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Abstract 

Characterizing and understanding the structure of tissues from spatially resolved 

transcriptomics (SRT) is of great value for deciphering the functionality of spatial 

domains. However, the inherent heterogeneity and varying spatial resolutions among 

SRT multi-modal data present challenges in the joint analysis of these modalities. In 

this study, we introduce a multi-modal feature representation method, named stMMR, 

to effectively integrate gene expression, spatial location and histological imaging 

information for accurate identifying spatial domains from SRT data. stMMR uses self-

attention module for deep embedding of features within unimodal and incorporates 

similarity contrastive learning for integrating features across modalities. stMMR 

demonstrates superior performances in multiple analyses using datasets generated by 

different platforms, including spatial domain identification, pseudo-spatiotemporal 

analysis as well as domain-specific gene discovery. Using stMMR, we systematically 

analyzed the evolving lineage structures of the chicken heart and conducted an in-depth 

examination of domain-specific genes in breast cancer and lung cancer. In conclusion, 

stMMR is capable of effectively integrating the multi-modal information for spatial 

domain identification and exhibits superior adaptability as well as stability in handling 

different types of SRT data. 
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Introduction 

The advancement in SRT technology has opened new avenues for a deeper 

understanding of the spatial architecture and functionality of tissues. By employing 

these advanced SRT techniques, we can conduct a precise examination of the spatial 

landscapes and transcriptional profiles of complex tissues. Currently, many SRT 

technologies have been developed, such as imaging-based and sequencing-based 

methods [137]. Among these, techniques such as 10x Genomics Visium not only 

provide the spatial location and gene expression data for each spot but also acquire 

high-resolution hematoxylin and eosin (H&E) stained histology images of the tissue 

section, revealing richer information about the tissue organization. These technological 

advancements offer new insights into characterization of tissue architecture, enabling a 

more comprehensive understanding of tissue development and disease pathogenesis [73

9]. 

For SRT technologies capable of providing both gene expression data and 

histology images, the information from these different modalities reflects the structural 

information of tissues at various levels. Gene expression profiles reflect the difference 

of cell state between spots [10]. Spatial location information provides the precise 

location of each spot, illustrating the complex landscape of tissue structure. Histological 

images display morphological features of cells, such as size, shape, and intercellular 

relationships, offering crucial clues for distinguishing different spots [11]. Although 

each of these modalities has its own strength, they complement each other, together 

forming a more comprehensive picture of tissue architecture. For instance, changes in 

gene expression are reflected not only at the molecular level but may also manifest in 

histological images as morphological alterations [12]. Furthermore, the issues of 

sparsity and dropout in SRT data can be effectively addressed through integrating 

histological image data [13]. By leveraging the interdependence between gene 

expression and morphological features, as well as the similarity in gene expression 

patterns among adjacent spots, we can enhance spatial signals and characterize tissue 

structure. Therefore, achieving a joint representation of multi-modal features in SRT is 
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key to improving data utilization, domain recognition accuracy, as well as functional 

interpretability. 

However, the joint representation of features from different modalities in SRT is 

challenging. Firstly, these different modalities inherently possess significant 

heterogeneity. For instance, transcriptomic data are typically high-dimensional, 

quantified gene expression information, reflecting the gene activity in different spots or 

cells. In contrast, histology image is two-dimensional visual data, depicting the 

morphological and structural information of cells at different spots. This fundamental 

difference makes the direct fusion of these two types of modal difficult. Secondly, the 

disparity in data scale and resolution is also a crucial issue. Transcriptomic data reveals 

unique patterns of gene expression within spots or cells from a microscopic perspective. 

Conversely, histology image provides more macroscopic information on organization 

and morphology. This difference in scale complicates the establishment of spatial 

correspondence, thereby posing challenges in comparing and integrating these two 

categories of data. 

Recently, a variety of cutting-edge computational methods have been developed to 

effectively address the challenge of joint representation of multi-modal SRT data. 

Specifically, BASS, BayesSpace and Giotto leverage spatial neighborhood information 

for enhancing the resolution of SRT data [14316]. CellCharter and PRECAST 

incorporate spatial contexts to correct batch effect for a better domain identification 

[17,18]. MENDER is a recently proposed multi-range cell context decipherer for ultra-

fast tissue structure identification [19]. CCST, STAGATE, SpaceFlow and GraphST 

utilize Graph Neural Networks (GNN) to integrate gene expression data with spatial 

information, achieving effective clustering of spots [20323]. However, these methods 

do not employ histology images, failing to fully enhance the interpretability of gene 

expression data through these images. This limitation often results in subsequent 

analyses that are less accurate and lack robustness. In contrast, recent pioneering studies 

like stLearn and DeepST have shown more significant progress [24,25]. These methods 

effectively integrate gene expression data with spatial neighborhood information and 
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morphological features extracted from histology images, demonstrating a stronger 

potential for application. Despite these methods demonstrating some capability in 

processing and interpreting multi-modal information in SRT data, they give less 

consideration to the complex global spot similarity across high-resolution, content-rich, 

and distinctive spatial multi-modal features. This limitation impedes their ability to 

accurately characterize spatial patterns and discover functional biological contexts in 

tissue. 

To achieve precise identification of spatial domains, we introduce stMMR, a novel 

approach for effective representing multi-modal information in SRT data. stMMR 

utilizes spatial location information as a bridge to establish adjacency relationships 

between spots. It encodes gene expression data and morphological features extracted 

from histological images using Graph Convolutional Networks (GCN). stMMR 

proposed a novel strategy to achieve joint learning of intra-modal and inter-modal 

features. Within a certain modality, stMMR employs self-attention mechanisms to learn 

the relationships of different spots. For integrating cross-modal information, stMMR 

innovatively utilizes similarity contrastive learning along with the reconstruction of 

gene expression features and adjacency information. 

To assess the capability of stMMR in representing multi-modal information, we 

conducted comprehensive tests on various SRT datasets, including samples profiled by 

10x Visium, NanoString technology as well as Spatial Transcriptomics (ST) technology. 

We evaluated the effectiveness of stMMR with several state-of-the-art techniques in 

domain recognition tasks. The results showed that stMMR achieved significant success 

in domain identification. Additionally, we explored the impact of incorporating 

histological information into stMMR on the effectiveness of multi-modal feature 

representation. The analysis of domain-specific genes across multiple datasets revealed 

that stMMR significantly achieves the enhancement of gene expression data and 

facilitates the understanding of domain-specific genes. Finally, we conducted thorough 

analyses on breast cancer datasets based on 10x Visium technology and lung cancer 

datasets based on NanoString technology [26]. Our studies found that stMMR 
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accurately identify tumor edges and tumor-infiltrating regions, demonstrating 

outstanding continuity in regional identification across different slices, thus proving its 

potential value in clinical research. Overall, the stMMR method exhibits exceptional 

capability in the multi-modal feature representation of SRT, providing a powerful new 

tool for accurate and robust domain identification. 

Materials and methods 

Overview of stMMR 

The multi-modal joint representation process of stMMR primarily consists of the 

following three steps: multi-modal feature embedding, feature fusion and feature 

reconstruction. The overall workflow of stMMR is illustrated in Figure 1. 

Multi-modal feature embedding 

The stMMR initially performs embedding on gene expression, spatial location, and 

histology image information. We begin by assuming the presence of SRT data 

comprising N spots. For tissue histological images, we extract pixel features 

corresponding to each spot using a pre-trained Vision Transformer (ViT) model [27], 

resulting in a feature matrix Ā ∈ ℝþ×ý, where Ā is the output dimension of the pre-

trained ViT model (Supplementary Section 1.3). For gene expression data, we employ 

SeuratV3 to filter high variance genes and perform a log transformation on the 

expression levels of these genes, denoted as ÿ ∈ ℝþ×ÿ , where �  represents the 

number of high variance genes identified. Additionally, we encode the spatial location 

information of each spot, resulting in a position encoding matrix corresponding to each 

spot. Specifically, we used an undirected weighted graph to present SRT data. For any 

two spots, we posit that the closer their spatial distance, the greater their similarity. 

Consequently, we define the adjacency matrix � between any two spots ÿ and Ā as 

follows: 
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�ÿĀ = Ă�ā(2ā(ÿ, Ā)22ý2 ) (1) 
where ā(ÿ, Ā) represents the Euclidean distance between spots ÿ and Ā, and ý is a 

hyperparameter controlling the relationship between weight and distance. A larger 

value of ý implies a faster decay of weight with increasing distance. 

GCN is a deep learning module frequently used in graph representation learning in 

recent years [28]. They effectively integrate information from neighboring nodes to 

achieve efficient representation of target nodes. Subsequently, we employ encoders 

with two layers of GCNs to perform message passing and aggregation on pixel features 

and gene expression features, as shown in Eq.2: Ā(ā) = ÿ�212��ÿ�212Ā(ā21)�(ā21) (2) 
where Ā(ā)  and Ā(ā21)  represent the input and output of the GCN module, 

respectively. Ā(0) corresponds to the pixel features Ā or gene expression features ÿ 

for each spot. �� = � + ā denotes the adjacency matrix of the undirected graph, where ā is the identity matrix. ÿ�  and �(ā21) are the weighted degree matrix and trainable 

parameter respectively. The pixel features and gene expression features obtained after 

passing through the encoder are denoted as ĀĀ and Āÿ. 

Feature fusion 

To effectively aggregate multi-modal information, we propose a novel feature 

fusion strategy. First, stMMR uses a normalized attention module to learn the 

relationships between spots in a single modality, as shown in Eq.3: 

Āý = Ā ∙ ýĀăþþþ� (Ā ∙ Ā�√� ) (3) 
where Ā represents the pixel features ĀĀ or gene expression features Āÿ obtained 

in the previous step. The new features obtained through the attention module are ĀýĀ 

and Āýÿ. It is noteworthy that we use a nonlinear activation function and the Euclidean 

distance matrix � to normalize the weights. This approach effectively avoids the issue 
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of local optima caused by excessively large weights for certain spots [29]. 

For cross-modal information, stMMR adopts a contrastive learning approach for 

feature fusion. Previous research indicates that histology information and gene 

expression information share both similarities and complementary relationships [303

32]. stMMR emphasizes the consistency between multiple modalities by constructing 

a cross-modal contrastive learning strategy. Specifically, stMMR maps the latent 

features of multiple modalities, ĀĀ  and Āÿ, to a space using two fully connected 

neural networks, thereby obtaining hierarchical representations for both modalities, �Ā and �ÿ , as shown in Eq.4: � = ýĂýÿ(�ĀĀ+ �Ā). (4) 
In Eq.4, Ā represents the pixel features ĀĀ or gene expression features Āÿ, and � corresponds to �Ā or �ÿ . �Ā and �Ā are the parameters of the fully connected 

network. 

After obtaining the low-dimensional features �Ā and �ÿ  for the two modalities, 

we further employ a fully connected neural network to fuse these two modalities, as 

shown in Eq.5: Ā� = �Ā ∙ ĀĀÿĀþþ(�ÿ , �Ā) + �Ā (5) 
where �Ā  and �Ā are the parameters of the fully connected network. 

To enhance the consistency between �Ā and �ÿ , we use a constraint as shown 

in Equation 6, replacing the loss of traditional contrastive learning: 

ÿ�Āÿ = ‖�ÿ��ÿ� � 2 �Ā��Ā� �‖22 . (6) 
In this equation, �ÿ�  and �Ā�  are the normalization matrices of �ÿ  and �Ā, 

respectively. 

Finally, we further integrate modality specific features ĀýĀ and Āýÿ  obtained 

from Eq.3 with the cross-modality features Ā� obtained from Eq.5 to get the multi-

modal feature representation �, as shown in the following equation: 
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� = ³Ā� + ´ĀýĀ + γĀýÿ (7) 
In this equation, ³, ´, and γ are hyperparameters for adjusting the importance of 

features. 

Feature reconstruction 

Finally, to ensure that the embeddings �  learned by our model contain 

biologically information, we designed a reconstruction phase using � to reconstruct 

the original features. Here, we primarily focus on reconstructing the adjacency matrix � and the gene expression profiles. 

SRT data are characterized by high sparsity, discreteness, and variance greater than 

the mean, specifically manifested as a high number of genes expressed at zero (zero 

inflation) [33]. Previous research has found that the zero-inflated negative binomial 

(ZINB) distribution can effectively characterize gene expression in SRT [34]. Therefore, 

stMMR also adopts the ZINB to describe gene expression information. In simple terms, 

we estimate the parameters of the ZINB distribution for each gene (i.e., �, �, and �, 

Supplementary Section 1.4) through three different fully connected networks, as 

follows: 

� = þÿĄþĀÿā(��ăÿ(�)), 
� = Ă�ā(��ăÿ(�)), 
� = Ă�ā(��ăÿ(�)), 

where �, �, and � are the matrix forms of �, �, and �, representing the mean, 

dispersion, and dropout probability of the output from network respectively. The 

dropout probability ranges between 0 and 1. Due to the non-negative nature of the mean � and dispersion �, we use the exponential function, and for the dropout probability �, the Sigmoid function is used. ăÿ is a decoder with a fully connected layer. 

Based on the aforementioned reconstruction of gene expression information, we 
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further designed the loss function for the ZINB decoder, as shown below: ÿ�āþþ = 2 log(ý�ā�(ÿ|�,�, �)) (8) 
For spatial neighborhood relationships, we adopted the concept of a graph auto-

encoder to directly estimate the adjacency matrix [35,36], as shown in Eq.9: 

�′ = þÿĄþĀÿā ( � ∙ ��‖�‖2 ∙ ‖��‖2) (9) 
Subsequently, we defined a function to calculate the regularization loss between 

the reconstructed matrix and the adjacency matrix, as in Eq.10: 

ÿ��� = 1ā2∑∑(�ÿĀ 2 �ÿĀ′ )2þ
Ā=1

þ
ÿ=1 (10) 

This function quantifies the difference between the original adjacency matrix � 

and its reconstructed version �′ , thereby facilitating the accurate reconstruction of 

spatial relationships. 

Objective function 

Finally, we integrated Eq.6, Eq.8, and Eq.10 to formulate the final objective 

function, as shown in Eq.11: ÿ = þ ∗ ÿ�Āÿ + ÿ ∗ ÿ�āþþ + Ā ∗ ÿ��� (11) 
In this equation, þ, ÿ, and Ā are hyperparameters that control the contribution of the 

different loss terms. 

For detailed information on the training process and parameter settings, please refer 

to the Supplementary Section 1.5 and 1.6. 

Datasets 

All the dataset used in this study are listed in Supplementary Table S1. For detailed 

descriptions and processing procedures, please refer to Supplementary Section 2. 

Processed datasets are also available at SODB and can be loaded by PySODB [37,38]. 
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Benchmark methods 

To demonstrate the effectiveness of the multi-modal feature representation in SRT 

data, we selected 7 different state-of-the-art methods for benchmarking comparison. 

These methods include SCANPY [39], which utilizes only gene expression data; CCST, 

STAGATE, GraphST, and SpaceFlow, which employ both gene expression and spatial 

location information [20323]; and stLearn and DeepST, which incorporate all three 

modalities [24,25]. Methods that have already been compared in previous works are not 

included in our analysis [40342]. 

Results 

stMMR Enhances Detection of Stratified Architectural 

Patterns in Human Dorsolateral Prefrontal Cortex (DLPFC) 

Tissue 

The spatial structure of the brain is closely related to its function, particularly 

evident in the layered organization of the human brain cortex. Cells in different cortical 

layers not only exhibit unique gene expression patterns but also vary in morphology, 

physiology, and connectivity [43]. To explore the spatial structure arrangement of brain , 

we collected a 10x Visium dataset containing 12 dorsolateral prefrontal cortex (DLPFC) 

sections [44]. Maynard et al. manually annotated different layers (layer 1-6) and white 

matter (WM) of the DLPFC based on morphological features and gene markers (Figure 

2A) [44]. This annotation served as the ground truth for comparing and analyzing the 

effectiveness of stMMR and other advanced spatial domain identification methods.  

We initially compared the Adjusted Rand Index (ARI) levels of various methods 

across 12 slices of the DLPFC dataset, as shown in Figure 2B. The results reveal that 

stMMR outperformed other methods, achieving the highest ARI compared to manual 

annotations. This result also demonstrates that stMMR possesses the smallest variance 

across all slices. Notably, the results from STAGATE, CCST, and SpaceFlow show 
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differences in the ARI across different slices, indicating that these methods are more 

sensitive to the difference of domains. Scanpy uses only gene expression information 

and shows the poorest performance. Methods like stlearn and deepST, which integrate 

histological imaging information, are outperformed by GraphST and STAGATE. This 

underperformance might stem from insufficient integration of transcriptomic and 

imaging data.  

Next, we conducted a detailed analysis for each slice (Figure 2C and 

Supplementary Figure S1). To demonstrate the results, we used slice 151509 as an 

example (Figure 2C - E). The results shows that deepST struggle with rough 

segmentation between layers. CCST, SpaceFlow, and stLearn have issues with 

erroneous region identification. Although GraphST and STAGATE accurately discern 

the arrangement of different regions, these methods exhibit biases in identifying the 

boundaries between distinct domains. In this specific case, stMMR demonstrates 

exceptional domain identification results. We further utilize UMAP for low-

dimensional visualization analysis of the results obtained from different methods 

(Figure 2D), to verify whether the embeddings can accurately encompass information 

on regional arrangement and boundaries. The analysis reveals that techniques such as 

stMMR, CCST, STAGATE, and stLearn effectively separate different domains. In 

contrast, GraphST, SpaceFlow and deepST exhibit noticeable issues in layer boundaries. 

For instance, the boundaries between layers 2, 3, and 4 are confused.  

Further, we conducted a detailed trajectory inference using the PAGA algorithm 

[45] for these methods (Figure 2E). The PAGA graphs indicates that stMMR, 

STAGATE, CCST, and stLearn performs well in predicting trajectory between adjacent 

layers. The other methods display confused results in this analysis.  

Moreover, we identified domain-specific genes in the human brain cortex using 

differential expressed gene analysis. Genes such as AQP4 and HPCAL1 are recognized 

as layer-specific genes (Supplementary Table S2). These genes are enriched in multiple 

layers and have been confirmed through multiplex single-molecule fluorescent in situ 

hybridization [44]. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 24, 2024. ; https://doi.org/10.1101/2024.02.22.581503doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.22.581503
http://creativecommons.org/licenses/by-nc-nd/4.0/


Combining the insights from these various analyses, it is evident that stMMR 

remarkably effective in several critical tasks, including domain identification, pseudo-

spatiotemporal analysis and domain-specific genes discovery. These results adequately 

demonstrate effective capability of stMMR in integrating transcriptomic and 

histological imaging data. 

stMMR Enhances Spatial Gene Expression Profiling and 

Structural Characterization 

In SRT, the analysis of domain-specific genes holds significant importance. The 

functionality of complex tissues is closely related to distribution domain-specific genes. 

However, in SRT research, identifying domain-specific genes which have relationships 

with histological structures is challenging. This is primarily due to the presence of 

substantial noise in the gene expression profiles generated by SRT techniques. The 

noise mainly arises from technical issues during sequencing, such as the dropout event 

[46348]. To validate whether stMMR can enhance gene expression data through 

histological information, we analyzed domain-specific gene expression in 151509 

slices of the DLPFC dataset. Inspired by the previous study [49], we validated the 

effectiveness of the stMMR in enhancing gene expression data by comparing the 

relationship between the original gene expression profile and the profile reconstructed 

through the ZINB decoder with manually annotated regions. 

Compared to using original gene expression data, employing reconstructed gene 

expression data facilitates the identification of a larger number of domain-specific 

genes across all brain layers (Supplementary Table S2). For instance, when using the 

original gene expression data, the CACNA2D2 and ADCYAP1 were not identified as 

domain-specific genes in layer 3. However, after enhancement with stMMR, we were 

able to accurately detect the CACNA2D2 and ADCYAP1 as domain-specific genes in 

layer 3. Notably, previous research has found that in layer 3 of primates, the 

CACNA2D2 gene exhibits differential expression and is closely associated with several 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 24, 2024. ; https://doi.org/10.1101/2024.02.22.581503doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.22.581503
http://creativecommons.org/licenses/by-nc-nd/4.0/


biological pathways, including calcium signaling and synaptic long-term depression 

[50]. ADCYAP1 has also been proved to be a domain-specific gene in former study 

[51]. This suggests that the expression patterns after stMMR enhancement are more 

consistent with known neurobiological functions and pathological states. 

We also conducted a more detailed analysis by combining gene expression levels 

with their spatial locations (Figure 3). We found that after enhancing gene expression 

with stMMR, more distinct expression patterns of domain-specific genes can be 

observed between brain layers. Specifically, Figure 3A demonstrates a clear spatial 

representation of domain-specific marker genes (ADAYAP1, CACNA2D2, CALB1, 

MARC1, MB and LPL) after data enhancement. For example, in the original data, the 

expression pattern of genes such as ADCYAP1, CACNA2D2 and MB are sparse, and 

the boundaries in spatial regions are blurred, making it difficult to discern a clear 

expression pattern (Figure 3A and B). However, after enhancement with stMMR, we 

can observe that CACNA2D2 and CALB1 exhibit much clearer expression patterns in 

layers 3 and 4. Additionally, the enrichment of MARC1, MB, and LPL in the white 

matter regions become more pronounced (Figure 3A and C). These results reflect that 

stMMR not only improves the spatial resolution of gene expression patterns using 

histological information but also enhances our understanding of the subtle differences 

in gene expression across different regions of the brain. 

stMMR deciphers evolving cell lineage structures in chicken 

heart ST dataset 

Analyzing temporal SRT data can reveal the dynamic domain changes during the 

development of tissue organs. This is crucial for our understanding of complex 

biological processes such as tissue development and disease progression. We collected 

the chicken heart SRT dataset to further investigate the effectiveness of stMMR in the 

integrated representation of multi-modal features [52]. This dataset includes 12 tissue 

slices, collected on day 4 (5 slices), day 7 (4 slices), day 10 (2 slices), and day 14 (1 
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slices), documenting four key stages of the Hamburger-Hamilton ventricular 

developmental stages [52]. 

We annotated the slices of different developmental stages using labels provided by 

the original research (Figure 4A) [52]. Subsequently, we employed the embeddings 

from stMMR and SpaceFlow to identify domains of chicken heart across these four 

distinct stages. Figure 4B indicate that the regions detected by stMMR largely coincide 

with manual annotation. For instance, in all tissue sections, major regions of the chicken 

heart, such as atrial cells and the inter-ventricular septum, are accurately identified. This 

discovery is significant for a deeper understanding of the spatial structure of cardiac 

tissues. Notably, stMMR also detects domains that are hard to identified (Figure 4B). 

For example, in the data from days 7, 10, and 14, the epicardium, a thin layer 

surrounding the outer side of the chicken heart, is clearly identified by stMMR. 

Although there are some instances of misclassification in the characterization of spot 

features using stMMR in a few regions, the identification of the epicardium is quite 

clear (Figure 4B). 

Next, we adopted a method similar to previous study to analyze the pseudo-

spatiotemporal map (pSM) [23]. In brief, we mapped the spot features obtained through 

stMMR and SpaceFlow on the pseudo-temporal axis [23,39,53]. These points reflect 

the relative positions of cells in their developmental trajectory or functional state. As 

clearly visible in Figure 4C, within the D7 to D14, the valve structures can be distinctly 

identified through the pSM values. Moreover, the representation of the myocardium in 

ventricles, as indicated by the pSM values, appears more uniform (yellow area) 

compared to the regional segmentation results in Figure B. According to related 

research [54], the endocardium, the inner layer of the heart, is one of the early events 

in cardiac formation. The endocardial tubes are fundamental to cardiac development, 

eventually merging to form the primitive heart tube. As the heart tube forms, 

myocardial development commences, followed closely by the development of the atria. 

In our analysis, we observe that the myocardium in ventricles (yellow area in Figure 

4C) consistently shows higher pSM values compared to other areas in the same stage, 
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indicating a later pseudo-temporal ordering of the ventricular myocardium [23]. 

Additionally, the pseudo-temporal ordering of the atria (marked in teal) follows that of 

the valves, suggesting that the development of the atria occurs after the valves. 

Therefore, the pSM derived from stMMR accurately displays the developmental 

sequence of the chicken heart. We further identified domain-specific genes through 

differential expression analysis across regions. For instance, we observed that MYH7 

is highly specifically expressed in the Atria. This finding aligns with previous reports 

on the analysis of Atria and Ventricles specific proteins [55]. 

In addition, we also employed various algorithms to perform a comparative 

analysis of the pSM on the human DLPFC dataset. As shown in Supplementary Figure 

S2, we observe that in the pSM analysis, methods like graphST, deepST, stLearn, and 

SCANPY fail to clearly reflect the layered spatial organization of the tissue. In contrast, 

the stMMR, STAGATE, SpaceFlow and CCST are able to distinctly reveal the layered 

pattern of the pSM, displaying clear and smooth color gradients. This result from 

stMMR not only mirrors the correct internal and external developmental sequence of 

the cortical layers but also demonstrates the layered spatial organization of tissue, 

aligning with the findings of previous studies [23]. 

stMMR accurate identifies tumor region in human breast 

cancer 

Breast cancer is a major type of cancer worldwide [56]. We collected human breast 

cancer SRT data from the 10x Visium platform to conduct an in-depth study of the 

microenvironment in breast cancer. This dataset includes 3,798 spatial spots and 36,601 

genes. Experienced pathologists have annotated these SRT data using H&E images and 

signature genes of breast cancer, categorizing them into 20 distinct regions (Figure 5A). 

First, we applied different methods for domain identification. From the results 

presented in Figure 5B, it is observed that stMMR shows the most outstanding 

performance in category labeling. In terms of regional continuity, stMMR also 
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demonstrates superior performance among different methods. Taking the IDC_5 area 

in the upper left corner as an example, this area occupies a significant portion in 

invasive ductal carcinoma, with a notable increase in cancer cells compared to normal 

tissue or non-tumorous areas. Previous studies have also indicated that cells originating 

from solid tumors are primarily concentrated in the IDC area [25]. However, only 

stMMR accurately identified the entire IDC_5 area, demonstrating higher precision 

compared to other methods. Additionally, stMMR also exhibits higher continuity in 

predicting the Tumor_edge area, whereas the results of other methods appear more 

dispersed in this aspect. 

Next, we conducted a comprehensive analysis of domain-specific genes between 

merged tumor and normal regions (Supplementary Section 2.3). We utilized the 

DisGeNET to delve into the differentially expressed genes in the breast cancer tumor 

regions [57]. Our analysis revealed that several Gene Ontology (GO) terms closely 

associated with these domain-specific genes are linked to breast cancer (Figure 5C left 

panel). For instance, C0024305 is a GO term related to non-Hodgkin lymphoma. 

Studies have shown that the development of breast cancer significantly increases the 

risk of non-Hodgkin lymphoma, particularly follicular lymphoma and mature T/NK 

cell lymphomas [58]. This risk is notably more pronounced in patients undergoing 

hormone therapy and in younger patients [58]. Importantly, we also identified 

C0021368 as an inflammation-related GO term (Figure 5C left panel). Numerous 

studies have indicated that inflammation plays a regulatory role in the development of 

cancer and its response to treatment [59361]. To further validate our research findings, 

we conducted a systematic enrichment analysis of the transcriptional regulatory 

network using TRRUST [62]. The analysis results indicated that multiple top-ranked 

GO terms are closely associated with breast cancer (Figure 5C right panel). For instance, 

TRR01419 emerges as the fourth most significant GO term, with TP53 is identified as 

its key regulatory factor. TP53 plays a crucial role in both cancer-related systemic 

inflammation and the progression of cancer [63]. Additionally, the key regulatory 

factors for the top three GO terms - TRR01256 (regulated by SP1), TRR00875 
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(regulated by NFKB1), and TRR01158 (regulated by RELA) - have also been 

confirmed in previous studies to play pivotal roles in the development and progression 

of breast cancer [64368]. 

stMMR dissects cell type differences in a lung cancer SRT 

dataset based on NanoString technology 

To further validate the generalization ability and applicability of stMMR, we tested 

its effectiveness using the single-cell SRT dataset generated by NanoString CosMx SMI. 

This dataset comprises lung cancer tissue samples from 20 fields of view (FOVs) [26], 

involving 982 genes and 83,621 cells, covering eight major cell types, including 

lymphocytes, neutrophils, mast cells, endothelial cells, fibroblasts, epithelial cells, 

myeloid cells, and tumor cells. For ease of observation, we displayed the ground truth 

of one of the FOVs in Figures 6A. 

We employed the benchmarking methods to conduct a detailed analysis of the 

spatial organization within 20 FOVs, as shown in Figures 6B, D-F. Figure 6B revealed 

that stMMR closely aligns with the original study in detecting the spatial distribution 

of cell types. Particularly in identifying tumor cells, stMMR demonstrates high 

precision, accurately detecting tumor cells distributed across different locations in the 

tissue sections (Figure 6B). In the overall analysis of the 20 sections, the performance 

of stMMR is superior to other methods (Figure 6D). Furthermore, we conducted a cell 

type-specific gene analysis based on the cell annotations in one slice. We observe that 

different tissue cells exhibit unique expression patterns (Figure 6C). For instance, Igkc 

transcripts, previously reported to be upregulated in myeloid progenitor populations, is 

also confirmed in our study [69]. The genes COL3A1 and COL1A1 shows significant 

positive correlations with neutrophils [70,71]. Additionally, the oncogene SOX4 is 

prominently featured in our differential analysis of tumor cells [72]. Notably, some cell 

types also share similar gene expression patterns (Figure 6C). For example, epithelial 

cells and tumor cells in this lung cancer dataset exhibit expression similarities. Multiple 
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studies using single-cell transcriptomics analysis have revealed that lung cancer cells 

share characteristics similar to those of Type 1 (AT1) and Type 2 (AT2) alveolar 

epithelial cells [73,74]. This similarity may be related to lung cancer cells maintaining 

epithelial cell functions, such as cell adhesion and migration [75,76]. 

We also conducted a visualization analysis comparing the results of stMMR 

applied to 20 tissue sections with the actual division of tissue regions. The analysis 

demonstrates that stMMR effectively identifies tissue regions across multiple sections 

(Figure 6E). Notably, even in regions bisected by section boundaries, stMMR maintains 

smooth and continuous (Figure 6E and F). These findings indicate that the joint 

representation of stMMR not only effectively eliminates noise from different data types 

but also maintains excellent performance in the recognition of tissue regions across 

multiple slices. 

Discussion 

SRT technology enables us to deeply understand the spatial structure of tissues 

within biological systems from multiple dimensions, including gene expression profiles, 

spatial positioning, and histological imaging information. Through comprehensive 

integration of these modalities, we can obtain an informative joint representation. 

However, the inherent data heterogeneity along with the varying spatial resolutions 

presents challenges in the integration of these modalities. To overcome this problem, 

we propose a novel computational framework, stMMR. This framework aims to 

harmonize and unify multi-modal data as well as achieve effective joint representation 

for multi-modal SRT data. 

stMMR effectively unifies gene expression profiles and histological imaging 

information by utilizing spatial location as a connecting link. This method automates 

the construction of adjacency relationships between neighboring spots. Then, GCN is 

employed to extract features from both gene expression profiles and histological images. 

Furthermore, stMMR adopts an innovative strategy for representing intra-modal and 

inter-modal features. Initially, it employs an attention mechanism for an in-depth 
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learning within a single modality. It then integrates cross-modality features through a 

combination of similarity contrastive learning, along with the reconstruction of gene 

expression and adjacency relationship. By applying stMMR to SRT data of various 

tissues and resolutions, we have validated its exceptional performance in multiple 

analyses, including domain identification, pseudo-spatiotemporal analysis, gene 

expression data enhancement as well as the identification of domain-specific genes. 

The remarkable performance of stMMR can be attributed to several innovative 

designs. The most crucial aspect is the integration of histological imaging information 

with gene expression data through spatial location. In SRT, gene expression data suffers 

from issues of sparsity and zero inflation, which are key factors that interfere with 

downstream analysis [33,77]. Previous research has shown that histological imaging 

information can predict gene expression data [30332]. Therefore, compared to methods 

that rely on gene expression information solely, stMMR integrates imaging information 

and exhibits superior performance in spot characterization. Secondly, unlike other 

methods that construct spatial transcriptomic data as undirected, unweighted graphs, 

stMMR builds undirected weighted graphs inversely proportional to Euclidean 

distances between spots, better reflecting the influence of spatial distance on message 

passing and aggregation. Furthermore, the consideration of relationships within and 

between modalities is also crucial. Sole reliance on gene expression data for correlation 

analysis may result in information loss. In contrast, methods that incorporate imaging 

information, such as DeepST, focus primarily on the integration of multi-modal data, 

overlooking the relationships within individual modalities. To fully leverage the 

relationships within and between modalities, stMMR not only uses similarity 

contrastive learning for integrating features across modalities but also incorporates a 

self-attention module for deep embedding of features within a modality. Additionally, 

the reconstruction modules for gene expression and adjacency matrix further encourage 

the model to retain as much original information as possible. This encoder-decoder 

structure improves the ability of stMMR to recover information also endows stMMR 

with excellent denoising capabilities and robustness. 
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It is noteworthy that the stMMR framework, distinguished by its exceptional 

feature embedding capabilities, also exhibits a remarkable ability to handle data derived 

from diverse experimental techniques. Beyond the previously mentioned datasets, our 

investigation also extended to the analysis of a mouse brain dataset derived using 10x 

Visium technology and a human pancreatic ductal adenocarcinoma dataset obtained 

through SRT technology (Supplementary Figure S3 and S4). In these tests, the stMMR 

consistently achieved optimal results. 

stMMR also has model scalability. In the design of the model, we considered that 

gene expression of each spot corresponds to a small area in space. Therefore, before 

embedding histological imaging information, we also tailor it to match each spot aera. 

This means that the input information of stMMR is always associated with each spot 

area. Recently, the advancement of spatial multi-omics technologies has provided new 

data for analyzing the spatial distribution and functions of cells in tissues from multiple 

perspectives, such as simultaneous observations of transcriptomes and proteomes, 

transcriptomes and epigenomics [78381]. The stMMR framework can be easily 

expanded to support these types of data. The researchers only need to duplicate the gene 

expression module and then apply similar methods for embedding features within and 

between modalities. Moreover, the joint representation obtained through stMMR can 

also be applied to other tasks, such as cell type deconvolution [82385]. This application 

requires a process similar to methods like scaden [86], where a neural network is 

connected to the joint representation. Subsequently, the generation of simulation data 

and model training can be conducted using annotated single-cell data. 

There is still room for the improvement of stMMR. Currently, stMMR employs 

Euclidean distance in the construction of spot adjacency matrices. However, in practical 

scenarios, it may be more rational to utilize different distance metrics for graph 

construction based on modal features. For instance, considering gene expression data, 

the use of Pearson Correlation Coefficients or K-L divergence might be more 

appropriate to measure expression similarity between spots. In contrast, for spatial 

imaging data, either Euclidean distance or staining similarity can serve as the distance 
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metric. Under these circumstances, the constructed graph transitions from being a 

homogenous graph to a heterogeneous one. For such heterogeneous graphs with 

multiple types of edges, we can apply methods like metapath2vec or multi-view 

learning to achieve embedding and integration of different modalities [87390]. 

In this paper, we introduce a robust and accurate tool, stMMR, for the integration 

of gene expression data, spatial information, and histological imaging information from 

SRT data. Compared to existing methods, stMMR demonstrates a significant advantage 

in integrating multi-modal data, particularly excelling in domain identification, pseudo-

spatiotemporal analysis, and domain-specific gene analysis. Overall, as an effective and 

user-friendly tool, stMMR enhances the multi-modal joint analysis of SRT data, 

providing substantial support for research in relevant fields. 

Data availability 

All datasets used in this paper are publicly available. The descriptions and download 

address are listed in Supplementary Section 2.1 and Supplementary Table S1. Processed 

datasets are also available at SODB (https://gene.ai.tencent.com/SpatialOmics/) and 

can be loaded by PySODB (https://protocols-pysodb.readthedocs.io/en/latest/). The 

source code for stMMR can be downloaded from github 

(https://github.com/nayu0419/stMMR). 
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Figure captions: 

 

Figure 1. Schematic overview of stMMR for the joint representation of features from different modalities. 
Gene expression and histology image information are embedded using GCN module based on adjacent 
matrix. Then, the relationships between different modalities are captured through similarity contrast 
learning, followed by feature fusion. Finally, the original features are reconstructed from the multi-modal 
feature representation. This representation can be used for downstream analysis directly. 
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Figure 2. Performance comparisons of different methods on DLPFC datasets. (A) The histology image 
and manually annotated brain regions of slice 151509. (B) The overall performance of 8 different 
methods across 12 slices. (C) The domain recognition results on slice 151509. (D) The UMAP 
visualization results of the embeddings from 8 different methods on slice 151509. (E) The inferenced 
trajectories on slice 151509. 
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Figure 3. stMMR enhances spatial gene expression profiles and spatial structural characterization. (A) 
Spatial representation of layer-specific marker genes before and after data enhancement. (B) Gene 
expression level before and after data enhancement. 
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Figure 4. stMMR reveals cell lineage structures during chicken heart development. (A) The ground truth 
label provided by the original data. (B) The regions recognized by stMMR and SpaceFlow. (C) The plots 
of pSM value from stMMR and SpaceFlow for illustrating pseudo-temporal developmental trajectory. 
(D) The differentially expressed marker genes discovered by stMMR. 
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Figure 5. stMMR identifies tumor region in human breast cancer dataset. (A) The H&E images and the 
manually annotated regions. (B) The annotation results from different methods. (C) Top 20 differentially 
expressed gene related GO terms generated by DisGeNET (left panel) and TRRUST (right panel).  
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Figure 6. stMMR recognizes cell type differences in lung cancer dataset. (A) One FOV of the lung cancer 
SRT data. (B) Cell types identified by different methods. (C) Expression pattern of marker genes for 
different cell types. (D) The overall performance of different methods across 20 FOVs. (E) Cell types 
annotated manually in 20 FOVs. (F) Cell types annotated by stMMR in 20 FOVs. (G) The zoomed-in 
results of boundaries between adjacent FOVs identified by stMMR. 
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