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Monkeys engage in visual simulation to solve complex 

problems 

Aarit Ahuja1, 2, Nadira  Yusif Rodriguez1, Alekh Karkada Ashok3, Thomas Serre3,4, Theresa 

Desrochers1,4,5, David Sheinberg1,4/ 

Visual simulation 4 i.e., using internal reconstructions of the world to experience potential future 

versions of events that are not currently happening 4 is among the most sophisticated capacities of the 

human mind. But is this ability in fact uniquely human? To answer this question, we tested monkeys on 

a series of experiments involving the 'Planko' game, which we have previously used to evoke visual 

simulation in human participants. We found that monkeys were able to successfully play the game using 

a simulation strategy, predicting the trajectory of a ball through a field of planks while demonstrating a 

level of accuracy and behavioral signatures comparable to humans. Computational analyses further 

revealed that the monkeys' strategy while playing Planko aligned with a recurrent neural network (RNN) 

that approached the task using a spontaneously learned simulation strategy. Finally, we carried out 

awake functional magnetic resonance imaging while monkeys played Planko. We found activity in 

motion-sensitive regions of the monkey brain during hypothesized simulation periods, even without any 

perceived visual motion cues. This neural result closely mirrors previous findings from human research, 

suggesting a shared mechanism of visual simulation across species. In all, these findings challenge 

traditional views of animal cognition, proposing that nonhuman primates possess a complex cognitive 

landscape, capable of invoking imaginative and predictive mental experiences to solve complex everyday 

problems. 

 

Consider the following scenario: it9s a Monday 

morning, and you9re driving to work. You9ve taken this 

route dozens of times and can navigate without a 

second thought. Yet today, as you approach your 

destination, you encounter construction blocking your 

usual path. You stop, and start to think: <Maybe I could 

turn right here and head north on a parallel road? 

Although, that does lead to a one-way street. Perhaps 

I9ll have better luck if I take a left? That should take me 

past the bakery, around the school crossing, and 

eventually direct me back to my destination=. In just a 

few seconds, you have managed to simulate potential 

alternate paths and chart a new course for your 

journey. 

This process of problem solving via <mental 

simulation= takes place entirely in your head, without 

the need to move a single muscle. You can imagine 

how things might play out in the future to help you 

arrive at a solution. Importantly, you need not actually 

experience the things you are simulating (or their 

potentially negative consequences, such as going 

down a one-way street). Your internally generated 

mental recreations are sufficient to guide your actions. 

When harnessed effectively, mental simulation is one 

of the most sophisticated and useful cognitive 

capacities at your disposal. 

Mental simulations can take various forms. For 

instance, past research has shown that imagining 

bodily movements relies on a form of mental 

simulation, as indicated by the overlap in neural 

circuits involved in imagination and execution of motor 

actions. This phenomenon is referred to as "action 

simulation"1. Similarly, mental simulation strategies 

can also explain how we predict outcomes in physical 

scenes, such as the collapse of a Jenga tower2,3. In 

recent experiments, we have built upon previous 

intuitive physics studies to provide evidence for a 

specific type of mental simulation called visual 

simulation4,5. As the name implies, visual simulation 

involves imagined visual representations 
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corresponding to the objects involved in the mental 

simulation, similar to how action simulation involves 

imagined motor representations. In other words, visual 

simulation incorporates a distinctly visual component 

into the simulation process. Supporting this idea, we 

have developed a novel task called Planko (Figure 1) 

and demonstrated that when people are asked to 

predict the likely trajectory of a ball falling through an 

obstacle-filled display, their behaviors and eye 

movements indicate that they are simulating the ball9s 

path5. Furthermore, we have shown that during these 

simulations of the ball's trajectory, motion-sensitive 

brain regions like the middle temporal area (area MT) 

respond as if the ball's motion were being literally 

seen, even though the stimulus remains static 

throughout the simulation4. Collectively, these findings 

suggest that humans are indeed capable of visual 

simulation, and the neural correlates of this process 

can be observed in visual brain areas. 

Despite the growing body of behavioral and 

neuroimaging work on simulations in the brain, several 

questions about the underlying neural mechanisms 

that support these phenomena remain. Why is this? 

We suggest that a major obstacle to progress derives 

from the lack of a compelling animal model. The 

absence of research on mental and visual simulation 

in animals is not surprising, given the complexity, 

introspection, and subjectivity associated with these 

phenomena. While some recent evidence suggests 

that computational models of simulation align with 

nonhuman primate behavior, it remains unclear 

whether animals are capable of mental simulation, let 

alone visual simulation6. In our current experiments, 

we aimed to address these questions by replicating 

our human studies on visual simulation with 

nonhuman primates (NHPs). We found that when 

macaques play Planko, their behavioral patterns can 

be accurately accounted for by models assuming a 

simulation strategy. Using awake monkey fMRI, we 

further discovered that when monkeys engage in a 

simulation of the ball's trajectory, motion-sensitive 

brain regions become active, indicating an explicitly 

visual aspect of the simulation process. Previously, we 

provided evidence for these same findings with human 

participants. Together, these results demonstrate that 

monkeys not only possess the ability for visual 

simulation but also share the biological foundations of 

this capability with humans and other nonhuman 

primates. 

 

Can monkeys play Planko? 

We have developed a task paradigm called Planko 

to probe visual simulation. During the task, 

participants are shown displays (also referred to as 
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Figure 1: A - Examples of Planko boards used in the task. Monkeys were required to predict which catcher the ball would 

land in, if dropped. In the present example, the three boards in the left column lead to the left catcher, and the three boards 

in the right column lead to the right catcher. B - A schematic of one complete trial, including the pre-response period when 

the monkeys could potentially simulate the ball9s trajectory and the post-response period when they saw the ball fall. C - A 

diagram of the NHP upright rig setup that was used for training and behavioral testing on the task. Monkeys indicated their 

responses using one of the two provided buttons, and were given juice reward for correct responses. 
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boards) like the ones shown in Figure 1A and asked 

to predict which of the two bottom <catchers= the ball 

will end up in, were it to be dropped through a field of 

randomly arranged <planks=. While the participants 

make this prediction (i.e., during the <pre-response 

period=), the ball remains completely static, 

suspended in place. Once the participants indicate 

their choice with a button press, the ball is then in fact 

dropped during the <post-response period=, thus 

providing participants with feedback on their 

responses. While we have been successful in using 

this task to probe simulation in humans5, we wondered 

if monkeys would be capable of learning it, and if so, 

would they, too, rely on visual simulation?  

We thus set out to train two monkeys (referred to 

here as Monkey G and Monkey A) to play Planko. We 

started with extremely simple displays, containing very 

few planks (Figure 2B). During the early stages of 

training, we also introduced a <shadow ball= which 

would reveal a persistent, light gray trace of the ball9s 

trajectory on certain trials at random (Figure 2A). The 

shadow ball thus gave away the correct answer on 

these trials but was nonetheless a useful tool for 

demonstrating to the monkeys what they were 

expected to focus on (i.e., the ball9s trajectory). Over 

time, we gradually increased the number of on screen 

planks while simultaneously reducing the proportion of 

trials containing a shadow ball, as well as fading away 

the shadow ball such that it would reveal progressively 

lesser amounts of the ball9s trajectory (Figure 2A, 2B). 

We assessed training success by analyzing monkeys9 

task accuracy on non-shadow ball trials. 

The progression of each monkey9s task accuracy 

through the aforementioned training (non-shadow 

trials only) is shown in Figure 2C. Initially, both 

monkeys struggled with the task whenever we 

attempted to increase the number of planks on the 

screen. This is especially apparent in the first 25 

sessions. For instance, while Monkey G was able to 

rapidly learn a one-plank version of the task, his 

performance fell back down to chance when shown 

boards with two planks. Similarly, Monkey A 

demonstrated a progressive reduction in task 

accuracy as we advanced from one to four onscreen 

planks. These setbacks suggest that, at least at first, 

both monkeys relied on strategies that were not robust 

to changes to the visual properties of the display. This 

pattern of behavior would not be expected were they 

relying on simulation to solve the task. Importantly, 

however, both monkeys eventually modified their 

approach such that changes to plank number no 

longer impacted their task accuracy, even when 

seeing a particular plank count for the very first time. 

This is most apparent in Figure 2C from session 25 

onwards, where we rapidly progressed from two to ten 

on-screen planks. This newfound invariance to the 

visual properties of the scene is striking and suggests 

that the monkeys were able to arrive at a more 

sophisticated strategy (like simulation) for solving the 

task (Supplementary Video 1). 

 

Behavioral Evidence for Simulation in Monkeys 

While we were encouraged by the fact that the 

monkeys were able to play Planko with higher than 

chance accuracy, that by itself does not provide 

compelling evidence that they were doing so by using 

simulation. We thus set out to ascertain whether their 

behavior on the task was in line with what might be 

expected, were they engaging in visual simulation. In 

our previous work, we have shown that human 

participants9 accuracy on the task depends on the 

degree of <simulation uncertainty= created by the plank 

configuration on any board (for details on simulation 

uncertainty, see Methods and Figure 2D/E). In the 

present study, monkeys were shown boards that fell 

into one of two discrete simulation uncertainty 

categories 4 low, or high (Figure 2F). We predicted 

that if monkeys were engaging in visual simulation, 

then their task accuracy would decrease as simulation 

uncertainty increased. Figure 2G shows both 

monkeys9 task performance as a function of simulation 

uncertainty (high vs low). As with humans (Figure 2J), 

we found that both monkeys were significantly worse 

at the task when simulation uncertainty increased 

(Monkey G: t190 = 2.75, p < 0.005; Monkey A: t190 = 

3.27, p < 0.005), suggesting that they were employing 

a simulation strategy to approach the task. 

We also compared monkeys' eye movements 

before and after their response on each trial. In the 

pre-response period, they made saccades while 

looking at the static image of the board. In the post-

response period, they followed the falling ball with 

smooth pursuit eye movements. Our goal was to 

determine if the eye movements made while trying to 

determine the ball's final position significantly 

overlapped with the eye movements made while 

perceiving the ball's actual falling trajectory (see 

Methods and Figure 2H). We predicted that if 
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monkeys were visually simulating the ball9s movement 

path to solve the task, then there would be significant 

overlap between pre-response and post-response eye 

movements. Figure 2I shows both monkeys9 overlap 

between pre and post-response eye movements, 

relative to overlap predicted by chance (see 

Methods). For both monkeys, we found that the 

degree of observed spatial overlap was greater than 

Figure 2: A - Examples of the <shadow ball= that was used to train the monkeys on Planko. Shadow ball trials were always 

intermixed with non-shadow ball trials. Over the course of training, the shadow ball gradually faded away until it (contd. ->) 
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chance (Monkey G: t239 = 3.49, p < 0.001; Monkey A: 

t240 = 4.17, p < 0.001), suggesting that they may have 

relied on visual simulation to arrive at the correct 

answer. This result also precisely mirrors what we 

have previously observed with human participants 

(Figure 2J). 

 

Computational Evidence for Simulation in 

Monkeys 

To develop a computational explanation for 

playing Planko using simulation and non-simulation 

strategies, we trained two neural networks: a shallow 

convolutional neural network (CNN) and a recurrent 

neural network (RNN) (Figure 3A). We opted for this 

approach because in previous work, we have shown 

that such networks (especially RNNs) are capable of 

spontaneously developing task strategies that 

resemble visual simulation7. The CNN architecture we 

used in the present study was based on a previous 

model used in our human research5, while the RNN 

model drew inspiration from neuroscience-inspired 

motion perception models8. Despite inherent 

architectural differences, we attempted to match the 

parameters of both networks for consistency. Figure 

3B displays the task accuracy of each network when 

tested on the same boards as Monkey A and Monkey 

G. Like the monkeys, both networks achieved task 

accuracy greater than chance (CNN: t382 = 15.39, p < 

0.001; RNN: t382 = 25.27, p < 0.001). 

Having established that neural networks could 

predict the ball9s final catcher, we aimed to understand 

the strategy employed by the two networks by probing 

the activity of their hidden layers (Figure 3C). The top 

row shows activity maps of both networks, while the 

bottom row presents the activity maps overlaid with 

the original board. At first glance, the CNN's activity 

predominantly appears to represent the spatial 

properties of the planks. Conversely, the RNN seems 

to focus on the ball's trajectory rather than the planks 

themselves. Notably, the RNN naturally emerges with 

this trajectory representation, despite not explicitly 

requiring or being trained to do so. This observation 

aligns with the behavior one would expect from a 

system relying on simulation. 

To quantitatively confirm these impressions and 

investigate whether either the CNN or RNN had 

represented the ball's trajectory, we trained 16 position 

decoders to predict equidistant points along the 

trajectory. We used the hidden layer activity from each 

network to assess if these representations contained 

information about the ball's path. As a control, we 

repeated the decoding process using the board 

images themselves, which explicitly lack path 

information (Figure 3D). Comparing the decoder 

outputs to the ground truth trajectory, we found that 

several of the RNN-trained decoders made better 

predictions that were closer to the ground truth points 

than the null-trained decoders. Specifically, significant 

results were observed for 12 of the 16 decoders after 

(contd. ->) revealed none of the ball9s trajectory, in the hopes that monkeys would continue to extrapolate the ball9s 

trajectory, even  when not given. B - Examples of various onscreen plank counts that were used during training. Both 

monkeys began with one plank boards and were gradually progressed along until they were able to navigate ten onscreen 

planks. C - The progression of each monkey9s task accuracy across multiple training sessions in which onscreen planks 

were progressively increased (non-shadow ball trials only). Both monkeys initially struggled with increasing plank numbers, 

before arriving at a generalizable strategy that allowed them to maintain consistent task accuracy. D - An example of a board 

where slightly jittering the position of each plank (three jittered examples j2,3,4 shown with the original j1 underlaid) had a 

minimal impact on the ball9s final position. Outcome changes were assigned a penalty (in this example, only penalties of 0 

were assigned), and used to calculate a simulation uncertainty score. Boards like this one were classified as having a low 

simulation uncertainty. E - An example of a board where slightly jittering the position of each plank (three jittered examples 

j2,3,4 shown with the original j1 underlaid) had a significant impact on the ball9s final position. Outcome changes were assigned 

a penalty between 0 and 1 and used to calculate a simulation uncertainty score. Such boards were classified as having a 

high simulation uncertainty. F - A histogram of all the simulation uncertainty scores  assigned to boards from the two 

monkeys9 task test days. G - Task accuracy for Monkey G and Monkey A as a function of simulation uncertainty. Both 

monkeys were affected by this metric, suggesting that they might be using a simulation strategy. H - A schematic depicting 

the analysis of eye movement overlap between pre-response and post-response trial periods.  I - Eye movement spatial 

overlap for Monkey G and Monkey A, relative to a shuffled chance. Both monkeys showed a higher than chance degree of 

overlap between pre and post response eye movements, consistent with a simulation strategy. J - Data from G and I 

compared to past findings from human subjects. Both monkeys showed behavioral and oculomotor trends that are in line 

with what we have previously observed in humans (see text for details). 
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applying Bonferroni correction for multiple 

comparisons (Figure 3E; see Supplementary Table 1 

for detailed statistics). It is also notable that the 

divergence in prediction ability between the RNN and 

null-trained decoders appears to be most pronounced 

towards the latter half of the ball9s trajectory, where the 

variability in the ball9s hypothetical position is highest.  

In contrast, only one of the CNN-trained decoders 

made better predictions than the null-trained 

decoders. Instead, most of the CNN-trained decoders 

made similar predictions to the null-trained decoders 

(Figure 3E; see Supplementary Table 1 for detailed 

statistics). These findings confirm our initial suspicion 

from the activity maps in Figure 3C 4 that the RNN 

represents the ball's trajectory, consistent with a 

simulation-based approach, while the CNN adopts an 

alternate strategy based on the statistical regularities 

of the planks. 

Finally, we analyzed whether the boards that 

caused the highest uncertainty for the networks 
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Figure 3: A - Examples of two types of networks, a feedforward convolutional neural network (CNN) and a feedback 

recurrent neural network (RNN) that were trained to solve the Planko task. B - Each network9s task accuracy when tested 

on the same board sets from the monkeys9 task test days. Like the monkeys (MG and MA), both networks achieved above 

chance accuracy. C - A heat map showing the average activity of the hidden units on an example board for both the CNN 

and the RNN. The second row shows the same activity again, but with the input board image overlaid. D - A schematic 

depicting how we quantified whether the ball9s trajectory was represented in the network hidden layer activity. E - Average 

RMSE values for each predicted vs actual position for the CNN and RNN trained decoders, relative to the board image 

trained (null/chance) model. While the CNN trained decoders almost never achieved greater than chance prediction 

accuracy, the RNN trained decoders consistently predicted the position of the ball with a high degree of accuracy. F - Network 

uncertainty for the CNN and the RNN as a function of whether each monkey gave the correct or incorrect response on a 

given board. The CNN9s average network uncertainty was no different for boards that the monkeys got correct vs boards 

that they got incorrect, whereas the RNN9s average network uncertainty was significantly higher on boards that the monkeys 

got incorrect compared to boards they got correct. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2024. ; https://doi.org/10.1101/2024.02.21.581495doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.21.581495
http://creativecommons.org/licenses/by-nc-nd/4.0/


corresponded to the ones on which the monkeys 

made mistakes. We did this to determine which 

network approach, simulation-like (RNN) or not 

(CNN), best aligned more with monkey behavior. By 

calculating each network9s board-wise uncertainty 

(see Methods), we found that the RNN displayed 

significantly higher uncertainty on boards where 

monkeys responded incorrectly compared to those 

where they answered correctly (Monkey G: t190 = 3.79, 

p < 0.001; Monkey A: t190 = 2.35, p < 0.05). This result 

suggests that the monkeys struggled with the same 

boards for which the answer was unclear to the RNN. 

Conversely, we found that the CNN exhibited no 

significant difference in certainty between boards that 

the monkeys got correct compared to the ones they 

got incorrect (Monkey G: t190 = 1.31, p = 0.18; Monkey 

A: t190 = 1.21, p = 0.22), suggesting that the CNN and 

monkeys struggled with distinct boards. Overall, this 

result indicates that the RNN's simulation-like task 

approach (as depicted in Figures 3C-3E) successfully 

captures the monkeys' approach whereas the CNN9s 

plank analysis approach does not, supporting the idea 

that the monkeys also engaged in simulation. 

 

Neural Evidence for Visual Simulation in Monkeys 

In the previous experiments, we laid the foundation 

for the idea that monkeys may possess the ability to 

engage in simulation. To investigate whether these 

simulations are indeed visual, we recorded neural 

responses from the monkeys using an MRI scanner 

while they played Planko. We achieved this by training 

the monkeys to play Planko in a setup novel to the 

monkeys 4 seated in a horizontal chair in the sphinx 

position. Our primary hypothesis was that the neural 

circuits involved in perceiving the falling ball would 

also be activated during visual simulation. Based on 

prior human evidence, we predicted that a) motion-

sensitive brain regions would be active while the 

monkeys simulated the motion trajectory of the ball, 

and b) that this activity would bear voxel-wise pattern 

similarity to periods when the monkeys actually 

perceived the ball falling. 

To assess these predictions within the MRI 

environment, we first defined a region of interest (ROI) 

that was sensitive to motion. We carried out a motion 

localizer task (see Methods) at the beginning and end 

of each scanning session, in which the monkeys 

fixated on a central yellow dot while a field of white 

dots either flickered or moved coherently in the 

background (Figure 4B). Any brain regions exhibiting 

stronger responses to moving dots compared to 

flickering dots, including well-known areas involved in 

motion processing such as area MT, MST, and V4d 

(Figure 5A), were deemed motion-sensitive. For 
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Figure 4: A - A diagram of the NHP fMRI setup. Monkeys were seated in the <sphinx= position and placed inside the scanner, 

where they viewed a screen at the end of the bore and indicated their response using MRI compatible button boxes.  B - A 

schematic of the motion localizer task we used to isolate motion sensitive ROIs. C - A schematic of the three variants of the 

main Planko task that monkeys were trained to perform inside the scanner. D - An example of one complete scanning 

session, containing motion localizer blocks at the beginning and end, and several blocks of each task variant randomly 

interspersed throughout (grey regions indicate interblock intervals). 
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subsequent analyses related to the main Planko task, 

we focused specifically on these motion-sensitive 

brain regions as our ROI (Figure 5D). 

To accommodate the spatial and temporal 

characteristics of the signals acquired in the scanner, 

we created three distinct task variants of Planko that 

were administered in a blocked pattern (Figure 4C, 

4D). The first variant, referred to as the "simulation 

variant," served as the primary experimental condition. 

In this variant, monkeys were presented with a series 

of boards and were asked to predict the final catcher 

for the ball. However, unlike the original Planko task, 

immediate feedback regarding their choice was not 

provided. We intentionally removed feedback 

regarding the ball's trajectory to ensure that monkeys 

did not perceive any onscreen motion throughout the 

simulation block. This design choice was crucial to 

ensure that any activity related to motion perception 

would not be mistakenly attributed to simulation. 

Consequently, we introduced a new "perception 

variant" that served as a positive control. In the 

perception variant, monkeys were not required to 

predict the ball's trajectory; instead, as soon as the 

board appeared on the screen, the ball automatically 

began to fall. The monkeys were then tasked with 

retrospectively reporting the catcher in which the ball 
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Figure 5: A - The result of the Motion > Flicker contrast from the  motion localizer task. We observed activity in canonically 

motion-sensitive brain areas, such as MT, MST, V4d, and 45b. B - The result of the Perception > Control contrast from the 

Planko task variants. Once again, we observed activity in many of the same motion-sensitive areas, such as MT, MST, and 

V4d. C - The result of the Simulation > Control contrast from the Planko task variants. Here too, we observed striking activity 

in motion-sensitive areas such as MT, MST, and V4d. D - A depiction of the motion-sensitive ROI that were used for 

subsequent representational similarity analyses. All voxels that survived cluster correction at a p < 0.05 FWE threshold were 

selected. E - A schematic showing our main comparisons of interest. We compared the pattern of activity (relative to 

baseline) in the Simulation condition to both the Perception condition (S-P) and the Control condition (S-C). G (Left) - A 

comparison of S-P and S-C representational similarities. As with the human participants in our previous study (Ahuja et al., 

2022), Monkey G9s data also showed an elevated voxel-wise pattern similarity for the S-P comparison relative to the S-C 

comparison. (Right) S-P 4 S-C similarity for human participants and Monkey G.  
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landed. By examining neural responses within our 

defined ROI from this task variant, we established a 

template for motion-related activity associated with the 

ball's trajectory. This template served as a basis of 

comparison for the simulation-related activity 

observed in the previous variant. 

Additionally, we developed a "control variant" to 

serve as a negative control condition. In this variant, 

monkeys were presented with static boards (similar to 

the simulation variant). However, unlike the previous 

variants, monkeys' responses were no longer 

dependent on the ball's trajectory. Instead, the 

orientations of the planks on the screen were 

manipulated to be predominantly horizontal or 

predominantly vertical. Monkeys were required to use 

the orientation property to provide a response (e.g., 

pressing left for mostly horizontal or pressing right for 

mostly vertical). Hence, in this variant, monkeys' 

subjective experience during the task closely 

resembled that of the simulation variant (i.e., making 

decisions about a static board during naturalistic free 

viewing). However, the cognitive processes employed 

were no longer related to predicting the ball's motion 

trajectory.  

The experimental design described above is 

consistent with our past human research4. 

Unfortunately, during the course of scanning, one of 

the monkeys developed a fear response to the MRI 

machine, which meant that only one of the two animals 

(Monkey G) adapted to the altered environment of the 

scanner. The subsequent results thus all belong to 

Monkey G but are contextualized relative to our 

previous human findings.  

Our results revealed two significant findings. 

Firstly, within the motion-sensitive ROI, we observed 

increased activity during the perception variant 

compared to the control variant (Figure 5B). This 

finding is expected, since the monkeys viewed the 

falling ball in the perception variant, whereas no 

motion was present on screen during the control 

variant. Strikingly, however, we also found increased 

neural activity in these same motion-sensitive brain 

regions during the simulation variant relative to the 

control variant, despite the absence of any onscreen 

motion in the simulation variant (Figure 5C). The key 

distinction between the simulation and control variants 

lies in the fact that the monkeys engaged in a 

simulation of the ball's trajectory exclusively during the 

simulation variant (and only performed orientation 

discrimination during the control variant). It thus 

appears that the act of simulating the ball's path is 

capable of eliciting activity in motion-sensitive brain 

areas, as would be expected in the case of visual 

simulation. Complete activation coordinates for the 

motion localizer task and Planko task variants can be 

found in Supplementary Tables 1 - 3. 

Second, we used representational similarity 

analyses (RSA) to conduct a comparison of voxel-

level activity patterns between the simulation variant 

and both the perception and control variants (Figure 

5E). Our goal was to examine whether the activity 

patterns in the simulation variant exhibited a greater 

resemblance to those in the perception variant 

compared to the control variant. Such a pattern 

resemblance would support the notion that the 

observed activity during the simulation variant was 

indeed related to a simulation of the ball's motion. We 

found this to be the case, observing a higher pattern 

resemblance between the simulation and perception 

variants (r = 0.45, p < 0.001), compared to the pattern 

resemblance between the simulation and control 

variants (r = 0.2, p < 0.001) (Figure 5G). Since only 

one monkey was able to perform the task in the 

scanner, we assessed the robustness of this result by 

analyzing how consistent it was with our previous 

human findings showing evidence of visual simulation. 

To this end, we pooled the monkey and human results, 

and then carried out a series of leave-one-out t-tests 

where one set of observations (either human or 

monkey) was excluded. Across all iterations, we 

observed a consistent effect size (d = 1.76; SD = 0.14) 

irrespective of the identity of the excluded observation, 

indicating a stable and robust effect that was 

comparable between humans and monkeys. 

Additionally, all t-tests yielded significant differences 

(p < 0.001 for all), further supporting the reliability of 

our monkey results. Collectively, these findings 

provide compelling evidence that the simulation of the 

ball's trajectory in monkeys evokes perception-like 

activity in motion-sensitive brain regions, supporting 

the notion that, like humans, nonhuman primates may 

be capable of visual simulation. 

 

Discussion 

The results of our study represent significant 

advancements in understanding nonhuman primate 

cognition, both behaviorally and neurally. 

Behaviorally, monkeys demonstrated remarkable 
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proficiency in the complex Planko game, showcasing 

not just an understanding of its mechanics but also 

employing a sophisticated strategy beyond mere 

gestalt-style stimulus response mappings. This 

behavior also aligns with the performance of a 

recurrent neural network (RNN) that represents the 

ball9s trajectory in the activity of its hidden layers, 

further suggesting that monkeys were engaged in 

mental simulation. Neurally, we observed notable 

activation in the motion-sensitive region when 

monkeys mentally simulated the ball's trajectory, 

mirroring the neural activity seen when they saw the 

ball move 3 a result consistent with previous human 

studies. Such similar patterns of neural activity during 

both perceived and simulated events suggests that 

monkeys are capable of visual simulation, highlighting 

the profound capacity of their brains to emulate or 

predict sensory experiences without external stimuli. 

Historically, visual simulation 4 a cognitive 

process akin to imagination that can be used to predict 

and plan for the future 4 has primarily been studied in 

humans. Nonetheless, the notion that animals might 

be capable of some form of simulation has gained 

prominence in recent years.  For example, studies on 

action simulation have suggested that mirror neurons 

in the motor cortex can internally mimic observed or 

inferred actions9,10, while studies on intuitive physics 

have demonstrated that when monkeys are asked to 

intercept a moving virtual ball, their behavior on the 

task is consistent with a simulation strategy11,12. Mazes 

have also been used to explore simulation in animals. 

In the visual domain it has been shown that when 

monkeys are asked to determine the location of the 

maze9s exit, spatially tuned neurons in parietal area 7a 

respond with vectors consistent with the path to the 

solution13. Similarly, rodents trained to physically 

traverse a maze are known to exhibit patterns of 

neural responses in the hippocampus that reflect the 

animal9s upcoming path, as if the animals were 

simulating their future journey14,15.  

Despite these previous pieces of evidence hinting 

at simulation abilities in animals, definitive conclusions 

have been elusive due to the complexity and 

introspection associated with this cognitive process. 

Moreover, the simplicity of past paradigms has often 

left room for alternative interpretations, such as 

memory recall instead of active simulation. For 

instance, recent studies revisiting hippocampal replay 

in rodents question the idea that the observed patterns 

of neural responses reflect future progression through 

the maze16, especially since such experiments 

necessarily re-use previously trained mazes. Similarly, 

in previous maze studies with monkeys, the maze9s 

exit was generally found within one direction change, 

making it hard to read out a true, temporally extended 

simulation. The same can be said about intuitive 

physics research with primates, as the tasks used in 

these studies usually involve <simulating= two direction 

vectors at most, at least one of which is often shown 

at the beginning of each trial. 

In the present study, we addressed several of 

these limitations. For instance, the configuration of 

boards on each trial was completely novel,   limiting 

the potential influence of past memory. The ball9s 

trajectories were also complex, incorporating several 

motion vectors from start to finish. Finally, no 

information about the ball9s path was provided (even 

in the early stages of each trial) leaving it entirely up 

to the monkey to determine the complete solution. Our 

findings are thus derived from a more challenging 

experimental paradigm than used in previous studies 

and bolster the sparse, existing literature on animal 

simulation while also introducing the possibility that 

such simulations are characterized by an imagery-like 

visual aspect. 

The Planko task we have used relies on some 

understanding of physics, at least at an intuitive level.  

Based on the current data, we cannot say for sure 

whether monkeys9 ability to learn the task was driven 

by prior experience, or an innate core understanding 

of the physical properties of the real world.  Our choice 

of physics as a testbed, however, was less a matter of 

emphasizing the role of physics, and more motivated 

by the need to create a system where simulation could 

be easily moved between a computational and 

behavioral space.  As a first step, we limited the 

physical worlds to simple rigid body interactions 

between a falling ball and a series of static planks.  

Extending these worlds to include constraints like 

joints and gears or other dynamic forces could induce 

even richer internal simulations than those explored 

here. 

Further, if one accepts that humans and other 

animals carry out internal mental simulations, as our 

data suggest, then it is important to ask if that holds for 

simulation environments not rooted in actual physics.  

Our task could be extended to non-physics based 

worlds, including arbitrary rule based systems or 
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social interactions.  Indeed, from a cognitive science 

perspective, mental simulation has generally been 

associated with the ability of one to simulate the 

thoughts and planned actions of others17319, providing 

one means by which humans, and possibly other 

animals, can predict how others might act in a 

particular situation.  While our study focused on 

predicting the action of an inanimate ball in a highly 

simplified environment, it remains important to 

understand if a similar process may underlie monkeys9 

ability to predict the thoughts and actions of other 

animate entities. 

Our use of functional neuroimaging in this and a 

previous study4 provide one window into the internal 

process by which people and monkeys may visually 

simulate events in the world.  This method has many 

well-known advantages, including its non-invasive 

nature and its whole brain view.  At the same time, it 

leaves many questions unanswered. Given the spatial 

and temporal limits of fMRI, we cannot say how 

detailed the sensory activation in motion areas is.  

Recordings from populations of the individual neurons 

in these activated regions could, however, be used to 

provide a real time readout of the internal state of the 

simulation in order to directly explore the detailed 

circuitry supporting this ability. 

A significant limitation of the present study was the 

analysis of neural data from only one animal, despite 

successfully training two for the Planko task. This 

issue, while notable, does not substantially detract 

from the value of our findings, considering the 

challenges inherent in monkey research and the small 

sample sizes typically involved. The neural findings 

observed align closely with past human fMRI research 

on visual simulation, underscoring the reliability of the 

results despite the limited data set. Another limitation 

is the extensive training required for monkeys to 

achieve high task accuracy. This raises concerns 

about the impact of experience on the likelihood of 

engaging in visual simulation. However, training is an 

indispensable part of teaching cognitive tasks to 

monkeys. An interesting future research direction 

could be to explore whether prolonged practice or 

long-term exposure influence any neural or behavioral 

effects related to simulation. 

In conclusion, our study using the Planko game 

demonstrates more than monkeys' understanding of 

game mechanics; it reveals their capacity for mental 

simulation to predict outcomes. This insight is a 

significant leap in comprehending the relationship 

between the visual brain and mental experience in 

nonhuman primates. Moving beyond traditional 

studies focused on simplified tasks, our findings 

suggest that animal cognition might encompass 

complex thought processes akin to human 

experiences, involving contemplation, simulation, or 

even 'imagination' of potential scenarios. This 

revelation challenges our current understanding of 

animal intelligence, indicating that monkeys, and 

possibly other animals, can weave together past 

experiences, current observations, and future 

possibilities. It opens new avenues in cognitive 

neuroscience, hinting at a rich, imaginative mental 

landscape in the animal kingdom. As we continue to 

explore these capabilities, we deepen our 

understanding of the diverse spectrum of intelligence 

across species, bridging the gap in our 

comprehension of cognitive processes in the animal 

world.  
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Methods 

Subjects and Surgical Procedures 

Two adult male rhesus macaque monkeys 

(Macaca mulatta; Monkey A and Monkey G) were 

included in the study. Both monkeys weighed 

approximately 15kg. Each monkey was surgically 

implanted with an MRI-safe Peek headpost to help 

reduce head motion in the behavioral and MRI 

experimental setups. Surgeries were performed under 

isoflurane anesthesia, in accordance with the 

guidelines published in the National Institutes of 

Health Guide for the Care and Use of Laboratory 

Animals. Surgical procedures were approved by the 

Brown University Institutional Animal Care and Use 

Committee. 

 

Behavioral Experimental Design 

Both monkeys were trained to perform the Planko 

task (as described in Figure 2A-C). Following training, 

we carried out behavioral test days with each monkey 

during which they were shown 192 unique boards over 

the span of 6-8 blocks from 3 sessions. Each trial 

began with the presentation of a fixation point, 

following which a Planko board consisting of one ball, 

ten pseudo-randomly arranged planks, and two 

catchers was presented on screen. Monkeys had to 

determine which of the two catchers, left or right, the 

ball would fall into, were it to be dropped. Monkeys 

indicated their choice with a button press. The ball was 

then in fact dropped, revealing the correct answer. 

Once the ball landed in its catcher, correct responses 

were rewarded with a few drops of juice. The 

proportion of boards on which the ball fell into the left 

or the right catcher was matched (i.e., 0.565 for each). 

We used an Eyelink-1000 camera (SR Research) to 

track monkeys9 eye movements for the entirety of the 

session. Eye position was sampled at 1 kHz and 

stored to disk at 200 Hz. 

 

Simulation Uncertainty Analysis 

To explore simulation uncertainty, we modeled the 

potential for different ball trajectories on each board by 

introducing positional jitter to the planks and 

recalculating the ball9s path with a physics engine, as 

shown in Figures 2D and 2E. Some boards showed 

significant path deviations with slight plank jitter, while 

others were unaffected. We used this data to calculate 

a metric for simulation uncertainty by jittering and 

recalculating the ball's path 500 times for each board, 

then measuring how often the jittered configurations 

resulted in a different outcome. Boards were then 

classified as low or high uncertainty based on these 

outcomes, with the results transformed into a 0-100 

scale. 

 

Eye Movement Analysis 

To assess whether monkeys9 eye movements 

were suggestive of a simulation strategy, we 

compared their pre-response eye movements (i.e., 

during hypothesized simulation) to their post-response 

eye movements (i.e., during perception of the falling 

ball). It is important to note, however, that eye 

movements in the pre-response period occurred with 

a static board presentation, leading to only saccades, 

while those in the post-response period involved both 

saccades and smooth pursuit. Due to the distinct 

nature of saccadic (ballistic) and smooth pursuit 

(continuous) movements, we did not use traditional 

oculomotor metrics such as timing and velocity for 

comparison. Instead, we overlaid the eye movement 

traces from the pre-response and post-response 

epochs on top of one another, and then calculated the 

ratio of the intersection and the union of their areas 

(Figure H).  

Notably, this methodology of measuring similarity 

does result in some incidental spatial overlap even for 

eye movement traces that are entirely unrelated to one 

another. We used this form of incidental spatial 

overlap to quantify a chance intersection level. We did 

this by randomly shuffling the post-response eye 

movements across trials and recalculating spatial 

overlap on mismatched pairs of traces. We 

implemented this shuffling protocol for each monkey 

50 times and averaged the resulting incidental overlap 

values on each trial for each iteration. Subsequently, 

we ended up with a distribution of 50 chance overlap 

values per monkey. We then compared this 

distribution to the actual, observed degree of overlap 

between pre-response and post-response eye 

movements. 

 

Deep Neural Network Analyses 

We trained a simple feedforward 2-layer 

convolutional neural network (the <CNN") and the 

Index-and-Track (InT) circuit8 (the <RNN=) each 

designed to have around 100K parameters. InT 

incorporates insights from primate neural circuits 
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implicated in object tracking and has been shown to 

be more performant and correlated to human behavior 

compared to vanilla RNNs. The RNN consisted of an 

input layer, the InT circuit layer and finally the readout 

layer. The input layer had 64 1x1 convolutional filters, 

the InT circuit had 64 3x3 recurrent kernels mimicking 

the lateral connections found in the visual cortex. 

Finally, the readout was a linear layer that transformed 

the final RNN hidden state to the classification output. 

The RNN was trained for T = 24 time steps. The CNN 

was entirely feedforward with a layer of 3x3 

convolutional filters followed by  a readout layer similar 

to the RNN. 

Both models were trained using the Binary Cross 

Entropy (BCE)  training objective to classify each 

Planko board into one of either <left= or <right= classes. 

Model parameters were optimized with Stochastic 

Gradient Descent implemented via the Adam 

algorithm (Kingma & Ba, 2014) with an initial learning 

rate of 3e-4. Planko boards were of size 64 x 64 pixels 

with 200K boards for training and 5K boards for testing 

the models. Training was carried out on a NVIDIA 

TITAN Xp GPU for 100 epochs while measuring 

validation accuracy after each epoch over a held-out 

set of 10K boards. 

To test if the models had learnt to represent the 

ball9s trajectory, we trained 16 position decoders to 

predict the position of the ball along the trajectory. For 

both the CNN and RNN, after training the models to 

classify the boards, their weights were frozen and the 

hidden state activities elicited by the 200K training 

boards were recorded. These activities were fed into a 

model with three layers of 1x1 convolution and pooling 

operations and finally a linear layer to obtain the final 

predicted position. For the control (<null trained 

decoder=), these same decoders were trained to 

predict the ball positions directly from the 200K Planko 

training boards. The decoders were trained to 

minimize the mean squared error between the 

predicted ball position and the ground truth position 

derived from the physics engine. Like before, the 

decoders were trained via Stochastic Gradient 

Descent and were tested on 5K unseen boards. 

Finally, we used the networks9 uncertainty on each 

board to ascertain which network9s strategy better 

aligned with monkey behavior. To determine 

uncertainty, we performed confidence calibration 

(following training) using temperature scaling20. This 

calibrated probability (P(L) and P(R) for <left= and 

<right=, respectively) was used to define the 

uncertainty for a board as 1 - |PL - PR|. Using this 

measure on both the CNN and the RNN, uncertainty 

was calculated for each of the boards on which 

monkey data was collected (the neural networks were 

not trained on these boards). Finally, the network 

uncertainty ascribed to the boards was averaged 

based on whether the monkeys made an accurate 

response on said board. That is, we asked if the 

boards with high network uncertainty scores from a 

particular neural network were also the ones that the 

monkeys got incorrect, and vice versa.  

 

Motion Localizer and Planko Task Variant Design 

Localizer runs started with a 16-second lead-in 

period with only a yellow fixation point on screen with 

a black background. Monkeys fixated on the point for 

the entire 16 seconds. This was followed by randomly 

ordered 20-second blocks of white dots that either 

coherently moved in a given direction (i.e., the Motion 

condition), or flickered on and off (i.e., the Flicker 

condition). During the Motion and Flicker conditions, 

the yellow fixation point remained on screen, and 

monkeys were required to continue fixating (while 

ignoring the white dots in the background). The white 

dots were presented in a circular area with a radius of 

6 degrees visual angle around the yellow fixation 

point. White dots were 0.07 degrees visual angle in 

size and had a density of 69/degrees2. During the 

Motion condition, the white dots moved at 5 

degrees/second, randomly changing direction once 

per second. Monkeys were rewarded for maintaining 

fixation, which they did for the entirety of each localizer 

block. 

Task variant runs (Simulation, Perception, and 

Control) were broken down into blocks of 32 trials 

each, starting and ending with a 16-second fixation 

period. Task variant identity was cued by the color of 

a fixation spot that was presented at the start of each 

trial. Monkeys were successfully able to task switch 

between variant types, even within a single session. 

 

fMRI Scanning Procedures 

Monkeys were positioned in an MR-safe chair in 

the "sphynx" stance, with heads secured using a 

surgically implanted headpost affixed to the chair's 

arm. To minimize movement, the chair was padded 

with Polyethylene foam. Two floor buttons enabled the 

monkeys to register their task responses. During the 
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task, monkeys wore earplugs to counteract MRI 

background noise. 

Prior to scanning, monkeys were administered a 

contrast agent (MION) intravenously to enhance 

SNR21323. Imaging occurred on a Siemens 3T PRISMA 

MRI system using a custom six-channel coil. Each 

session began and concluded with a T1-MPRAGE 

anatomical image, followed by functional images 

captured through a specific gradient-echo echo-planar 

sequence. A 24-inch MRI safe screen displayed the 

visual stimuli. 

 

fMRI Data Analyses 

Task activity on Planko variants was analyzed 

using a General Linear Model. The expected BOLD 

response during the pre-trial period was modeled 

using a boxcar regressor from stimulus onset to 

participant response. This model was adjusted for 

varying reaction times, ensuring the accurate 

representation of the BOLD signal for each trial 24326. 

The first two trials in each run and trials with outlier 

reaction times were treated as nuisance regressors. 

Similarly, nuisance regressors for trials with outlier 

reaction times, six motion estimates (translation and 

rotation), and run identity were also included in the 

model. After these were integrated with the HRF-

convolved task regressors, beta and t-statistic values 

for the task variants were obtained. 

After having derived activity estimates for all 

variants, we conducted a Representational Similarity 

Analysis (RSA) to compare variants to one another. In 

this study, we used voxel-wise t-statistics for each 

variant (contrasted against baseline) within a motion 

sensitive ROI as the activity estimates due to their 

demonstrated reliability for RSA 27. We chose the 

Spearman correlation as our similarity metric, 

calculating the degree of similarity between the 

Simulation and Perception conditions (S-P), as well as 

the Simulation and Control conditions (S-C). The 

observed S-P and S-C similarities were then directly 

compared to one another. 
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