

1 **Title: Simultaneous protein and RNA analysis in single extracellular vesicles, including viruses:**

2 **SPIRFISH**

3 **Short Title: Single-particle protein/RNA codetection: SPIRFISH**

4

5 **Authors**

6 Zach Troyer,¹ Olesia Gololobova,^{1,2} Aakash Koppula,³ Zhaohao Liao,¹ Felix Horns,⁴ Michael B Elowitz,⁴
7 Juan Pablo Tosar,^{5,6} Mona Batish,³ Kenneth W. Witwer^{1,2,7*}

8

9 **Affiliations**

10 ¹ Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine,
11 Baltimore, Maryland, USA.

12 ² EV Core Facility "EXCEL", Institute for Basic Biomedical Sciences, Johns Hopkins University School of
13 Medicine, Baltimore, Maryland, USA.

14 ³ Department of Medical and Molecular Sciences, and Department of Biological Sciences, University of
15 Delaware, Newark, Delaware, USA.

16 ⁴ Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute
17 of Technology, Pasadena, California, USA.

18 ⁵ Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay

19 ⁶ School of Science, Universidad de la República, Montevideo, Uruguay

20 ⁷ The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins
21 University School of Medicine, Baltimore, Maryland, USA.

22 *Corresponding Author. Email: kwitwer1@jhmi.edu

23

24 **Abstract**

25 Interest in using nanoparticles for delivery of therapeutic RNA has been steadily growing, provoking a
26 need to precisely understand their structure and contents. Single-particle and single-molecule analysis
27 techniques provide snapshots of single biological nanoparticles, including viruses, liposomes, and
28 extracellular vesicles (EVs). While existing methods primarily focus on protein detection, RNA delivery is
29 becoming increasingly prevalent. A method to simultaneously detect protein and internal RNA in the same
30 particle would reveal variability in size, structure, and RNA packaging efficiency, enabling optimization of
31 nanoparticle delivery. Here, we introduce SPIRFISH, a high-throughput method for single-particle protein
32 and RNA analysis, combining single particle interferometric reflectance imaging sensor (SP-IRIS) with
33 single-molecule fluorescence in-situ hybridization (smFISH). Using SPIRFISH, we detect HIV-1 envelope
34 protein and genomic RNA within single infectious virions, allowing resolution against EV background and

35 noninfectious virions. We further show that SPIRFISH can be used to detect specific RNA within EVs.
36 SPIRFISH should enable single particle analysis of a broad class of RNA-containing nanoparticles.

37

38 **Teaser:** A new single particle analysis technique simultaneously detects specific RNA and protein in
39 biological nanoparticles.

40 **Keywords:** Single-particle, single-molecule, HIV, virus, extracellular vesicle, RNA, protein, smFISH, SP-IRIS

41 **Introduction**

42 Extracellular vesicles (EVs) have emerged as important mediators of intercellular communication and have
43 garnered considerable attention in recent years (1, 2). These nanoscale membrane-bound vesicles,
44 released constitutively by various cell types, can encapsulate diverse cargo, including proteins, lipids, and
45 nucleic acids (3–5). Their small size, propensity to interact with cells, and ability to protect internal cargos
46 from the external environment due to the lipid bilayer has made EVs highly attractive as potential
47 therapeutic agents (6–8). As such, there has been a considerable push to characterize the protein and
48 nucleic acid content of EVs on a single particle basis (9, 10).

49 EVs are produced by cells through various internal pathways and cellular machineries, giving rise to
50 subsets of EVs that differ in size, contents, and function (3–5). Enveloped viruses are a subset of EVs in
51 which a viral genetic program has hijacked the EV production machinery to release viral particles (virions),
52 consisting of viral proteins and viral nucleic acids surrounded by a lipid-bilayer (11–13). Both virions and
53 non-viral EVs are similar in size and host-protein content, as they share the same cellular origins, making
54 their resolution as unique entities difficult in bulk analyses given that they are produced concurrently by
55 the cell. Techniques to separate viruses from EVs by differing properties of density are often used, but are
56 time consuming and may not always cleanly separate these populations (13). This difficulty is further
57 compounded by the fact that virion production can be inefficient (13, 14) producing a gradient of
58 membranous particles that are part virus and part host yet lack the definitional replicative characteristic
59 needed to be called a true infectious virus (e.g., an EV carrying a viral protein but not the viral nucleic
60 acid). These challenges are bottlenecks in attempts to characterize surface proteins and internal cargos
61 of true infectious virions.

62 In recent years, the field of single-particle analysis has witnessed significant advancements, enabling the
63 multiparametric analysis of individual biological and synthetic particles with unprecedented precision (9,
64 10, 15). One such technique, known as single particle interferometric reflectance imaging sensor (SP-IRIS),
65 has revolutionized the field by offering high-throughput analysis of nanoparticles captured by various
66 antibody lawns on a silicon chip (16–18). SP-IRIS combines interferometric imaging with fluorescence
67 microscopy, enabling size profiling, concentration, and protein biomarker analysis of individual biological
68 particles within a bulk population. Addition of fluorophore-conjugated antibodies targeting surface or
69 internal targets determines the presence or absence of up to 3 protein markers per particle; a 4th marker
70 is determined by the identity of the antibody capture lawn immobilizing the particle. SP-IRIS has mainly
71 been applied to the study of EVs, but can theoretically be adapted to study of diverse biological
72 nanoparticles, including viruses and liposomes.

73 A parallel technological advancement has allowed the development of single-molecule analysis
74 techniques (19, 20). Single-molecule fluorescence in situ hybridization (smFISH) has emerged as a

75 powerful method for detecting and imaging individual RNA molecules within fixed cells and tissues (21,
76 22). By using fluorescently labeled nucleic acid probes complementary to specific sequences, smFISH
77 allows for the visualization and quantification of RNA at the single-molecule level. Typically, various 20-
78 nucleotide probes are designed to bind adjacent regions of the target RNA molecule (21). The coincident
79 binding of multiple probes results in a detectable fluorescent signal in a diffraction limited spot, which can
80 be captured with conventional fluorescence microscopes. Since accumulation of multiple fluorophores on
81 the target is needed to generate a detectable spot, sporadic, sequence-independent, off-target binding
82 by a few probes generates a more diffuse signal. This provides very high signal to noise ratio and renders
83 the technique highly specific (21).

84 An infectious enveloped virion cannot be defined by one characteristic alone. Coincident detection of
85 multiple markers, both protein and RNA, is needed. Thus, we reasoned that the multiparametric single-
86 particle analysis afforded by the SP-IRIS technique, in conjunction with fluorescent labeling of the viral
87 genome by smFISH, would help identify a population of true infectious virions containing both viral
88 envelope proteins for cellular entry and viral nucleic acid for replication. Furthermore, we reasoned that
89 a combination of the smFISH and SP-IRIS techniques could be valuable for the EV field, in which the single-
90 particle loading efficiency of therapeutic RNAs is often unknown (23–25). To our knowledge, no groups
91 have successfully detected smFISH RNA signal within a single nanoparticle using SP-IRIS analysis.

92 In this study, we develop SPIRFISH as a novel approach that integrates the SP-IRIS technique with smFISH
93 to enable the fluorescence-based detection of HIV-1 genomic RNA within single virions. First, we perform
94 SP-IRIS analysis of replication competent HIV-1 virions, demonstrating that virions can potentially be
95 distinguished from EVs by size and surface markers. We then perform SPIRFISH analysis to specifically
96 detect fluorescent HIV-1 genomic RNA and identify infectious virions on a single-particle basis. We also
97 examine extracellular vesicles generated by the COURIER system, which packages specific RNAs into
98 extracellular vesicles using modified engineered protein nanocages (26). Finally, we demonstrate that the
99 fluorescent RNA signal is reliant upon sequence complementarity of smFISH probes. This work serves as
100 a proof-of-principle for the SPIRFISH workflow, and could be applied to specifically detect diverse
101 nanoparticle-encapsulated RNAs and surface proteins in a single-particle, high-throughput manner.

102

103 **Results**

104 **Production and characterization of HIV**

105 Given the structural nature of the HIV lentivirus, consisting of an external protein-laden lipid bilayer
106 surrounding a proteinaceous capsid containing two copies of viral single-stranded genomic RNA (gRNA)
107 (27), we reasoned that HIV would serve as an ideal model system for which to develop the single-particle
108 dual RNA and protein detection SPIRFISH methodology. Additionally, we were influenced by a particular
109 issue within HIV research; HIV researchers have long recognized the need to analyze HIV-1 virions in the
110 absence of “contaminating” EVs that are inevitably co-purified with viral preparations (28). The lack of
111 available convenient methods for virion and EV separation has clouded research into the surface
112 properties of true “infectious” virions – those carrying genomic RNA in addition to viral structural proteins
113 (29). To analyze the single particle profile of HIV and develop the SPIRFISH methodology, we selected the
114 CCR5-tropic HIV-1 strain BaL.

115 To produce highly concentrated, enriched HIV virions for analysis, chronically infected PM1-BaL cells were
116 grown in cell culture and conditioned media collected during passaging. A large volume of virus-containing
117 conditioned media was collected and then processed via a differential ultracentrifugation workflow
118 (Figure 1A) designed to remove cells, cell debris, and large EVs. Conditioned media from uninfected PM1
119 cells was processed via the same workflow, in order to produce control PM1 EVs. As a negative control
120 that accounts for any influence of EVs derived from the fetal bovine serum present in the RPMI
121 formulation used with the PM1 cells, unconditioned media unexposed to cells was processed via the same
122 workflow. The purified, concentrated virus from the 100,000g pellet was then characterized using a
123 variety of methods. To validate that HIV virions were enriched via the collection workflow, a p24 ELISA
124 detecting the HIV capsid structure was performed with the 100,000g pellet and the unprocessed
125 conditioned media. The 100,000g pellet had ~350X more concentrated p24 than a comparable volume of
126 unprocessed conditioned media, confirming HIV virion enrichment (Figure 1B). To validate that the
127 100,000g pellet contains HIV virions, immunoblotting was performed against the HIV envelope protein
128 gp120 and the HIV capsid protein p24 (Figure 1C). HIV Env gp120 was clearly visible as a single band, as
129 expected. The p24 blot contained two bands, a more intense lower band corresponding to processed p24
130 and a fainter upper band corresponding to the unprocessed gag polyprotein p55 (typically stemming from
131 immature viral particles). This pattern indicates that the majority of HIV virions purified in our workflow
132 are in the mature, fully processed form.

133 To characterize the size and concentration of the purified HIV, as well as further validate our viral
134 enrichment, we ran the material collected from various stages of the collection workflow on a small
135 particle flow cytometer capable of resolution down to 50 nm diameter (Figure 1D, left panel).
136 Interestingly, the size histogram of the HIV enriched 100,000g pellet formed a distinct bimodal
137 distribution, with one peak around 60-70 nm and a second around 140 nm in diameter. Based on the sizes
138 of HIV virions reported in the literature, it is highly likely that the second, larger size peak represents intact
139 HIV virions, although the contribution of non-viral EVs to this peak cannot be excluded (30, 31). The
140 smaller peak likely consists mostly of EVs, as the viral capsid structure creates a lower size limit for intact
141 virions. Supporting these conclusions, a size histogram of the PM1 EVs from uninfected cells was
142 conspicuously missing the larger size peak, while strongly overlapping with the lower size peak seen in the
143 HIV sample (Figure 1D, right panel). The nanoflow data also supported the enrichment of the HIV virions
144 via our workflow; the 100,000g pellet contained the highest particle concentration and the most clearly

145 visible larger size peak. Of note, there is some evidence of HIV virions in the 10,000g pellet, as a bimodal
146 size distribution was also seen. These could represent viral aggregates (32). Transmission electron
147 microscope (TEM) images of PM1 EV and HIV 100,000g pellets revealed typical cup-shaped, collapsed EV
148 morphologies, an artifact of the negative staining TEM preparation (Figure 1E) (33). The HIV TEM images
149 contained particles with visibly electron dense interiors, potentially indicating presence of the HIV virions.

150 To test the infectivity of the purified HIV, we utilized the TZM-BI reporter assay (34). TZM-BI cells are a
151 HeLa cell derivative that produce firefly luciferase under control of the HIV trans-activator of transcription
152 (Tat) protein, which is produced during productive viral infection. The purified HIV was infectious over a
153 broad range of doses, although the highest levels of productive infection were found at a medium dose,
154 likely due to cellular toxicity from higher doses interfering with luciferase production (Figure 1F).
155 Importantly, purified HIV could be rendered non-infectious at all tested doses via a 20-minute UV light
156 exposure. Inactivation is necessary for safe handling of virus for SP-IRIS and SPIRFISH in the following
157 sections. Although UV-inactivation is thought to work primarily by damaging the viral RNA genome, it does
158 so through RNA-protein crosslinking and formation of pyrimidine dimers which should not affect the
159 genomic sequence (35).

160

161 **SP-IRIS Analysis of HIV reveals identifiable virions that can be distinguished from EVs**

162 After standard bulk characterization of our HIV preparation, we proceeded to performing multi-
163 parametric single particle characterization of HIV virions. For this type of analysis, we used single-particle
164 interferometric reflectance imaging sensor (SP-IRIS) technology, as it can report size and multiple protein
165 surface markers for each particle detected (16–18). We hypothesized that HIV virions would be captured
166 by the tetraspanin capture antibodies on the SP-IRIS chips, due to the presence of tetraspanins in the HIV
167 lipid envelope (36). Additionally, we hypothesized that HIV virions on the SP-IRIS chips would be
168 distinguishable from the EVs within the same sample due to increased particle diameter and presence of
169 the HIV-1 Env protein gp120 (detected by fluorescent antibody during the SP-IRIS scanning phase). UV-
170 inactivated media control, PM1 EVs, and HIV were incubated overnight with SP-IRIS chips, probed with
171 fluorescent antibodies, and then scanned. The total particle capture across the three anti-tetraspanin
172 antibody capture spots on the SP-IRIS chips was compared across conditions (Figure 2A, left panel). As
173 expected, the media control had a small amount of particle capture, likely consisting of FBS-derived EVs
174 (37). The PM1 EVs and the HIV sample had higher levels of particle capture than the media control, and
175 were relatively similar. The HIV sample had slightly more particles captured by the CD63 spot as compared
176 to the PM1 EVs. The particles captured on each tetraspanin spot were further broken down into
177 subcategories based on the incidence of fluorescence detection by antibodies targeting surface proteins
178 CD63, CD81, and HIV-1 Env gp120 on a per-particle basis (Figure 2A, right panels). Fluorescent events
179 detected in the media control were primarily gp120+, and occurred primarily in the CD9 and CD63 capture
180 spots – likely antibody background. Interestingly, both PM1 EVs and HIV had high levels of particle capture
181 on the CD81 spot. For the PM1 EVs, most of these particles were CD81+_{capture}/CD81+_{fluorescence}, with a
182 smaller fraction of CD81+_{capture}/CD63+_{fluorescence} particles and almost no CD81+_{capture}/gp120+_{fluorescence}
183 particles. For HIV, there was a markedly different distribution. In addition to a large amount of
184 CD81+_{capture}/CD81+_{fluorescence} particles, there were also a large amount of CD81+_{capture}/CD63+_{fluorescence}
185 particles. Importantly, there was a novel population of CD81+_{capture}/gp120+_{fluorescence} particles not seen in
186 the media control or PM1 EVs – likely gp120+ HIV virions that have incorporated the tetraspanin CD81.

187 Since HIV virions were being captured by CD81, we decided to focus on this antibody capture spot. Given
188 that our previous size analysis had indicated that our HIV sample has a population of larger particles, likely
189 virions, we decided to add a size parameter to our analysis. To do this, we sorted the data to only view
190 particles that had been detected and sized interferometrically by SP-IRIS (fluorescence events can be
191 detected without an associated size measurement). PM1 EVs and HIV samples both had higher levels of
192 IM+/CD81+_{capture}/gp120-_{fluorescence} particles as compared to the media control, although the differences
193 were not statistically significant ($p=0.0599$ and $p=0.0983$, respectively) due to variability in capture on
194 chips run on different days (Figure 2B, IM+). This population is likely to be non-viral EVs. The HIV sample
195 had a significantly higher level of IM+/CD81+_{capture}/gp120+_{fluorescence} particles – likely virions – as compared
196 to the PM1 EVs ($p=0.0054$) and media control ($p=0.0010$). Within this colocalization category, the PM1
197 EVs were statistically indistinguishable from the media control ($p=0.2104$).

198 To further investigate if virions are distinguishable due to larger size within the IM+/CD81+_{capture} particles
199 in the HIV sample, we plotted the interferometric size distribution as a size histogram (Figure 2C). Like our
200 small particle flow cytometer analysis, a distinct bimodal distribution was observed for the HIV sample
201 that was not present for the PM1 EVs. Interestingly, the HIV sample's larger SP-IRIS size peak (IM_{High})
202 centered over ~95 nm, differing from the ~140 nm seen with the small particle flow cytometer. This may
203 be due to the different methods used by these techniques to ascertain particle size. To determine if
204 particles that made up the larger size peak are gp120+ as would be expected of infectious HIV virions, we
205 plotted each IM+/CD81+_{capture}/gp120+_{fluorescence} particle on the size histogram as a function of IM size (X-
206 axis) and gp120 fluorescence intensity (right Y-Axis). The majority of gp120+ particles in the HIV sample
207 were also IM_{High}. Some gp120+ particles were seen in the smaller size peak for HIV; these were also seen
208 in the PM1 EV's size peak and thus likely represent EVs nonspecifically binding gp120 antibody.
209 Importantly, the IM_{High} gp120+ particles corresponding to the second size peak in the HIV sample also had
210 higher gp120 fluorescence intensities (gp120_{high}) as compared to the smaller gp120+ particles seen in the
211 HIV and PM1 EV samples. This brighter fluorescence was also seen visually when viewing fluorescent
212 images of the circular CD81 capture spots on the various samples' SP-IRIS microchips (Figure 2D). Taken
213 together, these results suggest that potential HIV virions can be identified and distinguished from EV
214 background as CD81+_{capture}/IM_{High}/gp120_{high} particles.

215

216 **Design and validation of HIV genome-targeting single-molecule fluorescence in-situ hybridization 217 (smFISH) probes**

218 Our SP-IRIS results so far have revealed a novel population of CD81+_{capture}/IM_{High}/gp120_{high} particles
219 present only in the HIV sample. While it would be tempting to say that these are authentic HIV virions,
220 such an assertion is not yet supported by these data. It is well known that non-infectious EVs can carry
221 viral envelope glycoproteins, including that of HIV (38, 39). It remains possible that some
222 CD81+_{capture}/IM_{High}/gp120_{high} particles we detect in the HIV sample were actually large EVs carrying gp120+
223 but having no viral gRNA and no replicative capacity. Infectious virions are therefore expected to contain
224 both gp120 and HIV gRNA. In order to fluorescently detect HIV gRNA, we decided to use single-molecule
225 fluorescence in-situ hybridization (smFISH) (21, 22). In this technique, multiple fluorescently-labeled short
226 DNA probes collectively bind a complementary RNA sequence yielding a diffraction limited spot that
227 represent individual RNA molecules. A pool of 219 smFISH probes were designed to target complementary
228 regions spanning the ssRNA genome of the HIV strain BaL (Figure 3A, 3C, Data S1). To confirm that these

229 smFISH probes bind specifically to HIV BaL gRNA, uninfected PM1 and chronically infected PM1-BaL cells,
230 used to make the control PM1 EVs and HIV preparations respectively, were grown on glass coverslips,
231 fixed, and hybridized using an smFISH hybridization workflow and Texas Red-labeled probes. Only PM1-
232 BaL cells were visibly fluorescent with Texas Red, as expected since active viral replication was occurring
233 in these cells (Figure 3B). Uninfected PM1 cells did not have any Texas Red fluorescence, demonstrating
234 the specificity of the smFISH probe set for the HIV-1 BaL gRNA.

235

236 **SPIRFISH Analysis of HIV identifies and distinguishes infectious virions from noninfectious virions and**
237 **EVs**

238 Building upon our SP-IRIS analysis of HIV, we reasoned that we could combine smFISH fluorescent-probe
239 hybridization with the fluorescent-antibody protein detection step of the SP-IRIS workflow. This would
240 theoretically allow coincident fluorescence-based detection of specific protein and internal RNA on a
241 single particle basis; a modified SP-IRIS/smFISH workflow we call SPIRFISH. In this case we attempted to
242 use SPIRFISH for the simultaneous detection of HIV gp120 and gRNA, to further distinguish infectious viral
243 particles from particles or defective virions lacking one or both of these viral elements. Similar to our
244 previous SP-IRIS experiments, UV-inactivated media control, PM1 EVs, and HIV were incubated with SP-
245 IRIS chips overnight, probed/hybridized with fluorescent antibodies and HIV gRNA smFISH probes, and
246 then scanned. The total particle capture across the three anti-tetraspanin antibody capture spots on the
247 SP-IRIS chips was compared across conditions (Figure 4A, left panel). The results were similar to those
248 from our previous SP-IRIS analysis; the media control had very small amount of capture, while PM1 EVs
249 and HIV had similar higher levels of capture with most particles captured by the CD81 spot. The captured
250 particles on each antibody spot were again broken down into subcategories based on fluorescence
251 detection of HIV gp120, CD81, and hybridized smFISH probes targeting HIV gRNA (Figure 4A, right panels).
252 In terms of gp120 and CD81 fluorescence, results were largely similar to our previous SP-IRIS analysis,
253 particularly within the CD81 capture spot. Importantly, there was a new population of
254 CD81⁺_{capture}/smFISH⁺_{fluorescence} particles in the HIV sample that was not seen in the control samples. It is
255 possible that these are infectious HIV virions in which the viral gRNA was being fluorescently detected
256 during SPIRFISH scanning (Figure 4A, right panel, HIV-1). Surprisingly, this new population of smFISH⁺
257 particles was detected at similar levels whether or not a permeabilization-based washing protocol was
258 used for the chip (data not shown).

259 As with our previous SP-IRIS analysis, we added a particle size component to the SPIRFISH data given our
260 previous observation that likely HIV virions tend to be larger and therefore IM+. To look closer at the novel
261 smFISH⁺ population that we suspect are infectious HIV virions, we analyzed the number of
262 IM+/CD81⁺_{capture}/gp120⁺_{fluorescence}/smFISH⁺_{fluorescence} particles across the different conditions (Figure 4B).
263 There were close to zero particles matching these parameters in the media control and PM1 EV
264 conditions; comparatively, there were a significant amount of these particles in the HIV condition
($p=0.0013$ vs both PM1 EVs and media control). These results lend further support to the idea that
266 IM+/CD81⁺_{capture}/gp120⁺_{fluorescence}/smFISH⁺_{fluorescence} particles are infectious virions, and suggest that
267 smFISH probes are hybridizing with and labeling HIV gRNA. Interestingly, the
268 IM+/CD81⁺_{capture}/gp120⁺_{fluorescence}/smFISH⁺_{fluorescence} particles represent 13.78% of the total
269 IM+/CD81⁺_{capture}/gp120⁺_{fluorescence} population, suggesting approximately 1 in 8 captured virions carry
270 genomic RNA (Data S2). To rule out the possibility that the smFISH probes are non-specifically binding to

271 HIV virions, we used two non-HIV specific smFISH probe sets – one targeting DCL4 mRNA from *Arabidopsis*
272 *thaliana* and another targeting the Chikungunya virus (CHIKV) nsP2 gene. When SPIRFISH was performed
273 using the CHIKV smFISH probe set, the population of $IM+/CD81+_{capture}/gp120+_{fluorescence}/smFISH+_{fluorescence}$
274 in the HIV sample was reduced to near background levels indistinguishable from non-viral controls. With
275 the DCL4 probe set, this same population was also reduced to near background levels in the HIV-1 sample,
276 although a small amount of non-specific binding was present ($p=0.0374$) lending a statistical increase as
277 compared to media control. These results suggest that smFISH probes are capable of being used in
278 SPIRFISH analysis to specifically detect target RNA in conjunction with protein in single particles.

279 In our SP-IRIS analysis of HIV, we concluded that HIV virions are likely $CD81+_{capture}/IM_{High}/gp120_{high}$ due to
280 propensity for gp120+ particles, especially those with high fluorescent intensity, to fall within the IM_{High}
281 secondary size peak when plotted on a size histogram. To determine if smFISH+ particles preferentially
282 fall within the IM_{High} size peak, as would be expected of infectious virions carrying HIV gRNA, we plotted
283 each $IM+/CD81+_{capture}/smFISH+_{fluorescence}$ particle on the size histogram as a function of IM size (X-axis) and
284 smFISH fluorescence intensity (right Y-Axis) (Figure 4C). We also plotted the
285 $IM+/CD81+_{capture}/gp120+_{fluorescence}$ particles in the same way, to see if the population overlaps. Indeed, the
286 smFISH+ particles almost universally fall into the IM_{High} size peak, alongside the majority of the $gp120_{high}$
287 particles. Very few smFISH+ particles are found in the IM_{Low} size peak that we believe contains primarily
288 EVs. Interestingly, the smFISH fluorescence intensity in the HIV sample was relatively low compared to
289 gp120 fluorescence, perhaps reflecting differing molecular target availability. Nevertheless, the smFISH
290 signal was bright enough to be clearly distinguishable from the control samples when viewing fluorescent
291 images of the circular CD81 capture spots on the SP-IRIS microchips (Figure 4D). Taken together, these
292 data suggest that infectious HIV virions can be distinguished from noninfectious virions and EVs using
293 SPIRFISH analysis as $CD81+_{capture}/IM_{High}/gp120_{high}/HIV\ gRNA\ smFISH+$ particles.

294

295 SPIRFISH detection of EV-encapsulated tRNA

296 We aimed to validate the applicability of our SPIRFISH technique to extracellular vesicles, with a specific
297 focus on the detection of tRNAs and tRNA fragments due to their high abundance in EVs (40–42). In
298 particular, our investigation centered on the detection of 5' tRNA^{Gly}GCC, which exhibited elevated
299 abundance in EVs, as reported (41). Specifically, we expected to detect nicked forms and fragments
300 derived from 5' tRNA^{Gly}GCC, due to their stability (40) and increased abundance in EVs (42).

301 To achieve this, we designed a set of fluorescently-labeled short DNA probes, akin to those employed in
302 HIV gRNA smFISH. These probes were tailored to target complementary regions within 5' tRNA^{Gly}GCC
303 sequences commonly found in EVs, covering full-length tRNA, nicked forms, or tRNA fragments. Our
304 experimental approach involved incubating purified EV samples on SP-IRIS chips, followed by fixation,
305 permeabilization, and hybridization with tRNA-specific smFISH probes and fluorescent antibodies. This
306 protocol, similar to that used for HIV gRNA detection but with the additional fixation and permeabilization
307 steps, was applied to EVs from two different cell culture lines: U-2 OS and Expi293F.

308 Figure 5A depicts the total particle distribution captured on the tetraspanins printed on the chip. In Figure
309 5B, the distribution of fluorescent signals for smFISH probe (5' tRNA^{Gly}GCC), CD81, and CD9 across
310 different capture spots is presented for both cell lines. As anticipated, the tRNA signal was low compared
311 to the protein signals but remained slightly above background levels. Examination of colocalization

312 between tetraspanins and the smFISH probe (Figure 5C) revealed that the majority of tRNA was present
313 in particles that were CD9+ and CD81+ (triple positive EVs) for U-2 OS, while in expi293F, tRNA colocalized
314 with CD81+ EVs captured on CD9 or CD81 spots. DCL4 smFISH probe, used as a negative control, showed
315 lower signal compared to tRNA signal for both cell lines.

316 Figure 5D displays raw fluorescence images of the spots, indicating that the 5' tRNA^{Gly}GCC signal is brighter
317 and more abundant than that of DCL4 for both cell lines. The tRNA smFISH signal, being less abundant and
318 dimmer than that measured for HIV virions, requires optimization of background correction to reduce
319 nonspecific signals. In our approach, we subtracted the individual control IgG spot capture from the
320 tetraspanin capture to achieve this correction.

321

322 SPIRFISH detection of mCherry mRNA in engineered EVs

323 As a final demonstration of the versatility of SPIRFISH, we obtained engineered EVs designed to
324 incorporate mCherry mRNA via a novel enveloped protein nanocage (EPN) system, EPN24-MCP (26).
325 These EVs contain self-assembling 60-subunit nanocages possessing inward facing MS2 bacteriophage
326 coat protein (MCP) motifs, which bind to cognate MS2-loops engineered in mRNA, (43) facilitating mRNA
327 loading of the nanocage. Incorporation of the HIV p6 peptide secretion signals allows self-assembled,
328 RNA-containing nanocages to be released inside EVs. EPN structures can also incorporate EGFP protein
329 due to readthrough of a T2A-EGFP ribosome skip site downstream of the EPN structural component within
330 the EPN plasmid. We obtained two variants of EPN24-MCP EVs: one designed to package Cre Recombinase
331 mRNA and another for mCherry mRNA.

332 We performed SPIRFISH using the two types of EPN24-MCP EVs and an smFISH probe set targeting
333 mCherry mRNA. As we expected, the SP-IRIS microchips used in the SPIRFISH analysis were able to capture
334 abundant EPN24-MCP EVs on all three of the anti-tetraspanin capture spots (Figure 6A, left panel). Both
335 Cre mRNA and mCherry mRNA EPN24-MCP EVs had similar patterns of capture across the three
336 tetraspanin spots: fewer particles captured by CD9 and more captured by CD63 and CD81. The mCherry
337 mRNA EVs had slightly higher particle capture than the Cre mRNA EVs, overall. The particles captured on
338 each tetraspanin spot were further broken down into subcategories based on fluorescence detection of
339 mCherry mRNA and EPN EGFP (Figure 6A, right panels). The EGFP contained within the EPN structure was
340 readily detectable on all three capture spots for both EV subtypes. As expected, the signal originating from
341 the smFISH probes targeting mCherry mRNA was only detectable in the mCherry mRNA EPN24-MCP EVs,
342 demonstrating probe specificity. This smFISH signal was readily visible as bright red fluorescence on the
343 images of the SP-IRIS microchip capture spots (Figure 6D). Only low background levels of smFISH signal
344 were detected in the Cre mRNA EPN24-MCP EVs. For the mCherry mRNA EPN24-MCP EVs, mCherry mRNA
345 smFISH signal was seen in CD9+, CD63+, and CD81+ EVs – in proportions mirroring the total capture and
346 the EGFP signal.

347 We then performed colocalization analysis within each capture spot to determine how many EVs were
348 double positive for EPN-EGFP and the mCherry mRNA smFISH signal (Figure 6B). The number of EGFP+
349 single positive EVs was similar on the CD63 and CD81 capture spots between the two EV conditions,
350 suggesting equal amounts of EPN24-MCP incorporation. A small difference in EGFP+ single positive EVs
351 was seen on the CD9 capture spot ($p=0.0282$). There were extremely few smFISH+ single positive EVs
352 within the Cre mRNA condition, irrespective of capture spot, as these EVs do not possess requisite

353 mCherry mRNA to generate smFISH signal above background levels. Comparatively, there were a
354 significantly higher (~10-20 fold) number of smFISH+ single positive EVs within the mCherry mRNA
355 condition on all three capture spots (CD63: p=0.0094; CD81: p=0.0070; CD9: p=0.0074). These events
356 could be EVs lacking the EPN structure but incorporating mCherry mRNA randomly, or EVs containing
357 mCherry mRNA and EPN24-MCP for which the T2A facilitated ribosome skipping and avoided EGFP
358 structural incorporation. The number of double positive EPN-EGFP+/mCherry mRNA+ EVs followed a
359 similar pattern, with significantly higher numbers in the mCherry mRNA condition for all three capture
360 spots (CD63: p=0.0195; CD81: p=0.0086; CD9: p=0.0189). Finally, we determined the EV loading efficiency
361 of mCherry mRNA, a useful metric for therapeutic particle development, by calculating the percentage of
362 total captured particles that were smFISH+. The mCherry mRNA EPN24-MCP EVs had an average loading
363 efficiency of 14.1148%, significantly higher than background levels (p=0.0014); about 1 in 7 engineered
364 EVs carry mCherry mRNA by this metric (Figure 6C).

365

366 Discussion

367 The simplicity, sensitivity, and the ability to multiplex single-particle protein and RNA detection afforded
368 by SPIRFISH makes it a powerful analysis technique that can be used to unravel population-level
369 heterogeneity of diverse nanoparticles. SPIRFISH can be used with many biological nanoparticles that are
370 currently under consideration for their use as therapeutics vectors; this includes extracellular vesicles
371 (EVs), liposomes, and virus-like particle (VLPs) or intact viruses (6, 44–47). Often, these particles are
372 engineered and manipulated to package various proteins and RNA molecules with therapeutic functions.
373 Given new appreciation of nanoparticle-population heterogeneity and burgeoning single particle analysis
374 techniques (9, 10, 15, 48), SPIRFISH fills a niche for single-particle biomarker colocalization analysis where
375 bulk analysis methods do not suffice (49–52). Furthermore, its simultaneous detection of RNA and protein
376 are an improvement over current colocalization analysis methods, which mostly focus on proteins due to
377 the simplicity of antibody binding (16–18, 53). Given the increasing focus on packaging RNA species into
378 nanoparticles, including mRNAs, miRNAs, and siRNAs, there is a clear need to detect RNA on a single-
379 particle basis (6, 54, 55). Moreover, in some cases colocalization of the therapeutic RNA with a surface
380 protein intended to improve RNA delivery is important for particle functionality. A measurement of the
381 percent of single particle RNA/protein colocalization in such a situation could reflect the therapeutic
382 efficacy of the bulk nanoparticle population.

383 Reflecting the aforementioned need for single-particle RNA detection, a recent study developed a new
384 technique called single-EV and particle protein and RNA assay (^{si}EVPRA) and successfully detected
385 colocalized single-particle protein and RNA (56). This technique immobilizes particles on micropatterned,
386 functionalized cover glass surfaces using biotinylated capture antibodies, before probing with fluorescent
387 antibodies and customized fluorescent molecular beacons targeting RNA or mRNA subregions. Antibodies
388 and molecular beacons were added sequentially and at different temperatures, before imaging with TIRF
389 microscopy at high magnification. Similar to ^{si}EVPRA, SPIRFISH is also capable of detecting colocalized
390 single-particle protein and RNA, while also recording information about single particle diameter. While
391 ^{si}EVPRA uses molecular beacons for detecting RNA, SPIRFISH makes use of single-molecule fluorescence
392 in-situ hybridization (smFISH) probes, which have improved signal to noise ratios and are more economical
393 to be adapted as compared to custom molecular beacons. Importantly, SPIRFISH can be performed with
394 commercially available technology and does not require in-house synthesis of custom surfaces for particle

395 immobilization. Additionally, the protein and RNA labeling is a single-step process taking place
396 concurrently at 37°C using 20% hybridization buffer, which facilitates smFISH probe binding without
397 interfering with antibody binding. While the majority of the work done in our study utilizes tetraspanin
398 capture antibodies, customized capture antibody chips are commercially available – allowing flexible
399 capture options and analysis of a variety of particle types.

400 HIV virions served as an optimal particle to develop and validate the SPIRFISH technique, as infectious
401 virions contain two copies of HIV genomic RNA and the HIV envelope protein gp120 at their surface; as
402 such, we should be able to identify this population by RNA/protein colocalization (27, 29). Additionally,
403 they have been shown to be around 100-120 nm in diameter, which allows us to incorporate and
404 investigate the size element for our analysis (30, 31). Populations of HIV virions possess natural
405 heterogeneity, due to inefficiencies in viral production that result in virus-like particles missing viral
406 proteins or RNAs (13, 14). These inefficiencies can be advantageous for the virus, as non-infectious virions
407 can serve as decoys to soak up host defenses like neutralizing antibodies, amongst other functions (57–
408 59). If infectious enveloped virions and host, non-viral EVs are thought of as bookends to a gradient of
409 virus-like particles that exist between, deconvolution of these populations would prove useful (13).
410 Finally, virologists have long desired a technique to examine properties of infectious virions without the
411 influence of co-isolated non-viral or noninfectious particles.

412 Our initial SP-IRIS analysis of HIV demonstrated the usefulness of this single-particle technique even
413 without the RNA component added by SPIRFISH; gp120 antibody labeling in combination with
414 interferometric sizing revealed a novel population of larger, gp120+ particles present only in the HIV
415 sample and primarily captured by a CD81 antibody. These are likely CD81+ HIV virions, although it cannot
416 be concluded whether they are infectious virions from this analysis. Unfortunately, the gp120 antibody
417 was imperfect and partially labeled the smaller population in the HIV sample and the non-viral EVs in the
418 control sample. It is possible that the smaller particles being labeled in the HIV sample are smaller EVs
419 carrying HIV-1 gp120 without other viral components; EVs carrying viral envelope proteins is a known
420 phenomenon (38, 39). The labeling seen in the EV control condition suggests, however, that it is at least
421 to some extent non-specific binding of the gp120 antibody. Nevertheless, we believe that true gp120
422 staining of HIV virions can be differentiated from this non-specific background as it is 1.) coincident with
423 a larger IM signature, 2.) brighter than the background by fluorescence intensity, and 3.) a population not
424 present in the EV control. An introduction of IM and fluorescence intensity cutoffs within the analysis
425 software could thus be used to reduce the contribution of background and focus in on the virion
426 population for further colocalization analyses. Use of our SPIRFISH technique further deconvoluted the
427 HIV sample with successful detection of single-particle HIV gRNA. Notably, the RNA fluorescence
428 measured by SPIRFISH had low background and was shown to be specific and dependent on probe/target
429 complementarity through use of non-specific control probes. SPIRFISH allows this single-particle RNA
430 signal to be analyzed for colocalization with CD81, gp120, and particle size measured by interferometry
431 (IM). This allows for discrimination between noninfectious virions (CD81+/gp120+/IM_{high}/gRNA-) and
432 infectious virions (CD81+/gp120+/IM_{high}/gRNA+). Interestingly, only a small fraction of
433 CD81+/gp120+/IM_{high} particles are gRNA+, supporting the literature that suggests a majority of released
434 virions are noninfectious (13, 14). Importantly, discrimination of infectious virions in this analysis uses only
435 two of three available fluorescent channels afforded by the commercial SP-IRIS scanner.

436 To demonstrate the broad applicability of the SPIRFISH technique, we next attempted to detect specific
437 tRNAs and their fragments in EVs. tRNAs have been found to be one of the most abundant extracellular

438 RNAs; this includes tRNAs exported in EVs, where they often constitute a large proportion of the EV-
439 internalized RNA molecules (42). Building upon this understanding, our investigation turned to the
440 detection of tRNAs, particularly either full-length 5' tRNA^{Gly}GCC or its nicked forms and fragments. For
441 tRNA detection, we focused on two cell lines: U2-OS, and Expi293F. The successful detection of these
442 specific tRNAs within EVs derived from these cell lines stands as a testament to the robust capabilities of
443 the SPIRFISH technique, showcasing its efficacy even when targeting very small RNA molecules. The tRNA
444 smFISH signal was relatively low intensity and only detectable in a small fraction of captured EVs; however,
445 these results should be contextualized. Weak signal could be explained by the low number of smFISH
446 probes that can bind a single tRNA due to its short length. Likewise, low frequency could be explained by
447 tRNA-containing EVs being rare. Alternatively, it is possible that the smFISH probes cannot bind to full
448 length tRNAs due to tRNA secondary structure and lack of denaturing conditions during SPIRFISH, leaving
449 only nicked tRNAs and tRNA fragments detectable. Given that full-length tRNAs are the most abundant
450 species detected in U2-OS EVs (41), this could explain the low tRNA smFISH+ particle numbers. Despite
451 low signal intensity and frequency, tRNA smFISH signal was still clearly detectable above background. This
452 finding not only underscores the versatility of SPIRFISH in capturing diverse RNA targets but also highlights
453 its potential utility in unraveling the intricate molecular landscape of extracellular vesicles.

454 Finally, we used SPIRFISH to detect mCherry mRNA loaded in engineered EVs. The engineered COURIER
455 system seeks to provide two key functions: the export of barcodes to track cell populations, and the export
456 of mRNA to allow one cell to “send” mRNA to another cell, where it can be expressed. Both applications
457 rely on efficient and selective export of target RNA species. The successful specific detection of mCherry
458 mRNA, its colocalization with structural EGFP, and the assessment of mCherry mRNA loading efficiency
459 offer an example of how SPIRFISH can be used to determine the quality of engineered particles created
460 for the therapeutic delivery of RNA. The SPIRFISH analysis presented here reveals a key quantitative
461 parameter of the system: ~14% of particles are loaded with cargo mRNA. This result provokes the question
462 of whether different RNA cargo sequences or different exporter variants might produce different
463 efficiencies of cargo loading. More generally, they suggest that it may be worth pursuing further
464 engineering of the protein nanocages and RNA attachment sites to increase overall export efficiency.

465 Although our SPIRFISH technique is capable of co-detecting RNA and protein within a single particle to
466 deconvolute particle populations, there are limitations that need to be considered. First, SPIRFISH analysis
467 is currently limited to particles that are captured on the SP-IRIS microchip; which may or may not be
468 representative of the bulk particle population depending on the capture antibodies used. We have found
469 that the universal tetraspanin capture chips work well for most biological particles, although some
470 particles can be tetraspanin negative. Microchips can be functionalized to capture the particles of
471 interest, if prior information about surface molecules is obtained. Second, colocalization analyses are
472 limited by the number of detection channels on the scanning instrument. Selected fluorophores on
473 antibodies and smFISH probes must be compatible with the instrument and avoid spectral overlap, if
474 possible. Third, detection of very low abundance particle-associated RNAs by SPIRFISH may be difficult as
475 microchip capture spots can become oversaturated if high numbers of particles are added to compensate
476 for low RNA abundance. Oversaturation results in overly bright signal from fluorescent antibodies
477 targeting protein; additionally, the interferometric sizing becomes skewed and inaccurate on
478 oversaturated chips even without fluorescence. Fourth, we do detect background fluorescent signal
479 within the channel used for SPIRFISH that could be originating from the SP-IRIS microchips themselves as
480 we have controls to check for specificity of smFISH probes. Lastly, the SPIRFISH technique could likely be

481 further optimized. Currently, our protocol includes smFISH probe hybridization at 37°C for 1 hour, using
482 20% hybridization buffer, with 200 ug of probes per chip. Changes in the hybridization temperature,
483 incubation time, type of buffer used, amount of probe added, and use of denaturing conditions for
484 reducing target RNA secondary structure may improve the SPIRFISH signal magnitude and signal to noise
485 ratio. We recommend that smFISH probe pools are individually validated before use in SPIRFISH.
486 Additionally, most EV samples we have tested require a permeabilization step prior to probe hybridization
487 to allow the smFISH probes to access the EV interior. On the contrary, our HIV virions had similar levels of
488 gRNA smFISH signal regardless of whether we permeabilized or not (data not shown) that could imply that
489 virions are naturally permeable for short smFISH probes.

490 We foresee our SPIRFISH technique having broad applications in the nanoparticle field. Virologists can use
491 SPIRFISH in order to study the surface characteristics of infectious enveloped RNA viruses with
492 unprecedented detail. Most previous analyses of virions and EVs were performed in bulk and not at single-
493 particle resolution, thus not reflecting population heterogeneity (49, 50). Single-virion analyses were
494 performed using low-throughput techniques not capable of extrapolating conclusions to population level
495 statistics, and seldom analyzed protein/RNA colocalization (60, 61). With SPIRFISH, two fluorescent
496 channels can be dedicated to detection of infectious virions (one for the viral entry protein, and one for
497 the genomic RNA) while the third channel can be used to detect any surface or internal protein of interest.
498 SPIRFISH thus allows focused analysis of a subpopulation (infectious virions in this hypothetical) without
499 influence of the remaining population (noninfectious virions and EVs). In the field of EV therapeutics, EVs
500 are engineered via producer-cell DNA transfection to package multiple proteins and RNAs (6, 62). The
501 presence of these RNA/protein cargos within the same EV is usually essential for the EV's therapeutic
502 effect. When multiple plasmids are used, some cells and the EVs they release will not possess the full suite
503 of engineered molecules; SPIRFISH can aid in determining the efficiency of therapeutic EV production by
504 calculating the percentage of single EVs that have all of the engineered elements via colocalization
505 analysis. Theoretically, SPIRFISH could be used to detect two or even three independent RNA molecules
506 within a single particle. Longer single-particle mRNAs could be assessed for integrity by designing two
507 unique smFISH probe pools, each linked to a different fluorophore, that target opposite ends of the mRNA
508 molecule. Codetection of both RNA signals by SPIRFISH would suggest an intact mRNA, while either signal
509 independently would suggest an mRNA fragment was packaged. Further advancement of SP-IRIS
510 technology would benefit the SPIRFISH method; this could include the addition of a fourth laser
511 (Ultraviolet or near-infrared) to allow more markers to be detected during colocalization analysis.

512

513 **Materials and Methods**

514 **Experimental Design**

515 The objective of this study is to validate and put to use a new high-throughput single-particle analysis
516 technique that can co-detect RNA and protein (SPIRFISH). To this end, we design smFISH probe pools
517 against various RNA targets found within different nanoparticles. We then apply SPIRFISH analysis to
518 various nanoparticles, including HIV virions, to demonstrate the technique's utility. We hypothesized that
519 SPIRFISH analysis would allow us to deconvolute nanoparticle subpopulations through RNA/protein co-
520 detection.

521

522 **Cell culture**

523 PM1-BaL cells, a suspension HuT-78 derivative T-cell lymphoma line (HIV Reagent Program #3038)
524 chronically infected with the CCR5-tropic HIV-1 BaL strain (NIH GenBank Accession, #AY713409), were
525 grown in T175 flasks (60 mL) at 37°C and 5% CO₂. The cells were grown in RPMI-1640 supplemented with
526 10% FBS, 1% penicillin/streptomycin, 10 mM HEPES, and 2 mM L-glutamine. After supplementation, RPMI
527 was sterilized by 0.22 µm vacuum filtration. Uninfected PM1 cells were grown under the same conditions.
528 TZM-BI HIV-1 reporter cells were grown in RPMI-1640 supplemented with 10% FBS and 1%
529 penicillin/streptomycin. Cells were passaged biweekly. U2-OS cells (ATCC, #HTB-96) were grown in DMEM
530 + 10% FBS in a T75 flask until 80% confluence, washed 3X, and then incubated in serum-free media
531 (MEGM, Lonza) for EV collection. Bovine pituitary extract or antibiotics included in the media formulation
532 were not added. Expi293F™ cells (Gibco, #A14527) were maintained in Expi293™ Expression Medium
533 (Gibco, #A14351) in vented shaker flasks (Nalgene™ Single-Use PETG Erlenmeyer Flasks with Plain Bottom,
534 #4115-1000) on a shaker platform maintained at 125 rpm in a humidified 37°C incubator with 8% CO₂.
535 Cell densities were maintained per manufacturer instruction, and used between passage 1 and 30 after
536 the initial seeding.

537

538 **HIV-1 Virus Collection – Differential Ultracentrifugation (dUC)**

539 Active viral production was confirmed by p24 ELISA testing of cell culture supernatant. Cell suspension
540 was removed from the flasks during biweekly passaging and centrifuged in 50 mL conical tubes at 2000g
541 for 5 minutes at 4°C to pellet cells. The virus-containing conditioned media (CM) was removed from the
542 cell pellet and pooled before being frozen at -80°C to await further processing. Once 600 mL of CM had
543 been obtained from 4 passages, the CM was thawed and centrifuged at 2000g for 20 minutes at 4°C to
544 pellet remaining cells and large cell debris. The supernatant, clarified CM (CCM) was removed from the
545 2K pellet. The 2K pellet was collected by resuspension in 3 mL PBS. The CCM was then centrifuged at
546 10,000g for 20 minutes at 4°C to pellet apoptotic bodies and other large EVs. The supernatant (CCM+) was
547 removed and the 10K pellet resuspended in 3 mL PBS. The virus-containing CCM+ was then passed
548 through a 0.22 µm vacuum filter to remove residual apoptotic bodies. The resultant ultra-clarified CM
549 (UCCM+) was then centrifuged at 100,000g for 90 minutes at 4°C using a Thermo Fisher AH-629 (36 mL
550 polypropylene UC tubes) swing-bucket rotor (k factor 242) in a Sorvall wX+ Ultra series 80+ ultracentrifuge
551 (max. acceleration and deceleration) in order to pellet the EV/virion mixture. The EV/virus pellet was
552 resuspended in 3 mL PBS, and aliquoted into 30x 100 µL aliquots which were stored until use at -80°C. The
553 100K supernatant was also collected. The same workflow was used to collect extracellular vesicles (EVs)
554 from uninfected PM1 cells as a control. To collect a media-only control, 60 mL of the supplemented RPMI
555 media was processed using the above workflow, and the 100K pellet resuspended in 0.3 mL PBS.

556

557 **EV collection**

558 U2-OS EVs: EVs were separated from conditioned media (CM) at the time point of 24 h, as previously
559 described (41). The CM was centrifuged twice at 2,000g at 4°C and EVs were isolated by size-exclusion
560 chromatography (SEC) using legacy qEV-original 70 nm columns (IZON), as per the manufacturer's

561 instructions, using 1x PBS as the mobile phase. EVs were concentrated by ultrafiltration (using 10 kDa
562 MWCO filters) and stored at -20°C for no more than 20 days.

563 Expi293 EVs: Cells were removed from the CM by centrifugation at 1,500g for 5 minutes at 4°C. The
564 supernatant was then centrifuged at 10,000g for 30 minutes. The supernatant was then centrifuged at
565 100,000g for 90 minutes at 4°C (max. acceleration and deceleration) using Sorvall wX ultra 80+ centrifuge
566 with AH-629 (36 mL) swing bucket rotor (k factor 242). Pellet were re-suspended in 750 µL 1x DPBS, were
567 aliquoted into 50 µL, and stored in Protein LoBind tubes (Eppendorf) at -80°C.

568

569 **p24 ELISA**

570 p24 ELISAs were performed to confirm PM1-BaL viral production and to confirm enrichment of HIV-1
571 virions in the 100K pellet of the dUC procedure. ELISA was performed using the PerkinElmer Alliance HIV-
572 1 p24 Antigen ELISA kit (#NEK050B001KT). Briefly 0.5 mL of unconcentrated CM or 1 µL of concentrated
573 virus from the 100K pellet diluted with 899 µL PBS were mixed with 10X 5% triton-X following the
574 manufacturer protocol and then serially diluted. Samples were then added in duplicate to the ELISA plate,
575 and incubated at 4°C overnight. The following day, the plate was washed and measured on a BioRad
576 iMark™ absorbance plate reader. Absorbance at 490 nm results were compared to a recombinant p24
577 standard curve.

578

579 **Western Blot**

580 The HIV-1 BaL virus was prepared for immunoblotting with 2X Laemmli buffer under reducing conditions.
581 The virus was loaded into a 4-15% TGX 18-well 30 µL stain-free gel at 100ng p24 per well. The Spectra
582 multicolor broad range protein ladder from Thermo Fisher (26634) was also loaded to serve as a size
583 reference. Proteins were separated by SDS-PAGE at 100V for 80 minutes. Proteins were then transferred
584 to PVDF membranes using the Thermo Fisher iBlot2 system default P0 protocol. Membranes were blocked
585 with 5% milk/0.1% Tween PBS and then probed overnight with antibodies against HIV-1 gp120 (Novus-
586 Biologicals, #NBP3-06630AF488, 1:500), bovine serum albumin (Invitrogen, #MA5-15238, 1:1000), and
587 HIV-1 p24 (Abcam, #Ab63913, 1:1000). The following day, membranes were washed and probed with
588 secondary antibodies (Santa Cruz Biotechnology, #SC-2357 for rabbit primaries and #SC-516102 for mouse
589 primaries, 1:5000). HRP signal was developed using Thermo Fisher SuperSignal™ West Pico PLUS
590 Chemiluminescent Substrate (#34578) and imaged using a Thermo Fisher iBright FL1500 imaging system.

591

592 **Nano Flow Cytometry Analysis**

593 The various samples obtained from the HIV-1 BaL production process (unprocessed material, 2K pellet,
594 10K pellet, 100K pellet, and 100K supernatant) were thawed and diluted 1:100 (unprocessed, 2K, 10K),
595 1:500 (100K pellet), and 1:10 (100K supernatant) in PBS. The samples were then loaded into and run on a
596 Flow Nanoanalyzer from NanoFCM to obtain particle size and concentration data. The concentration
597 calibration was performed using NanoFCM Quality Control Nanospheres and size calibration using 68-155
598 nm silica nanosphere mix (NanoFCM, #S16M-Exo). EVs from uninfected PM1 cells (collected from the 100K
599 pellet) were run at 1:1000 dilution in PBS.

600

601 **Transmission Electron Microscopy**

602 Media control, PM1 EVs, and HIV-1 BaL samples were diluted 1:10 into PBS and UV-inactivated for 20
603 minutes using a UV-crosslinker. Samples were then deposited onto 400 mesh carbon-coated TEM grids
604 (EMS, ultra-thin) and negatively stained with Uranyl Acetate (1%, aq). TEM grids were imaged with a
605 Hitachi 7600 TEM at 80kV with an AMT XR80 CCD.

606

607 **TZM-BI HIV Reporter Assay**

608 TZM-BI cells were plated at 100,000 cells/200 μ L/well in a 96-well flat bottom plate and allowed to adhere
609 for 24 hours. The following day, the concentrated HIV-1 sample was thawed and serially diluted into RPMI
610 from 500 ng p24 to 3.90625 ng. One group of the serially diluted HIV-1 doses was then UV-inactivated for
611 20 minutes using a UV-crosslinker, while the other group was left alone. RPMI was removed from the
612 TZM-BI cells and replaced with diluted virus-containing RPMI of varying p24 doses and +/- UV-inactivation.
613 After 24 hours of virus incubation, the cells were lysed and transferred to white 96-well plates. Lysates
614 were then assayed for viral infection induced firefly luciferase activity using the Promega Luciferase Assay
615 System (# E1501) on a Thermo Fisher Luminoskan Ascent luminometer.

616

617 **Single-Particle Interferometric Reflectance Imaging Sensor (SP-IRIS) analysis of HIV-1**

618 All SP-IRIS experiments used Tetraspanin capture chips from NanoView Biosciences (now called
619 Leprechaun Exosome Human Tetraspanin Kit, from Unchained Labs, #251-1044) and an ExoView R100
620 instrument. Chips were pre-scanned prior to sample addition. Media control (1:50), PM1 EVs (1:100), and
621 HIV-1 BaL (1:50) samples were diluted into ExoView incubation solution before 20-minute UV-inactivation.
622 50 μ L of diluted sample was then added to the center of each pre-scanned capture chip and incubated
623 overnight to allow particle capture. The following day, unbound particles were removed through various
624 washes following manufacturer protocol, manually and/or using ExoView Chip washer. Chips were then
625 incubated with fluorescent antibodies against CD63 (CD63-CF647, from ExoView kit), CD81 (CD81-CF555,
626 from ExoView kit), and HIV-1 gp120 (gp120-AF488, from Novus Biologicals, #NBP3-06630AF488).
627 Antibodies were diluted in a blocking buffer provided in the kit. Chips were then incubated for one hour
628 in the dark on a microplate shaker at 430 rpm. After incubation, unbound antibodies were removed by
629 additional washes. Finally, chips were dried and scanned interferometrically and fluorescently using the
630 ExoView R100 instrument. Single particle count data were normalized across different chips by
631 background subtraction; the average particle count for any defined parameter (fluorescence or
632 interferometric) from the triplicate control mouse IgG capture spots was subtracted from the
633 corresponding particle count on the tetraspanin capture spots (CD9, CD63, CD81).

634

635 **HIV-1 BaL genomic RNA and other target single-molecule fluorescence in-situ hybridization (smFISH)
636 probe set design**

637 The DNA sequence corresponding to the genomic RNA sequence of the HIV-1 strain BaL was obtained
638 from the HIV sequence database (<https://www.hiv.lanl.gov/content/index>). A set of Oligonucleotide
639 probes, each 20 nucleotides in length were designed to be complementary to the entire length of the
640 genomic RNA sequence using Stellaris Probe Designer tool from Biosearch Technologies. The probes were
641 synthesized with modified 3' amino group and equimolar concentration of the probes were pooled for *en*
642 *mass* conjugation with Texas Red (TR) [Invitrogen, #T6134] or Alexa Fluor-647 fluorophores, and then
643 purified via high pressure liquid chromatography (HPLC) using previously published protocol (63). A set
644 of oligos targeting a plant RNA (DCL4) and the Chikungunya virus (CHIKV) NSP2 RNA were also prepared
645 in the similar manner. Additional probes were created to target the 5'-tRNA^{Gly}GCC and mCherry. A list of
646 all probe sequences is provided in the supplementary table (Data S1).

647

648 **Cellular validation of smFISH labeling of HIV-1 BaL genome**

649 The hybridization protocol for suspension cells was followed to image the cells as described previously
650 (21). Briefly, uninfected PM1 or chronically infected PM1-BaL cells were pelleted from suspension and
651 washed with PBS. The cells were then fixed with 4% paraformaldehyde (4% PFA) by resuspension of the
652 cell pellet. After 10 minutes in the fixation buffer, cells were pelleted again before resuspension in 70%
653 ethanol. Cells were pelleted and subsequently washed with 20% wash buffer (containing 2X saline sodium
654 citrate solution (Ambion, #AM9763), 20% formamide (Ambion, #AM9342/44) and 2 mM ribonucleoside-
655 vanadyl complex (New England Biolabs, # S1402S)). The cell pellet was suspended in 100 µL of 20%
656 hybridization buffer (containing 20% (vol/vol) formamide, 2 mM ribonucleoside–vanadyl complex, 10%
657 (wt/vol) dextran sulfate (Sigma, #D8906), 1 µg/µL yeast tRNA (Invitrogen, #15401-029), 0.02% (wt/vol)
658 ribonuclease-free bovine serum albumin (Ambion#AM2618), dissolved in 2X saline sodium citrate solution
659 and containing 100 ng/µL of the smFISH probe set. The hybridization was performed in a moist chamber
660 at 37°C overnight with gentle rocking. The cells were pelleted, and unbound probes were removed by
661 serial washing of the pellet with 20% wash buffer four times. The cells were then pelleted and
662 resuspended in wash buffer. The cells were suspended in antifade mounting medium containing DAPI and
663 a drop of cell suspension was applied on a clean glass slide and a clean coverslip was placed on top of it
664 making sure no air bubbles are formed. The edges of coverslip were sealed using clear nail polish. 100X
665 oil objective was employed to capture images using a Nikon TiE Inverted epifluorescence microscope
666 equipped with a Pixis 1024 b camera (Princeton Instruments) and Metamorph imaging software, version
667 7.8.13.0 (Molecular Devices). 16 Z-stack images, 0.2 mm apart were captured for each fluorescent
668 wavelength using 1 second exposures. Images were processed using NIH developed ImageJ software.

669

670 **SPIRFISH - Combined SP-IRIS and smFISH analysis of HIV-1**

671 ExoView chips were pre-scanned prior to sample addition. Media control (1:50), PM1 EVs (1:100), and
672 HIV-1 BaL (1:50) samples were diluted into ExoView incubation buffer before 20-minute UV-inactivation.
673 50 µL of diluted sample was then added to the center of each pre-scanned capture chip and incubated
674 overnight to allow particle capture. The following day, unbound particles were removed through various
675 washes following the non-permeabilization manufacturer protocol. Chips were then incubated with
676 fluorescent antibodies against CD81 (CD81-CF555, from ExoView kit) and HIV-1 gp120 (gp120-AF488, from
677 Novus Biologicals, #NBP3-06630AF488), and 2 µL of smFISH probes (from 100 ng/µL smFISH probe stock).

678 Antibodies and smFISH probes were diluted in 20% hybridization buffer. Chips were then incubated for
679 one hour in the dark on a microplate shaker at 430 rpm, at 37°C. After incubation, unbound antibodies
680 and unhybridized smFISH probes were removed by additional washes. Finally, chips were dried and
681 scanned interferometrically and fluorescently using the ExoView R100 instrument.

682

683 **EV SPIRFISH with tRNA probes**

684 ExoView chips were pre-scanned prior to sample addition. U2-OS EVs (1:5, or 1:2), and Expi293F EVs
685 (1:2000) samples were diluted into ExoView incubation buffer and added to the center of each pre-
686 scanned capture chip and left overnight at RT to allow particle capture. The following day, unbound
687 particles were removed through various washes following the Chip washer cargo-protocol. Chips were
688 incubated with fluorescent antibodies against CD81 (or Syntenin-1, from ExoView kit) and CD9 (from
689 ExoView kit), and 2 µL of smFISH probes (from 100 ng/µL smFISH probe stock). Antibodies and smFISH
690 probes were diluted in 20% hybridization buffer. Chips were then incubated for one hour in the dark on a
691 microplate shaker at 430 rpm, at 37°C. After incubation, unbound antibodies and unhybridized smFISH
692 probes were removed by additional washes. Finally, chips were dried and scanned interferometrically and
693 fluorescently using the ExoView R100 instrument.

694

695 **EPN24-MCP EV Production and SPIRFISH with mCherry probes**

696 HEK293T cells were plated on 10 cm dishes with 6,000,000 cells per dish, and co-transfected the following
697 day with 10 mg of RNA exporter expression plasmid and 10 mg of cargo RNA expression plasmid using
698 calcium phosphate. The RNA exporter EPN24-MCP-T2A-EGFP expression plasmid was pFH2.105 (Addgene,
699 #205550). Cargo RNA expression plasmids for mCherry-MS2x8 and Cre-MS2x8 were pFH2.22 (Addgene,
700 #205537) and pJAM1.52, respectively. Media was harvested 48 hours after transfection. Three such 10
701 cm dishes were prepared separately for each sample, then pooled. Pooled exporter particles were purified
702 and concentrated approximately 500-fold by ultracentrifugation in a cushion of 20% (w/v) sucrose in PBS.
703 Particles were stored at -80°C until further use. For SPIRFISH, ExoView chips were pre-scanned prior to
704 sample addition. EPN24-MCP Cre-mRNA (~1:380) and mCherry mRNA (~1:250) EVs were diluted into
705 ExoView incubation buffer and added to the center of each pre-scanned capture chip and left overnight
706 at room temperature to allow particle capture. The following day, unbound particles were removed
707 through various washes following the Chip washer cargo-protocol (which includes fixation and
708 permeabilization). Chips were then incubated with 2 µL of mCherry smFISH probes (from 100 ng/µL
709 smFISH probe stock). smFISH probes were diluted in 20% hybridization buffer. Chips were then incubated
710 for one hour in the dark on a microplate shaker at 430 rpm, at 37°C. After incubation, unhybridized smFISH
711 probes were removed by an additional ~30X washes (following the Chip washer cargo protocol). Finally,
712 chips were dried and scanned interferometrically and fluorescently using the ExoView R100 instrument.

713

714 **Statistical Analysis**

715 Data were exported from various instruments and graphed/analyzed using GraphPad Prism (version 10).
716 Raw SP-IRIS and SPIRFISH data analyzed in the ExoView analyzer software were processed using default

717 fluorescence cutoffs at 200 fluorescent units. The default interferometric size cutoff for the ExoView is 50
718 nm. Individual ExoView chip triplicate antibody capture lawns were visually assessed for QC issues
719 (scratches or large artifacts) and in some cases excluded from the analysis. Each SP-IRIS and SPIRFISH
720 experiment and condition was performed on 3 independent ExoView chips. For three-way comparisons
721 performed in figures 2B and 4B, statistical significance testing was performed with ordinary one-way
722 ANOVA with Tukey's multiple comparisons test. For two-way comparisons in figures 6B and 6C, statistical
723 significance testing was performed with unpaired two-tailed T-test. A p value of less than or equal to 0.05
724 was considered significant.

725

726 References

- 727 1. J. M. Pitt, G. Kroemer, L. Zitvogel, Extracellular vesicles: masters of intercellular communication
728 and potential clinical interventions. *J. Clin. Invest.* **126**, 1139–1143 (2016).
- 729 2. M. Yáñez-Mó, P. R.-M. Siljander, Z. Andreu, A. B. Zavec, F. E. Borràs, E. I. Buzas, K. Buzas, E. Casal, F.
730 Cappello, J. Carvalho, E. Colás, A. Cordeiro-da Silva, S. Fais, J. M. Falcon-Perez, I. M. Ghobrial, B.
731 Giebel, M. Gimona, M. Graner, I. Gursel, M. Gursel, N. H. H. Heegaard, A. Hendrix, P. Kierulf, K.
732 Kokubun, M. Kosanovic, V. Kralj-Iglic, E.-M. Krämer-Albers, S. Laitinen, C. Lässer, T. Lener, E. Ligeti,
733 A. Linē, G. Lipps, A. Llorente, J. Lötvall, M. Manček-Keber, A. Marcilla, M. Mittelbrunn, I.
734 Nazarenko, E. N. M. Nolte-’t Hoen, T. A. Nyman, L. O’Driscoll, M. Olivan, C. Oliveira, É. Pállinger, H.
735 A. Del Portillo, J. Reventós, M. Rigau, E. Rohde, M. Sammar, F. Sánchez-Madrid, N. Santarém, K.
736 Schallmoser, M. S. Ostenfeld, W. Stoorvogel, R. Stukelj, S. G. Van der Grein, M. H. Vasconcelos, M.
737 H. M. Wauben, O. De Wever, Biological properties of extracellular vesicles and their physiological
738 functions. *J. Extracell. Vesicles* **4**, 27066 (2015).
- 739 3. R. Crescitelli, C. Lässer, T. G. Szabó, A. Kittel, M. Eldh, I. Dianzani, E. I. Buzás, J. Lötvall, Distinct RNA
740 profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes.
741 *J. Extracell. Vesicles* **2** (2013).
- 742 4. G. Raposo, W. Stoorvogel, Extracellular vesicles: exosomes, microvesicles, and friends. *J. Cell Biol.*
743 **200**, 373–383 (2013).
- 744 5. G. van Niel, G. D’Angelo, G. Raposo, Shedding light on the cell biology of extracellular vesicles. *Nat. Rev. Mol. Cell Biol.* **19**, 213–228 (2018).
- 746 6. R. Cecchin, Z. Troyer, K. Witwer, K. V. Morris, Extracellular vesicles: The next generation in gene
747 therapy delivery. *Mol. Ther. J. Am. Soc. Gene Ther.* **31**, 1225–1230 (2023).
- 748 7. N. L. Klyachko, C. J. Arzt, S. M. Li, O. A. Gololobova, E. V. Batrakova, Extracellular Vesicle-Based
749 Therapeutics: Preclinical and Clinical Investigations. *Pharmaceutics* **12**, 1171 (2020).
- 750 8. D. E. Murphy, O. G. de Jong, M. Brouwer, M. J. Wood, G. Lavieu, R. M. Schiffelers, P. Vader,
751 Extracellular vesicle-based therapeutics: natural versus engineered targeting and trafficking. *Exp. Mol. Med.* **51**, 1–12 (2019).
- 753 9. G. Bordanaba-Florit, F. Royo, S. G. Kruglik, J. M. Falcón-Pérez, Using single-vesicle technologies to
754 unravel the heterogeneity of extracellular vesicles. *Nat. Protoc.* **16**, 3163–3185 (2021).

755 10. C.-Y. Chiang, C. Chen, Toward characterizing extracellular vesicles at a single-particle level. *J. Biomed. Sci.* **26**, 9 (2019).

757 11. R. J. Kuhn, J. H. Strauss, Enveloped viruses. *Adv. Protein Chem.* **64**, 363–377 (2003).

758 12. S. de T. Martins, L. R. Alves, Extracellular Vesicles in Viral Infections: Two Sides of the Same Coin? *Front. Cell. Infect. Microbiol.* **10**, 593170 (2020).

760 13. E. Nolte-’t Hoen, T. Cremer, R. C. Gallo, L. B. Margolis, Extracellular vesicles and viruses: Are they close relatives? *Proc. Natl. Acad. Sci. U. S. A.* **113**, 9155–9161 (2016).

762 14. T. Bhat, A. Cao, J. Yin, Virus-like Particles: Measures and Biological Functions. *Viruses* **14**, 383 (2022).

764 15. T. Arab, E. R. Mallick, Y. Huang, L. Dong, Z. Liao, Z. Zhao, O. Gololobova, B. Smith, N. J. Haughey, K. J. Pienta, B. S. Slusher, P. M. Tarwater, J. P. Tosar, A. M. Zivkovic, W. N. Vreeland, M. E. Paulaitis, K. W. Witwer, Characterization of extracellular vesicles and synthetic nanoparticles with four orthogonal single-particle analysis platforms. *J. Extracell. Vesicles* **10**, e12079 (2021).

768 16. O. Avci, N. L. Ünlü, A. Y. Özkumur, M. S. Ünlü, Interferometric Reflectance Imaging Sensor (IRIS)--A Platform Technology for Multiplexed Diagnostics and Digital Detection. *Sensors* **15**, 17649–17665 (2015).

771 17. G. G. Daaboul, C. A. Lopez, J. Chinnala, B. B. Goldberg, J. H. Connor, M. S. Ünlü, Digital sensing and 772 sizing of vesicular stomatitis virus pseudotypes in complex media: a model for Ebola and Marburg 773 detection. *ACS Nano* **8**, 6047–6055 (2014).

774 18. G. G. Daaboul, P. Gagni, L. Benussi, P. Bettotti, M. Ciani, M. Cretich, D. S. Freedman, R. Ghidoni, A. 775 Y. Ozkumur, C. Piotto, D. Prosperi, B. Santini, M. S. Ünlü, M. Chiari, Digital Detection of Exosomes 776 by Interferometric Imaging. *Sci. Rep.* **6**, 37246 (2016).

777 19. T. Gilboa, P. M. Garden, L. Cohen, Single-molecule analysis of nucleic acid biomarkers - A review. 778 *Anal. Chim. Acta* **1115**, 61–85 (2020).

779 20. J. J. Gooding, K. Gaus, Single-Molecule Sensors: Challenges and Opportunities for Quantitative 780 Analysis. *Angew. Chem. Int. Ed Engl.* **55**, 11354–11366 (2016).

781 21. M. Batish, S. Tyagi, Fluorescence In Situ Imaging of Dendritic RNAs at Single-Molecule Resolution. 782 *Curr. Protoc. Neurosci.* **89**, e79 (2019).

783 22. A. M. Femino, F. S. Fay, K. Fogarty, R. H. Singer, Visualization of single RNA transcripts in situ. 784 *Science* **280**, 585–590 (1998).

785 23. L. Jiang, P. Vader, R. M. Schiffelers, Extracellular vesicles for nucleic acid delivery: progress and 786 prospects for safe RNA-based gene therapy. *Gene Ther.* **24**, 157–166 (2017).

787 24. M. Piffoux, J. Volatron, A. K. A. Silva, F. Gazeau, Thinking Quantitatively of RNA-Based Information 788 Transfer via Extracellular Vesicles: Lessons to Learn for the Design of RNA-Loaded EVs. 789 *Pharmaceutics* **13**, 1931 (2021).

790 25. D. S. Sutaria, M. Badawi, M. A. Phelps, T. D. Schmittgen, Achieving the Promise of Therapeutic
791 Extracellular Vesicles: The Devil is in Details of Therapeutic Loading. *Pharm. Res.* **34**, 1053–1066
792 (2017).

793 26. F. Horns, J. A. Martinez, C. Fan, M. Haque, J. M. Linton, V. Tobin, L. Santat, A. O. Maggiolo, P. J.
794 Bjorkman, C. Lois, M. B. Elowitz, Engineering RNA export for measurement and manipulation of
795 living cells. *Cell* **186**, 3642–3658.e32 (2023).

796 27. A. Engelman, P. Cherepanov, The structural biology of HIV-1: mechanistic and therapeutic insights.
797 *Nat. Rev. Microbiol.* **10**, 279–290 (2012).

798 28. J. W. Bess, R. J. Gorelick, W. J. Bosche, L. E. Henderson, L. O. Arthur, Microvesicles are a source of
799 contaminating cellular proteins found in purified HIV-1 preparations. *Virology* **230**, 134–144
800 (1997).

801 29. J.-I. Sakuragi, Morphogenesis of the Infectious HIV-1 Virion. *Front. Microbiol.* **2**, 242 (2011).

802 30. J. A. G. Briggs, T. Wilk, R. Welker, H.-G. Kräusslich, S. D. Fuller, Structural organization of authentic,
803 mature HIV-1 virions and cores. *EMBO J.* **22**, 1707–1715 (2003).

804 31. S. Pham, T. Tabarin, M. Garvey, C. Pade, J. Rossy, P. Monaghan, A. Hyatt, T. Böcking, A. Leis, K.
805 Gaus, J. Mak, Cryo-electron microscopy and single molecule fluorescent microscopy detect CD4
806 receptor induced HIV size expansion prior to cell entry. *Virology* **486**, 121–133 (2015).

807 32. M. M. Bonar, J. C. Tilton, High sensitivity detection and sorting of infectious human
808 immunodeficiency virus (HIV-1) particles by flow virometry. *Virology* **505**, 80–90 (2017).

809 33. D. J. Hockley, R. D. Wood, J. P. Jacobs, A. J. Garrett, Electron microscopy of human
810 immunodeficiency virus. *J. Gen. Virol.* **69** (Pt 10), 2455–2469 (1988).

811 34. D. A. Ozaki, H. Gao, C. A. Todd, K. M. Greene, D. C. Montefiori, M. Sarzotti-Kelsoe, International
812 technology transfer of a GCLP-compliant HIV-1 neutralizing antibody assay for human clinical trials.
813 *PLoS One* **7**, e30963 (2012).

814 35. T. D. Cutler, J. J. Zimmerman, Ultraviolet irradiation and the mechanisms underlying its inactivation
815 of infectious agents. *Anim. Health Res. Rev.* **12**, 15–23 (2011).

816 36. B. Grigorov, V. Attuil-Audenis, F. Perugi, M. Nedelev, S. Watson, C. Pique, J.-L. Darlix, H. Conjeaud,
817 D. Muriaux, A role for CD81 on the late steps of HIV-1 replication in a chronically infected T cell
818 line. *Retrovirology* **6**, 28 (2009).

819 37. O. Urzì, R. O. Bagge, R. Crescitelli, The dark side of foetal bovine serum in extracellular vesicle
820 studies. *J. Extracell. Vesicles* **11**, e12271 (2022).

821 38. A. Arakelyan, W. Fitzgerald, S. Zicari, C. Vanpouille, L. Margolis, Extracellular Vesicles Carry HIV Env
822 and Facilitate Hiv Infection of Human Lymphoid Tissue. *Sci. Rep.* **7**, 1695 (2017).

823 39. C. Meyer, J. Losacco, Z. Stickney, L. Li, G. Marriott, B. Lu, Pseudotyping exosomes for enhanced
824 protein delivery in mammalian cells. *Int. J. Nanomedicine* **12**, 3153–3170 (2017).

825 40. B. Costa, M. Li Calzi, M. Castellano, V. Blanco, E. Cuevasanta, I. Litvan, P. Ivanov, K. Witwer, A.
826 Cayota, J. P. Tosar, Nicked tRNAs are stable reservoirs of tRNA halves in cells and biofluids. *Proc.*
827 *Natl. Acad. Sci. U. S. A.* **120**, e2216330120 (2023).

828 41. J. P. Tosar, M. Segovia, M. Castellano, F. Gámbaro, Y. Akiyama, P. Fagúndez, Á. Olivera, B. Costa, T.
829 Possi, M. Hill, P. Ivanov, A. Cayota, Fragmentation of extracellular ribosomes and tRNAs shapes the
830 extracellular RNAome. *Nucleic Acids Res.* **48**, 12874–12888 (2020).

831 42. J. P. Tosar, F. Gámbaro, J. Sanguinetti, B. Bonilla, K. W. Witwer, A. Cayota, Assessment of small RNA
832 sorting into different extracellular fractions revealed by high-throughput sequencing of breast cell
833 lines. *Nucleic Acids Res.* **43**, 5601–5616 (2015).

834 43. G. W. Witherell, J. M. Gott, O. C. Uhlenbeck, Specific interaction between RNA phage coat proteins
835 and RNA. *Prog. Nucleic Acid Res. Mol. Biol.* **40**, 185–220 (1991).

836 44. D. Guimarães, A. Cavaco-Paulo, E. Nogueira, Design of liposomes as drug delivery system for
837 therapeutic applications. *Int. J. Pharm.* **601**, 120571 (2021).

838 45. Z. Huang, H. Guo, L. Lin, S. Li, Y. Yang, Y. Han, W. Huang, J. Yang, Application of oncolytic virus in
839 tumor therapy. *J. Med. Virol.* **95**, e28729 (2023).

840 46. S. Nooraei, H. Bahrulolum, Z. S. Hoseini, C. Katalani, A. Hajizade, A. J. Easton, G. Ahmadian, Virus-
841 like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers.
842 *J. Nanobiotechnology* **19**, 59 (2021).

843 47. F. Ruzzi, M. S. Semprini, L. Scalambra, A. Palladini, S. Angelicola, C. Cappello, O. M. Pittino, P.
844 Nanni, P.-L. Lollini, Virus-like Particle (VLP) Vaccines for Cancer Immunotherapy. *Int. J. Mol. Sci.* **24**,
845 12963 (2023).

846 48. J. Kowal, G. Arras, M. Colombo, M. Jouve, J. P. Morath, B. Primdal-Bengtson, F. Dingli, D. Loew, M.
847 Tkach, C. Théry, Proteomic comparison defines novel markers to characterize heterogeneous
848 populations of extracellular vesicle subtypes. *Proc. Natl. Acad. Sci. U. S. A.* **113**, E968–977 (2016).

849 49. J. B. Hall, M. A. Dobrovolskaia, A. K. Patri, S. E. McNeil, Characterization of nanoparticles for
850 therapeutics. *Nanomed.* **2**, 789–803 (2007).

851 50. J. Lötvall, A. F. Hill, F. Hochberg, E. I. Buzás, D. Di Vizio, C. Gardiner, Y. S. Gho, I. V. Kurochkin, S.
852 Mathivanan, P. Quesenberry, S. Sahoo, H. Tahara, M. H. Wauben, K. W. Witwer, C. Théry, Minimal
853 experimental requirements for definition of extracellular vesicles and their functions: a position
854 statement from the International Society for Extracellular Vesicles. *J. Extracell. Vesicles* **3**,
855 10.3402/jev.v3.26913 (2014).

856 51. C. Théry, K. W. Witwer, E. Aikawa, M. J. Alcaraz, J. D. Anderson, R. Andriantsitohaina, A. Antoniou,
857 T. Arab, F. Archer, G. K. Atkin-Smith, D. C. Ayre, J.-M. Bach, D. Bachurski, H. Baharvand, L. Balaj, S.
858 Baldacchino, N. N. Bauer, A. A. Baxter, M. Bebawy, C. Beckham, A. Bedina Zavec, A. Benmoussa, A.
859 C. Berardi, P. Bergese, E. Bielska, C. Blenkiron, S. Bobis-Wozowicz, E. Boillard, W. Boireau, A.
860 Bongiovanni, F. E. Borràs, S. Bosch, C. M. Boulanger, X. Breakefield, A. M. Breglio, M. Á. Brennan,
861 D. R. Brigstock, A. Brisson, M. L. Broekman, J. F. Bromberg, P. Bryl-Górecka, S. Buch, A. H. Buck, D.
862 Burger, S. Busatto, D. Buschmann, B. Bussolati, E. I. Buzás, J. B. Byrd, G. Camussi, D. R. Carter, S.

863 Caruso, L. W. Chamley, Y.-T. Chang, C. Chen, S. Chen, L. Cheng, A. R. Chin, A. Clayton, S. P. Clerici,
864 A. Cocks, E. Cocucci, R. J. Coffey, A. Cordeiro-da-Silva, Y. Couch, F. A. Coumans, B. Coyle, R.
865 Crescitelli, M. F. Criado, C. D'Souza-Schorey, S. Das, A. Datta Chaudhuri, P. de Candia, E. F. De
866 Santana, O. De Wever, H. A. Del Portillo, T. Demaret, S. Deville, A. Devitt, B. Dhondt, D. Di Vizio, L.
867 C. Dieterich, V. Dolo, A. P. Dominguez Rubio, M. Dominici, M. R. Dourado, T. A. Driedonks, F. V.
868 Duarte, H. M. Duncan, R. M. Eichenberger, K. Ekström, S. El Andaloussi, C. Elie-Caille, U.
869 Erdbrügger, J. M. Falcón-Pérez, F. Fatima, J. E. Fish, M. Flores-Bellver, A. Försönits, A. Frelet-
870 Barrand, F. Fricke, G. Fuhrmann, S. Gabrielsson, A. Gámez-Valero, C. Gardiner, K. Gärtner, R.
871 Gaudin, Y. S. Gho, B. Giebel, C. Gilbert, M. Gimona, I. Giusti, D. C. Goberdhan, A. Görgens, S. M.
872 Gorski, D. W. Greening, J. C. Gross, A. Gualerzi, G. N. Gupta, D. Gustafson, A. Handberg, R. A.
873 Haraszti, P. Harrison, H. Hegyesi, A. Hendrix, A. F. Hill, F. H. Hochberg, K. F. Hoffmann, B. Holder, H.
874 Holthofer, B. Hosseinkhani, G. Hu, Y. Huang, V. Huber, S. Hunt, A. G.-E. Ibrahim, T. Ikezu, J. M. Inal,
875 M. Isin, A. Ivanova, H. K. Jackson, S. Jacobsen, S. M. Jay, M. Jayachandran, G. Jenster, L. Jiang, S. M.
876 Johnson, J. C. Jones, A. Jong, T. Jovanovic-Talisman, S. Jung, R. Kalluri, S.-I. Kano, S. Kaur, Y.
877 Kawamura, E. T. Keller, D. Khamari, E. Khomyakova, A. Khvorova, P. Kierulf, K. P. Kim, T. Kislinger,
878 M. Klingeborn, D. J. Klinke, M. Kornek, M. M. Kosanović, Á. F. Kovács, E.-M. Krämer-Albers, S.
879 Krasemann, M. Krause, I. V. Kurochkin, G. D. Kusuma, S. Kuypers, S. Laitinen, S. M. Langevin, L. R.
880 Languino, J. Lannigan, C. Lässer, L. C. Laurent, G. Lavieu, E. Lázaro-Ibáñez, S. Le Lay, M.-S. Lee, Y. X.
881 F. Lee, D. S. Lemos, M. Lenassi, A. Leszczynska, I. T. Li, K. Liao, S. F. Libregts, E. Ligeti, R. Lim, S. K.
882 Lim, A. Linē, K. Linnemannstöns, A. Llorente, C. A. Lombard, M. J. Lorenowicz, Á. M. Lörincz, J.
883 Lötvall, J. Lovett, M. C. Lowry, X. Loyer, Q. Lu, B. Lukomska, T. R. Lunavat, S. L. Maas, H. Malhi, A.
884 Marcilla, J. Mariani, J. Mariscal, E. S. Martens-Uzunova, L. Martin-Jaular, M. C. Martinez, V. R.
885 Martins, M. Mathieu, S. Mathivanan, M. Maugeri, L. K. McGinnis, M. J. McVey, D. G. Meckes, K. L.
886 Meehan, I. Mertens, V. R. Minciachchi, A. Möller, M. Möller Jørgensen, A. Morales-Kastresana, J.
887 Morhayim, F. Mullier, M. Muraca, L. Musante, V. Mussack, D. C. Muth, K. H. Myburgh, T. Najrana,
888 M. Nawaz, I. Nazarenko, P. Nejsum, C. Neri, T. Neri, R. Nieuwland, L. Nimrichter, J. P. Nolan, E. N.
889 Nolte-'t Hoen, N. Noren Hooten, L. O'Driscoll, T. O'Grady, A. O'Loghlen, T. Ochiya, M. Olivier, A.
890 Ortiz, L. A. Ortiz, X. Osteikoetxea, O. Østergaard, M. Ostrowski, J. Park, D. M. Pegtel, H. Peinado, F.
891 Perut, M. W. Pfaffl, D. G. Phinney, B. C. Pieters, R. C. Pink, D. S. Pisetsky, E. Pogge von Strandmann,
892 I. Polakovicova, I. K. Poon, B. H. Powell, I. Prada, L. Pulliam, P. Quesenberry, A. Radeghieri, R. L.
893 Raffai, S. Raimondo, J. Rak, M. I. Ramirez, G. Raposo, M. S. Rayyan, N. Regev-Rudzki, F. L. Ricklefs,
894 P. D. Robbins, D. D. Roberts, S. C. Rodrigues, E. Rohde, S. Rome, K. M. Rouschop, A. Rughetti, A. E.
895 Russell, P. Saá, S. Sahoo, E. Salas-Huenuleo, C. Sánchez, J. A. Saugstad, M. J. Saul, R. M. Schiffelers,
896 R. Schneider, T. H. Schøyen, A. Scott, E. Shahaj, S. Sharma, O. Shatnyeva, F. Shekari, G. V. Shelke, A.
897 K. Shetty, K. Shiba, P. R.-M. Siljander, A. M. Silva, A. Skowronek, O. L. Snyder, R. P. Soares, B. W.
898 Sódar, C. Soekmadji, J. Sotillo, P. D. Stahl, W. Stoorvogel, S. L. Stott, E. F. Strasser, S. Swift, H.
899 Tahara, M. Tewari, K. Timms, S. Tiwari, R. Tixeira, M. Tkach, W. S. Toh, R. Tomasini, A. C.
900 Torrecilhas, J. P. Tosar, V. Toxavidis, L. Urbanelli, P. Vader, B. W. van Balkom, S. G. van der Grein, J.
901 Van Deun, M. J. van Herwijnen, K. Van Keuren-Jensen, G. van Niel, M. E. van Royen, A. J. van
902 Wijnen, M. H. Vasconcelos, I. J. Vechetti, T. D. Veit, L. J. Vella, É. Velot, F. J. Verweij, B. Vestad, J. L.
903 Viñas, T. Visnovitz, K. V. Vukman, J. Wahlgren, D. C. Watson, M. H. Wauben, A. Weaver, J. P.
904 Webber, V. Weber, A. M. Wehman, D. J. Weiss, J. A. Welsh, S. Wendt, A. M. Wheelock, Z. Wiener,
905 L. Witte, J. Wolfram, A. Xagorari, P. Xander, J. Xu, X. Yan, M. Yáñez-Mó, H. Yin, Y. Yuana, V. Zappulli,
906 J. Zarubova, V. Žekas, J.-Y. Zhang, Z. Zhao, L. Zheng, A. R. Zheutlin, A. M. Zickler, P. Zimmermann, A.
907 M. Zivkovic, D. Zocco, E. K. Zuba-Surma, Minimal information for studies of extracellular vesicles
908 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and
909 update of the MISEV2014 guidelines. *J. Extracell. Vesicles* **7**, 1535750 (2018).

910 52. K. W. Witwer, D. C. Goberdhan, L. O'Driscoll, C. Théry, J. A. Welsh, C. Blenkiron, E. I. Buzás, D. Di
911 Vizio, U. Erdbrügger, J. M. Falcón-Pérez, Q. Fu, A. F. Hill, M. Lenassi, J. Lötvall, R. Nieuwland, T.
912 Ochiya, S. Rome, S. Sahoo, L. Zheng, Updating MISEV: Evolving the minimal requirements for
913 studies of extracellular vesicles. *J. Extracell. Vesicles* **10**, e12182 (2021).

914 53. A. Shami-Shah, M. Norman, D. R. Walt, Ultrasensitive Protein Detection Technologies for
915 Extracellular Vesicle Measurements. *Mol. Cell. Proteomics MCP* **22**, 100557 (2023).

916 54. M. Maeki, S. Uno, A. Niwa, Y. Okada, M. Tokeshi, Microfluidic technologies and devices for lipid
917 nanoparticle-based RNA delivery. *J. Control. Release Off. J. Control. Release Soc.* **344**, 80–96 (2022).

918 55. K. O'Brien, K. Breyne, S. Ughetto, L. C. Laurent, X. O. Breakefield, RNA delivery by extracellular
919 vesicles in mammalian cells and its applications. *Nat. Rev. Mol. Cell Biol.* **21**, 585–606 (2020).

920 56. J. Zhang, X. Y. Rima, X. Wang, L. T. H. Nguyen, K. Huntoon, Y. Ma, P. L. Palacio, K. T. Nguyen, K.
921 Albert, M.-D. Duong-Thi, N. Walters, K. J. Kwak, M. J. Yoon, H. Li, J. Doon-Ralls, C. L. Hisey, D. Lee, Y.
922 Wang, J. Ha, K. Scherler, S. Fallen, I. Lee, A. F. Palmer, W. Jiang, S. M. Magaña, K. Wang, B. Y. S.
923 Kim, L. J. Lee, E. Reátegui, Engineering a tunable micropattern-array assay to sort single
924 extracellular vesicles and particles to detect RNA and protein in situ. *J. Extracell. Vesicles* **12**,
925 e12369 (2023).

926 57. A. S. Joyner, J. R. Willis, J. E. Crowe, C. Aiken, Maturation-induced cloaking of neutralization
927 epitopes on HIV-1 particles. *PLoS Pathog.* **7**, e1002234 (2011).

928 58. G. E. Rydell, K. Prakash, H. Norder, M. Lindh, Hepatitis B surface antigen on subviral particles
929 reduces the neutralizing effect of anti-HBs antibodies on hepatitis B viral particles in vitro. *Virology*
930 **509**, 67–70 (2017).

931 59. Z. Troyer, N. Alhusaini, C. O. Tabler, T. Sweet, K. I. L. de Carvalho, D. M. Schlatzer, L. Carias, C. L.
932 King, K. Matreyek, J. C. Tilton, Extracellular vesicles carry SARS-CoV-2 spike protein and serve as
933 decoys for neutralizing antibodies. *J. Extracell. Vesicles* **10**, e12112 (2021).

934 60. J. Chojnacki, C. Eggeling, Super-resolution fluorescence microscopy studies of human
935 immunodeficiency virus. *Retrovirology* **15**, 41 (2018).

936 61. Y. G. Kuznetsov, J. G. Victoria, W. E. Robinson, A. McPherson, Atomic force microscopy
937 investigation of human immunodeficiency virus (HIV) and HIV-infected lymphocytes. *J. Virol.* **77**,
938 11896–11909 (2003).

939 62. L. Wang, D. Wang, Z. Ye, J. Xu, Engineering Extracellular Vesicles as Delivery Systems in Therapeutic
940 Applications. *Adv. Sci. Weinheim Baden-Wurtt. Ger.* **10**, e2300552 (2023).

941 63. M. Batish, A. Raj, S. Tyagi, Single molecule imaging of RNA in situ. *Methods Mol. Biol. Clifton NJ*
942 **714**, 3–13 (2011).

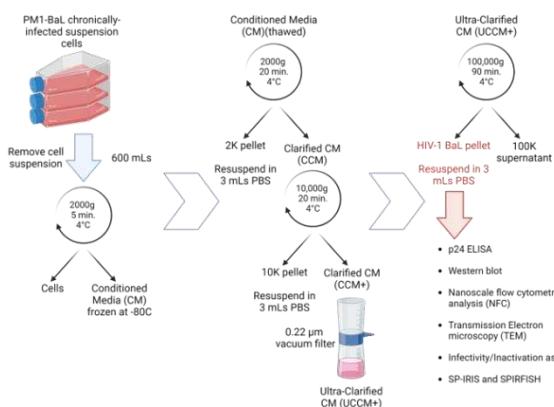
943
944 **Acknowledgements**

945 We would like to thank the Johns Hopkins University School of Medicine Microscope Facility and Barbara
946 Smith for assistance with electron microscopy of EVs and HIV virions.

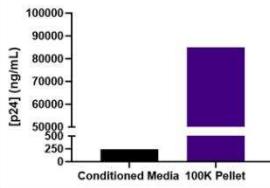
947 **Funding:**

948 ION/ARPA Initiative: Payload Delivery, Ionis Pharmaceuticals (ZT, MB, KWW)
949 National Institutes of Health R01MH116508 (MBE)
950 the Allen Discovery Center, a Paul G. Allen Frontiers Group advised program of the Paul G. Allen
951 Family Foundation UWSC10142 (MBE)
952 National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health
953 R01EB030015 (MBE).
954 Chen Postdoctoral Fellowship Award (FH)
955 Burroughs Wellcome Fund Career Award at the Scientific Interface (FH)
956 National Science Foundation Award 2244127 (MB)
957 Universidad de la República CSIC 22620220100069UD (JPT)
958

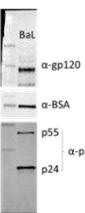
959 **Author Contributions:**

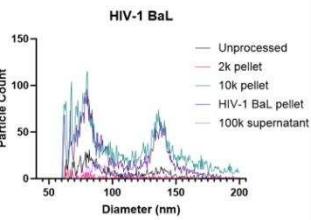

960 Conceptualization: ZT, MB, KWW
961 Data curation: ZT, OG
962 Formal analysis: ZT
963 Funding acquisition: ZT, MB, KWW
964 Investigation: ZT, OG, ZL, AK
965 Methodology: ZT, OG, ZL, KWW
966 Resources: ZT, OG, AK, ZL, FH, MBE, JPT, MB, KWW
967 Visualization: ZT
968 Writing—original draft: ZT
969 Writing—review & editing: ZT, OG, AK, ZL, FH, MBE, JPT, MB, KWW
970

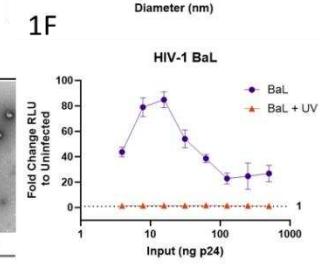
971 **Competing Interests:** KWW is or has been an advisory board member of ShiftBio, Exopharm, NeuroDex,
972 NovaDip, and ReNeuron; holds NeuroDex options; privately consults as Kenneth Witwer Consulting. ZT,
973 MB, and KWW conduct research under a sponsored research agreement with Ionis Pharmaceuticals. MBE
974 is a scientific advisory board member or consultant at TeraCyte, Primordium, and Spatial Genomics. All
975 other authors declare they have no competing interests
976

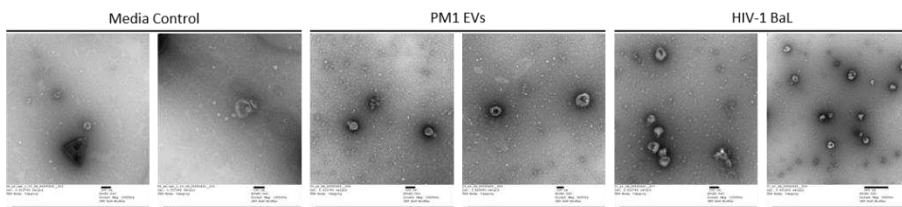

977 **Data and Materials Availability:** All data are available in the main text or the supplementary materials, or
978 upon request from authors. Materials are available upon request and with a completed material transfer
979 agreement.
980

981 **Figures and Tables**

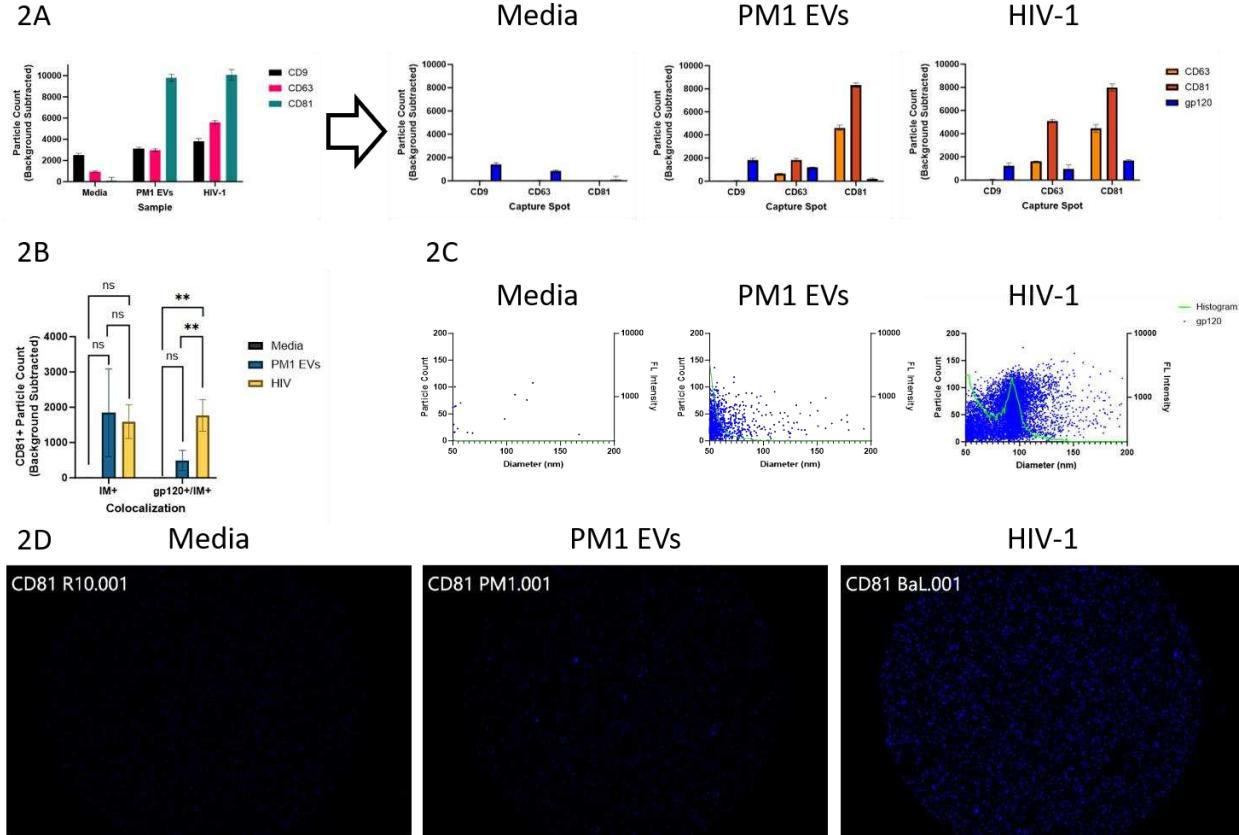

1A


1B


1C


1D

1F



1E

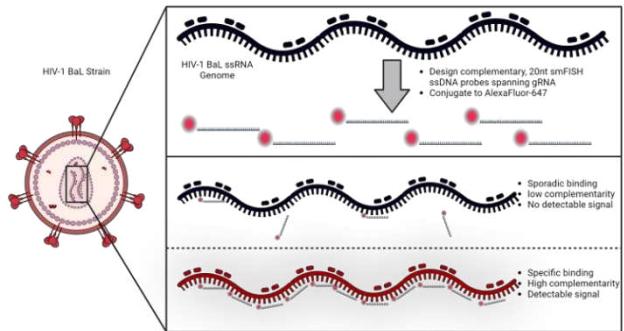
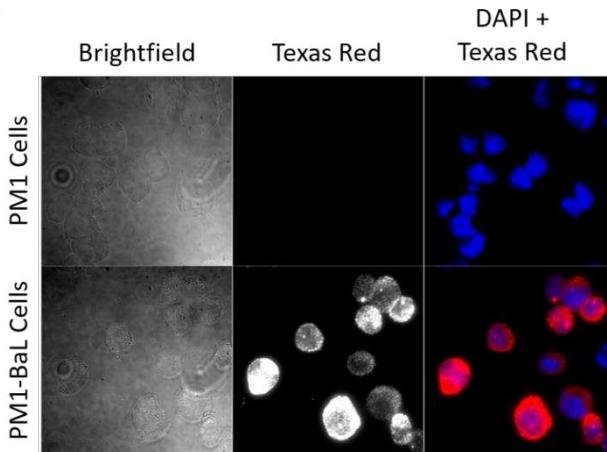
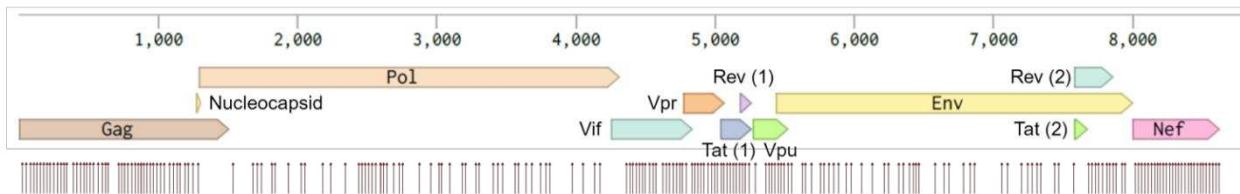

982

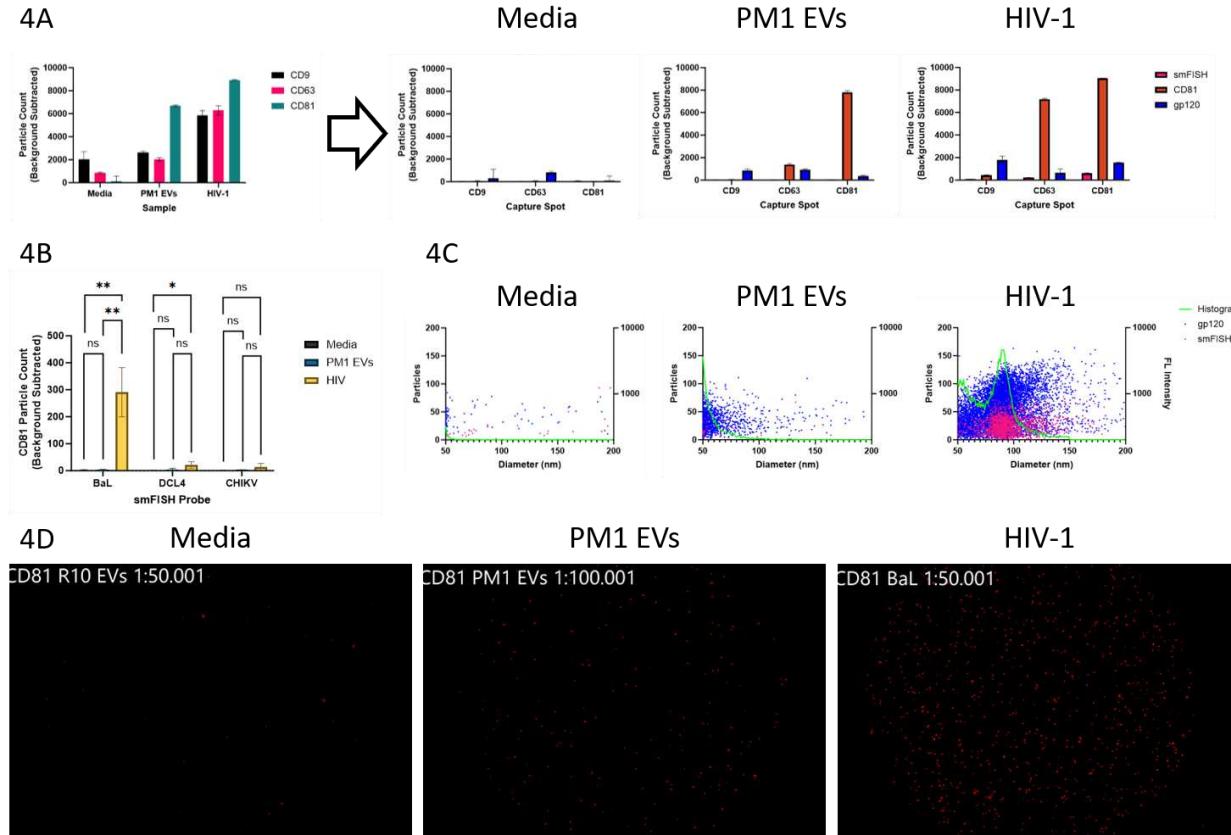
Fig. 1. Production and characterization of HIV. **1A:** Schematic diagram depicting the differential ultracentrifugation workflow used to produce concentrated HIV for downstream analysis. **1B:** Bar graph showing the results of a p24 ELISA assay performed with unconcentrated HIV conditioned media and the concentrated HIV preparation. The differential ultracentrifugation workflow concentrated the HIV ~350X. **1C:** Immunoblot analysis of the concentrated HIV preparation. HIV gp120 was visible as a single band ~120 kDa. HIV Gag p24 was detected in two bands; a lower band (~24 kDa) corresponding to the mature protein, and an upper band corresponding to unprocessed Gag polyprotein p55. Bovine serum albumin, a contaminant derived from FBS used in the cell culture media, was also detected. **1D: Left panel:** Nano-flow cytometry plots showing the size distribution of particles collected at various steps of the differential ultracentrifugation process. Different samples were run at different dilutions to avoid cytometer clogging, therefore particle counts represented on the Y-axis are not representative of true particle counts. **Right panel:** Nano-flow cytometry plots representing the concentrated HIV sample and the control PM1 extracellular vesicles (EVs). Samples were corrected for dilution factors before plotting. **1E:** Representative transmission electron micrographs of media control, PM1 EVs, and concentrated HIV. Individual scale bars are provided under each image. **1F:** Line chart representing the results of a TZM-B1 reporter luciferase assay measuring HIV infectivity at varying doses in the presence (orange line) or absence (purple line) of virus-inactivating UV-light. Results are represented as fold change compared to an uninfected cell control.



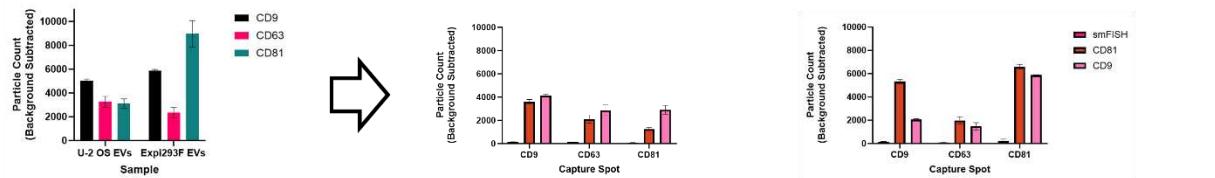
1000
1001 **Fig. 2. SP-IRIS Analysis of HIV Virions.** **2A:** Left panel: Bar graph comparing total particle capture of
1002 media control, PM1 extracellular vesicles (EVs), and HIV across different anti-tetraspanin capture spots on
1003 SP-IRIS microchips. Graph is from one biological replicate and is representative of the trend seen across
1004 experiments. Bars show mean particle counts across three replicate capture spots on the same SP-IRIS
1005 microchip; error bars represent standard deviation. Right panels: Bar graphs indicating the number of
1006 particles on each antibody capture spot measured as positive for a target protein. Bars show mean particle
1007 counts across three replicate capture spots within an SP-IRIS microchip; error bars represent standard
1008 deviation. **2B:** Grouped bar graph comparing number of CD81+ particles detected by interferometry, or
1009 detected by interferometry and gp120+. Bars show mean particle counts across three independent SP-IRIS
1010 experiments; error bars represent standard deviation. Statistical testing was performed by one-way ANOVA
1011 with Tukey's multiple comparisons test, within each category (for representation, data are within a single
1012 graph). ns, $P > 0.05$; *, $P \leq 0.05$; **, $P \leq 0.01$; ***, $P \leq 0.001$. **2C:** Combined representative size
1013 histogram/fluorescent scatter plots of particles captured on the CD81 capture spots. Green line represents
1014 size distribution of particles detected interferometrically, with size plotted on X-axis and particle count on
1015 left Y-axis. Blue dots represent gp120+ particles co-detected interferometrically, plotted with size on X-
1016 axis and gp120 fluorescence intensity on right Y-axis. **2D:** Representative blue channel (gp120+)
1017 fluorescent images of CD81 capture spots on SP-IRIS microchips.


3A

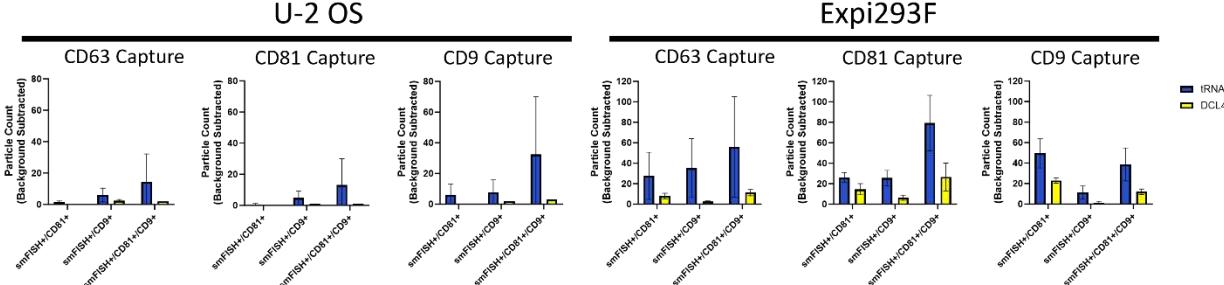
3B


3C

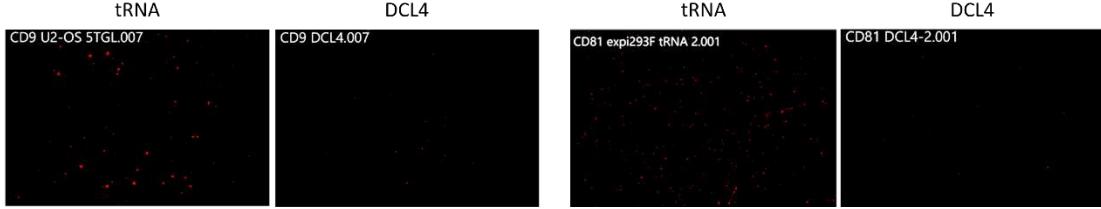
1018

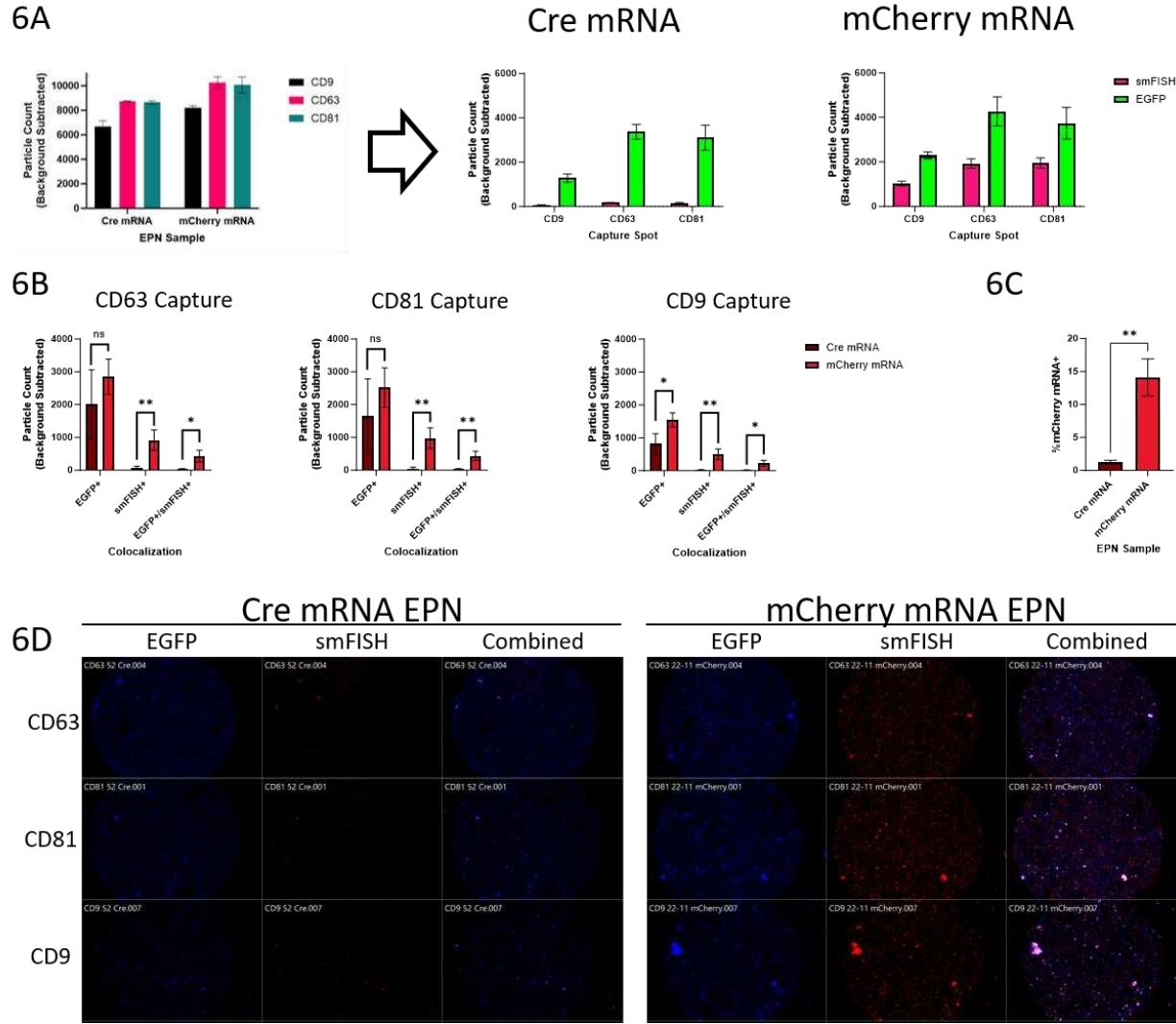

1019 **Fig. 3. Design and Validation of HIV-1 BaL smFISH Probes.** 3A: Schematic representation of the
1020 principal of smFISH and how smFISH probes were designed complementary to the HIV-1 BaL genome.

1021 3B: Fluorescent microscopy images of slides containing cells hybridized with the HIV-1 BaL probes via
1022 conventional smFISH. 100X Magnification. The Texas Red-labelled probes do not hybridize with
1023 uninfected PM1 cells (top middle panel). HIV-1 BaL infected PM1 cells are hybridized with smFISH
1024 probes due to the presence of HIV RNA in the cytosol, resulting in Texas Red signal (bottom middle panel –
1025 represented in greyscale). Nuclei are visible due to DAPI staining (right panel – top and bottom). 3C:
1026 Schematic of the HIV-1 BaL genome, with genes indicated by text and block arrows. The binding locations
1027 of individual probes within the HIV-1 BaL gRNA smFISH probe pool are represented by the red arrows.



1028
1029 **Fig. 4. SPIRFISH Analysis of HIV Virions.** 4A: Left panel: Bar graph comparing particle capture of
1030 media control, PM1 extracellular vesicles (EVs), and HIV virions across different anti-tetraspanin capture
1031 spots on SP-IRIS microchips. Graph is from one biological replicate and is representative of trend seen
1032 across experiments. Bars show mean particle counts across three replicate capture spots on the same SP-
1033 IRIS microchip; error bars represent standard deviation. Right panels: Bar graphs indicate the number of
1034 particles on each antibody capture spot measured as positive for a target protein or HIV gRNA. Bars show
1035 mean particle counts across three replicate capture spots on the same SP-IRIS microchip; error bars
1036 represent standard deviation. 4B: Grouped bar graph showing number of CD81+/gp120+/smFISH+
1037 particles co-detected interferometrically. Bars show mean particle counts across three independent SP-IRIS
1038 experiments; error bars represent standard deviation. Statistical testing was performed by one-way ANOVA
1039 with Tukey's multiple comparisons test, within each category (for representation, data are within a single
1040 graph). ns, $P > 0.05$; *, $P \leq 0.05$; **, $P \leq 0.01$. 4C: Combined representative size histogram/fluorescent
1041 scatter plots of particles captured on CD81 capture spots. Green line represents size distribution of particles
1042 detected interferometrically, with size plotted on X-axis and particle count on left Y-axis. Blue (gp120+) or
1043 magenta (smFISH+) dots represent fluorescent particles co-detected interferometrically, plotted with size
1044 on X-axis. Fluorescence intensities for gp120 and smFISH signals are represented on right Y-axis. 4D:
1045 Representative red channel (HIV-1 gRNA smFISH+) fluorescent images of CD81 capture spots on SP-
1046 IRIS microchips.


5A


5B

5C

1047
1048 **Fig. 5. SPIRFISH detection of EV-encapsulated tRNA.** 5A: Left panel: Bar graph comparing total
1049 particle capture of U-2 OS and Expi293F extracellular vesicles (EVs) across three anti-tetraspanin capture
1050 spots on SP-IRIS microchips. Graph is from one biological replicate and is representative of trend seen
1051 across experiments. Bars show mean particle counts across three replicate capture spots on the same SP-
1052 IRIS microchip; error bars represent standard deviation. Right panels: Bar graphs indicating number of
1053 particles on each anti-tetraspanin antibody capture spot measured as positive for a target protein or 5'
1054 tRNA^{Gly} GCC. Bars show mean particle counts across three replicate capture spots (or four for
1055 Expi293F/tRNA condition) on the same SP-IRIS microchip; error bars represent standard deviation. 5B:
1056 Various grouped bar graphs showing breakdown of smFISH+ particle counts by single-particle protein
1057 marker colocalization on each anti-tetraspanin antibody capture spot, separated by use of specific (blue
1058 bars) or non-specific (yellow bars) smFISH probes. Data from U-2 OS EVs is shown on the left and from
1059 Expi293F EVs on the right. Bars show the mean particle counts across three independent SP-IRIS
1060 microchip experiments; error bars represent standard deviation. 5C: Representative red channel (5'
1061 tRNA^{Gly} GCC smFISH+) fluorescent images of the CD9 capture spot (U2-OS) and CD81 capture spot
1062 (Expi293F) on the SP-IRIS microchips, for both EV types and from the specific and non-specific smFISH
1063 probe experiments. Brightness was adjusted by +40% for all images to increase visibility of smFISH+
1064 fluorescence.

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

Fig. 6. SPIRFISH Analysis of Engineered EVs. **6A:** **Left panel:** Bar graph comparing particle capture of extracellular vesicles (EVs) designed to package Cre or mCherry mRNA, across three anti-tetraspanin capture spots on SP-IRIS microchips. Graph is from one biological replicate and is representative of trend seen across experiments. Bars show mean particle counts across three replicate capture spots on the same SP-IRIS microchip; error bars represent standard deviation. **Right panels:** Bar graphs indicating number of particles on each capture spot measured as EGFP+ or mCherry mRNA+. Bars show mean particle counts across three replicate capture spots on the same SP-IRIS microchip; error bars represent standard deviation. **6B:** Grouped bar graphs showing particle counts by EGFP/mCherry mRNA colocalization on each capture spot, separated by Cre-mRNA (brown bars) or mCherry-mRNA (red bars) EVs. Bars show mean particle counts across three independent SP-IRIS experiments; error bars represent standard deviation. Statistical testing comparing counts between Cre-mRNA EVs and mCherry-mRNA EVs was performed using unpaired two-tailed T-test, within each category (for representation, data are within a single graph). ns, $P > 0.05$; *, $P \leq 0.05$; **, $P \leq 0.01$. **6C:** Bar chart indicating percentage of smFISH+ particles on SP-IRIS microchips. Bars show mean particle counts across three independent SP-IRIS microchip experiments; error bars represent standard deviation. Statistical testing was performed using unpaired two-tailed T-test. ns, $P > 0.05$; *, $P \leq 0.05$; **, $P \leq 0.01$. **6D:** Fluorescent images of different capture spots on SP-IRIS microchips. Left column (EGFP), middle (mCherry mRNA), right (combined).