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Abstract
We introduce scywalker, an innovative and scalable package developed to comprehensively
analyze long-read nanopore sequencing data of full-length single-cell or single-nuclei cDNA.
Existing nanopore single-cell data analysis tools showed severe limitations in handling
current data sizes. We developed novel scalable methods for cell barcode demultiplexing
and single-cell isoform calling and quantification and incorporated these in an easily
deployable package. Scywalker streamlines the entire analysis process, from sequenced
fragments in FASTQ format to demultiplexed pseudobulk isoform counts, into a single
command suitable for execution on either server or cluster. Scywalker includes data quality
control, cell type identification, and an interactive report. Assessment of datasets from the
human brain, Arabidopsis leaves, and previously benchmarked data from mixed cell lines,
demonstrate excellent correlation with short-read analyses at both the cell-barcoding and
gene quantification levels. At the isoform level, we show that scywalker facilitates the direct
identification of cell-type-specific expression of novel isoforms.
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Introduction
Single-cell and single-nuclei (collectively called single-cell hereafter) transcriptome
sequencing has revolutionized our understanding of processes in health and disease,
especially in heterogeneous tissue like the human brain1. Alternative isoforms, with variation
in start sites, splicing of exons, or transcript ends, are highly prevalent in the transcriptome of
complex eukaryotes 2,3. However, the most commonly used single-cell short-read
sequencing methods only result in data from the 5' or 3' ends of the transcripts. Even with
short-read sequencing covering the entire gene length, there is no direct observation of
full-length transcripts and only a partial reconstruction of the splice diversity.
In contrast, long-read sequencing methods from Oxford Nanopore Technologies (ONT) and
PacBio enable the sequencing of full-length transcripts and the identification and
quantification of all isoform variations. Bulk long-read transcriptome sequencing consistently
leads to the discovery of novel isoforms 4–6 but lacks the cell-type resolution and may miss
isoforms from lowly abundant cell types. There is, therefore, great value in optimizing
long-read single-cell transcriptomic methods. Initial strategies to deal with the higher error
rate of long-read sequencing included combining short-read sequencing data from the same
library 7,8, rolling circle amplification 9, or dimer nucleotide blocks for barcodes and UMIs 10.
Methods not relying on short-read sequencing data arose with decreasing nucleotide-level
error rates 11–13. These methods were tested on relatively small datasets and, in our
experience, did not scale to the large datasets (>10,000 cells per sample) currently
produced. We developed scywalker to address this issue, creating a more scalable package
for adequate analysis of this rich data source using novel methods and extensive
parallelization while improving the accuracy of the results and utility simultaneously. In
contrast to existing tools, scywalker can, in one command, provide analysis of multiple
samples, generating ready-to-use per-cell expression counts and multi-sample per-cell-type
summed pseudobulk counts, allowing easy comparison of gene and isoform expression over
multiple samples and cell types.

Results

Overview of the scywalker pipeline
Scywalker is an integrated workflow for analyzing nanopore long-read single-cell sequencing
data, currently tailored to the 10x Genomics microfluidics platform. Scywalker orchestrates a
complete workflow from FASTQ to cell-type demultiplexed gene and isoform discovery and
quantification. It consists of three main modules (Fig. 1).
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Fig. 1: Overview of the scywalker workflow. Parallelized parts are indicated by stacked text boxes. This is the
workflow for one sample; multiple samples are always run fully in parallel.

In the first step, 10x droplet barcodes are detected and assigned to all reads using a novel
method that does not require a set of given droplet barcodes. All barcodes are sorted
according to the number of reads they were found in. The number of reads with a correct
barcode can be expected to be substantially higher than those with a barcode containing a
specific error. Therefore, the top barcode is considered an accurate droplet barcode, and all
barcodes with a single nucleotide difference are searched, corrected, and added to the top
barcode. This process is repeated for the remaining barcodes until start barcodes with 20
reads or fewer are reached. The module ends with creating barcoded FASTQ files where
each read has its corrected droplet barcode and UMI sequence added.
In the second module, the droplet barcoded reads are aligned to the reference, and isoforms
(and genes) are first detected and quantified in a bulk analysis using an adapted version of
IsoQuant 14 for the non-organelle chromosomes. Gene counting for organelles is done
separately using a specific method because organelles, given their different transcription
structure and extreme read counts, often pose problems to isoform callers. The IsoQuant
and organelle transcript identification produce files specifying the assignment of reads (and
thus cell barcodes) to isoforms. This data is used together with the isoform output to produce
the quantification of isoforms and genes per droplet barcode in the final step of this module.
Based on extra information in the read assignment data (polyA detection, completeness of
the match, support for more than one isoform), different types of count are included in the
result: weighed (1/n for reads supporting n isoforms), unique (counting only reads uniquely
supporting the isoform), strict (only counting unique reads that are 90% complete), and
analogous using only reads for which a polyA tail was detected.
Using various approaches initially developed for short-read single-cell analysis, the third
module starts by filtering out low-quality and empty droplets from the output of the previous

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 24, 2024. ; https://doi.org/10.1101/2024.02.22.581508doi: bioRxiv preprint 

https://app.diagrams.net/?page-id=prtHgNgQTEPvFCAcTncT&scale=auto#G1AjINFjNZhleqeS4PWPR9Uqh-kjMkv9D5
https://www.zotero.org/google-docs/?xqoxzX
https://doi.org/10.1101/2024.02.22.581508
http://creativecommons.org/licenses/by/4.0/


step, and the filtered results are processed using Seurat15 for normalization, scaling, and
clustering. The cell barcodes are automatically assigned cell types using ScType and
scSorter, and finally, pseudobulk counts per cell type are generated based on these
assignments. Scywalker can also be used to generate pseudobulk results for user-supplied
groupings. When analyzing multiple samples together, scywalker will also make
multi-sample, multi-cell type count tables, matching novel isoforms with the same junctions
but differences at the ends between different samples.

Scywalker supports scalable parallelization. In order to reduce memory use and improve
performance, most steps are subdivided into smaller jobs (indicated by overlapping boxes in
Fig. 1), which are efficiently distributed over different processing cores, either on the same
computer or over different computers in a cluster. Scywalker is distributed as a portable
application directory that contains all dependencies and runs on any Linux system without
the need for installation or setting up environments. This facilitates workflow installation and
execution, especially on clusters where root access is not always possible, the external
network is not necessarily available, and systems may be heterogeneous.

Scywalker accurately discovers and quantifies cell barcodes
We isolated single nuclei from four adult human brains and performed droplet barcoding and
cDNA generation using 10x Chromium, aiming to get ~10,000 nuclei per sample (hereafter
mentioned as brain1-4). The resulting libraries were sequenced both on ONT PromethION
(P24) and Illumina NovaSeq 6000 (run details see Supplementary Table 1). The short read
sequencing is not needed for the scywalker analysis but provides a reference to evaluate the
long read analysis results on the cell and gene count level.

We compared the UMI-corrected read counts per cell barcode found by scywalker in the
long reads and Cell Ranger for the short read data. The correlation between the two
(Supplementary Fig. 1) is very high (R=0.984, 0.993, 0.995, 0.994 respectively for brain1,
brain2, brain3, brain4), showing that scywalker accurately finds droplet barcodes and
assigns reads to them.

Furthermore, scywalker also produces accurate results at the gene count per cell level when
compared to the short-read data (Fig. 2). While some genes show up only in either sh
ort or long-read data here, these are, with a few exceptions, mostly confined to lower
expressed ones, and the overall correlation between short and long read data is still very
high (R=0.934, 0.932, 0.931, 0.914 respectively for brain1, brain2, brain3, brain4).
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Fig. 2: Scywalker UMI counts per gene and cell compared to their respective short-read Cell Ranger results for
the four human brain samples. Sample-specific Pearson correlation coefficients (R) are shown on the upper
left corners of each panel. y-axis, scywalker UMI counts per gene and cell from long-read sequencing data;
x-axis, Cell Ranger UMI counts per gene and cell from short-read sequencing data. SRS, short-read
sequencing; UMI, unique molecular identifier.

Comparison to other software
While we had successfully tested the wf-single-cell pipeline provided by ONT (formerly
known as Sockeye)13 on smaller datasets, it could not handle the size of the single-nuclei
brain dataset (>10000 nuclei, >100m reads per sample). As an alternative, we tried the
combination of BLAZE 11 for barcode discovery and FLAMES12 for isoform analysis, which
did run successfully but took more than a week to complete. To properly compare scywalker
to both wf-single-cell and BLAZE-FLAMES and show that scywalker also works on data from
less accurate data from earlier iterations of the sequencing chemistry and basecaller

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 24, 2024. ; https://doi.org/10.1101/2024.02.22.581508doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?4fcnei
https://www.zotero.org/google-docs/?qjBg5D
https://www.zotero.org/google-docs/?WL9VeT
https://doi.org/10.1101/2024.02.22.581508
http://creativecommons.org/licenses/by/4.0/


versions (Guppy 3.1.5), we downloaded the scmixology2 (GSE154870) data set16. We used
this smaller dataset (target 183 cells, 22M reads) to benchmark the different packages.

At the cell level (Supplementary Fig. 2), scywalker shows a higher correlation (R=0.942) with
the short read data than wf-single-cell (R=0.734) and BLAZE-FLAMES (R=0.65). The largest
differences for scywalker were cells detected only in the ONT data, while the two other
packages mainly missed cells found in the short read data. Moreover, for the gene counts
per cell level (Supplementary Fig. 3), scywalker also shows a higher correlation (R=0.89)
than wf-single-cell (R=0.765) and BLAZE-FLAMES (R=0.563).

Scywalker includes downstream analysis of per-cell gene counts, which was successful for
this data set. Scywalker found the expected 5 clusters and could assign them to the five cell
lines using a custom marker set (Supplementary Fig. 4).

A comparison of the run times for this smaller scmixology2 data set, tested on a system with
a 24-core EPYC 7443P and 512G memory, shows comparable results for the three tools,
with BLAZE-FLAMES being the fastest (3h19), scywalker second (3h37) and wf-single-cell
the slowest (5h41). The analysis of the larger brain1 sample using scywalker took 14h33, or
around four times as long, on the same benchmark system. However, the analysis of this
larger data set using BLAZE-FLAMES took 172h06, or over 50 times as long as the smaller
scmixology2.

The correlation of the cell (Supplementary Fig. 5) and gene quantification (Supplementary
Fig. 6) compared with the short-read results was also lower for BLAZE-FLAMES (R=0.888
and R=0.868) than for scywalker (R=0.984 and R=0.934) for the brain1 data set.

Scywalker enables the detection of differential usage of
transcripts between different brain cell types
Scywalker successfully assigned, for the four brain samples, the different brain nuclei cell
types (Fig. 3, Supplementary Fig. 7) and generated pseudobulk files for both gene and
isoform counts, and combined these in multi-sample, multi-celltype gene and isoform count
files.
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Fig 3: UMAP plot generated by scywalker showing cell-type assignments by ScType in different colors for the
brain1 sample.

To evaluate the results of scywalker at the isoform level, we first compared the number of
identified isoforms across cell types using the pseudobulk counts from the four brain
samples. Excitatory neurons exhibited the highest number of identified isoforms, of which
11.3% were novel (Fig. 4A), followed by inhibitory neurons and oligodendrocytes. Endothelial
cells, the cell type with the lowest cell count, also exhibited the fewest identified isoforms
(Fig. 4B). Additionally, we observed a correlation between the number of isoforms and the
count of novel isoforms (R=0.99, p-value=1.9x10-5) (Fig. 4B). Scywalker was also able to
identify multiple transcripts per gene, as shown in Fig. 4C. Among the identified isoforms,
considered if present in a minimum of 2 samples in at least one cell type (188806 isoforms),
~40% of them were present in at least five distinct cell types, and 26% were neuron-specific
(Fig. 4D).
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Fig. 4 Overview of the scywalker performance at the isoform level. (A) Bar plot representing the number of
transcripts identified by cell type. Colors represent different transcript types. (B) Scatter plot correlating the
number of total transcripts and novel transcripts (Pearson correlation R=0.99, p=1.9x10-5). (C) Bar plot
showing the number of isoforms per gene by cell type. (D) Upset plot representing the intersections of
identified transcripts per cell type. Exc neu: excitatory neurons; Inh neu: inhibitory neurons; Ast: astrocytes;
End: endothelial cells; Oli: oligodendrocytes; OPCs: oligodendrocyte progenitor cells.

Next, we performed a differential transcript usage (DTU) analysis to assess the capability of
scywalker to detect isoform expression variation. We compared the proportions of isoforms
within each gene between neuronal cell types (excitatory and inhibitory neurons) and glial
cell types (oligodendrocytes, astrocytes, OPCs, and microglia). We found 301 genes with
DTU (gDTU) (FDR<0.05), allowing the identification of neuron-specific isoforms of specific
genes such as SEPTIN8 (gFDR=6.16x10-46, ENST00000378719.7 tFDR=1.09x10-57) (Fig.
5A). Septins are known to undergo extensive alternative splicing. In the case of SEPTIN8, it
was previously suggested that some of its transcripts are ubiquitously expressed across
tissues, while others show most expression in the central nervous system17. Additionally, in
24 other genes, novel isoforms were found to be differentially used between neurons and
glia, for example for PNKD (gFDR=2.21x10-16, novel transcript tFDR=1.38x10-9) (Fig. 5B).
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Fig. 5 Transcript proportion and exon representation of two gDTUs as generated by scywalker, (A) for
SEPTIN8 and (B) for PNKD. In the left panel, all the analyzed isoforms of the gene are shown, with gray
rectangles representing the exons of each transcript and red rectangles indicating all potential exon positions
for reference. The right panel illustrates the observed percentage abundance of each transcript within groups
(glia or neurons) for each brain sample.

Scywalker analysis is also suitable for non-human data
To showcase its broad applicability in the analysis of non-human species, we also tested
scywalker on two large plant single-cell data sets. For this, protoplasts were prepared from
mature Arabidopsis thaliana leaves, followed by the generation of cell-barcoded cDNA using
the 10x Chromium, obtaining ~10,000 cells per sample. The cDNA was subsequently
sequenced on both NovaSeq 6000 and ONT PromethION P24. The short read data (377M
reads and 467M reads) was analyzed using Cell Ranger, while the long read data (220M
and 230M reads) was analyzed with scywalker. As for the human brain samples, the short
read (Cell Ranger) and long read (scywalker) UMI corrected read counts per cell showed
excellent correlation (R=0.973 and R=0.988 respectively for plant1 and plant2)
(Supplementary Fig. 8).

Similarly, for the plant leaf samples, the UMI gene counts were compared for all genes
(except rRNA genes) in cells that had more than a single count in at least one of the two
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datasets. Here, the correlation between scywalker and Cell Ranger counts is also high
(R=0.89 and R=0.898 respectively for plant1 and plant2) (Supplementary Fig. 9), thus
demonstrating that scywalker provides reliable single-cell expression metrics in human and
plant long-read scRNA-seq samples.

After data preprocessing and cell gene count estimation, scywalker performed follow-up
single-cell analysis, including clustering and assignment of cell types. After providing a
custom list of cell-type marker genes (Supplementary Table 3), scywalker successfully
assigned major leaf cell types (Fig. 6, Supplementary Fig. 10), including the epidermis (Fig.
6B), mesophyll (Fig. 6C), bundle sheath (Fig. 6D) and other leaf cell types.

Fig. 6: A: UMAP plot generated by scywalker showing cell-type assignments by ScType in different colors for
plant sample 1. B-D: The UMAP plots show the normalized expression of leaf tissue markers for the epidermis
(LTPG118), mesophyll (ESM119), and the bundle sheath (THA220).

At the transcript level, the longer read length produced by ONT allows a more accurate
assignment of reads to isoforms and the identification of novel isoforms. Ideally, reads would
cover an entire isoform. However, due to various experimental factors (fragmentation, early
template switching), this is not the case for most reads (Supplementary Fig. 11). Comparison
of plant2 (average read size 967.72) to plant1 (average read size 771.63) clearly illustrates
that extracting longer fragments to sequence improves isoform coverage. For plant1, 9.23%
of informative reads cover at least 80% of their isoform, rising to 18.63% for plant2.

Discussion
Long-read single-cell sequencing is essential for a complete transcriptome reconstruction
and its cell-type specific alternative isoforms. Compared to short-read sequencing, long
reads provide a better resolution at the gene level in organisms with incomplete or
inaccurate annotation towards the transcript ends. At the transcript level, more reads are
unambiguously assigned to a transcript, offering far better chances of detecting and
reconstructing novel isoforms. We sequenced single-nuclei transcriptomes from four human
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brain samples on the PromethION P24 platform (ONT) as a pilot experiment. In order to
obtain a sufficient number of cells from cell types present at lower abundance and to reduce
potential sampling errors at that level, we aimed to obtain >10,000 nuclei per sample. The
runs generated, on average, >100 million reads per sample. Available analytical workflows
did not scale well to this number of cell barcodes and reads. Using novel algorithms and
extensive and efficient parallelization, we developed scywalker, which could handle these
data readily, analyzing one sample in less than 15 hours on a single 24-core server, and is
further scalable to high throughput by running on a cluster. Scalability is important as the
field evolves towards datasets assaying more cells at higher depths when the technology
matures. The current implementation of the pipeline is tailored to nanopore sequencing of
single-cell libraries from the 10X Genomics microfluidics system but is sufficiently flexible to
be adapted to accommodate technologies that result in a different read structure if the need
arises.
Although long-read sequencing promises to provide more extensive results at the transcript
level, short-read Illumina sequencing is the standard for single-cell gene quantification due to
its higher per-nucleotide accuracy and yield and its well-established analysis tools.
Therefore, we also sequenced the same libraries on an Illumina short-read platform to serve
as a reference for benchmarking cell detection and gene quantification in the long-read data.
We used the correlation between long-read and short-read data as a measure of the
accuracy (even though it is probable that for some genes, the long-read results are more
accurate due to less multi-mapping). Using this approach, we showed that, combined with
the latest improvements in nanopore sequencing accuracy, scywalker9s algorithms could
generate single-cell gene counts that are very highly correlated (R>0.9) with results from
short reads and that these can also be successfully used for downstream analyses such as
cell typing, thus obviating the need for dual sequencing. Even for the older and less accurate
iterations of nanopore sequencing data, the correlation for the scywalker results was high
(R=0.89), and the results were usable for downstream analysis. Scywalker also
outperformed the other tools (in the instances where they could be tested) on cell and gene
level accuracy. In order to ensure the general applicability of scywalker outside of human (or
even animal) data, we also generated two plant single-cell data sets (Arabidopsis thaliana),
which were analyzed successfully by scywalker, also showing very high correlation with their
respective short-read results.
Isoform discovery in scywalker is based on IsoQuant, a proven tool showing good results in
bulk long-read RNA-seq analysis14. In scywalker, the initial discovery is performed without
taking cell barcodes into account, i.e., on bulk RNA. This way, isoforms that have low
expression in individual cells but are generally present are not discarded due to too low read
counts. Based on the read assignments (to isoforms) and their barcodes, gene and isoform
counts per cell are generated afterward. Due to experimental issues such as fragmentation,
degradation, and premature incorporation of the template-switching oligonucleotide, even in
long-read sequencing, most reads do not represent complete isoforms (e.g., Supplementary
Fig. 11) and thus can not always be assigned unambiguously to specific transcripts.
Scywalker incorporates several ways of dealing with this ambiguity by calculating counts by
(i) using reduced weight for ambiguous read assignments, (ii) counting only uniquely
assigned reads, (iii) counting only (nearly) complete reads, the latter being e.g., useful for
assessing actual support for novel isoforms with different ends.

One of the main goals of long-read sequencing is comparisons at the transcript level, and
scywalker provides considerable utility toward that goal. The workflow includes determining
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cell types, generating pseudobulk data (per cell type), and creating a multi-sample
pseudobulk count matrix. As illustrated in the results, this can be used readily for
downstream analysis, such as differential isoform usage.

Conclusion
High-throughput nanopore single-cell sequencing has great potential for uncovering detailed
isoform usage across cell types and samples. Scywalker unlocks this potential by providing
a highly scalable pipeline capable of handling nanopore samples comprising more than
10,000 cells each and over 100 million reads per sample at volume while simultaneously
obtaining excellent accuracy in cell identification and gene quantification. Furthermore,
scywalker incorporates automated cell-type assignment, pseudobulk isoform count
generation, and sample comparison in this single-command end-to-end workflow. We also
demonstrated that the results can be directly used to identify differential transcript usage,
including for detecting novel transcripts.

Methods

Single-nuclei and single-cell transcriptome sequencing
Four fresh frozen human brain samples (BA10) were provided by the NeuroBiobank of the
Born-Bunge Institute (IBB-Neurobiobank), Wilrijk (Antwerp), Belgium; ID: BB190113. The
study was approved by the Ethics Committee of the University Hospital Antwerp and the
University Antwerp (20/10/107). Nuclei isolation from fresh frozen human brain samples was
performed using an adapted density gradient protocol 21. A different protease inhibitor (1x
cOmplete EDTA-free protease inhibitor) was used, and the lysis time was reduced to 2
minutes.

Arabidopsis (Arabidopsis thaliana L. Heynh.) cv. Columbia-0 (Col-0) was grown in a
controlled-environment growth chamber (Weiss Technik). For isolation of leaf protoplasts (~5
excised leaves from four-week-old seedlings pooled per sample), a <tape-sandwich= method
was used, where the abaxial epidermis of leaves was peeled using adhesive tape (Scotch®
Magic™, 3M) and leaves were immediately immersed in a cell-wall degrading enzymatic
buffer in protoplasting buffer (0.6 M mannitol, 20 mM KCl, 10 mM CaCl2, 20 mM MES, 0.1%
BSA, 1.0% cellulase R10, 0.3% macerozyme) at pH 5.7. The enzymatic reaction was
performed for 1h at room temperature with gentle rotation (30 rpm) in the dark. The solution
was filtered through pre-wet 70 μm nylon mesh, collected by centrifugation at 200 × g for 6
min, and resuspended in wash buffer (0.6 M mannitol, 20 mM KCl, 10 mM CaCl2, 20 mM
MES).

The remainder of the protocol is the same for leaf and brain samples. Beads in emulsion
(GEM) generation and droplet barcoding were performed according to the 10x Genomics
protocols with Chromium Next GEM Single Cell 3'Kit v3.1 and Chromium Next GEM Chip G
Single Cell Kit, aiming for 10,000 cells per sample. Unfragmentated cDNA was prepared for
nanopore sequencing on the ONT PromethION (P24) with a combination of the primers from
SQK-PCS111, rapid adapters from EXP-RAA114, and auxiliary vials for loading on R10.4.1
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flow cells from EXP-AUX003. Data was basecalled on the ONT PromethION (P24) using the
Guppy basecaller (v7.0.9) with the SUP model. In parallel, the droplets were further
processed for short-read sequencing using the 10x Chromium Next GEM Single Cell 39
Reagent Kits v3.1 (Dual Index) per the manufacturer9s protocol (10x user guide CG000315).
The libraries were sequenced on the Illumina NovaSeq 6000 v1.5 sequencing kit using S4
flow cells, targeting 40,000 reads per cell. The sequencing data was processed with the Cell
Ranger pipeline.

Implementation of the scywalker pipeline
The scywalker pipeline (Fig. 1) is implemented within the GenomeComb framework 22, a
toolset for the efficient analysis of various types of sequencing data.

Scywalker droplet barcoding
The first step of identifying the raw barcodes and UMIs in the reads is distributed per FASTQ
file. The adapter fragment in the reads is located using minimap223, with the adapter
sequence as the reference and alignment of the reads with settings allowing for short
matches (-a --secondary=no -x map-ont -t 4 -n 1 -m 1 -k 5 -w 1 -s 20). The output alignments
are then parsed to determine, for each read, which part of the sequenced fragment matches
the adapter. By default, the 16 bases after the adapter are taken as the cell barcode
(<barcodesize> parameter), and the following 12 bases for the UMI (<umisize> parameter).
The results of barcode identification (read name, barcode, UMI) are written to a
tab-separated barcode file accompanying the FASTQ.

All barcode files are merged, summarized, and sorted by read count. The top barcode
(largest read count) is taken as a correct droplet barcode, and the remaining barcodes are
searched for barcodes with one difference using cost-only dynamic programming with a cost
cut-off of 1. This search is precomputed in parallel in 50 batches. All hits will be assigned to
the initial droplet barcode and removed from the list for further processing. This procedure is
then repeated with the following (free) barcode in the list until it has fewer than (by default)
20 reads, or until (by default) 100,000 droplets have already been identified. If a whitelist of
all potential droplet barcodes is given, only barcodes in this list will be processed. The
resulting mapping of read barcodes to droplet/cell barcodes will be combined with the
FASTQs and their barcoding files to generate FASTQs where the corrected (droplet)
barcode and UMI are prepended before the read name and added as FASTQ comments.

Scywalker Gene and isoform calling
The barcoded FASTQ files are aligned to the reference genome with minimap2 23 using the
splice preset in separate jobs for each file and coordinate sorted using a modified version of
gnu-sort 24. The presorted alignments are merged using the gnu-sort mergesort, resulting in
one sorted alignment file in bam format.

Based on this alignment, IsoQuant identifies isoforms as on bulk data, essentially ignoring
cell barcodes 14. We have made several adaptations to running IsoQuant for the scywalker
pipeline. Scywalker processes the read alignments to the genome in smaller regions (default
target 5Mbase, but splits can only happen in 250kbase regions without known genes) to
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improve parallelization and reduce peak memory use. These are run in separate jobs
instead of threads (to allow distribution over a cluster). Furthermore, the separate results for
known and novel isoforms produced by IsoQuant are integrated. Identifiers of novel isoforms
and genes are changed to a unique identifier based on the genomic location to avoid
collisions when separately processed regions are merged. Scywalker uses a custom
algorithm for analyzing organelle genomes. Only gene locations are loaded into memory to
minimize memory use, and numerous read alignments are streamed. For each read
alignment, the CIGAR string is parsed to define different alignment regions of the read, and
the percent overlap with genes is calculated. If multiple overlaps exist, the non-ribosomal
RNA gene with the highest pct overlap is selected. One of the following assignment_events
is assigned to the alignment overlapping a gene: mono_exon_match if the alignments start
and end coordinates differ a maximum of 3 bases from the known gene location,
mono_exon_enclosed for alignments entirely within the gene (but not a match) and
mono_exon_overlap for alignments overlapping at least 5% of the gene.

After the regions are processed separately, the read assignment info is concatenated, sorted
on the read name (which starts with barcode and UMI info), and processed per block of
assignments concerning the same read (has the same barcode and UMI, or the same read
name if those were not found). Reads uniquely assigned to one isoform are copied directly
into the final read assignment file. Multiple assignments in a block are first filtered:
assignments that are less informative than others (significantly shorter, not in a gene, while
others match a gene/isoform) in the block are removed. Additional information that will serve
as correction factors in the counting step is added to the read assignments: umicount (the
number of reads having this same UMI), ambiguity (the number of isoforms supported by the
read), gambiguity (the number of genes/locations supported), while information such as
covered_pct (how much of the isoform is covered by the read) and inconsistency (level of
inconsistency the alignment shows with the isoform structure) will also be used in providing
different types of counts. Finally, the read assignments file is (re)sorted according to genomic
location.

Scywalker returns different types of counts as separate fields in the results. These are
calculated simultaneously by parsing the read assignments file and keeping a tally for each
type of count and cell. A weight is added to the appropriate tallies for each read assignment.
For the <weighted= isoform count, a weight of 1/(ambiguity*umicount) is added, while the
<unique= count only takes reads into account that uniquely support one transcript, and <strict=
only counts unique reads that cover ≥ 90% of the assigned transcript. Similar results are
provided in the <aweighted=, <aunique= and <astrict= columns, but limited to reads with a
detected polyA tail. For the default gene <count= a weight of 1/(gambiguity*umicount) is
added, including for reads mapping to introns of the genes (which is also the default for Cell
Ranger), while <nicount= only counts reads matching an isoform.

Scywalker cell filtering and typing
Droplets that contain nuclei are determined based on the EmptyDrops algorithm 25. To
improve cell clustering, novel genes detected by scywalker are removed, as well as cells
with more than 5% mitochondrial reads. Cell clustering is performed at a relatively low
resolution of 0.5, and all principal components are used when computing the nearest
neighbor graph and UMAP ( Fig. 3). We perform clustering at this resolution to confine the
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automated assignment of cell types to the identification of the major populations in the
sample. At this stage, we only expect to capture high-level populations. By lowering the
clustering resolution, we restrict the number of identified clusters to increase the grouping of
cells that belong to the same class.

Each cell is assigned to one of the cell types in a user-provided marker file using ScType 26

and scSorter 27. Users can instead opt to give only the tissue from which the sample
originates, in this case, only ScType will be run using its general (human) marker database.
The results are tab-separated group files (one for each typer) that link cell to cell type. These
are then used together with the per-cell gene and isoform files to generate pseudobulk files
giving gene and isoform counts for each cell type (in separate columns). Scywalker will
make multi-sample, multi-cell-type count tables when running on a project with multiple
samples. Novel isoforms with the same junctions, but differences at the ends from different
samples will be merged into one line. The resulting pseudobulk files can be used directly for
downstream analysis. Users can also inspect (recommended) and adapt the automatically
assigned cell annotations, e.g., a more in-depth annotation with careful expert
considerations. After recording adapted cell type annotations in a group file, a user can
easily re-run scywalker9s pseudobulk module to obtain pseudobulk matrices for the newly
assigned populations.

Scywalker reporting
Alignment metrics from the minimap2 bam file are analyzed using cramino in spliced mode28,
additionally complemented with plots and metrics from identified nuclei and transcript
assignment and summarized in an HTML report. The report provides key metrics of the
sequencing and cell and gene identification, several interactive plots, such as a knee plot
and quality control filters, and information on the read length, including a histogram and a
comparison of read lengths against the number of exons detected per read. Furthermore, a
histogram shows the number of genes identified per cell and the overlap between reads and
known or novel genes, antisense, intergenic, or intronic intervals. Finally, the report includes
the UMAP for cell type identification.

Comparison to existing methods
We compared the scywalker pipeline against the following existing workflows:
BLAZE-FLAMES 11, respectively versions v1.1.0 and v0.1, and the ONT wf-single-cell 29

v0.2.8. Gene level UMI counts for BLAZE-FLAMES were obtained by summing transcript
counts per gene. While scywalker outputs a UMI-corrected total cell read count table
(independent of the transcript or gene level counts) as well, for accurate comparison of UMI
counts per cell between workflows, we considered the cell level UMI counts that were
obtained by summing the gene level UMI counts available in all compared workflows.
Performance across different workflows was evaluated based on compute time and the
correlation of the UMI counts per cell and per gene compared against the short-read
quantification. For these correlation comparisons, we only considered the UMI counts per
cell and per gene if they were higher than 1 in either of the compared workflows. Moreover,
we only included the genes commonly available in the gene annotation references (i.e.,
GTF/GFF3 files) of the compared workflows, excluding rRNA genes from the comparisons
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for the plant samples. All software was run using standard parameters (code in
Supplementary code), except a maximum edit distance (MAX_DIST) of 1 was used instead
of the advised MAX_DIST=2 setting in match_cell_barcode step of the FLAMES workflow for
the brain sample because of the higher accuracy of sequencing. We also tested with
MAX_DIST=2, which resulted in a substantially lower correlation both for the cell UMI counts
comparison (R=0.287 vs R=0.888, Supplementary Fig. 5) and for the gene/cell UMI counts
comparison (R=0.644 vs R=0.868, Supplementary Fig. 6). The correlation plots were
generated in R (v4.2.0) using the following packages: ggplot230, ggpairs (as implemented in
GGally31), and ggpubr32.

Differential transcript usage between different brain cell types

Annotation of brain cell types
Scywalker9s single-cell module creates a Seurat object using the retained cells after
EmptyDrops filtering. It then follows the standard Seurat processing workflow with default
parameters, with the exception of a slightly lower resolution of 0.5 during clustering. Clusters
were then annotated using scSorter and ScType, with the human brain marker genes for the
major cell populations (excitatory neurons, inhibitory neurons, astrocytes, microglia,
oligodendrocytes, OPCs, endothelial cells, and pericytes, Supplementary Table 2). These
markers were selected from a list of literature-based genes based on their segregating
capacity, which was determined using Garnett33. Markers were only used for annotation if
they had an ambiguity of less than 3% in the human brain dataset. Counts were summed per
cell population based on these annotations.

Differential transcript usage analysis between neuronal and glial cells
We used the resulting pseudobulk counts (weighted) as a metric to assess scywalker's
performance at the transcript level. Only transcripts detected in at least half of the samples
within a given cell type were retained for subsequent analysis. Transcript counts of the four
studied samples were summed for each cell type. The plots to visualize the performance
were generated using R (v4.3.2) and the following packages: ggplot230, ggpubr32, and
ggupset 30.
DTU analysis was conducted using the DRIMSeq R package 34, implementing a
Dirichlet-multinomial model. We compared neuronal and glial cell types, with the analysis
adjusted for individual variations and conditions (Alzheimer9s Disease or neurologically
normal). A two-stage statistical procedure with stageR 35 accounted for multiple testing. In
brief, the DRIMSeq gene p-values were analyzed in a screening stage to determine which
genes show signs of DTU (gDTU). In gDTUs, the DRIMSeq transcript-level p-values were
individually tested for DTU in a confirmation stage, resulting in a corrected p-value for each
gene and each transcript of a significant gene. The differential transcript usage plots for
specific genes were made using the viz_transcripts tool included with scywalker, which is
based on ggtranscript36 and ggplot230.
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Data availability
The human brain data set will be made available in the European Genome-Phenome
Archive (EGA), the VIB Data Access Committee will control access to this data. The
Arabidopsis sequencing data is available at EBI ArrayExpress under the accession number
E-MTAB-13866. The scmixology2 (GSE154870) data set16 was obtained from the Sequence
Read Archive, under SRR12282457 for the short read data and SRR12282458 for the long
read data.

Code Availability
Scywalker is available on https://github.com/derijkp/scywalker under the GNU General
Public License (GPL). The code for the analyses with the different software tools is in the
supplementary data.
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