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Abstract

Characterizing and understanding the structure of tissues from spatially resolved
transcriptomics (SRT) is of great value for deciphering the functionality of spatial
domains. However, the inherent heterogeneity and varying spatial resolutions among
SRT multi-modal data present challenges in the joint analysis of these modalities. In
this study, we introduce a multi-modal feature representation method, named stMMR,
to effectively integrate gene expression, spatial location and histological imaging
information for accurate identifying spatial domains from SRT data. stMMR uses self-
attention module for deep embedding of features within unimodal and incorporates
similarity contrastive learning for integrating features across modalities. stMMR
demonstrates superior performances in multiple analyses using datasets generated by
different platforms, including spatial domain identification, pseudo-spatiotemporal
analysis as well as domain-specific gene discovery. Using stMMR, we systematically
analyzed the evolving lineage structures of the chicken heart and conducted an in-depth
examination of domain-specific genes in breast cancer and lung cancer. In conclusion,
stMMR is capable of effectively integrating the multi-modal information for spatial
domain identification and exhibits superior adaptability as well as stability in handling

different types of SRT data.
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Introduction

The advancement in SRT technology has opened new avenues for a deeper
understanding of the spatial architecture and functionality of tissues. By employing
these advanced SRT techniques, we can conduct a precise examination of the spatial
landscapes and transcriptional profiles of complex tissues. Currently, many SRT
technologies have been developed, such as imaging-based and sequencing-based
methods [1-7]. Among these, techniques such as 10x Genomics Visium not only
provide the spatial location and gene expression data for each spot but also acquire
high-resolution hematoxylin and eosin (H&E) stained histology images of the tissue
section, revealing richer information about the tissue organization. These technological
advancements offer new insights into characterization of tissue architecture, enabling a
more comprehensive understanding of tissue development and disease pathogenesis [7—

9].

For SRT technologies capable of providing both gene expression data and
histology images, the information from these different modalities reflects the structural
information of tissues at various levels. Gene expression profiles reflect the difference
of cell state between spots [10]. Spatial location information provides the precise
location of each spot, illustrating the complex landscape of tissue structure. Histological
images display morphological features of cells, such as size, shape, and intercellular
relationships, offering crucial clues for distinguishing different spots [11]. Although
each of these modalities has its own strength, they complement each other, together
forming a more comprehensive picture of tissue architecture. For instance, changes in
gene expression are reflected not only at the molecular level but may also manifest in
histological images as morphological alterations [12]. Furthermore, the issues of
sparsity and dropout in SRT data can be effectively addressed through integrating
histological image data [13]. By leveraging the interdependence between gene
expression and morphological features, as well as the similarity in gene expression
patterns among adjacent spots, we can enhance spatial signals and characterize tissue

structure. Therefore, achieving a joint representation of multi-modal features in SRT is
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key to improving data utilization, domain recognition accuracy, as well as functional

interpretability.

However, the joint representation of features from different modalities in SRT is
challenging. Firstly, these different modalities inherently possess significant
heterogeneity. For instance, transcriptomic data are typically high-dimensional,
quantified gene expression information, reflecting the gene activity in different spots or
cells. In contrast, histology image is two-dimensional visual data, depicting the
morphological and structural information of cells at different spots. This fundamental
difference makes the direct fusion of these two types of modal difficult. Secondly, the
disparity in data scale and resolution is also a crucial issue. Transcriptomic data reveals
unique patterns of gene expression within spots or cells from a microscopic perspective.
Conversely, histology image provides more macroscopic information on organization
and morphology. This difference in scale complicates the establishment of spatial
correspondence, thereby posing challenges in comparing and integrating these two

categories of data.

Recently, a variety of cutting-edge computational methods have been developed to
effectively address the challenge of joint representation of multi-modal SRT data.
Specifically, BASS, BayesSpace and Giotto leverage spatial neighborhood information
for enhancing the resolution of SRT data [14-16]. CellCharter and PRECAST
incorporate spatial contexts to correct batch effect for a better domain identification
[17,18]. MENDER is a recently proposed multi-range cell context decipherer for ultra-
fast tissue structure identification [19]. CCST, STAGATE, SpaceFlow and GraphST
utilize Graph Neural Networks (GNN) to integrate gene expression data with spatial
information, achieving effective clustering of spots [20-23]. However, these methods
do not employ histology images, failing to fully enhance the interpretability of gene
expression data through these images. This limitation often results in subsequent
analyses that are less accurate and lack robustness. In contrast, recent pioneering studies
like stLearn and DeepST have shown more significant progress [24,25]. These methods

effectively integrate gene expression data with spatial neighborhood information and
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morphological features extracted from histology images, demonstrating a stronger
potential for application. Despite these methods demonstrating some capability in
processing and interpreting multi-modal information in SRT data, they give less
consideration to the complex global spot similarity across high-resolution, content-rich,
and distinctive spatial multi-modal features. This limitation impedes their ability to
accurately characterize spatial patterns and discover functional biological contexts in

tissue.

To achieve precise identification of spatial domains, we introduce stMMR, a novel
approach for effective representing multi-modal information in SRT data. stMMR
utilizes spatial location information as a bridge to establish adjacency relationships
between spots. It encodes gene expression data and morphological features extracted
from histological images using Graph Convolutional Networks (GCN). stMMR
proposed a novel strategy to achieve joint learning of intra-modal and inter-modal
features. Within a certain modality, stMMR employs self-attention mechanisms to learn
the relationships of different spots. For integrating cross-modal information, stMMR
innovatively utilizes similarity contrastive learning along with the reconstruction of

gene expression features and adjacency information.

To assess the capability of stMMR in representing multi-modal information, we
conducted comprehensive tests on various SRT datasets, including samples profiled by
10x Visium, NanoString technology as well as Spatial Transcriptomics (ST) technology.
We evaluated the effectiveness of stMMR with several state-of-the-art techniques in
domain recognition tasks. The results showed that sStMMR achieved significant success
in domain identification. Additionally, we explored the impact of incorporating
histological information into stMMR on the effectiveness of multi-modal feature
representation. The analysis of domain-specific genes across multiple datasets revealed
that stMMR significantly achieves the enhancement of gene expression data and
facilitates the understanding of domain-specific genes. Finally, we conducted thorough
analyses on breast cancer datasets based on 10x Visium technology and lung cancer

datasets based on NanoString technology [26]. Our studies found that stMMR
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accurately identify tumor edges and tumor-infiltrating regions, demonstrating
outstanding continuity in regional identification across different slices, thus proving its
potential value in clinical research. Overall, the stMMR method exhibits exceptional
capability in the multi-modal feature representation of SRT, providing a powerful new

tool for accurate and robust domain identification.

Materials and methods

Overview of stMMR

The multi-modal joint representation process of stMMR primarily consists of the
following three steps: multi-modal feature embedding, feature fusion and feature

reconstruction. The overall workflow of stMMR is illustrated in Figure 1.

Multi-modal feature embedding

The stMMR initially performs embedding on gene expression, spatial location, and
histology image information. We begin by assuming the presence of SRT data
comprising N spots. For tissue histological images, we extract pixel features
corresponding to each spot using a pre-trained Vision Transformer (ViT) model [27],
resulting in a feature matrix H € R¥N*™_ where M is the output dimension of the pre-
trained ViT model (Supplementary Section 1.3). For gene expression data, we employ
SeuratV3 to filter high variance genes and perform a log transformation on the
expression levels of these genes, denoted as G € RV*F, where P represents the
number of high variance genes identified. Additionally, we encode the spatial location
information of each spot, resulting in a position encoding matrix corresponding to each
spot. Specifically, we used an undirected weighted graph to present SRT data. For any
two spots, we posit that the closer their spatial distance, the greater their similarity.
Consequently, we define the adjacency matrix A between any two spots i and j as

follows:
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oy
d(i, j) ) %

A;j = exp <— oz
where d(i,j) represents the Euclidean distance between spots i and j, and [ is a

hyperparameter controlling the relationship between weight and distance. A larger

value of [ implies a faster decay of weight with increasing distance.

GCN is a deep learning module frequently used in graph representation learning in
recent years [28]. They effectively integrate information from neighboring nodes to
achieve efficient representation of target nodes. Subsequently, we employ encoders
with two layers of GCNs to perform message passing and aggregation on pixel features

and gene expression features, as shown in Eq.2:

11
E® = DzAD 2E*- Dy k-1) (2)

where E® and E®~V represent the input and output of the GCN module,
respectively. E(®) corresponds to the pixel features H or gene expression features G
for each spot. A = A + I denotes the adjacency matrix of the undirected graph, where
I is the identity matrix. D and W&=D are the weighted degree matrix and trainable
parameter respectively. The pixel features and gene expression features obtained after

passing through the encoder are denoted as Ey and Eg.

Feature fusion

To effectively aggregate multi-modal information, we propose a novel feature
fusion strategy. First, stMMR uses a normalized attention module to learn the

relationships between spots in a single modality, as shown in Eq.3:

E, = E - soft (EET> 3)
4 = E -softmax Nz

where E represents the pixel features Ep or gene expression features E; obtained
in the previous step. The new features obtained through the attention module are E,y
and E ;. Itis noteworthy that we use a nonlinear activation function and the Euclidean

distance matrix d to normalize the weights. This approach effectively avoids the issue
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of local optima caused by excessively large weights for certain spots [29].

For cross-modal information, stMMR adopts a contrastive learning approach for
feature fusion. Previous research indicates that histology information and gene
expression information share both similarities and complementary relationships [30—
32]. stMMR emphasizes the consistency between multiple modalities by constructing
a cross-modal contrastive learning strategy. Specifically, stMMR maps the latent
features of multiple modalities, E; and Eg, to a space using two fully connected
neural networks, thereby obtaining hierarchical representations for both modalities,
Qy and Qg , as shown in Eq.4:

Q = Relu(WyE + by). (4)

In Eq.4, E represents the pixel features Ey or gene expression features E, and
Q corresponds to Qy or Q. W, and by, are the parameters of the fully connected

network.

After obtaining the low-dimensional features Qy and Q; for the two modalities,
we further employ a fully connected neural network to fuse these two modalities, as

shown in Eq.5:
Eg = Wg - concat(Qg, Qy) + bg (5)
where W and bgp are the parameters of the fully connected network.

To enhance the consistency between Qy and Qg;, we use a constraint as shown

in Equation 6, replacing the loss of traditional contrastive learning:

~ ~T

Leon = ||QGQG - QHQ:IT||2- (6)
2

In this equation, Q; and Q are the normalization matrices of Q; and Q,

respectively.

Finally, we further integrate modality specific features E,yn and E,; obtained

from Eq.3 with the cross-modality features E, obtained from Eq.5 to get the multi-

modal feature representation Z, as shown in the following equation:
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Z=(XE0+BEAH +YEAG (7)

In this equation, a, B, and y are hyperparameters for adjusting the importance of

features.

Feature reconstruction

Finally, to ensure that the embeddings Z learned by our model contain
biologically information, we designed a reconstruction phase using Z to reconstruct
the original features. Here, we primarily focus on reconstructing the adjacency matrix

A and the gene expression profiles.

SRT data are characterized by high sparsity, discreteness, and variance greater than
the mean, specifically manifested as a high number of genes expressed at zero (zero
inflation) [33]. Previous research has found that the zero-inflated negative binomial
(ZINB) distribution can effectively characterize gene expression in SRT [34]. Therefore,
stMMR also adopts the ZINB to describe gene expression information. In simple terms,
we estimate the parameters of the ZINB distribution for each gene (i.e., u, 8, and m,
Supplementary Section 1.4) through three different fully connected networks, as

follows:
I = Sigmoid (W f5(Z)),
0 = exp(Wy [fp(2)),

M = exp(W,fp(2)),

where M, O, and Il are the matrix forms of u, 6, and m, representing the mean,
dispersion, and dropout probability of the output from network respectively. The
dropout probability ranges between 0 and 1. Due to the non-negative nature of the mean
M and dispersion O, we use the exponential function, and for the dropout probability

I1, the Sigmoid function is used. f is a decoder with a fully connected layer.

Based on the aforementioned reconstruction of gene expression information, we
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further designed the loss function for the ZINB decoder, as shown below:
Lzivg = —1og(ZINB(G|M, ©,1)) (8)
For spatial neighborhood relationships, we adopted the concept of a graph auto-
encoder to directly estimate the adjacency matrix [35,36], as shown in Eq.9:

A =Si 'd( z-z' ) 9)
=Jdlgmol _—
g 1Z1l, - 12711,

Subsequently, we defined a function to calculate the regularization loss between

the reconstructed matrix and the adjacency matrix, as in Eq.10:

1 N N
Y
Lyec = mz Z(Aij - Aij) (10)

i=1 j=1

This function quantifies the difference between the original adjacency matrix A
and its reconstructed version A’, thereby facilitating the accurate reconstruction of

spatial relationships.

Objective function

Finally, we integrated Eq.6, Eq.8, and Eq.10 to formulate the final objective
function, as shown in Eq.11:

L=ax*Leon+bxLzyp+C*Lrec (11

In this equation, a, b, and ¢ are hyperparameters that control the contribution of the

different loss terms.

For detailed information on the training process and parameter settings, please refer

to the Supplementary Section 1.5 and 1.6.

Datasets

All the dataset used in this study are listed in Supplementary Table S1. For detailed
descriptions and processing procedures, please refer to Supplementary Section 2.

Processed datasets are also available at SODB and can be loaded by PySODB [37,38].
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Benchmark methods

To demonstrate the effectiveness of the multi-modal feature representation in SRT
data, we selected 7 different state-of-the-art methods for benchmarking comparison.
These methods include SCANPY [39], which utilizes only gene expression data; CCST,
STAGATE, GraphST, and SpaceFlow, which employ both gene expression and spatial
location information [20-23]; and stLearn and DeepST, which incorporate all three
modalities [24,25]. Methods that have already been compared in previous works are not

included in our analysis [40—42].

Results

stMMR Enhances Detection of Stratified Architectural
Patterns in Human Dorsolateral Prefrontal Cortex (DLPFC)

Tissue

The spatial structure of the brain is closely related to its function, particularly
evident in the layered organization of the human brain cortex. Cells in different cortical
layers not only exhibit unique gene expression patterns but also vary in morphology,
physiology, and connectivity [43]. To explore the spatial structure arrangement of brain,
we collected a 10x Visium dataset containing 12 dorsolateral prefrontal cortex (DLPFC)
sections [44]. Maynard et al. manually annotated different layers (layer 1-6) and white
matter (WM) of the DLPFC based on morphological features and gene markers (Figure
2A) [44]. This annotation served as the ground truth for comparing and analyzing the

effectiveness of stMMR and other advanced spatial domain identification methods.

We initially compared the Adjusted Rand Index (ARI) levels of various methods
across 12 slices of the DLPFC dataset, as shown in Figure 2B. The results reveal that
stMMR outperformed other methods, achieving the highest ARI compared to manual
annotations. This result also demonstrates that stMMR possesses the smallest variance

across all slices. Notably, the results from STAGATE, CCST, and SpaceFlow show
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differences in the ARI across different slices, indicating that these methods are more
sensitive to the difference of domains. Scanpy uses only gene expression information
and shows the poorest performance. Methods like stlearn and deepST, which integrate
histological imaging information, are outperformed by GraphST and STAGATE. This
underperformance might stem from insufficient integration of transcriptomic and

imaging data.

Next, we conducted a detailed analysis for each slice (Figure 2C and
Supplementary Figure S1). To demonstrate the results, we used slice 151509 as an
example (Figure 2C - E). The results shows that deepST struggle with rough
segmentation between layers. CCST, SpaceFlow, and stLearn have issues with
erroneous region identification. Although GraphST and STAGATE accurately discern
the arrangement of different regions, these methods exhibit biases in identifying the
boundaries between distinct domains. In this specific case, stMMR demonstrates
exceptional domain identification results. We further utilize UMAP for low-
dimensional visualization analysis of the results obtained from different methods
(Figure 2D), to verify whether the embeddings can accurately encompass information
on regional arrangement and boundaries. The analysis reveals that techniques such as
stMMR, CCST, STAGATE, and stLearn effectively separate different domains. In
contrast, GraphST, SpaceFlow and deepST exhibit noticeable issues in layer boundaries.

For instance, the boundaries between layers 2, 3, and 4 are confused.

Further, we conducted a detailed trajectory inference using the PAGA algorithm
[45] for these methods (Figure 2E). The PAGA graphs indicates that stMMR,
STAGATE, CCST, and stLearn performs well in predicting trajectory between adjacent

layers. The other methods display confused results in this analysis.

Moreover, we identified domain-specific genes in the human brain cortex using
differential expressed gene analysis. Genes such as AQP4 and HPCALI are recognized
as layer-specific genes (Supplementary Table S2). These genes are enriched in multiple
layers and have been confirmed through multiplex single-molecule fluorescent in situ

hybridization [44].
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Combining the insights from these various analyses, it is evident that stMMR
remarkably effective in several critical tasks, including domain identification, pseudo-
spatiotemporal analysis and domain-specific genes discovery. These results adequately
demonstrate effective capability of stMMR in integrating transcriptomic and

histological imaging data.

stMMR Enhances Spatial Gene Expression Profiling and

Structural Characterization

In SRT, the analysis of domain-specific genes holds significant importance. The
functionality of complex tissues is closely related to distribution domain-specific genes.
However, in SRT research, identifying domain-specific genes which have relationships
with histological structures is challenging. This is primarily due to the presence of
substantial noise in the gene expression profiles generated by SRT techniques. The
noise mainly arises from technical issues during sequencing, such as the dropout event
[46-48]. To validate whether stMMR can enhance gene expression data through
histological information, we analyzed domain-specific gene expression in 151509
slices of the DLPFC dataset. Inspired by the previous study [49], we validated the
effectiveness of the stMMR in enhancing gene expression data by comparing the
relationship between the original gene expression profile and the profile reconstructed

through the ZINB decoder with manually annotated regions.

Compared to using original gene expression data, employing reconstructed gene
expression data facilitates the identification of a larger number of domain-specific
genes across all brain layers (Supplementary Table S2). For instance, when using the
original gene expression data, the CACNA2D2 and ADCYAP1 were not identified as
domain-specific genes in layer 3. However, after enhancement with stMMR, we were
able to accurately detect the CACNA2D2 and ADCYAPI1 as domain-specific genes in
layer 3. Notably, previous research has found that in layer 3 of primates, the

CACNAZ2D?2 gene exhibits differential expression and is closely associated with several
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biological pathways, including calcium signaling and synaptic long-term depression
[50]. ADCYAPI has also been proved to be a domain-specific gene in former study
[51]. This suggests that the expression patterns after ssMMR enhancement are more

consistent with known neurobiological functions and pathological states.

We also conducted a more detailed analysis by combining gene expression levels
with their spatial locations (Figure 3). We found that after enhancing gene expression
with stMMR, more distinct expression patterns of domain-specific genes can be
observed between brain layers. Specifically, Figure 3A demonstrates a clear spatial
representation of domain-specific marker genes (ADAYAP1, CACNA2D2, CALBI,
MARCI, MB and LPL) after data enhancement. For example, in the original data, the
expression pattern of genes such as ADCYAP1, CACNA2D2 and MB are sparse, and
the boundaries in spatial regions are blurred, making it difficult to discern a clear
expression pattern (Figure 3A and B). However, after enhancement with stMMR, we
can observe that CACNA2D2 and CALB1 exhibit much clearer expression patterns in
layers 3 and 4. Additionally, the enrichment of MARCI1, MB, and LPL in the white
matter regions become more pronounced (Figure 3A and C). These results reflect that
stMMR not only improves the spatial resolution of gene expression patterns using
histological information but also enhances our understanding of the subtle differences

in gene expression across different regions of the brain.

stMMR deciphers evolving cell lineage structures in chicken

heart ST dataset

Analyzing temporal SRT data can reveal the dynamic domain changes during the
development of tissue organs. This is crucial for our understanding of complex
biological processes such as tissue development and disease progression. We collected
the chicken heart SRT dataset to further investigate the effectiveness of stMMR in the
integrated representation of multi-modal features [52]. This dataset includes 12 tissue

slices, collected on day 4 (5 slices), day 7 (4 slices), day 10 (2 slices), and day 14 (1
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slices), documenting four key stages of the Hamburger-Hamilton ventricular

developmental stages [52].

We annotated the slices of different developmental stages using labels provided by
the original research (Figure 4A) [52]. Subsequently, we employed the embeddings
from stMMR and SpaceFlow to identify domains of chicken heart across these four
distinct stages. Figure 4B indicate that the regions detected by stMMR largely coincide
with manual annotation. For instance, in all tissue sections, major regions of the chicken
heart, such as atrial cells and the inter-ventricular septum, are accurately identified. This
discovery is significant for a deeper understanding of the spatial structure of cardiac
tissues. Notably, stMMR also detects domains that are hard to identified (Figure 4B).
For example, in the data from days 7, 10, and 14, the epicardium, a thin layer
surrounding the outer side of the chicken heart, is clearly identified by stMMR.
Although there are some instances of misclassification in the characterization of spot
features using stMMR in a few regions, the identification of the epicardium is quite

clear (Figure 4B).

Next, we adopted a method similar to previous study to analyze the pseudo-
spatiotemporal map (pSM) [23]. In brief, we mapped the spot features obtained through
stMMR and SpaceFlow on the pseudo-temporal axis [23,39,53]. These points reflect
the relative positions of cells in their developmental trajectory or functional state. As
clearly visible in Figure 4C, within the D7 to D14, the valve structures can be distinctly
identified through the pSM values. Moreover, the representation of the myocardium in
ventricles, as indicated by the pSM values, appears more uniform (yellow area)
compared to the regional segmentation results in Figure B. According to related
research [54], the endocardium, the inner layer of the heart, is one of the early events
in cardiac formation. The endocardial tubes are fundamental to cardiac development,
eventually merging to form the primitive heart tube. As the heart tube forms,
myocardial development commences, followed closely by the development of the atria.
In our analysis, we observe that the myocardium in ventricles (yellow area in Figure

4C) consistently shows higher pSM values compared to other areas in the same stage,
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indicating a later pseudo-temporal ordering of the ventricular myocardium [23].
Additionally, the pseudo-temporal ordering of the atria (marked in teal) follows that of
the valves, suggesting that the development of the atria occurs after the valves.
Therefore, the pSM derived from stMMR accurately displays the developmental
sequence of the chicken heart. We further identified domain-specific genes through
differential expression analysis across regions. For instance, we observed that MYH?7
is highly specifically expressed in the Atria. This finding aligns with previous reports

on the analysis of Atria and Ventricles specific proteins [55].

In addition, we also employed various algorithms to perform a comparative
analysis of the pSM on the human DLPFC dataset. As shown in Supplementary Figure
S2, we observe that in the pSM analysis, methods like graphST, deepST, stLearn, and
SCANPY fail to clearly reflect the layered spatial organization of the tissue. In contrast,
the stMMR, STAGATE, SpaceFlow and CCST are able to distinctly reveal the layered
pattern of the pSM, displaying clear and smooth color gradients. This result from
stMMR not only mirrors the correct internal and external developmental sequence of
the cortical layers but also demonstrates the layered spatial organization of tissue,

aligning with the findings of previous studies [23].

stMMR accurate identifies tumor region in human breast

cancer

Breast cancer is a major type of cancer worldwide [56]. We collected human breast
cancer SRT data from the 10x Visium platform to conduct an in-depth study of the
microenvironment in breast cancer. This dataset includes 3,798 spatial spots and 36,601
genes. Experienced pathologists have annotated these SRT data using H&E images and

signature genes of breast cancer, categorizing them into 20 distinct regions (Figure 5A).

First, we applied different methods for domain identification. From the results
presented in Figure 5B, it is observed that stMMR shows the most outstanding

performance in category labeling. In terms of regional continuity, stMMR also
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demonstrates superior performance among different methods. Taking the IDC_S5 area
in the upper left corner as an example, this area occupies a significant portion in
invasive ductal carcinoma, with a notable increase in cancer cells compared to normal
tissue or non-tumorous areas. Previous studies have also indicated that cells originating
from solid tumors are primarily concentrated in the IDC area [25]. However, only
stMMR accurately identified the entire IDC_5 area, demonstrating higher precision
compared to other methods. Additionally, stMMR also exhibits higher continuity in
predicting the Tumor_edge area, whereas the results of other methods appear more

dispersed in this aspect.

Next, we conducted a comprehensive analysis of domain-specific genes between
merged tumor and normal regions (Supplementary Section 2.3). We utilized the
DisGeNET to delve into the differentially expressed genes in the breast cancer tumor
regions [57]. Our analysis revealed that several Gene Ontology (GO) terms closely
associated with these domain-specific genes are linked to breast cancer (Figure 5C left
panel). For instance, C0024305 is a GO term related to non-Hodgkin lymphoma.
Studies have shown that the development of breast cancer significantly increases the
risk of non-Hodgkin lymphoma, particularly follicular lymphoma and mature T/NK
cell lymphomas [58]. This risk is notably more pronounced in patients undergoing
hormone therapy and in younger patients [58]. Importantly, we also identified
C0021368 as an inflammation-related GO term (Figure 5C left panel). Numerous
studies have indicated that inflammation plays a regulatory role in the development of
cancer and its response to treatment [59—61]. To further validate our research findings,
we conducted a systematic enrichment analysis of the transcriptional regulatory
network using TRRUST [62]. The analysis results indicated that multiple top-ranked
GO terms are closely associated with breast cancer (Figure 5C right panel). For instance,
TRRO1419 emerges as the fourth most significant GO term, with TP53 is identified as
its key regulatory factor. TP53 plays a crucial role in both cancer-related systemic
inflammation and the progression of cancer [63]. Additionally, the key regulatory

factors for the top three GO terms - TRRO1256 (regulated by SP1), TRR00875
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(regulated by NFKBI1), and TRRO1158 (regulated by RELA) - have also been
confirmed in previous studies to play pivotal roles in the development and progression

of breast cancer [64—68].

stMMR dissects cell type differences in a lung cancer SRT

dataset based on NanoString technology

To further validate the generalization ability and applicability of sStMMR, we tested
its effectiveness using the single-cell SRT dataset generated by NanoString CosMx SML.
This dataset comprises lung cancer tissue samples from 20 fields of view (FOVs) [26],
involving 982 genes and 83,621 cells, covering eight major cell types, including
lymphocytes, neutrophils, mast cells, endothelial cells, fibroblasts, epithelial cells,
myeloid cells, and tumor cells. For ease of observation, we displayed the ground truth

of one of the FOVs in Figures 6A.

We employed the benchmarking methods to conduct a detailed analysis of the
spatial organization within 20 FOVs, as shown in Figures 6B, D-F. Figure 6B revealed
that stMMR closely aligns with the original study in detecting the spatial distribution
of cell types. Particularly in identifying tumor cells, stMMR demonstrates high
precision, accurately detecting tumor cells distributed across different locations in the
tissue sections (Figure 6B). In the overall analysis of the 20 sections, the performance
of stMMR is superior to other methods (Figure 6D). Furthermore, we conducted a cell
type-specific gene analysis based on the cell annotations in one slice. We observe that
different tissue cells exhibit unique expression patterns (Figure 6C). For instance, Igkc
transcripts, previously reported to be upregulated in myeloid progenitor populations, is
also confirmed in our study [69]. The genes COL3A1 and COL1A1 shows significant
positive correlations with neutrophils [70,71]. Additionally, the oncogene SOX4 is
prominently featured in our differential analysis of tumor cells [72]. Notably, some cell
types also share similar gene expression patterns (Figure 6C). For example, epithelial

cells and tumor cells in this lung cancer dataset exhibit expression similarities. Multiple
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studies using single-cell transcriptomics analysis have revealed that lung cancer cells
share characteristics similar to those of Type 1 (AT1) and Type 2 (AT2) alveolar
epithelial cells [73,74]. This similarity may be related to lung cancer cells maintaining

epithelial cell functions, such as cell adhesion and migration [75,76].

We also conducted a visualization analysis comparing the results of stMMR
applied to 20 tissue sections with the actual division of tissue regions. The analysis
demonstrates that sStMMR effectively identifies tissue regions across multiple sections
(Figure 6E). Notably, even in regions bisected by section boundaries, stMMR maintains
smooth and continuous (Figure 6E and F). These findings indicate that the joint
representation of stMMR not only effectively eliminates noise from different data types
but also maintains excellent performance in the recognition of tissue regions across

multiple slices.

Discussion

SRT technology enables us to deeply understand the spatial structure of tissues
within biological systems from multiple dimensions, including gene expression profiles,
spatial positioning, and histological imaging information. Through comprehensive
integration of these modalities, we can obtain an informative joint representation.
However, the inherent data heterogeneity along with the varying spatial resolutions
presents challenges in the integration of these modalities. To overcome this problem,
we propose a novel computational framework, stMMR. This framework aims to
harmonize and unify multi-modal data as well as achieve effective joint representation

for multi-modal SRT data.

stMMR effectively unifies gene expression profiles and histological imaging
information by utilizing spatial location as a connecting link. This method automates
the construction of adjacency relationships between neighboring spots. Then, GCN is
employed to extract features from both gene expression profiles and histological images.
Furthermore, stMMR adopts an innovative strategy for representing intra-modal and

inter-modal features. Initially, it employs an attention mechanism for an in-depth
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learning within a single modality. It then integrates cross-modality features through a
combination of similarity contrastive learning, along with the reconstruction of gene
expression and adjacency relationship. By applying stMMR to SRT data of various
tissues and resolutions, we have validated its exceptional performance in multiple
analyses, including domain identification, pseudo-spatiotemporal analysis, gene

expression data enhancement as well as the identification of domain-specific genes.

The remarkable performance of stMMR can be attributed to several innovative
designs. The most crucial aspect is the integration of histological imaging information
with gene expression data through spatial location. In SRT, gene expression data suffers
from issues of sparsity and zero inflation, which are key factors that interfere with
downstream analysis [33,77]. Previous research has shown that histological imaging
information can predict gene expression data [30—32]. Therefore, compared to methods
that rely on gene expression information solely, sStMMR integrates imaging information
and exhibits superior performance in spot characterization. Secondly, unlike other
methods that construct spatial transcriptomic data as undirected, unweighted graphs,
stMMR builds undirected weighted graphs inversely proportional to Euclidean
distances between spots, better reflecting the influence of spatial distance on message
passing and aggregation. Furthermore, the consideration of relationships within and
between modalities is also crucial. Sole reliance on gene expression data for correlation
analysis may result in information loss. In contrast, methods that incorporate imaging
information, such as DeepST, focus primarily on the integration of multi-modal data,
overlooking the relationships within individual modalities. To fully leverage the
relationships within and between modalities, stMMR not only uses similarity
contrastive learning for integrating features across modalities but also incorporates a
self-attention module for deep embedding of features within a modality. Additionally,
the reconstruction modules for gene expression and adjacency matrix further encourage
the model to retain as much original information as possible. This encoder-decoder
structure improves the ability of stMMR to recover information also endows stMMR

with excellent denoising capabilities and robustness.
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It is noteworthy that the stMMR framework, distinguished by its exceptional
feature embedding capabilities, also exhibits a remarkable ability to handle data derived
from diverse experimental techniques. Beyond the previously mentioned datasets, our
investigation also extended to the analysis of a mouse brain dataset derived using 10x
Visium technology and a human pancreatic ductal adenocarcinoma dataset obtained
through SRT technology (Supplementary Figure S3 and S4). In these tests, the sStMMR

consistently achieved optimal results.

stMMR also has model scalability. In the design of the model, we considered that
gene expression of each spot corresponds to a small area in space. Therefore, before
embedding histological imaging information, we also tailor it to match each spot aera.
This means that the input information of stMMR is always associated with each spot
area. Recently, the advancement of spatial multi-omics technologies has provided new
data for analyzing the spatial distribution and functions of cells in tissues from multiple
perspectives, such as simultaneous observations of transcriptomes and proteomes,
transcriptomes and epigenomics [78-81]. The stMMR framework can be easily
expanded to support these types of data. The researchers only need to duplicate the gene
expression module and then apply similar methods for embedding features within and
between modalities. Moreover, the joint representation obtained through stMMR can
also be applied to other tasks, such as cell type deconvolution [82—85]. This application
requires a process similar to methods like scaden [86], where a neural network is
connected to the joint representation. Subsequently, the generation of simulation data

and model training can be conducted using annotated single-cell data.

There is still room for the improvement of stMMR. Currently, stMMR employs
Euclidean distance in the construction of spot adjacency matrices. However, in practical
scenarios, it may be more rational to utilize different distance metrics for graph
construction based on modal features. For instance, considering gene expression data,
the use of Pearson Correlation Coefficients or K-L divergence might be more
appropriate to measure expression similarity between spots. In contrast, for spatial

imaging data, either Euclidean distance or staining similarity can serve as the distance
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metric. Under these circumstances, the constructed graph transitions from being a
homogenous graph to a heterogeneous one. For such heterogeneous graphs with
multiple types of edges, we can apply methods like metapath2vec or multi-view

learning to achieve embedding and integration of different modalities [87-90].

In this paper, we introduce a robust and accurate tool, sStMMR, for the integration
of gene expression data, spatial information, and histological imaging information from
SRT data. Compared to existing methods, sStMMR demonstrates a significant advantage
in integrating multi-modal data, particularly excelling in domain identification, pseudo-
spatiotemporal analysis, and domain-specific gene analysis. Overall, as an effective and
user-friendly tool, stMMR enhances the multi-modal joint analysis of SRT data,

providing substantial support for research in relevant fields.

Data availability

All datasets used in this paper are publicly available. The descriptions and download
address are listed in Supplementary Section 2.1 and Supplementary Table S1. Processed

datasets are also available at SODB (https://gene.ai.tencent.com/SpatialOmics/) and

can be loaded by PySODB (https://protocols-pysodb.readthedocs.io/en/latest/). The

source. code for stMMR can be  downloaded from  github

(https://github.com/nayu0419/stMMR).
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Figure 2. Performance comparisons of different methods on DLPFC datasets. (A) The histology image
and manually annotated brain regions of slice 151509. (B) The overall performance of 8 different
methods across 12 slices. (C) The domain recognition results on slice 151509. (D) The UMAP
visualization results of the embeddings from 8 different methods on slice 151509. (E) The inferenced

trajectories on slice 151509.
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Figure 4. stMMR reveals cell lineage structures during chicken heart development. (A) The ground truth

label provided by the original data. (B) The regions recognized by stMMR and SpaceFlow. (C) The plots

of pSM value from stMMR and SpaceFlow for illustrating pseudo-temporal developmental trajectory.

(D) The differentially expressed marker genes discovered by stMMR.
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Figure 5. stMMR identifies tumor region in human breast cancer dataset. (A) The H&E images and the
manually annotated regions. (B) The annotation results from different methods. (C) Top 20 differentially
expressed gene related GO terms generated by DisGeNET (left panel) and TRRUST (right panel).
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Figure 6. stMMR recognizes cell type differences in lung cancer dataset. (A) One FOV of the lung cancer
SRT data. (B) Cell types identified by different methods. (C) Expression pattern of marker genes for
different cell types. (D) The overall performance of different methods across 20 FOVs. (E) Cell types
annotated manually in 20 FOVs. (F) Cell types annotated by stMMR in 20 FOVs. (G) The zoomed-in
results of boundaries between adjacent FOVs identified by stMMR.
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