature of saccadic (ballistic) and smooth pursuit
(continuous) movements, we did not use traditional
oculomotor metrics such as timing and velocity for
comparison. Instead, we overlaid the eye movement
traces from the pre-response and post-response
epochs on top of one another, and then calculated the
ratio of the intersection and the union of their areas
(Figure H).

Notably, this methodology of measuring similarity
does result in some incidental spatial overlap even for
eye movement traces that are entirely unrelated to one
another. We used this form of incidental spatial
overlap to quantify a chance intersection level. We did
this by randomly shuffling the post-response eye
movements across trials and recalculating spatial
overlap on mismatched pairs of traces. We
implemented this shuffling protocol for each monkey
50 times and averaged the resulting incidental overlap
values on each trial for each iteration. Subsequently,
we ended up with a distribution of 50 chance overlap
values per monkey. We then compared this
distribution to the actual, observed degree of overlap
between pre-response and post-response eye
movements.

Deep Neural Network Analyses

We trained a simple feedforward 2-layer
convolutional neural network (the “CNN") and the
Index-and-Track (InT) circuit® (the “RNN”) each
designed to have around 100K parameters. InT
incorporates insights from primate neural circuits
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implicated in object tracking and has been shown to
be more performant and correlated to human behavior
compared to vanilla RNNs. The RNN consisted of an
input layer, the InT circuit layer and finally the readout
layer. The input layer had 64 1x1 convolutional filters,
the InT circuit had 64 3x3 recurrent kernels mimicking
the lateral connections found in the visual cortex.
Finally, the readout was a linear layer that transformed
the final RNN hidden state to the classification output.
The RNN was trained for T = 24 time steps. The CNN
was entirely feedforward with a layer of 3x3
convolutional filters followed by a readout layer similar
to the RNN.

Both models were trained using the Binary Cross
Entropy (BCE) training objective to classify each
Planko board into one of either “left” or “right” classes.
Model parameters were optimized with Stochastic
Gradient Descent implemented via the Adam
algorithm (Kingma & Ba, 2014) with an initial learning
rate of 3e-4. Planko boards were of size 64 x 64 pixels
with 200K boards for training and 5K boards for testing
the models. Training was carried out on a NVIDIA
TITAN Xp GPU for 100 epochs while measuring
validation accuracy after each epoch over a held-out
set of 10K boards.

To test if the models had learnt to represent the
ball’s trajectory, we trained 16 position decoders to
predict the position of the ball along the trajectory. For
both the CNN and RNN, after training the models to
classify the boards, their weights were frozen and the
hidden state activities elicited by the 200K training
boards were recorded. These activities were fed into a
model with three layers of 1x1 convolution and pooling
operations and finally a linear layer to obtain the final
predicted position. For the control (“null trained
decoder”), these same decoders were trained to
predict the ball positions directly from the 200K Planko
training boards. The decoders were trained to
minimize the mean squared error between the
predicted ball position and the ground truth position
derived from the physics engine. Like before, the
decoders were trained via Stochastic Gradient
Descent and were tested on 5K unseen boards.

Finally, we used the networks’ uncertainty on each
board to ascertain which network’s strategy better
aligned with monkey behavior. To determine
uncertainty, we performed confidence calibration
(following training) using temperature scaling®. This
calibrated probability (P(L) and P(R) for “left” and

‘right’, respectively) was used to define the
uncertainty for a board as 1 - |PL - PR|. Using this
measure on both the CNN and the RNN, uncertainty
was calculated for each of the boards on which
monkey data was collected (the neural networks were
not trained on these boards). Finally, the network
uncertainty ascribed to the boards was averaged
based on whether the monkeys made an accurate
response on said board. That is, we asked if the
boards with high network uncertainty scores from a
particular neural network were also the ones that the
monkeys got incorrect, and vice versa.

Motion Localizer and Planko Task Variant Design

Localizer runs started with a 16-second lead-in
period with only a yellow fixation point on screen with
a black background. Monkeys fixated on the point for
the entire 16 seconds. This was followed by randomly
ordered 20-second blocks of white dots that either
coherently moved in a given direction (i.e., the Motion
condition), or flickered on and off (i.e., the Flicker
condition). During the Motion and Flicker conditions,
the yellow fixation point remained on screen, and
monkeys were required to continue fixating (while
ignoring the white dots in the background). The white
dots were presented in a circular area with a radius of
6 degrees visual angle around the yellow fixation
point. White dots were 0.07 degrees visual angle in
size and had a density of 69/degrees®. During the
Motion condition, the white dots moved at 5
degrees/second, randomly changing direction once
per second. Monkeys were rewarded for maintaining
fixation, which they did for the entirety of each localizer
block.

Task variant runs (Simulation, Perception, and
Control) were broken down into blocks of 32 trials
each, starting and ending with a 16-second fixation
period. Task variant identity was cued by the color of
a fixation spot that was presented at the start of each
trial. Monkeys were successfully able to task switch
between variant types, even within a single session.

fMRI Scanning Procedures

Monkeys were positioned in an MR-safe chair in
the "sphynx" stance, with heads secured using a
surgically implanted headpost affixed to the chair's
arm. To minimize movement, the chair was padded
with Polyethylene foam. Two floor buttons enabled the
monkeys to register their task responses. During the
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task, monkeys wore earplugs to counteract MRI
background noise.

Prior to scanning, monkeys were administered a
contrast agent (MION) intravenously to enhance
SNR?'-2 Imaging occurred on a Siemens 3T PRISMA
MRI system using a custom six-channel coil. Each
session began and concluded with a T1-MPRAGE
anatomical image, followed by functional images
captured through a specific gradient-echo echo-planar
sequence. A 24-inch MRI safe screen displayed the
visual stimuli.

fMRI Data Analyses

Task activity on Planko variants was analyzed
using a General Linear Model. The expected BOLD
response during the pre-trial period was modeled
using a boxcar regressor from stimulus onset to
participant response. This model was adjusted for
varying reaction times, ensuring the accurate
representation of the BOLD signal for each trial 242°.
The first two trials in each run and trials with outlier
reaction times were treated as nuisance regressors.
Similarly, nuisance regressors for trials with outlier
reaction times, six motion estimates (translation and
rotation), and run identity were also included in the
model. After these were integrated with the HRF-
convolved task regressors, beta and t-statistic values
for the task variants were obtained.

After having derived activity estimates for all
variants, we conducted a Representational Similarity
Analysis (RSA) to compare variants to one another. In
this study, we used voxel-wise t-statistics for each
variant (contrasted against baseline) within a motion
sensitive ROl as the activity estimates due to their
demonstrated reliability for RSA 2. We chose the
Spearman correlation as our similarity metric,
calculating the degree of similarity between the
Simulation and Perception conditions (S-P), as well as
the Simulation and Control conditions (S-C). The
observed S-P and S-C similarities were then directly
compared to one another.
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