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Abstract

Predicting drug-target interactions (DTIs) is crucial for drug discovery, and heavily
relies on supervised learning techniques. In the context of DTI prediction, supervised
learning algorithms use known DTIs to learn associations between molecule and pro-
tein features, allowing for the prediction of new interactions based on learned patterns.
In this paper, we present a novel approach addressing two key challenges in DTT pre-
diction: the availability of large, high-quality training datasets and the scalability of
prediction methods. First, we introduce LCIdb, a curated, large-sized dataset of DT1Is,
offering extensive coverage of both the molecule and druggable protein spaces. Notably,
LClIdbcontains a much higher number of molecules, expanding coverage of the molecule

space compared to traditional benchmarks. Second, we propose Komet (Kronecker Op-
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timized METhod), a DTI prediction pipeline designed for scalability without compro-
mising performance. Komet leverages a three-step framework, incorporating efficient
computation choices tailored for large datasets and involving the Nystrom approxi-
mation. Specifically, Komet employs a Kronecker interaction module for (molecule,
protein) pairs, which is sufficiently expressive and whose structure allows for reduced
computational complexity. Our method is implemented in open-source software, lever-
aging GPU parallel computation for efficiency. We demonstrate the efficiency of our
approach on various datasets, showing that Komet displays superior scalability and
prediction performance compared to state-of-the-art deep-learning approaches. Ad-
ditionally, we illustrate the generalization properties of Komet by showing its ability
to solve challenging scaffold-hopping problems gathered in the publicly available £LH

benchmark. Komet is available open source at https://komet.readthedocs. io.

1 Introduction

Most marketed drugs are small molecules that interact with a protein, modulating its func-
tion to prevent the progression of a disease. Therefore, the development of computational
methods for the prediction of drug-target interactions (DTIs) has been an active field of
research in the last decades, intending to reduce the number of wet-lab experiments to be
performed for solving various problems related to drug discovery.

Among current computational approaches, we focus on chemogenomic DTI prediction
methods, i.e. methods that predict whether a (molecule, protein) pair interacts or not,
based on known DTIs in a reference database of interactions. In the present paper, we for-
mulate DTT prediction as a classification problem: (molecule, protein) pairs are classified as
interacting (i.e. positive examples, labelled +1) or not interacting (i.e. negative examples,
labelled —1). Chemogenomic methods offer a global framework to predict drugs’ protein
interaction profiles, or proteins’ drug interaction profiles, at large scales both in the molecule

and protein spaces, which cannot be performed by other methods (mainly QSAR and dock-


https://doi.org/10.1101/2024.02.22.581599
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.22.581599; this version posted February 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

ing approaches) directly. Therefore, chemogenomic methods allow for tackling important
problems in drug design. In particular, the prediction of drugs’ protein profiles allows the
prediction of deleterious off-targets responsible for unwanted side-effects and potentially lead-
ing to drug withdrawal or beneficial off-targets that may be of interest to treat other diseases
thus offering drug repositioning opportunities. Moreover, the prediction of proteins’ drug
interaction profiles is an interesting tool to solve scaffold hoping problems in the context of
drug design.!

Enhancing the performance of DTI predictions requires to use of ever-larger training
datasets and the development of Machine-Learning (ML) algorithms capable of scaling to
these dataset sizes. In this paper, we tackle these challenges by presenting a curated large-
sized dataset LCIdb and Komet, a GPU-friendly DTT prediction pipeline. These two com-

ponents complement each other, resulting in state-of-the-art performance.

2 State-of-the-art in chemogenomic approaches

Most chemogenomic DTT prediction methods rely on the global framework comprising three
main steps and presented in Figure 1. Therefore, we present a short review of state-of-the-art

approaches used in these three steps.

2.1 Step 1: Feature representations for proteins and molecules

Various methods? have been designed to compute feature representations for proteins and
molecules. For molecules, several types of features are considered, as discussed in recent pa-
pers.®* They can globally be classified into: (1) string-based formats such as the Simplified
Molecular-Input Line-Entry System® (SMILES), or the International Chemical Identifier®
(InChl); (2) table-based formats that represent the chemical graph of the molecule such as
the sdf format;” (3) feature-based formats that consist in vectors whose elements encode

various molecular characteristics. They include Morgan fingerprints, Extended-connectivity
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Figure 1: Global framework for DTT prediction in 3 key steps

fingerprints® (ECFP), or 2D and 3D pharmacophore fingerprints as described in the RD-
Kit toolbox;? (4) computer-learned representations that are derived by neural networks and
used to encode molecules in deep-learning approaches. These representations can be learned
from recurrent neural networks (RNNs) or convolutional neural networks (CNNs) that use
SMILES representations as input, as seen in Lee et al and Zhao et al.1%!* Graph convolution
networks have also been applied to 2D molecular graphs to learn small molecule represen-

12,13 and strategies to pre-trained Graph Neural Networks have been studied by Hu

tations,
et al.'* to compute molecule embeddings. Similar to natural language models, Mol2vec!®
and SMILES2vec !¢ adapt the principles of the "word2vec" method!” to learn embeddings for
molecular structures. Additionally, transformer-based models like MolTrans!® have emerged
in this domain. Finally, other learned representation methods such as X-Mol*® or MolGNet 2"
use AutoEncoder (AE) techniques for molecular representation.

Similarly, proteins can globally be described by: (1) string-based representations corre-
sponding to their primary sequence of amino-acids; (2) vector-based feature representations,
where the elements of the vector are calculated according to various characteristics, as re-

1_ 21

viewed in Zhu et al. #'. Such representations include composition, transition, and distribution

€SCriptors al are classica used, computer-learned representations derive
(CTD) descriptors that lassically used;?? (3) puter-1 d rep tations derived
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by neural networks in deep-learning approaches. In this context, protein features can be
acquired by a variety of deep learning architectures, including recurrent neural networks

10,11 59 well as transformer models.!®

(RNNs) or convolutional neural networks (CNNs),
As in natural language models, protein embeddings can also be learned from pre-trained
transformer-based models on external tasks such as ESM2,?3 or auto-encoder models such

as ProtBert?* and ProtTHXLUniref50.24

2.2 Step 2: Features for (molecule, protein) pairs

The second step of many DTI prediction pipelines consists of defining a representation for
(molecule, protein) pairs, thus defining a latent space for pairs. The method that is used
to define this latent space has a critical impact on the prediction performance, and a key
aspect is that the features representing the (molecule, protein) pair should capture infor-
mation about the interaction, which is not fully achieved by simple concatenation between
molecule and protein features? . Therefore, step 2 usually consists of a non-linear mixing
of the protein and molecule embeddings, to better encode information about interaction de-
terminants. One common approach is to use the tensor product, which is equivalent to a
Kronecker kernel.?%27 Alternatively, in deep-learning methods, the features for pairs can be
learned from an interaction module that consists of fully connected multi-layer perceptrons
(MLPs).10:230 Attention mechanisms applied to molecule and protein features constitute
another option.!!!¥3! Then, the last layer of the network can be used to define features for

the (molecule, protein) pairs.

2.3 Step 3: DTI prediction model

The third step consists of a supervised classifier that is trained in the latent space of
(molecule, protein) pairs, using a training dataset of positive and negative DTIs. These
classifiers include tree-based methods,3? and network-based inference approaches.?? In lin-

ear models, step 3 consists of the optimization of the weights applied to the pair features
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calculated in step 2, according to a logistic loss or a hinge loss for Support Vector Machines

(SVM).3* For example, the various articles?”35-37

rely on a linear model on a latent rep-
resentation of pairs. In deep-learning chemogenomic algorithms, step 3 relies on the pair
features determined by the last layer of the neural network in step 2. The features’ weights
are optimized based on a loss function, typically binary cross-entropy, as the input progresses
through the network in a feed-forward manner. For instance, this approach is used in several

10,11,18,28-31

recent papers proceed in this way.

2.4 Issues in chemogenomic studies

Although different chemogenomic approaches have been proposed, as briefly reviewed above,
all require a training dataset of positive and negative (molecule, protein) pairs. Recent ML
chemogenomic algorithms have often been trained on small to medium-sized benchmarks
that present various biases. Indeed, most classical benchmark datasets are extracted from
a single biological database, and often favour drug and target families that have been more
widely studied, and for which many known DTIs have been recorded®®3° . Additionally,
Bagherian et al.*? highlights that most datasets use negative DTIs randomly chosen among
pairs with unknown interaction status, and may therefore include false negative DTIs. One
suggestion to overcome this problem is to derive training datasets from interaction databases
that compile continuous values for binding affinities and choose stringent activity thresholds
to derive confident positive and negative pairs, as suggested by Wang et al.*!.

In addition, training chemogenomic models that are broadly applicable and can generalize
to many different families of proteins and drugs requires training on very large, high-quality,
verified and well-established DT datasets. This appears to be an important bottleneck since
publicly available training datasets that meet these criteria are seldom.

However, training ML algorithms on very large datasets, potentially comprising hundreds
of thousands of molecules and DTIs, leads to challenges in terms of computation times and

memory requirements. In particular, the choice of the interaction module in step 2 has
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significant implications for computation time and memory resources in large-sized datasets.
In the case of deep-learning approaches, the complexity of neural network architectures, and
the size of parameter spaces, may also contribute to the computational expense. Learning
the interaction module requires iteratively adjusting the model parameters, leading to time-
consuming training phases.

Overall, there is a critical need for chemogenomic approaches that can scale to very large

datasets.

3 Contributions

In the present paper, we tackle two important issues mentioned above:

e in Section 4.2, we propose the Large Consensus Interaction dataset, called LCIdb
hereafter, a new very large and high-quality dataset of DTIs that was designed to
train chemogenomic ML algorithms for DTI prediction at large scale in the protein
and molecule spaces. In particular, our dataset comprises a much larger number of
molecules than commonly used datasets, offering a better coverage of the chemical

space. Additionally, we paid attention to limiting potential bias among negative DTTIs.

e in Sections 4.3 and 4.4, we propose Komet (Kronecker Optimized METhod), a simple
yet efficient DTT prediction method that lies within the global pipeline presented in
Figure 1. This method incorporates specific computation choices that provide scala-

bility for very large training datasets, without compromising prediction performance.

We show that Komet competes with or outperforms state-of-the-art deep-learning ap-
proaches for DTI prediction on medium-sized datasets, but that it scales much better to
very large datasets in terms of prediction performances, computation time, and memory
requirements (see Section 5.4).

Finally, we illustrate the performance of Komet trained on LCIdb using DrugBank as an

external dataset for DTI prediction, and on a publicly available benchmark*? designed to
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evaluate the performance of prediction algorithms in solving difficult scaffold hoping prob-
lems. !

Komet adopts the global three-step framework shown in Figure 1, which aligns with
recent computational pipelines, such as in Huang et al.?®. However, Komet includes specific
choices whose principles are presented below, while mathematical details are provided in
Materials and Methods.

In step 1, molecule (resp. protein) features vy, (resp. ©p) are computed based on the
distances of the considered molecule (resp. protein) to molecules in the training set, thus
leveraging ideas from kernel methods. More precisely, from a small set of reference land-
mark molecules extracted for the training dataset, we use the Nystrom approximation and
dimensionality reduction to efficiently compute embeddings ¢, and ¥p that approximate
the features derived from the chosen kernels. The parameters of the method are the num-
bers mys (resp. mp) of molecule (resp. protein) landmarks, and the dimension dy; (resp dp)
of the molecule (resp. protein) embeddings. The impact of these parameters is studied in
Section 5.2.

In step 2, the interaction module consists of the tensor product between the protein
and molecule spaces. One of the motivations for using the tensor product is that it offers
a systematic way to encode correlations between molecules and protein features, indepen-
dently from the choice of these features. A potential issue with this approach, however, is
that the size of the resulting vector representation for the (molecule, protein) pair equals
dy; X dp, and may be prohibitively large for computation time and memory. However, a
classical property of tensor products is their factorization between inner products between
the two tensor product vectors of molecules and proteins, called the Kronecker product. This
avoids the explicit calculation of the interaction embedding, thus addressing the challenges
posed by large datasets. Overall, as shown in Section 5, we found that this tensor product
representation efficiently captured information about features interactions that govern the

(molecule, protein) binding.
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In step 3, Komet uses a simple SVM loss together with a BFGS optimization algorithm.
This allows to leverage the Kronecker factorization of pairs’ features, leading to a significant
speedup of the training. It is important to note that, in the proposed approach, steps 2 and
3 are executed simultaneously. This is made possible by avoiding the implicit calculation of
pairs’ features, thanks to the Kronecker interaction module.

Our method is implemented in an open source software, leveraging parallel computa-
tion on GPU through a PyTorch?® interface, and is available at https://github.com/

Guichaoua/komet.

4 Materials and Methods

We first recall known and publicly available medium-sized DTI datasets that are used in
the present paper (Section 4.1), and describe the building of our large-sized DTI dataset
LCIdb (Section 4.2). Then, we detail our computational approach for large-sized DTT pre-
diction with Komet (Sections 4.3 and 4.4), and present the methodology used to compare
the performance of Komet to those of a few state-of-the-art deep-learning algorithms (Sec-
tion 4.5). Finally, we introduce (LH), a publicly available benchmark dataset to assess the
performances of computational methods to solve scaffold hoping problems and used in the

present study.

4.1 Medium-scale datasets

We first use medium-scale datasets to compare the performance of Komet to those of state-
of-the-art algorithms: BIOSNAP, BIOSNAP_ Unseen_ drugs, BIOSNAP_Unseen_ proteins,
BindingDB, and DrugBank. The four first of these datasets are publicly available and were
established in Huang et al. 8. They are used in various recent studies.?*** We also used the
DrugBank-derived dataset established in Najm et al.*®, from which we built an additional

so-called DrugBank (Ext) to be used as an external dataset, as detailed below.
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L 18 1‘44

The authors from Huang et a and Singh et a proposed to train and compare the
performance of various DT prediction algorithms based on splitting the datasets in training
(Train), validation (Val), and test (Test) sets according to a 7:1:2 ratio. Therefore, to make
fair comparisons, we followed these schemes. The number of drugs, targets, and interactions
for all datasets used in the present study is given in Table 1. In addition, the number

of positive and negative interactions across the training (Train), validation (Val), and test

(Test) sets for all datasets used in the present paper is detailed in Table 2.

BIOSNAP in its three prediction scenarios The ChGMiner dataset from BIOSNAP 46
contains exclusively positive DTIs. Negative D'TIs are generated by randomly selecting an
equal number of positive DTIs, assuming that a randomly chosen (molecule, protein) pair is
unlikely to interact. We considered three scenarios, as proposed in Huang et al.'®. The first
scenario is referred to as "BIOSNAP", and corresponds to random splitting of the DTIs. In
the BIOSNAP_ Unseen_ targets scenario, the Train and Test sets do not share any protein.
The BIOSNAP_ Unseen_ drugs dataset follows a similar process for molecules. The two last
scenarios allow us to evaluate the generalization properties of the algorithm on proteins or

molecules that were not seen during training.

BindingDB-derived dataset The BindingDB database, referenced in*" | stores (molecule,
protein) pairs with measured bioactivity data. We used a dataset derived from BindingDB
and introduced by Huang et al.!®, where BindingDB is filtered to include only pairs with
known dissociation constants (Kd). Pairs with Kd < 30 nM are considered positive DTIs,
while those with Kd > 30 nM values are considered negative. This leads to a much larger
number of negative DTIs than positive DTIs. Although the resulting dataset does not in-
clude the whole BindingDB database, for the sake of simplicity, it will be called BindingDB

hereafter.

10
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DrugBank-derived datasets We used the dataset provided in Najm et al.*®. This
dataset was built by filtering drug-like molecules and human protein targets in the Drug-
Bank database, adding an equal number of negative DTIs through balanced sampling. More
precisely, to avoid bias towards well-studied proteins for which many interactions are known,
negative examples are randomly chosen among unlabeled DTIs in such a way as to ensure
that each protein and each drug appear an equal number of times in positive and negative
interactions, using the greedy algorithm from Najm et al.*>. This dataset will be referred
to as DrugBank in the following, for the sake of simplicity, and corresponds to the dataset
called DrugBank (S1) in the original paper.

We created another dataset called DrugBank (Ext), derived from the above dataset, and
used it as an external validation to compare the prediction performances of the considered
algorithms when trained on BindingBD or on LCIdb. Positive interactions from DrugBank
were selected, excluding those present in BindingDB and LCIdb, to gather a set of positive
DTTs absent from the BindingDB and LCIdb datasets. All other DTIs in DrugBank are
kept in DrugBank (Ext). As above, balanced negative interactions were added in DrugBank

(Ext), as proposed in Najm et al.*5.

4.2 Building the new large scale dataset LCIdb

To build a large-sized dataset of DTIs, we started from the database described by Isigkeit

1. 48

et al.?®, as it combines and curates data from prominent databases including ChEMBL*? |

PubChem® | TUPHAR/BPS?! | BindingDB®? | and Probes & Drugs.?® We filtered the DTIs

in this database according to 4 filters, as detailed below.

Filtering positive DTIs : (1) Chemical structure quality filter: for DTIs present in
several of the source databases, we only retained those for which the SMILES representation
of the molecule was identical in all sources, to exclude potential erroneous (molecule, protein)

pairs. We only kept molecules with molecular weights between 100 and 800 g.mol~!, which

11
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is a standard choice for selecting drug-like molecules. Among these molecules, we selected
those that target at least one human protein. These filters were used because the goal was to
build a training dataset of DTIs that are relevant in the context of drug discovery projects.

(2) Bioactivity filter: we retained only DTIs for which inhibition constant Ki, dissociation
constant Kd, or half maximal inhibitory concentration IC50 measurements were available in
at least one of the source databases.

(3) Quantitative bioactivities filter: for DTIs with bioactivity measurements present in
multiple source databases, we only retained those whose bioactivities were within one log
unit from one another.

(4) Binary labelling of DTIs: Bioactivity measurements were converted into binary in-
teractions based on a threshold. If the bioactivity value was less than 100 nM (10~"M),
the interaction was classified as positive DTI (binding). If the bioactivity value (Ki, Kd
or IC50) was greater than 100uM (107*M), the interaction was classified as negative DTI
(non-binding). When the bioactivity value was in the margin, i.e. between 100 nM and
100uM, DTTs were classified as known non-conclusive.

This scheme leads to the selection of 274 515 molecules, 2 069 proteins, 402 538 positive
interactions and 8 296 negative interactions. We then added negative interactions to build a

balanced dataset.

Completion of a balanced negative DTI dataset: We randomly split the dataset
into training (Train), validation (Val), and testing (Test) sets in a 7:1:2 ratio. We use
unlabeled DTTIs to include negative interactions to these three sets, assuming most unknown
DTTs are negative. For the Train set the selection of additional negative interactions should
be designed with care to tackle two classical issues: (1) reduce the number of false negative
DTIs present in the training set; (2) correct potential statistical bias in the database towards
highly studied molecules or proteins. To take into account the former, we excluded known

non-conclusive interactions, and for the latter, we applied the algorithm by Najm et al.*?

12
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for selecting additional negative DTIs. In the Val and Test sets, remaining negative and
randomly chosen unknown interactions are added. These sets form LCIdb, mirroring the

DrugBank dataset scenario discussed in section 4.1.

Different prediction scenarios: To evaluate performance in different prediction scenar-
ios, we also derive different datasets from to LCIdbbased on specific splits of the Train,
Val, and Test sets, as proposed in Huang et al.'® and Singh et al.**. Datasets are built to
correspond to LCIdb, LCIdb_ Unseen drug, LCIdb_Unseen_protein, and LCIdb_ Orphan
(unseen molecule and protein) scenarios. We added the Orphan case, which presents the
greater difficulty for prediction tasks.

More precisely: (1) LCIdb is balanced in positive and negative pairs chosen at ran-
dom; (2) LCIdb_Unseen_ drugsis built so that (molecule, protein) pairs in one of the
Train/Val/Test sets only contain molecules that are absent from the two other sets; (3)
LCIdb_ Unseen__targets is built so that (molecule, protein) pairs in one of the Train/Val/Test
sets only contain proteins that are absent from the two other sets; (4) LCIdb_ Orphan is
built so that (molecule, protein) pairs in one of the Train/Val/Test sets only contain pro-
teins and molecules that are absent from the two other sets. The number of drugs, targets,
and interactions in these four datasets is given in Table 1. Table 2 provides the number of

positive and negative interactions across the Train, Val, and Test sets in these four datasets.

4.3 Features for proteins and molecules in Komet

The initial step of our DTI prediction framework consists of computing simple and fixed

features for molecules and proteins.

Nystrom-based molecule and protein features ¢/,; and ¢p in Komet: In Komet, we

5455 and dimensionality

encode molecules and proteins leveraging the Nystrom approximation
reduction. For a molecule m (for instance, represented as a SMILES string), let us explain

how we compute its embedding ¢y;(m) in R . The same computation applies for the

13
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protein embedding ¥ p(p) € R (where p is for instance a FASTA string). 1y, is built
from a small set of landmark molecules {m,};"/ with m,; > dj; that are randomly chosen
in the training dataset. The other ingredient in Komet is a kernel kj;(m, m’) that can be
viewed as a similarity measure between two molecules, and that is used to define molecule
features (the choice of this kernel is discussed below). We first compute the small kernel
matrix Ky € R™"™v where (Ky);; = ka(fy, ;). Then, we define the extrapolation

matrix £ € R™*d from the Singular Value Decomposition of Ky = U diag(o)U”T as

E = U[:,: dy] diag(o;/?)%, . The molecule embedding is then

mar d]\/[
¢M(m) = ( Z Eg}s k’M<ﬁlg, m)) € RdM.
1

{=1 5=

Note that when no dimensionality reduction is performed (dy; = myy), this embedding satis-
fies the relation kps(m;, ;) = (Yar (W), Yar(m;)) (see Appendix C for details). In addition,
for any molecule m that is not in the landmark set, ky(m,m;) = (¢p(m), ¢p(M;)) through
a Nystrom approximation (see Appendix C for details). Hence, F allows us to “extrapolate”
the embedding v,;, which is the underlying kernel map of k;;, from the landmarks to new

molecules. Finally, we mean-center and normalize the features:

1 mar

m b
Tar(m) — ] where m = o ; P (my).

We adopt a similar approach to build ¥p but use all proteins from the data set as
landmarks, as their number is much smaller. Again, because the number of proteins is small

enough, we do not apply dimensionality reduction: dp = mp = np.

Choice of molecule and protein kernels: The embeddings 1), and ¥ p depend on the
choice of molecule and protein kernels. We follow the choices made in Playe et al.3” and
adopt the Tanimoto kernel kj; for molecules. For each molecule m represented in SMILES

format, we calculate Morgan fingerprints with a radius of 2, generating a 1024-bit binary
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vector using the RDKit package? . Values of the Tanimoto kernel between two molecules
are then computed as the Jaccard index between their fingerprints. The Tanimoto kernel
measures the similarity between two molecules based on the substructures they share, based
on fingerprints. For each protein represented as a sequence p of amino acids, we opt for
the Local Alignment kernel (LAkernel)®® . This kernel kp detects remote homology by
aggregating contributions from all potential local alignments with gaps in the sequences,
thereby extending the Smith-Waterman score.’” The hyperparameters were adjusted by

cross-validation3” .

4.4 Large-scale chemogenomic framework with Komet

We address DTI prediction as a supervised binary classification problem, incorporating es-

tablished steps, as outlined in Sections 2.2 and 2.3.

Features for molecule-protein pairs: Let us consider a DTI dataset containing molecules
and proteins (m;);2] and (p;)7Z;, where ny, and np are respectively the number of molecules
and proteins in the dataset. To alleviate notations, in what follows, we denote by m :=
¥pr(m) the embedding of a molecule m and by p := ¢)p(p) the embedding of a protein p.

The training dataset consists of a set of nz (molecule, protein) pairs with indices (ix, jx )12,
and their associated labels y, € {—1,1}. If y, = 1 (resp. —1), molecule m;, and protein p;,
interact (resp. don’t interact). The classification is performed in the space of pairs, which
we define as the tensor product of the space of molecules and the space of proteins. Hence,
the embedding for pairs is given by ¢(m, p) == (m[s] X p[t])1<s<dy 1<t<ap € R, where m|[s]
is the s-th coordinate of m and p[t] is the t-th coordinate of p.

Thus, the space of pairs has dimension dy = dj; X dp. This embedding corresponds to
the use of a Kronecker kernel, already shown to be efficient in several publications.?"37:4

Using a Kronecker kernel is crucial in our approach, not only because it is a state-of-the-art

method, but also due to its favourable mathematical properties, which we will detail below.
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It is worth noting that our approach avoids explicitly calculating the embedding ¢, which

mitigates the computational burden associated with the large value of d.

SVM classification: Our classification approach follows previous work (see Section 2.3),
relying on a linear model with weight vector w € R?% and bias term b € R. The class
decision for a pair feature vector z € R% is determined by sign((w, z) +b) € {—1,1}. The

parameters w and b are obtained by minimizing a penalized empirical risk:

. L A
min Z 0((w, z) + b, yr) + §||w||2 (1)

d
weR*Z E—1

In Komet, we employ a Support Vector Machine (SVM) classification where ¢(y/,y) =
max(0, 1 — yy’).

The minimization of Equation (1) is computationally demanding, particularly when n
and dz are large. A conventional Stochastic Gradient Descent (SGD)5® can result in slow
convergence. Therefore, we use an alternative approach that leverages the specific structure
of our embedding ¢, as was previously done in Airola and Pahikkala®® . Specifically, we
exploit: (1) the tensor product nature of ¢ and (2) the fact that the sizes ny; and np of the

input databases are much smaller than the number nz of interactions.

Efficient computation The core ingredient leading to a significant improvement in com-
putational efficiency on a large-sized dataset is the efficient computation of the gradient by
bypassing the evaluation of . Indeed, the function to be minimized in Equation (1) has the
form L(Zw + b) + 3||w]||?>, where the rows of Z € R"2*%Z are the vectors z,, and L takes
into account ¢ and y. The main computational burden for evaluating this function and its
gradient is the computation of Zw. A naive implementation would require nzdy operations
just to compute Z, which would be unavoidable if one used a generic ¢, such as a deep neural

network. However, we bypass this bottleneck by directly computing Zw. This relies on the
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following identity:

(a) (b)
(Zw)k - <w7 Zk>RdZ = <mik7 ijk)RdM = <mik> ij>RdM7 (2)

where W € R%*47 jg such that it has w as flattened representation in R% and ¢; := Wp;.

Equality (a) exploits the tensor product structure of ¢. Please refer to the Appendix D
for a detailed proof.

Equality (b) is interesting because all the (g;)jZ, can be computed in only npdz oper-
ations. Once this has been computed, evaluating all ny values of (Zw), = (mi,, ¢, )rin
require nzdy,; operations. We then minimize Equation (1) using a full batch method, which
enables the use of efficient quasi-Newton methods. In practice, we use the BFGS method
with limited memory%® (refer to chapter 6 of this book). The complexity of our algorithm is
then O(npdy + nzdy) where O(.) takes into account the number of iterations of the BFGS
algorithm to reach a fixed accuracy. This number is quite small (10 to 50) in our numerical
experiments. Note that we can exchange the role of the protein embeddings and the molecule
embeddings in this calculation, resulting in a complexity of O(nydz +nzdp). In our setting

np < ny so we prefer the initial formulation of Equation (2).

From classification to probability estimation Once the weight w has been computed,

Platt scaling® computes a probability using the formula

6u

14 ev’

pr = o(—yx(s(zg, w) +t)) where o(u) =

where the scale s (level of confidence in some sense) and offset ¢ needs to be optimized. They

are found by minimizing the same energy as the logistic classification.

mlnE (s,1) Zﬁ s(zr, w) + 1)) = L(—diag(y)(sm + 1)),
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where £(u) := log(1 + e*) and m := Zw. We use the BFGS method to estimate s and t.

4.5 Evaluation of prediction performance

Comparing the prediction performances of various algorithms requires defining the evaluation

strategies and the metrics used.

Metrics: We formulate the DTI prediction problem as a classification task, therefore, we
use AUPR (area under the precision-recall curve), ROC-AUC (area under the ROC curve)

and prediction accuracy, as metrics to compare prediction performances.

Evaluation strategies: There is only one hyperparameter in our model, as shown in
Equation (1). We select the best A € {107'1,1071°,...,10,100} based on AUPR performance
from the validation (Val) set. This value is used to train the parameters of the model 5 times
on the training set, each time with new landmark molecules and approximated molecule
features, and we calculate the mean prediction probability. The final computed model is

then evaluated on the Test set.

Implementation details: We use a server with 2 CPUs and 1 NVIDIA A40 GPU with
48 GB of memory. We provide a Python implementation of Komet and the code used to

build LCIdb at https://Komet.readthedocs.io.

4.6 Application to the scaffold hopping problem

To assess computational methods for solving large-step scaffold hopping problems, Pinel
et al.4? built a high-quality benchmark called Large-Hops (£LH) comprising 143 pairs of
highly dissimilar molecules that are active against diverse protein targets. In LH, one active
molecule is considered as known, and the second active molecule must be retrieved among

499 decoys carefully selected to avoid statistical bias.
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For each case, the considered algorithms were trained with one molecule of the pair con-
sidered as the only known active for the query protein. If the known interaction was absent
from the training dataset, it was added to it, and all other interactions involving the query
protein potentially present in the database were removed. After training, the algorithms
rank the unknown active and the 499 decoy molecules, according to the predicted bind-
ing probabilities of the (molecule, query protein) pairs. The lower the rank of the unknown
active, the better the prediction performance.

Three criteria are employed to compare prediction algorithms: (1) Cumulative Histogram
Curves (CHC) are drawn to represent the number of cases where a method ranks the unknown
active below a given rank, with better-performing methods having curves above others; (2)
Area Under the Curve (AUC) of CHC curves provide a global quantitative assessment of the
methods; (3) the proportion of cases where the unknown active was retrieved in the top 1%

and 5% best-ranked molecules. 2

5 Results

In the following, we first present the new LCIdb DTI dataset, analyze its coverage of the
molecule and protein spaces, and compare it to other available and widely used datasets.
Next, we explore different parameters within the Komet pipeline, to find a balance between
speed and prediction performance. We then show that Komet displays state-of-the-art DTI
prediction performance capabilities on the considered medium- and large-sized datasets,
and on the DrugBank (Ext) DTI dataset used as an external dataset (see Section 4.1 for
a description of this dataset). Finally, we highlight the efficiency of our approach on the
publicly available (LH) benchmark dataset designed to address challenging scaffold hopping

problems.
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5.1 Coverage of the protein and molecule spaces in the LCIdb

dataset

Different reviews introduce numerous biological databases that can be used to derive large-
sized training datasets,?%? to best cover the protein and molecule spaces. Following Isigkeit
et al.*®, we combine and filter curated data from prominent databases including ChEMBL#°
PubChem,*® TUPHAR/BPS,%! BindingDB®? , and Probes & Drugs® , and built LCIdb,
a large-sized high-quality DTI database, as detailed in Section 4.2. Table 1 provides the
numbers of molecules, proteins, and interactions in all the DTT training datasets considered

in the present study.

Table 1: Numbers of molecules, proteins, and positive/negative DTIs in the considered
datasets. 'random" indicates that negative DTIs were randomly chosen among unlabeled
DTIs. '"balanced" indicates that negative DTIs were randomly chosen among unlabeled
DTIS, but in such a way that each protein and each drug appears in the same number of
positive and negative DTTs.

Datasets Molecules Proteins PBS&PII:G Negative DTTs
BIOSNAP 4,510 2,181 13,836 (13,647 random)
Unseen__drugs 13,836 (13,647 random)
Unseen__targets 13,836 (13,647 random)
BindingDB 7,161 1,254 9,166 23,435
DrugBank 4,813 2,507 13,715 (13,715 balanced)
DrugBank (Ext) 4,257 1,216 10,838 (10,838 balanced)
LCIdb 274,515 2,069 402,538 8,296 (+ 394,242 balanced)
Unseen_ drugs 274,515 2,069 402,538 8,296 (+ 394,242 balanced)
Unseen_ targets 232,018 2,069 431,011 8,296 (+ 422,715 balanced)
Orphan 143,255 2,069 151,690 8,296 (+ 143,394 balanced)

Table 1 reveals that DrugBank- or BIOSNAP-derived datasets and BindingDB share a
few characteristics: their numbers of proteins are similar (in the range of one to two thou-
sand), their numbers of molecules are modest (in the range of a few thousand), their number
of known positive DTIs are similar (in the range of thousands). BindingDB contains true
negative DTIs, while the DrugBank- or BIOSNAP-derived datasets use DTIs of unknown
status as negative DTIs, randomly chosen for BIOSNAP-derived datasets, and randomly

chosen in such a way that all molecules and proteins appear in the same number of positive
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and negative DTIs (labelled "balanced" in Table 1) for the Drugbank-derived datasets. Over-
all, these observations underline the need for a larger dataset, as required for chemogenomic
studies. As shown in Table 1, LCIdb includes 40 times more molecules and 30 times more
positive DTIs than the other considered datasets, the number of human proteins being in
the same order of magnitude.

However, it is important to evaluate whether this larger number of molecules corresponds
to better coverage of the chemical space and whether the different datasets are comparable in
terms of biological space coverage. Indeed, the chemical space is estimated to be extremely

3 and efficient sampling of this space by the training dataset is expected to have a

large, ©
great impact on the generalization properties of the prediction models.

We use the t-SNE algorithm%* on the molecule features 1y, derived from the Tanimoto
kernel, as defined in Section 4.3, to visualize the resulting high-dimensional molecular space
in a two-dimensional space, thus facilitating analysis. Figure 2 shows that the LCIdb dataset
not only contains a much larger number of molecules but that these molecules display more
diversity concerning the t-SNE features than the BIOSNAP, DrugBank, and BindingDB
datasets. While the representation in Figure 2 does not embrace the entire vast and un-
known chemical space, LCIdb seems to provide a better overall sampling for t-SNE features.
In addition, it shows that LCIdb also covers the chemical space more uniformly than the
other datasets. Interestingly, Figure 2 highlights that the BIOSNAP dataset originates from
DrugBank, displaying similar patterns of red clusters of molecules.

We also run the t-SNE algorithm based on Tanimoto features computed using an alter-
native set of molecule landmarks, and based on other molecule features. In all cases, results
visualization confirmed the above conclusions that LCIdb presents a wider and more uniform
coverage of the chemical space, underscoring their robustness. The corresponding results are
shown in Figure 2 of the Appendix A.

In Isigkeit et al.*®, the authors analyzed the space formed by the five databases from

which LCIdb originates. Specifically, they examined distributions of common drug-like fea-
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LCIdb and BindingDB LCIdb and DrugBank LCIdb and BIOSNAP

",
P

Figure 2: 2D representation of the molecular space with the t-SNE algorithm based on
molecule features. In blue: the large-sized LCIdb dataset, in red: the medium-sized Drug-
Bank, BIOSNAP, and BindingDB datasets.

tures such as molecular weight, the number of aromatic bonds, the number of rotatable
bonds, and predicted octanol-water partition coefficients. The authors observed that these
distributions are similar across all sources. In Appendix A, we present plots illustrating the
distribution of drugs in our LCIdb dataset, based on the five databases from which they
originate.

By contrast, the number of human proteins is comparable across all considered datasets,
although not identical (see Figure 3). We also used t-SNE plots based on protein features
defined in Section 4.3 to explore the coverage of the protein space by LCIdb . As shown in the
resulting 2D representation presented in Figure 4, the protein space covered by LCIdb con-
tains clusters that align with functional families of proteins. This was expected when using
features calculated using the LAkernel (see Section 4.3), since proteins that share high se-
quence similarity usually belong to the same protein family. Thus, we can leverage this
representation to discuss the diversity of proteins in our datasets. As shown in Figure 5,
although LCIdb contains slightly fewer proteins than the DrugBank dataset, their cover-
age of the biological space is similar. BIOSNAP appears to have a lower coverage of a few
protein clusters (such as protein kinases), while BindingDB focuses more on a few clusters

corresponding to specific protein families.

As detailed in Section 4.1, for BIOSNAP and LCIdb, additional datasets are derived,

22


https://doi.org/10.1101/2024.02.22.581599
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.22.581599; this version posted February 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

[ LCIdb

[ DrugBank

71 BIOSNAP
BindingDB

Figure 3: Overlap between LCIdb , DrugBank, BIOSNAP, and BindingDB datasets in terms
of proteins.

10,11,27,37.65 a5 well as in Huang et al.'® and Singh et al.%4,

as suggested in various studies,
two papers that respectively introduced the MolTrans and ConPLex algorithms. They cor-
respond to scenarios of varying difficulties encountered in real-life situations in drug discov-
ery projects: (1) the Unseen_drugs case is typical of new drugs identified in phenotypic
screen and for targets are searched to elucidate the drug’s mechanism of action; (2) the Un-
seen__targets case is typical of newly identified therapeutic targets against for which reposi-
tioning opportunities if known drugs are searched; (3) The Orphan case is typical of a new
therapeutic target has been identified, and against which ligands (inhibitors or activators)
are searched at large scale in the molecule space.

The composition of the corresponding datasets is provided in Table 1. In Huang et al.'®

l. 44

and Singh et al.**, only the Unseen_drugs and Unseen targets were considered, but we

added the Orphan case for LCIdb.

L. 18 L. 44

Finally, following Huang et a and Singh et al.**| in all the prediction experiments re-
ported in the Results, the prediction performances of all considered algorithms are computed
based on the Test set, after optimization of the parameters on the Train/Val sets built from

the considered DTT datasets. Details about the Train/Val/Test sets are given in Section
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Figure 4. Representation of the protein space in LCIdb according to the t-SNE algorithm
based on protein features derived from the LAkernel. A few protein families are labelled and
coloured.
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LCIdb DrugBank BIOSNAP BindingDB
W ol

Figure 5: Representation of the protein space according to the t-SNE algorithm based on
protein features derived from the LAkernel. In blue: LCIdb, in red: DrugBank, BIOSNAP,
and BindingDB.

4.1). The number of molecules, proteins and interactions in these sets are provided in Table

2.

Table 2: Full specification of the Train/Val/Test sets for all datasets. DrugBank (Ext) is
only used as an external validation dataset when algorithms are trained on BindingDB or
LCIdb (see Section 5.4.3). Therefore, no Train, Val, or Test sets were built for DrugBank
(Ext)

Datasets #Train #Val #Test
BIOSNAP 9,670/9,568 1,396/1,352 2,770/2,727
Unseen__drugs 9,535/9,616 1,383/1,353 2,918/2,675
Unseen__targets 9,876,/9,499 1,382/1,386 2,578/2,762
BindingDB 6,334/6,334 927/5,717 1,905/11,384
DrugBank 10,972/10,972 1,098/1,098 1,645/1,645
DrugBank (Ext) - - 10,838/10,838
LCIdb 161,015/161,015 | 32,204/32,204 | 48,304/48,304
Unseen_ drugs | 156,942/156,942 | 32,326/32,326 | 56,328/56,328
Unseen__targets | 154,683/161,015 | 32,349/32,349 | 60,822/60,822
Orphan 59,132/59,132 | 10,145/10,145 | 22,503/22,503

5.2 Parameters set-up of the model

Due to the vast number of molecules in LCIdb (see Table 1), our Komet algorithm incor-
porates the Nystrom approximation to calculate molecular features as well as a dimension
reduction, which involved parameters my; (number of landmark molecules) and d); (dimen-
sion of molecular features). By contrast, for proteins, we retain all the proteins in the Train

set as protein landmarks (np = mp = dp). It is therefore crucial to evaluate the potential
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impact of the m,; and d,; parameters on the prediction performance of Komet, the resulting
gain in calculation time, and to study whether good default values can be determined. This
study was performed on LCIdb_ Orphan and BindingDB, respectively large- and medium-
sized datasets. LCIdb_Orphan was chosen as the large dataset for exploring the impact
of my; and dj; because it corresponds to the most difficult dataset, on which it is criti-
cal not to degrade the prediction performances. Figure 6 shows that both for datasets, we
can significantly reduce the number of landmark molecules (mj;) and the dimension (d)
of molecular features without losing performance, while saving time and computational re-
sources. In particular, results on BindingDB illustrate that reducing mj; from the total
number of molecules (7161) to 5000 or 3000 does not significantly affect the AUPR. In
addition, for the large-sized datasets like LCIdb_ Orphan, reducing m,, from 10000 to 5000
or 3000 does not degrade the prediction performance.

Moreover, the AUPR curves reach a plateau for d,; values between 1000 and 2000,
suggesting that we can limit the number of molecular features without a loss in performance.
This observation is confirmed with the medium-size dataset BindingDB, for which a plateau is
also reached for similar values of d;;, particularly the green curve for which no approximation
was made (ny; = my; = 7161). This suggests that dj; values in the range of 1000-2 000
could be good default values for the number of features used in molecular representations.
In addition, Figure 6 illustrates that, as expected, reducing m,; and d,; significantly reduces
computational time and GPU memory usage. Consequently, we choose dj; = 1000 and
mpy = 3000 as a good compromise to design a rapid and less resource-intensive algorithm,

without majorly compromising performance.

5.3 Impact of different molecule and protein features on Komet

prediction performances

We explored the impact of molecule and protein features on the prediction performances

of Komet. For molecule features, we consider the features extracted from the Tanimoto
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Figure 6: Influence of mj; and dj; on AUPR on the validation set of LCIdb_Orphan,
computation time (in seconds) and usage and peak GPU RAM (in Gb). In each graph,
the three curves correspond to three values of mj;, i.e. the number of random molecules
used by the Nystrom approximation of the molecular kernel. Error bars correspond to the
choice of different landmark molecules. Graphs on the left refer to the large-sized dataset
(LCIdb_ Orphan) and on the right to the medium-sized dataset (BindingDB).
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kernel between ECFP4 fingerprints, as described in Section 4.3, with the ECFP4 finger-
prints themselves. This is equivalent to using the dot product between ECFP4 fingerprints,
rather than the Tanimoto kernel, and no approximation (neither through the choice of a
reduced set of landmark molecules nor through dimensionality reduction). Previous studies
have shown that ECFP4 fingerprints perform as well as state-of-the-art fingerprint-based 3D
models, % and are not significantly outperformed by embeddings learned from deep learning
methods®” . Therefore, we also considered pre-trained Graph Neural Networks (GNNs) for

1.4 outlines several

the generation of molecule features. Specifically, the work by Hu et a
pre-training strategies for GNNs using a dataset of two million molecules. These strategies
include supervised learning for molecular property prediction and semi-supervised learning
methods such as context prediction, mutual information maximization between local and
global graph representations, encouraging similarity in representations of adjacent nodes
while differentiating distant nodes, and predicting masked node and edge attributes. We
use the trained models adapted by Li et al.%® to calculate the molecular embeddings and
we present in 3 only the features giving the best results, which are supervised learning for
molecular property prediction and semi-supervised learning on context prediction.

For proteins, we compare features extracted from the LAkernel, as described in Sec-
tion 4.3, with features computed similarly, but using the 20605 proteins of the UniProt

9 as landmark proteins, with a dimension reduction step (dp = 1200).

human proteome
In addition, we used three embeddings from deep-learning models: ESM223 which is based
on transformers, and ProtBert?* and ProtT5XLUniref502* which are based on variational
autoencoders trained on very large data sets of proteins.

Results are displayed in Table 3 for LCIdb_ Orphan, the most challenging large-sized
dataset. They show that the features proposed for Komet in the present study lead to
the best prediction performance. However, replacing the molecular embeddings built from

the Tanimoto kernel between ECFP4 fingerprints with the ECFP4 fingerprints themselves

barely degrades the performance. This could indicate that the molecular information lost
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Table 3: AUPR of Komet using different molecule and protein features on the
LCIdb_ Orphan dataset. "Tanimoto" features are built from the Tanimoto kernel between
ECFP4 fingerprints as described in Section 4.3. "LAkernel" features are built from the Local
Alignment kernel between proteins as described in Section 4.3. "UniProt LAkernel" features
are built in the same way, but considering all human proteins from UniProt as landmarks
proteins and using dimensionality reduction.

Protein embedding
LAkernel | UniProt LAkernel | ProtBert | ProtT5XLUniref50 | ESM2

Tanimoto 0.897 0.873 0.834 0.632 0.864
Molecule | ECFP4 0.893 0.861 0.829 0.630 0.866
embedding | dgl-lifesci (GNN  su- 0.887 0.857 0.834 0.618 0.858

pervised contextpred)

by approximations (using a subset of landmark molecules and performing dimensionality
reduction) is compensated by the Tanimoto kernel being a more appropriate kernel than
the dot product. The protein embedding derived from the LAkernel on the 2069 druggable

%i.e. human proteins for which at least one drug-like ligand is known, leads to the

proteins,
best prediction performances. One explanation could be that the human druggable proteins
present some sequence and family bias, and do not span the whole human proteome space.
As a consequence, generic embeddings learned in deep learning approaches on very large
sets of proteins from multiple species (ProtBert, ProtT5XLUniref50, ESM2), may be less
appropriate for the specific problem DTI prediction in the context of drug-like molecules and
human druggable proteins. This may also explain why features derived from the LAkernel
computed on 20 605 human proteins also degrade the prediction performance. For this latter
case, using the whole human proteome comes with the necessity of dimensionality reduction
(dp = 1200), which may also contribute to reducing the prediction performance.

As a consequence, the molecule features derived from the Tanimoto kernel on and the
ECFP4 fingerprints and the protein features derived from the LAkernel on the 2069 drug-
gable proteins are used in all the following prediction experiments performed with Komet.

However, one should note that except for the ProtT5XLUniref50 protein features, the pre-

diction performances of Komet remain relatively stable to molecule and protein features.
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5.4 Comparison of the prediction performances between Komet

and deep-learning algorithms

Because LCIdb is large, deep-learning methods are expected to perform well on it.”™ There-
fore, we compare Komet to the recently proposed ConPLex* algorithm, a deep-learning
approach that was shown to achieve state-of-the-art performance on medium-sized datasets.

ConPLex uses molecules using Morgan fingerprints and proteins using the pre-trained

t24 as input. The latent space for (molecule, protein) pairs

Protein Language Model ProtBer
is learned through a non-linear transformation into a shared latent space. This learning phase
combines a binary DTT classification phase with a contrastive divergence phase, in which the
DUD-E database™ , comprising 102 proteins together with ligands and non-binding decoys, is
used to compute a loss that minimizes the target-ligand distances (corresponding to positive
DTIs) and maximizes the target-decoy distances (corresponding to negative DTIs).

We also compared Komet to MolTrans, another recent and state-of-the-art deep-learning
framework '® . MolTrans uses a representation of molecules (resp. proteins) based on frequent

subsequences of the SMILES (resp. amino acid) strings, combined through a transformer

module.

5.4.1 DTI prediction performances on medium-sized datasets

We first compare the performance of Komet to those of ConPLex and MolTrans on the
medium-sized datasets BIOSNAP, BindingDB and DrugBank introduced in Section 4.1. We
only use the AUPR score because most negative interactions in the considered datasets are
unknown interactions. The results are presented in Table 4. Note that the performance of
a random predictor would correspond to an AUPR score of 0.5 (except for BindingDB in
which the number of negative DTIs is much larger than the number of positive DTTs, and
for which the performance of a random predictor would be equal to 0.4). We report the
average and standard deviation of the area under the precision-recall curve (AUPR) for 5

random initializations of each model. Interestingly, in all cases, Komet’s AUPR performances
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(with dp; = 1000 and my; = 3000) are similar to or higher than those of the two deep-
learning methods. This is consistent with the expectation that deep-learning methods only
outperform shallow learning methods when training data are abundant, due to their larger
number of parameters to fit.

Table 4: AUPR performances of Komet, ConPLex, and MolTrans on medium-sized datasets
BIOSNAP, BindingDB, and DrugBank. The ConPLex and MolTrans algorithms were re-run
on these three datasets, and the resulting AUPR are very close (in fact slightly better) to
those in the original paper.

Dataset Komet ConPLex MolTrans
BIOSNAP 0.940 £ 0.001 | 0.921 4 0.002 | 0.893 + 0.001
Unseen__drugs 0.914 £ 0.001 | 0.899 &£ 0.011 | 0.8714 0.002
Unseen__targets | 0.891 + 0.001 | 0.863 £ 0.005 | 0.683 % 0.005
BindingDB 0.667 £ 0.005 | 0.669 4+ 0.003 | 0.611 + 0.004
Drugbank 0.939 £ 0.001 | 0.935 4 0.002 | 0.809 +£ 0.004

In the Unseen_drugs and Unseen_ targets scenarios on BIOSNAP, as expected, the
AUPR performances decrease for all algorithms but remain high, except for MolTrans which

overall tends to display lower performances than the two other algorithms.

5.4.2 DTI prediction performances on large-sized datasets

Then, we trained Komet, ConPlex, and MolTrans on the four large-sized LCIdb-derived
datasets. The results demonstrate that Komet achieves state-of-the-art AUPR prediction
performance in all cases (see Table 5) at a much lower cost in terms of training time (see

Table 6).

Table 5: Comparison of AUPR prediction performance on large-sized datasets

Komet ConPLex MolTrans
LCIdb 0.990 + 0.001 | 0.969 + 0.002 | 0.967 + 0.001
Unseen_drugs | 0.994 + 0.0003 | 0.978 + 0.003 | 0.968 + 0.002
Unseen__targets | 0.915 + 0.001 | 0.894 4+ 0.031 | 0.591 + 0.007
Orphan 0.896 4+ 0.0008 | 0.846 4+ 0.003 | 0.552+ 0.013

Overall, the performance of Komet is consistently high, with AUPR scores above 0.9 in

most cases. Because the number of molecules is still very large in the LCIdb Unseen_ drugs
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Table 6: Comparison of training time for the considered algorithms

Komet | ConPLex | MolTrans
LCIdb 15s 907.3s 69838s
Unseen_ drugs 15s 1734s 68400s
Unseen__proteins 15s 888s 64800s
Orphan 8s 1329s 25200s

dataset, thus covering a broad chemical space, the performance remains excellent, although
molecules in the Test set are absent in the Train set. In LCIdb Unseen targets and
LCIdb_ Orphan, where the proteins in the Test set are absent in the Train set, the per-
formances are slightly lower but remain high. The ConPLex algorithm also displays high
performances (although lower than those of Komet) in all cases, while MolTrans appears to
be less stable.

We conducted a comparison using various performance measures, and the outcomes con-
sistently align with the above results. For these additional insights, please refer to the

Appendix B.

5.4.3 Validation on Drugbank (Ext) as external dataset

In the above sections, the performances of the algorithms are compared based on Train/Val
/Test splits on all the considered datasets. To better assess the generalization properties of
the algorithms, we used as an external dataset the DrugBank (Ext) introduced in Section 4.1.

The prediction performance of the three considered algorithms on DrugBank (Ext), when
trained on BindingDB or on LCIdb, are reported in Table 7, from which two conclusions
can be drawn. First, all ML algorithms perform better when trained on LCIdb compared to
BindingDB. This improvement is attributed to LCIdb’s more large coverage of both chemical
and protein spaces. Indeed, according to Figure 2, the molecule space covered by LCIdb
globally includes that covered by DrugBank, but this does not appear to be the case for the
BindingDB dataset. Similarly, according to Figure 4, the protein space of LCIdb globally

covers that of DrugBank, whereas the protein space of BindingDB does not seem to cover
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that of DrugBank.
Second, Komet always outperforms the two deep-learning algorithms. Overall, Komet

trained on LCIdb displays the best generalization performances on DrugBank (Ext).

Table 7: AUPR performance for considered algorithms trained on BibndingDB and LCIdb

Training \ Algorithm | Komet | ConPLex | MolTrans
LCIdb 0.848 0.822 0.558
BindingDB 0.659 0.611 0.503

5.5 Case Study: solving scaffold hopping problems

Finally, we evaluate the pipeline that leads to the best performance, i.e. Komet trained on the
LCIdb dataset based on its ability to solve scaffold hopping problems, which requires highly
demanding generalization properties, and which corresponds to an important challenge in
drug discovery.! When a hit molecule has been identified against a therapeutic target, it may
not be a proper drug candidate because of poor selectivity or ADME profile, unacceptable
toxicity, or expensive synthesis route. The hit molecular scaffold may also be protected by
patents, which restrains its downstream development. To circumvent these limitations other
active molecules with different molecular scaffolds are searched. The difficulty of the problem
posed by this search depends on the degree of "dissimilarity" that is required for the new
active molecule concerning the known hit. Although various examples of solving scaffold

hopping cases have been reported, these types of problems are known to be difficult to solve

using in silico approaches (AJOUTER QQ REFS).

1.42 proposed the LH benchmark to assess the performance of computational

Pinel et a
methods to solve scaffold hopping problems. They focused on the most difficult case, i.e.
the "large-step" scaffold hopping scenario, where one ligand molecule for a given target is
known, and another ligand molecule of a highly dissimilar structure is searched for the same

target. The LH benchmark comprises 143 pairs of highly dissimilar molecules that are active

against diverse protein targets. Computational methods are evaluated as follows: for each
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pair, one active molecule is considered as known, and the second active has to be retrieved
among decoys that were carefully selected to avoid statistical bias. Since either molecule of
the pair can be chosen as the known active, this leads to 286 scaffold hopping cases to solve.
More precisely, given one molecule of the pair, the objective is to rank the other (considered
as unknown active) among a pool of decoy molecules. The lower the rank of the unknown
active, the better the prediction performance.

In Figure 7, we compare the performance of Komet and ConPLex prediction algorithms
trained on LCIdbor BindingDB, using Cumulative Histogram Curves (CHC). This criterion
illustrates the frequency of cases where the method ranked the unknown active molecule
below a specific rank. Table 8 supplements this evaluation by providing the Area Under
the Curve (AUC) of CHC curves, offering a quantitative comparison of methods, along with
the proportion of cases where the unknown active was retrieved within the top 1% and
5% of best-ranked molecules. These metrics serve as indicators of the success rate of the
methods. We also re-computed the results obtained by the Kronecker kernel with an SVM
calculated with the scikit-learn toolbox, using the same kernels as in Komet, and trained on
the DrugBank dataset. These results align with those of the original paper by Pinel et al.*2.

As shown in Figure 7 and Table 8, Komet trained on LCIdb leads to the best performances
on all criteria. The ConPLex deep-learning algorithm trained on LCIdb (and fine-tuned
with DUD-E) performs better on all criteria than when trained on BindingDB (and fine-
tuned with DUDE-E), while the Kernel SVM trained on DrugBank of the original paper
displays performances that are intermediates with those of ConPlex on the two considered
training datasets. The fact that ConPLex does not outperform Komet specifically on the
LH benchmark is somewhat puzzling. Indeed, one of the reasons why we chose ConPLex is
that it incorporates a contrastive learning step based on DUD-E, which should help separate
the unknown positive from the decoys in LH. One explanation may reside in the fact that
DUD-E presents a hidden bias that was shown to mislead the performance of deep learning

algorithms.”™ The use of an unbiased database for contrastive learning may improve the
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performance of ConPLex on the LH benchmark.

Table 8: Prediction performances on the LH benchmark.

Dataset Komet Kernel SVM | ConPLex on BindingDB | ConPLex on LCIdb and
on LCIdb | on DrugBank | and contrastive on DUD-E | contrastive on DUD-E

Roc-AUC | 0.85 0.77 0.70 0.75

Top 1% 32% 22% 12% 24%

Top 5% | 52% 36% 26% 43%

Notably, in 50% of cases, our pipeline involving Komet trained on LCIdb successfully
ranks the unknown active in the top 5%. This performance surpasses those of all ligand-
based methods tested in the original paper by Pinel et al. 2, the best of which, involving 3D

pharmacophore descriptors, ranked the unknown active in the top 5% in 20% of cases.

Cumulative Histogram Curves (CHC)
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Figure 7: Cumulative Histogram Curves of the considered algorithm, measuring the cumu-
lative proportion of cases the unknown active is retrieved below a given rank.

The fact that Komet trained on LCIdb outperforms ConPLex train on the same dataset

may again be explained by more expressive features for the (molecule, protein) pairs in
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Komet. In addition, the facts that (1) the performances of ConPLex are improved when
trained on LCIdb over those obtained with BindingDB, and that (2) the performances of
Komet trained on LCIdb over than those obtained with Kernel SVM trained on DrugBank,
may be explained by a better coverage of the active molecules space in LH by LCIdb than by
BindingDB and DrugBank. Indeed, we used the t-SNE algorithm to visualize the molecule
space coverage of the LCIdb , DrugBank, BindingDB and superposed with the space of active
molecules in LH. As shown in Figure 8, LCIdb uniformly spans the entire space of active

molecules in £LH, which is not the case for the DrugBank and the BindingDB datasets.

LCIdb and LH DrugBank and LH BindingDB and LH

Figure 8: t-SNE on molecule features. In blue and from left to right: LCIdb, DrugBank and
BindingDB, in orange: active molecules of LH.

6 Discussion

An important contribution of the present work resides in providing the LCIdb DTI dataset
which appears much larger than most public datasets used in the recent literature. A key
feature of this dataset is a wider and more uniform coverage of the molecular space. A
recurrent problem when building DTI datasets for training ML algorithms is that negative
interactions are usually not reported. One way to circumvent this problem is to use reference
databases that provide quantitative bioactivity measurements and choose threshold values

18,44

to define positive and negative interactions. In previous studies, other authors chose

a common and rather low threshold value of 30 nM for both types of DTIs, leading to a
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modest number of positive (9166) and three times more negative DTIs(23435), as shown
in Table 1. The notion of positive and negative DTIs is not absolute, because bioactivities
are continuous, and threshold values are somewhat arbitrary. In the present paper, we
chose distinct thresholds for positive and negative interactions, respectively under 100 nM
(107"M) and above 100pM (107*M). This leads to a limited number of known negative DTIs
in the dataset (8296) compared to known positives (402 538). Overall, our goal was to limit
the potential false negative DTIs and the bias towards well-studied molecules and proteins.
Therefore, true negative DTIs were completed by randomly chosen DTIs according to the
algorithm in Najm et al.*>, while excluding all DTIs with activities falling in the 100 nM
107"M-100uM margin. However, we are aware that using a lower threshold value for the
negative DTIs in LCIdb would have allowed us to select a high number of DTIs considered
as known negatives.

Another important contribution is the proposal of the Komet pipeline, a DTI prediction
algorithm designed to learn on very large training datasets such as LCIdb . This algorithm
contains two parameters, my; (number of landmark molecules) and d,; (dimension of molec-
ular features). We were able to define good default values for these parameters (dy; = 1000
and my, = 3000), significantly reducing the computational time and memory requirements.
Interestingly, computational resources will not increase drastically if the size of the Train set
increases (if new DTIs are added), as can be judged from Figure 6.

We also showed that the performance of the algorithm was robust for the choice of the
landmark molecules and the molecule and protein features, although learned features tended
to decrease the performance, as shown in Table 3.

Importantly, Komet belongs to the family of shallow ML algorithms and proved to out-
perform ConPLex and MolTrans, two recently proposed deed-learning algorithms, at a much
lower computational cost. One explanation for the good performance of Komet could be that
features for the (molecule, protein) pairs derived by Komet in Step 2, simply based on the

Kronecker product, may better capture determinants of the interaction than the combined
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learned features in the considered deep-learning algorithms. The Kronecker product strat-
egy to combine molecule/protein features to encode interactions seems more important than
the choice of features for (molecule, protein) pairs since different molecule features did not
significantly impact the performances (see Table 3), and since ConPlex does not reach the
performance of Komet when both are trained on LCIdb (see Table 7). In addition, the pro-
posed architectures in ConPLex and MolTrans may not yet be fully optimized for the DTI
prediction problem. Furthermore, our study focuses on DTI prediction in the human dru-
gable space of proteins, because our goal is to propose a valuable tool to use in the context of
drug discovery projects. The dimension of this space is modest, as illustrated by the number
of proteins in LCIdb (2069), with respect to that of the human proteome (above 20000,
but expected to be in the order of 90000 when including splicing variants). Therefore, the
druggable human proteins may present some sequence bias, and the protein features used in
ConPLex and MolTrans and learned based on a much wider space of proteins may not be
optimal for the DTT prediction problem at hand. This is consistent with the results in Table
3, showing that learned features did not improve the performances of Komet.

Komet proved to display state-of-the-art performances on various prediction scenarios,
including the most difficult problems. In particular, it proved to be efficient in solving
scaffold hopping cases. Although it was not designed and tuned for this specific scenario,
it appears as an interesting tool to guide medicinal chemists in solving such problems. One
possible future improvement would be to use other molecule kernels. Indeed, the Tanimoto
molecule kernel used in Komet is a measure of structure similarity between molecules, which
is a priori not well suited to the scaffold hopping problem. Other molecule kernels based on
pharmacophore features may improve the prediction performances of Komet on the specific

problem of scaffold hoping.
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A Molecule space coverage of various datasets

This section shows cases of a 2D visualization of the chemical space covered by various
datasets considered in the paper, using the t-SNE algorithm on various molecule features.

Figure 9 shows the drug distribution in LCIdb across the five databases from which the
initial dataset®® is extracted. It highlights a significant contribution from the CHemBL and
PubChem databases, enhanced mainly by data from Probes&Drugs.

Figure 10 shows the t-SNE visualizations of the molecular space for various considered
datasets, based on Tanimoto features (as in Figure 2) for one choice of 3000 landmark
molecules, for another choice of 3000 landmark molecules, and for ECFP4 features. It

confirms that LCIdb offers broader and more uniform coverage of the chemical space than

BindingDB, DrugBank, or BIOSNAP.

B Several metrics to compare prediction performances

Table 9 presents various metrics for comparing prediction performances on the four LCIdb-

datasets. While ConPlex has better accuracy in two cases, overall, Komet outperforms the
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ChEMBL Probes&Drugs PubChem BindingDB IUPHAR/PBS

Figure 9: t-SNE on molecule features. In blue: large-sized benchmark LCIdb, in red: 5
databases from which the initial dataset®® is extracted.

LCIdb and BindingDB LCIdb and BIOSNAP
iy

Figure 10: 2D representation of the molecular space, based on the t-SNE algorithm on
molecule features. In blue: large-sized LCIdb dataset, and in red: medium-scale DrugBank,
BIOSNAP, and BindingDB datasets.
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other algorithms in most cases according to AUPR, ROC-AUC and Accuracy prediction

performances, supporting the main conclusions in the paper.

Table 9: AUPR, ROC-AUC and Accuracy prediction performances

Komet ConPLex MolTrans
AUPR ROC-AUC Accuracy | AUPR ROC-AUC Accuracy | AUPR ROC-AUC
LCIdb 0.990 0.990 0.966 0.970 0.971 0.917 0.967 0.970
Unseen_ drugs 0.994 0.994 0.976 0.980 0.977 0.934 0.968 0.969
Unseen_ targets | 0.915 0.896 0.714 0.893 0.874 0.763 0.591 0.584
Orphan 0.896 0.879 0.682 0.845 0.834 0.689 0.552 0.536

C Nystrom approximation

In Komet, we encode molecules leveraging the Nystrom approximation.>5 In the following,
we present the mathematical details of Section 4.3.
Let us consider a set of landmark molecules {m, ... M,,,, }, a new molecule m, and a kernel

ks over molecules. The kernel matrix K € Rmu+Dx(mu+1) gyer these m m+1 molecules can
KM l{T A
be written as K = with K, € R™M>*™M heing the kernel matrix over
ko ky(m,m)
the landmark molecules and x = (kp(m,my), ..., ky(m,m,,,)) € R™M the vector of kernel

values between m and the landmark molecules.
A kM /'QT
The Nystrom’s approximation consists in approximating K as K ~ CK,,;/CT =

A

1,7
Kk KKy,

K
with C = | | € Rima+D)xmar |
K

Writing the Single Value Decomposition of Ky as Ky = U diag(c)U T, the approxi-
mation of K can be rewritten as K ~ ®®" with ® = CU diag(c)™'/? ~ CE. When no
dimensionality reduction is performed (dy; = myy), E = U diag(o)~"/? and ® = CE.

The last line of matrix ® is @y, 01 = (O Croprr1,0E0) 0 = ¥ar(m). Similarly, its
myy first lines are ¥y (My), ..., ¥ (Myy,, ). Hence ky(m,m;) = (¢y(m), ¢p (M) for any

molecule m (including one of the landmark molecules), which justifies our proposition of 1.
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Furthermore, if we do not use dimensionality reduction, because the Nystrom approxi-
mation is an equality on the upper-left block Ky, kas (i, ;) = (1has (1), ¥ar (1)) for any

pair of landmark molecules.

D Efficient computation

We explicit here the details for equality (a) of Eq (2) in paragraph 4.4,

(a) (b)
(Zw)r, = (W, 2k)giz = (M, Wpj ranr = (M, @y )rear -

We use the matrix representation W € R *9P instead of w € R in a way that w is

the flattened representation of W.

Vk =1.ngz, (Zw); = (w, 2) iz
= <VV, mikp;';>Rd]WXdP

=tr (W(mlkp;)T) =1tr (ijkm;;> = (Wpj,, miy ) ranr
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