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Abstract. Bayesian phylogenetic analysis with MCMC algorithms gen-
erates an estimate of the posterior distribution of phylogenetic trees in
the form of a sample of phylogenetic trees and related parameters. The
high dimensionality and non-Euclidean nature of tree space complicates

5 summarizing the central tendency and variance of the posterior distri-
bution in tree space. Here we introduce a new tractable tree distribution
and associated point estimator that can be constructed from a posterior
sample of trees. Through simulation studies we show that this point esti-
mator performs at least as well and often better than standard methods

10 of producing Bayesian posterior summary trees. We also show that the
method of summary that performs best depends on the sample size and
dimensionality of the problem in non-trivial ways.

1 Introduction

One of the main inference paradigms in phylogenetics is Bayesian inference us-

15 ing Markov Chain Monte Carlo (MCMC) [6,17,23]. The central parameter of
phylogenetic models is the tree topology describing the evolutionary relation-
ships for a set of taxa. Bayesian inference is based on a statistical model that
describes the probability of a set of sequences given a phylogenetic tree, con-
sisting of a topology with associated branch lengths and model parameters. The

2 MCMC algorithm iteratively samples a state space that, if set up with appro-
priate length and sampling interval, returns a sample that is a representation of
the true underlying posterior distribution. In the case of phylogenetic MCMC
algorithms, the output of such an analysis is a sample of phylogenetic trees,
typically numbering in the thousands.

2 In a phylogenetic analysis, the posterior distributions of many continuous
parameters (e.g. kappa, base frequencies, molecular clock rate, population size)
are easily summarised by considering statistics of the marginal distribution of
the parameter of interest from the samples obtained by MCMC. On the other
hand, one of the most crucial parameters — the tree topology — is a discrete
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w parameter whose central tendency and variance are harder to characterise due
to the high-dimensional and non-Euclidean nature of tree space [4,5,11]. It has
thus become standard practise to employ summary or consensus tree methods
to condense the output into a single tree [14]. This single tree, which should be
regarded as a Bayesian point estimate, is then used for further representation

s and interpretation of an analysis. Despite considerable efforts dedicated to the
development of point estimators [9], it remains unclear which method performs
best for summarising tree posteriors. Most point estimators construct a tree in
two steps [14]: First, a tree topology is constructed or selected, and, second, this
discrete topology is then annotated with branch lengths. In this paper we focus

w0 on the first step, the construction of a rooted binary tree topology.

The predominant challenge for many point estimators is the complexity of the
tree space they are operating on. This is particularly the case for methods trying
to compute a mean in a high-dimensional, non-Euclidean space such as the BHV
space [2,5,8] or a space induced by rearrangement operations [4]. While good

s progress has been made, these methods can suffer from stickiness and are not
tractable yet for large problems [4,8]. The two most popular methods in practice
thus operate only on the sampled trees. First, consensus methods focus on finding
a consensus among the given trees. The prevalent variant is the greedy majority-
rule consensus (greedy consensus) tree, which builds up a tree by including clade

so after clade greedily (i.e., more frequent clades first) that are compatible with the
current tree; ties are broken arbitrarily [9]. Consensus methods are however prone
to polytomies (i.e., parts of the tree remain unresolved) and finding the most
resolved greedy MRC tree is an NP-hard problem [24]. Second, the mazimum
clade credibility (MCC) tree picks the tree from the sample distribution with

s maximum product of (Monte Carlo) clade probabilities. While the computation
of the MCC tree is fast and efficient, it comes at a cost in accuracy due to the
restriction to the sampled trees.

A good estimate of the tree distribution is still needed for questions con-
cerning, for example, the credibility set of trees and the information content
o0 (entropy) [19] as well as for applications such as Bayesian concordance anal-
ysis (BCA) [1]. Introduced by Hohna and Drummond [16] and improved by
Larget [18], the conditional clade distribution (CCD) offers an advanced esti-
mate of the posterior probability distribution of tree space. Based on simple
statistics of the sample, it provides normalized probabilities of all represented
e trees and allows direct sampling from the distribution. CCDs have for example
been used to measure the information content and detect conflict among data
partitions [19], for species tree—gene tree reconciliation [25], and for guiding tree
proposals for MCMC runs [16]. Constructing the CCD and performing these
tasks can be done efficiently [18,19].

70 In this paper we extend the applicability of CCDs by introducing a new
parametrization for CCDs and describing fixed-parameter tractable algorithms
to compute the tree with highest probability. We demonstrate the usefulness of
the new distribution and these new point estimates for Bayesian phylogenetics
by comparing them to existing methods in simulation studies.
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s 2 Methods

In this section, we first discuss tractable tree distributions and define CCDs with
two different parametrizations. We then recall the definitions of the MCC and
greedy consensus tree and show how CCDs give rise to new point estimators.
Lastly, we describe the datasets we generated for our experiments. Throughout,

s we write tree instead of tree topology and further assume that all our trees are
rooted and, unless mentioned otherwise, are binary.

2.1 Tractable Tree Distributions

We consider a probability distribution over a set of trees (on the same taxa) a
tractable tree distribution if some common tasks can be performed efficiently in

s practice. Example tasks are computing the probability of a tree and retrieving
the tree with maximum probability. As the main quality criteria for a tractable
tree distribution we consider its accuracy, that is, how well it estimates the
probability of trees, in particular of those in the 95% credibility set. In simulation
studies we can also test whether a distribution contains the true tree. Another

o desideratum is a high representativeness as a distribution should represent the
trees with non-negligible posterior probability but not more. If we generate a type
of distribution for the same data multiple times, we can consider the precision
and the stability, that is, how much the probabilities of trees and how much the
accuracy change, respectively. Since CCDs, as we see below, are deterministically

s generated from samples, we can only measure these indirectly through samples
from different MCMC runs.

A simple example distribution is the set of sampled trees from an MCMC run;
we call this a sample distribution. It offers Monte Carlo probabilities and while
some tasks can be performed efficiently, it has quite low accuracy, poor represen-

w0 tativeness, and is in general not stable. In fact, since the space of trees increases
super-exponentially with the number of taxa, a sample on several thousand trees
typically misses the majority of trees with non-negligible posterior probability
even for moderate size problems.

Reintroducing the concept of a CCD, we first define a graph, which we call

s a forest network, capable of representing a larger number of trees. Assigning
probabilities to certain vertices (or edges), we obtain a CCD graph. The version
of a CCD by Larget [18] is one possible parametrization of a CCD based on
clade split frequencies; we call this a CCD1. Our new parametrization, CCDO,
is based on clade frequencies. We also show how to efficiently sample trees from

uw a CCD and how dynamic programming allows efficient computation of values
such as the number of trees and its entropy.

Forest network. Let X be a set of n taxa. A forest network N on X is a rooted
bipartite digraph with vertex set (C,S) that satisfies the following properties:

e Each C € C represents a clade on X. So for each C € C, we have C' C X; for
115 each taxon £ € X, {¢{} € C, and also X € C.
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e Each S € S represents a clade split. So each S € S has degree three with one
incoming edge (C, S) and two outgoing edges (.5, C1), (S, C2) such that C7 U
Cy=0C, C;NCy = for some Cy,Cy,C €C. Then S = {Cy,C3} and S is a
clade split of C.

120 e Each non-leaf clade has outdegree at least one and each clade except X has
indegree at least one.

Note that X is the root of N, the taxa in X are the leaves of IV, and each non-leaf
clade has at least one clade split. We use terms such as child and parent naturally
to refer to relations between vertices of N, e.g., each clade split S has a parent

s clade C. When talking about multiple graphs, we let C(N) and S(IV) denote the
clades and clade splits, respectively, of N. For a (rooted binary phylogenetic)
tree T on X, we use analogous definitions for C(T) and S(T') (each pair of sibling
clades in T forms a clade split of T'). For a clade C, we define S(C) as the set
of child clade splits of C.

130 A tree T is displayed by N if each clade split of T is in S(N), i.e., S(T) C
S(N). For a clade C define N(C) as the restriction of N to C, that is, the forest
subnetwork rooted at C' containing all vertices reachable from C. Analogously,
for S € C(N), we can define the forest subnetwork N(S) of N that is rooted
at the parent clade C' of S but contains only S as child of C' and all vertices

s reachable from S. Note that, for a clade split {Cy,Cs} of X, network N con-
tains all trees composed (amalgamated) of one subtree from N(C;) and one
subtree from N (Cs); this holds recursively. Hence, a forest network is suitable to
represent huge numbers of trees when all combinations of subtrees are included.

CCD graph. In order to turn a forest network into a tree distribution, we need

1o to be able to compute a probability for a tree T'. Larget [18] suggested to use the
product of clade split probabilities over all clade splits in S(T') as the probability
of T. We define a CCD graph as a forest network G where each clade split S
in S(G) has an assigned probability Pr(S) such that, for each clade C' € C(G),
we have > gc g Pr(S) = 1. In other words, we can randomly pick a clade

us  split at C. From Larget [18, Appendix 2] we then get that G represents a tree
distribution. So for a tree T" displayed by G, we have

Pr(T)= [ Pr(S)
)

Ses(T

and, for any other tree T”, we have Pr(7”) = 0. Furthermore, the sum of prob-

abilities of all trees displayed by G is one. We now show how CCD1 and CCDO

assign probabilities based on observed clade split and clade frequencies, respec-
150 tively.

CCD1, observed clade splits. CCD1 is a tree distribution over the space of
trees on a fixed set of taxa X based on a CCD graph with clade split probability
obtained as follows. Let T = {T1,..., Tk}, a (multi-)set of trees on X, e.g., the
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samples of an MCMC run. Let C and S be the sets of clades and clade splits
155 appearing in T, respectively. Then let G be the forest network induced by 7, that

is, G has vertex set (C,S) and edges naturally induced by the clade splits S (we

know the two child clades and the parent clade of each clade split). Furthermore,

we assign clade split probabilities as follows to turn G into a CCD graph. For a

clade C € C and a clade split S € S, let f(C) and f(S) denote the frequencies
1o of C' and S appearing in the sample T, respectively. Note that

1. f(S) < f(C) for all pairs of S,C with S € §(C);
2. Y sesc) [(S) = f(C) for a non-leaf clade C;
3. f(X) =k and, for each ¢ € X, f({¢{}) = k.

The conditional clade probability (CCP) Pr(S) of a clade split S is defined as
165 the ratio of S being the split of C' in the posterior sample, i.e.,

Pr(S) = f(5)/f(C)

Note that 3 ge 5(c) Pr(S) =1 and Pr(S) = 1if S € S({a, b}) for some leaves a, b.
The resulting CCD graph is what we call a CCD1, the conditional clade distri-
bution induced by the probability distributions of clade splits.

Example. Let us consider the example shown in Fig. 1 where the posterior

o samples consists of three trees with the first being sampled three times, and
the others twice each. Observe that the root clade ABCDE is split in three
different ways, namely, ABC|DE, ABCD|E, and ABCE|D. The probabilities
of these three clades splits are Pr(ABC|DE) = 3/7, Pr(ABCDI|E) = 2/7, and
Pr(ABCE|D) = 2/7. Furthermore, the clade ABC is split in two different ways

s with probabilities Pr(AB|C) = 3/7 and Pr(A|BC) = 4/7. All other clades are
trivial or are only split in one way, e.g., the clade ABCD is always split into
ABC|D, so Pr(ABC|D) = 1/1.

A B C D E A B C D E A B CED
(a) Tree 1, (b) Tree 2, (c) Tree 3,
sampled three times. sampled twice. sampled twice.

Fig. 1: Example of a posterior sample of size seven consisting of three different
trees. Only the clades ABCDE and ABC are split in multiple ways.

The resulting CCD contains 6 different trees — the three sampled trees as well

as three unsampled trees, two of which are shown in Figs. 3b and 3c. Note that

1w the tree sampled most often still has the highest probability, with 3/7 - 3/7 =
9/49, among the sampled trees, as the other two trees have a probability of
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% (ABCDE) %

/
[ABC | DEJ lAf%é‘D | E] [ABCE | D]

Fig. 2: The CCD graph of the CCD1 corresponding to the sampled trees in Fig. 1.

1/7-4/7 = 4/49 each. Furthermore, the unsampled tree containing the most
frequent clade split ABC|DE of the root clade and the most frequent clade split
A|BC of ABC, has a higher probability of 3/7-4/7 = 12/49.

3 2
7 7
4 3
7 7
A B CDE A B CDE A B CDE

(a) The sampled Tree 1 has (b) The unsampled tree has (c) This unsampled tree has
probability 3/7-3/7 = 9/49. the maximal probability of probability 2/7-3/7 = 6/49.
3/7-4)7 = 12/49.

Fig.3: The CCD of the example posterior sample of Fig. 1 contains unsampled
topologies and smoothens the probabilities.

15 Remark. When computing the CCD1 graph, it is important that the tree sam-
ple 7 does not contain outlier trees that should have been discarded as burnin.
Suppose otherwise, that there is an outlier tree T that does not share any clades
(except X and the taxa) with the other trees in 7. Then X has one clade split St
corresponding to T' with Pr(S;) = %; all other non-leaf clades of T have only

wo one clade split and so probability 1. Therefore, Pr(T) = % and is thus vastly
overestimated. However, it is possible to built a simple heuristic to detect such
outliers: Does removing a tree T' from the CCD1 and thus decreasing clade and
clade split frequencies by one, significantly change the probability of T. Nonethe-
less, this behaviour should be kept in mind when working with CCD1 and in

15 particular when 7 contains only few different trees.

CCDO, observed clades. For the new CCD, our goal is to have a distribution
where the probability of a tree is based on the product of its clades’ frequencies.
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We could derive the probability of a clade C' from a posterior sample on k trees
as Pr'(C) = f(C)/k. This does in general however not yield a distribution as
200 the tree probabilities do not sum to one. Since for complex problems even large
samples may not contain all plausible clade splits, we have as another feature

for CCDO that we also include (some) non-observed clade splits.
Using a forest network, we show how to build a CCD based on a func-
tion F: 2% — [0,1] with F({¢}) = F(X) = 1. For example, for CCD0 we
x5 use F(C) = Pr'(C); so we show something more general than needed for CCDO.
For a tree T' on X, define F(T') = [[oce(r) F(C), ie., the product for the

clades of T'. Let C be the subset of 2% containing all clades with non-zero scores
(F(C) > 0). Let S be the set of all possible clade splits that can be formed from C,
that is, for any three clades C1,C5,C € C with C; UCy = C and C; N Cy = 0,

20 we have {C1,Cs} € S. Let G be the forest network based on C and S. (In the
example above, there are no additional clade splits besides the observed ones
for CCD1.)

Let F.: C — R be the function defined as F(C) = Y rcq o) FI(T), ie.,
the sum of F over all trees rooted at C. This can be computed recursively with
the formula

F (C)=F(C)- Y Fi(C1)F(Cy)
{C1,C2}€8(0C)

with base case F({¢}) = 1 for each £ € X. Note that F (X) is the sum over all

trees on X and hence o = 1/F (X) is the global normalization factor turning the
a5 score F(T) of a tree T into a probability Pr(T) = oF(T). Populating the clades

in G with F, we can compute F (X) efficiently (more precisely, fixed-parameter

tractable in the number of clades and clade splits with non-zero scores). More-

over, we show next that we can also define probability distributions for the clade

splits and hence turn G into a CCD graph.

220 For a clade C, with clade splits S(C), define the normalization factor ac
for Cas ac =1/ 3 (0, cyyes(c) F+(C1)F1(C2). Then the probability of a clade
split {C1, Ca} of C is Pr({C4,C2}) = acFy(Cy)F1(Cs). We have to show that
this gives the same probability for a tree T":

PI‘(T) = H PI‘({Cl,Cg})

{C1,C2}eS(T)

= H acFy(C)FL(Co)
{C1,C2}ES(T)

CcLuCy=C
) 11 acl'(C1)F(Cy)
(C1,Ca}eS(T) QACAC,
CcCLuCye=C
Qo [ F(C)=aF(T)
CEC(T)

where for (1) we use that F{(C) = F(C)/ac, and for (2) observe that o =
»s  ax and that all other a¢ cancel out and are 1 for singleton clades. Hence,
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using F(C) = Pr'(C), we get that G is a CCD graph as desired, our new tree
distribution CCDO0.

Both CCDO0 and CCD1 are estimates of the true posterior tree distribution.

Their models assume that clades/clade splits in one part of a tree behave in-

20 dependent of other clades. So a CCD smoothens the probabilities of a sample

distribution by moving probability of overrepresented sampled trees to trees that

have not been sampled, but whose clades/clade splits appear within the samples.

Example, continued. Note that the three sampled trees from Fig. 1 result
in the same CCD graph (Fig. 2) for CCDO and CCD1 as no potential pair of

255 a child clades can be combined into an unobserved parent clade. In contrast,
in the example in Fig. 4, CCD0 and CCD1 are different as CCDO contains the
clade split AB|CD (we observe clades AB, CD, and ABCD) but CCD1 does not
(we do not observe this clade split).

A B C D E A B C D E
(a) Topology 1 (b) Topology 2

Fig. 4: For this sample of trees, the CCD graph of CCDO0 and CCD1 differ.

Utilizing CCDs. With the CCD graph as data structure underlying CCDO0 and
a0 CCD1, we can efficiently sample and compute interesting values over a whole
CCD. To sample a tree from a CCD, starting at the root clade X, pick a clade
split {C1,C2} among S(X) based on their probabilities; then proceed in the
same fashion with C; and C5 until a fully resolved tree is obtained.
We can also use dynamic programming to compute values such as the number
s of different trees (topologies) and the entropy of a CCD, or (as explained below)
find the tree with maximum probability. For example, to compute the number
of different trees in a CCD graph G, for a clade C, let t(C) be the number of
different trees in G(C). For a leaf ¢, we have t(¢) = 1, and for any other clade,
we can use the following recursive formula:

()= Y HUO)HCy)

{C1,C2}€8(0)

»0  Using dynamic programming, we compute these values bottom-up through G.
Then t(X) is the total number of different trees in G. Note that this calculation
takes linear time in the number of clades and clade splits.

Analogously, we can compute the entropy of the CCD by computing, for each
clade C, the entropy of G(C); let H*(C') denote this value. We can then use the
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s formula by Lewis et al. [19]:

H*(C) = 3 = Pr(S) (log Px(8) — H*(Cy) — H*(C»))
5es(0)
S={C1,C2}
The entropy of the CCD is then H = H*(X). Note that exp(—H) is the average
probability of a tree in the CCD and we can define N, = exp(H) as the number
equivalent — the effective number of distinct topologies in the distribution.

2.2 Point Estimators

0 We recall the definitions of the two most commonly used point estimators and
define new point estimators based on CCDO0O and CCD1. Let 7 be again a tree
sample on k trees for which we can compute the frequencies for trees, clades,
and clade splits.

MCC tree. Let Prec(C) denote the clade credibility (Monte Carlo probability)
s of clade C, i.e., Prcc(C) = f(C)/k. The clade credibility Prec(T) of atree T € T
is the product of its clades’ clade credibilities:

PI"CC (T) == H Prcc<0)
cec(T)

The mazimum clade credibility (MCC) tree is the tree T in T that maximizes
Proc(T'). Note that the MCC tree is restricted to be from the sample.

Greedy majority-rule consensus tree. Let Ci,...,C),, be the nontrivial
oo clades appearing in T ordered by decreasing frequency; ties are broken arbitrar-
ily. Starting with a star tree 7" with root X and leaves {{}, £ € X, we process
the clades in order. For the next clade C;, we test whether C; is compatible with
current tree 7", that is, whether there is a clade (vertex) C' containing C; in T”
and with no child clade C’ of C' containing or properly intersecting C;. If we
o5 find such a clade C, we refine 7" by making C; a new child of C and making
all child clades of C that are contained in C; child clades of C;. After C,,, the
resulting tree is the greedy majority rule consensus (greedy consensus) tree. For n
taxa and k trees, the greedy consensus tree can be computed in O(k?n) time
or O(kn'5logn) time [12,24], or in O(nk) time [26] (O(-) ignores logarithmic
20 factors).

CCD-based point estimators. For a CCD (CCDO or CCD1), we call the
tree T' with maximum probability Pr(7") in the CCD the CCD-MAP tree. Using
the dynamic program for CCDs explained above, we can find the CCD-MAP
tree efficiently as follows. Let Pr*(C) denote the maximum probability of any

25 subtree rooted at clade C. With Pr*(¢) = 1 for a leaf ¢, we can compute Pr*(C)
with the following formula:

Pre(C) = {Chgg?}é‘s(c){ Pr(C1,C2 | C) - Pr*(Cy) - Pr*(Cs) } (1)
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The maximum probability of any tree in the CCD is then given by Pr*(X). The
tree T achieving this can be obtained in the same fashion (or classic dynamic
programming backtracking).

290 Note that the CCDO-MAP tree is based on the same criteria as the MCC
tree but the choice is not restricted to the sample. Further note that the greedy
consensus greedily picks clades based on their clade credibility. We combine these
two ideas into another point estimator for CCD0. The CCD0-MSCC tree (‘S’ for
‘sum’) is the tree in the CCDO that maximizes the sum of clade credibilities.

205 When annotating a tree T' obtained with a CCD with clade support, an
alternative to the Monte Carlo probabilities from the MCMC run is to use the
probability of each clade of T to appear in a tree of the CCD. These values can
be computed efficiently with the CCD graph. We do not expect these values to
vary significantly in practice.

0 2.3 Datasets

We performed well-calibrated simulation studies [20] using the LinguaPhylo
packages LPhyStudio and LPhyBEAST [10] and BEAST2 [6] to obtain posterior
samples. We used both Yule tree and time-stamped coalescent simulations. (See
Appendix A for graphical models.)

305 For our Yule tree simulations we generated two sets of 250 trees and align-
ments with 10 and 20 (n) taxa, as well as 100 trees and alignments with 50,
100, 200 and 400 taxa. For all simulations (except n = 20) the birth rate of
the Yule [27] process was fixed to 25.0 (12.5 for n = 20). For the substitution
model, we used the HKY+G model [13]. The shape parameter for the gamma

s distribution of site rates was modelled using a log-normal distribution, with a
mean in log space of -1.0 and a standard deviation in log space of 0.5. The tran-
sition/transversion rate ratio (k) also followed a log-normal distribution, with
a mean in log space of 1.0 and a standard deviation in log space of 1.25. The
nucleotide base frequencies were independently simulated for each replicate from

a5 a Dirichlet distribution with a concentration parameter array of [5.0, 5.0, 5.0,
5.0]. The length of the sequence alignments was 300 sites (600 sites for n = 20)
and the mutation rate was fixed at 1.0, so that divergence ages were in units of
substitutions per site.

In our time-stamped coalescent [22] simulations, we generated 100 phyloge-

20  netic trees and alignments for each of four different taxa sizes n: 40, 80, 160, and
320. Each tree coalescent process had a population size parameter (6) drawn
from a log-normal distribution with a mean in log space of -2.4276, representing
a mean in real space of approximately 0.09, and a standard deviation in log
space of 0.5. The alignments consisted of 250 sites each. The youngest leaf was

w5 assigned age 0. The remaining leaf ages were distributed uniformly at random
between 0 and 0.2. All other parameters were as in the Yule simulations.

We refer to the resulting datasets with Coal40, ..., Coal320, YulelO, ...,
Yule400. For each simulation, we ran 2 chains with BEAST2 to obtain tree
samples with 35k trees (50k trees for n = 10 and 20). In all cases, the chains


https://doi.org/10.1101/2024.02.20.581316
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.20.581316; this version posted February 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A tractable tree distribution parameterized by clade probabilities 11

a0 were checked to have run sufficiently long to ensure convergence, and excess
burnin was discarded.

3 Results

We have presented a new tree distribution, CCDO0, and introduced new point
estimators. We now apply both CCDO and CCD1 to the datasets described

15 above to evaluate their point estimators and their performance as tractable tree
distributions.

3.1 Tree Distributions

To evaluate the accuracy and precision of CCD0, CCD1, and sample distribu-
tions, we used the datasets Yule10 and Yule20. For each simulation, we com-
a0 bined the 50k trees from the two runs into one sample distribution of 100k trees,
which acts as our (reference) golden distribution. These inference problems are
relatively easy, and therefore, the probability of each tree (in particular, the high
probability trees) is quite accurately estimated by the golden distributions.
For each simulation and each of the two runs, we used subsamples of size
s 3, 10, 30, 100, 300, 1k, 3k, 10k, and 30k (which we call subsimulations) to
generate a CCDO, a CCD1, and a sample distribution each. For each tree T in
the golden distribution, we then calculated the probability of T" in each of the
six distributions. Comparing these to the golden probabilities, we use different
statistical measures to evaluate the accuracy of each distribution.

10 Accuracy. For each subsimulation, we computed the mean absolute error (MAE)
of tree probabilities (mean over all trees of the golden distribution) for each dis-
tribution. Note that the MAE weights the accuracy on high-probability trees
more compared to lower probability trees. We then counted how often each dis-
tribution type had the lowest MAE, their number of wins. We further divided

35 the simulations into five equal-sized groups (each of size 100) based on their
entropy [19], that is, the sum of — Pr(T)log Pr(T) over all trees in the golden
distribution. (For Yulel0 the entropy bounds are set by 0.41 — 1.76 — 2.5 — 3.25
—4.30 — 7.68 with means of 1.20, 2.09, 2.84, 3.67, 5.30 and for Yule20 they are
0.09 — 2.29 — 3.22 — 4.03 — 5.08 — 7.73 with means of 1.70, 2.82, 3.61, 4.52, 5.93.)

0 Heatmaps of the wins in these categories for Yulel0 and Yule20 are shown
in Fig. 5, where each tile is colored by the distribution that has the majority of
wins and its win-% is given.

We observe that there are three regimes based on the sample size: Roughly,
from 3 to about 100 samples, CCDO is the most accurate method; from 100

s to 10k samples, CCD1 gives the best estimates; for the largest samples, the
sample distributions catch up with CCD1. A lower entropy seems to prolong the
dominance of CCDO0. The boundaries of the regimes also vary with the problem
size. The experiment confirms the regimes we expected: CCDO is the simplest
model and quickly provides a good estimate; CCD1 has more parameters, so
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needs longer to be saturated, whereas CCDO then starts to show its bias. In the
long run, the sample distributions provide the best estimate, which we can still
observe for 30k trees for Yule10, but no longer for Yule20.

very high 0.60 ' 0.94 0.99

062 086 0.99

CCD1

l CCDO

0.51 | 0.69 0.85

Entropy Category
5

g
H

071 051 0.69

very low 075 0.66 0.53

3 10 30 100 300 1000 3000
Sample Size

10000 30000 3 10 30 100 300 1000 3000

Sample Size

10000 30000

(a) Yulel0 (b) Yule20

Fig.5: Heatmap showing the majority wins based on MAE with simulations in
five entropy categories (higher means noisier/harder); brighter colors mean a
larger wining margin.

We also observe the regimes when we look at the mean relative error (MRE)
of tree probabilities; see Fig. 6. (Since the results look very similar for Yulel10
and Yule20, those for Yule10 can be found in Appendix B.) Note that for the
MRE, a small absolute difference in probability for low probability trees causes
a larger relative error. Since tree probabilities in the tail of the distribution
are not that well estimated, we consider thus only the trees in the 50% and
90% credibility intervals. For small sample sizes, CCDO performs better/equal
than CCD1 up to about subsample sizes of 30/300. Note that CCDO then does
not improve any further, indicating the limitations of the CCDO model. The
performance of CCD1 remains the best even for larger subsample sizes with the
sample distribution only slowly catching up.

Looking at the mean estimated rank of the top tree of the golden distribu-
tion in the other distributions for each simulation reveals a similar picture; see
Fig. 7. CCDO is best for subsample sizes up to and including 30, but above 100
CCD1 performs better on average; the sample distribution requires 1k samples
to become competitive.

Precision. To evaluate the precision, we computed the difference in the tree
probabilities between the two runs of each subsimulation. The mean over the 100
simulations for Yule20 are shown in Fig. 8. We observe that CCD0 and CCD1
consistently show a higher precision than the sample distribution for all sample
sizes. Note that high precision also implies a high stability.

Representativeness. Note that by construction for a given MCMC run, if the
sample distribution contains the true tree then so do CCD1 and CCDO; analo-
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Fig. 6: Median MRE on the trees in the 50% and 90% percentile per sample size
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Fig. 7: Mean rank of the golden mode tree in the other distributions per sample
size for Yule20.

gously, if CCD1 contains the true tree then so does CCDO0. Table 1 shows how
the percentage of the distributions (both runs per simulation) that contain the
true tree for the 250/100 simulations of the Yule20 and Yule50 dataset. For
the former, we observe that CCD0 and CCD1 cross the 95% threshold already

wo  for 100 samples, while the sample distribution only does so at 3k samples. The
difference becomes even more apparent for Yule50, where the sample distribu-
tion only reaches 3.5% with 30k sampled trees, while CCDO0 and CCD1 quickly
contain the true tree in the majority of simulations and also reach the 95%
threshold.
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Fig.8: Evaluating the precision of the distributions, we computed the mean of
mean absolute differences of tree probabilities by the distributions between two
runs per sample size for Yule20.

Table 1: Percentage of the true tree being contained in a distribution for Yule20
and Yule50 (out of the 250/100 simulations with 2 runs each).

Sample Size

Distributions 3 10 30 100 300 1k 3k 10k 30k
Q5 23.2 41 60.6 766 876 92.8 95.6 982 988
% CCD1 37 67.8 868 95.6 984 99.6 100 100 100
2 CCDO 398 758 90.8 96.8 99.2 99.8 100 100 100
25 0 0 0 0 0 0 1.5 2.5 3.5
3 CCD1 0 3.5 245 505 695 80.5 90 98 99.5

2 CCDO 0 9.5 46 70.5 87.5 94.5 100 99.5 100
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ws 3.2 Point Estimators

We evaluated the point estimators based on the following properties. Firstly, we
have the accuracy — a good point estimate should be close to the truth (low
Root Mean Squared Error or average distance; testable in simulation studies).
Further, we can measure the behaviour under different MCMC runs; a good point

a0 estimator should be precise (small distance between estimates) and, related to
that, stable (consistent distance to truth).

Holder et al. [15] argued for MRC trees as point estimates by showing that
if we define a loss function with penalties for missed and wrong clades, then the
MRC tree tries to minimize the loss. In fact, if we only report fully-resolved trees,

a5 then this is equivalent to the well-known Robinson-Foulds (RF) distance [21].
Recall that the Robinson-Foulds (RF) distance of two trees T and T” equals the
symmetric distance of their clade sets C(T') and C(T"”). Basically, the RF distance
measures how many clades the point estimate get wrong.

For our experiments, we used the datasets Yule50 to Yule400 and Coal40 to

20 C0al320. For each simulation and each of the two runs, we again used subsamples
of size 3, 10, 30, 100, 300, 1k, 3k, 10k, and 30k to generate a CCDO0, a CCD1, and
a sample distribution each. With the CCDs we computed the CCD-MAP trees
and the CCD0-MSCC tree, and based on the sample distribution we computed
the MCC tree and the greedy consensus tree. The CCDO-MSCC tree behaved

25 almost exactly as the CCD0O-MAP tree and we thus excluded it from the figures
to improve visual clarity. As reference we have the true tree, the one used to
generate the alignments, of each simulation. (We only show the results for the
for larger datasets here; those for the four smaller datasets are very similar and
thus only given in Appendix C.)

a0 Accuracy. Figure 9 shows the mean relative RF distance of the point estimates
to the true tree for different subsample sizes. The relative RF distance describes
the percentage of the n — 2 clades of the true tree an estimator got wrong. So
for e.g. Yule400, a relative RF distance of 0.08 (0.1) means that about 32 (resp.
40) of 398 nontrivial clades are different from the true tree. We observe that

a5 CCDO-MAP performs best from 3 to 30k trees. At around 30 to 100 trees for
the Yule simulations and around 100 to 300 trees for the coalescent simulations
greedy consensus catches up and performs equally well. CCD1-MAP gets close
to this performance but does not fully catch up. MCC on the other remains at
least 1% behind the top estimators.

wo  Precision. To evaluate the precision, we computed the mean distance between
the point estimates of two corresponding runs; see Fig. 10. We observe that
greedy consensus and the CCD based methods have significant higher precision
than MCC, with CCD1-MAP lacking slightly behind the others. For 1k trees,
the CCDO estimators and greedy consensus vary in less than 10 clades between

ws  runs, whereas MCC varies five- to tenfold of that. Note that a high precision
also implies a high stability (variance in distance to the true tree).
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Fig.9: The accuracy of the point estimates measured in terms of the mean rela-
tive RF distance to the true tree for different sample sizes of the large datasets.
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Fig. 10: The precision of the point estimates in terms of the RF distance, that is,
the mean RF distance of the point estimates of the two runs of each simulation.
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Running time. We also want to report on the running times of our imple-
mentations for the largest dataset Yule400. Constructing a CCD1 and CCDO
on subsamples of 30k trees (which requires parsing the file with 35k trees) took

0 on average 90 seconds, the same as constructing the MCC tree. Computing any
of the other point estimates took only few milliseconds. The bottleneck seems
to be parsing the large file and not the construction.

Resolvedness. We also tested in how many simulations the greedy consensus
tree was not fully resolved. The results in Table 2 show that for 300 trees and

s more, the greedy consensus tree was always fully resolved on our datasets. Note
that with better Monte Carlo estimates of clade frequencies, ties that can cause
unresolved trees become less likely.

Table 2: Number of unresolved greedy consensus trees out of 200 per dataset
and sample size.

Sample Size

Dataset 3 10 30 100 300 1k 3k 10k 30k
Yule50 13 3 1 0 0 0 0 0 0
Yulel00 24 8 1 0 0 0 0 0 0
Yule200 40 6 3 0 0 0 0 0 0
Yule400 59 21 5 1 0 0 0 0 0
Coal40 3 0 0 0 0 0 0 0 0
Coal80 23 3 0 0 0 0 0 0 0
Coall60 76 31 9 0 0 0 0 0 0
Coal320 162 92 9 2 0 0 0 0 0

4 Discussion

The CCD approach can be described as a “bias-variance trade-off” in the context
w0 of MCMC summarization. These tractable tree distributions exhibit a certain
level of bias (due to the independence assumptions employed) in exchange for
reduced variance in the estimates when faced with Monte Carlo error, particu-
larly in cases of low ESS (relative to the posterior variance in tree space). The
number of parameters of the models grow from CCDO (clades) to CCD1 (clade
s splits) and finally to sample distributions (trees), demanding an increasing num-
ber of trees to estimate them accurately. This is confirmed by our experiments
on easy and small problems, where we observed these three regimes in terms of
the number of sampled trees: First, CCDO is best for few samples in terms of
accuracy, precision, and stability, then CCD1 catches up and becomes the best
s method in the mid range, while the sample distribution requires a huge number
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of sampled trees to become competitive. Unsurprisingly, the bias of CCDO0 be-

comes apparent with a large enough number of uncorrelated samples. However,

sampling enough trees with MCMC to reach the second and third regime is not

feasible for non-trivial problems. Hence, CCDO0 offers the overall best posterior
a5 estimate for most problems in practice.

With an implementation that uses CCD graphs, many tasks related to tree
distributions can be performed efficiently (fixed-parameter tractable in the num-
ber of clades and clade splits). This includes sampling a tree, computing the prob-
ability of a tree, as required for example for BCA [1, 18], computing the MAP

w0 tree, and computing the entropy and the number of trees in the distribution. In
practice, the running time is dominated by parsing the trees while building the
CCD, whereas computing the MAP tree takes negligible time. While for large
and very diffuse (more prior-like) distributions the construction of a CCDO may
take noticeable time (minutes), it would still only be a fraction of the days or
w5 weeks needed to compute such a distribution via MCMC.

Concerning the point estimates, we demonstrated that the CCD-MAP trees
and the greedy consensus tree outperform the commonly used MCC tree in terms
of accuracy and precision. So not only do they produce better trees in general,
but they are also more robust to the random sampling process of MCMC. This

w0 finding is concerning given that the MCC tree has been the standard point
estimate used by almost every BEAST practitioner for decades. Additionally,
we find that the CCD0-MAP tree performs equally or better than the greedy
consensus tree, with the added benefit that both variants of the CCD-MAP tree
guarantee a fully resolved tree. While getting an unresolved greedy consensus
w5 tree may not be an issue for many problems (cf. Table 2), we want to point
out that (ii) in viral phylodynamics, it is typical to encounter (near)identical
sequences resulting in partially diffuse posteriors, thus increasing the probability
of encountering unresolved greedy consensus trees, and (ii) finding the most
resolved greedy consensus tree is an NP-hard problem. The CCD1-MAP tree
soo  does not match the accuracy of the CCDO-MAP tree in our experiments on
nontrivial problems, since even for large samples we do not reach the CCD1-
regime observed in smaller analyses. On the Yule20 dataset, we could not observe
a performance difference between the CCD1-MAP tree and CCDO-MAP tree.
For a sufficiently large number of uncorrelated samples, the CCD1-MAP tree is
sos  expected to perform equal or even better than the CCDO-MAP tree.

Despite the existence of various tree metrics our evaluation focuses on the
Robinson-Foulds distance. This choice is justified because all the point estimates
compared in the paper — CCD-MAP, MCC, and greedy consensus — are primar-
ily based on constructing a topology. Hence, the Robinson-Foulds distance is

s particularly suitable for evaluating their performance, especially in the context
of systematics, where one of the primary goals of a phylogeny is to obtain accu-
rate clade information [15]. In this context, the Robinson-Foulds metric directly
quantifies the performance when comparing a point estimate to the true tree.
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5 Conclusion

si5. This research has shown that the CCDO-MAP tree and the greedy consensus
should be the preferred point estimators for Bayesian phylogenetic inference of
time-trees. The restriction to sampled trees comes at such a high cost that pre-
vious caution of using unsampled trees as point estimates is not warranted. Fur-
thermore, CCDs offer better estimates of individual tree probabilities than the
s sample distribution. We can thus retire the MCC-from-sample point estimator.
While our approach was developed mainly for TreeAnnotator within the
BEAST?2 framework [6], our results are applicable to any sample of rooted tree
topologies that represents a posterior distribution. We have incorporated CCD-
based point estimators into the existing TreeAnnotator software enabling users
s2s  to easily access and use this new method on their data.*
In practice, time information of point estimates is also of great interest.
The CCD-based point estimates fit in the commonly used framework of esti-
mating the tree topology first followed by annotating it with divergence ages.
These latter methods are independent from CCDs. It would be interesting to see
s how greedy consensus and the CCD0-MAP tree combined with an annotation
method perform in comparison to other combined approaches and to methods
that estimate the topology and branch lengths at the same time, like the matrix
method [7].
We hope to use and further develop CCDs for other tasks when working with
s posterior distributions. This includes the computation of the credibility set of
tree topologies, MCMC convergence analysis (cf. Berling et al. [3]), and detection
of rogue taxa.
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Appendix

A Graphical Models of Datasets

data {
L = 300;
clockRate 1.0;
nCatGamma = 4;
birthRate 25.0;
n = 50;
}
model {
frequencies ~ Dirichlet(conc=[5.0, 5.0, 5.0, 5.0]);
kappa ~ LogNormal(meanlog=1.0, sdlog=1.25);
Q = hky(kappa=kappa, freq=frequencies);
shape ~ LogNormal (meanlog=-1.0, sdlog=0.5);
siteRates ~ DiscretizeGamma(shape=shape, ncat=nCatGamma, replicates=L);
phi ~ Yule(lambda=birthRate, n=n);
D ~ PhyloCTMC(L=L, Q=Q, mu=clockRate, siteRates=siteRates, tree=phi);

}
meanlog sdlog cone meanlog sdlog
1 1.25 —1 0.5
[LogNormal | | Dirichlet |

nCatGamma

frequencies birthRate n L
25

25 50 300

clockRate
1

PhyloCTMC

Fig.11: Iphy script and graphical model of Yule datasets.
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data {
L = 250;
clockRate = 1.0;
nCatGamma 4;

n = 40;
}
model {
frequencies ~ Dirichlet(conc=[5.0, 5.0, 5.0, 5.0]);
kappa ~ LogNormal(meanlog=1.0, sdlog=1.25);
Q = hky(kappa=kappa, freq=frequencies);
shape ~ LogNormal (meanlog=-1.0, sdlog=0.5);
siteRates ~ DiscretizeGamma(shape=shape, ncat=nCatGamma, replicates=L);
positiveAges ~ Uniform(lower=0, upper=0.2, replicates=n-1);
leafAges = concatArray([0.0], positiveAges);
popSize ~ LogNormal(meanlog=-2.4276, sdlog=0.5);
phi ~ Coalescent(ages=leafAges, n=n, theta=popSize);
D ~ PhyloCTMC(L=L, Q=Q, mu=clockRate, siteRates=siteRates, tree=phi);
}
meanlog || sdlog conc meanlog|| sdlog n meanlog|| sdlog
1 1.25 —2.4276(] 0.5 40 -1 0.5
|L0gN0rmal| | Dirichlet | |LogNorma1|

nCatGamma,
25

leafAges

clockRate
1

PhyloCTMC

Fig. 12: Iphy script and graphical model of Coalescent datasets.
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B Further Results on the Distributions

The mean MRE of tree probabilities of the trees in the 75% and 90% credibility
eo intervals for YulelO are shown in Figure 13 showing the same results as for
Yule20 in Fig. 6.
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Fig. 13: Mean Relative Error (MRE) on the trees in the 50% and 90% percentile
per sample size for YulelO.

Figure 14 shows the mean estimated rank of the top tree of the golden dis-
tribution in the other distributions for Yule10. One difference to the Yule20
results in Fig. 7 is that the difference between the sample distribution (CCD1)

ss  and CCDO is smaller (larger) not perform as badly for sample sizes up to 300
trees, but overall the same tendencies emerge.
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Fig. 14: Mean rank of the golden mode tree in the other distributions per sample
size for Yulel0.
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C Further Results on Point Estimators

For completeness, we provide here the accuracy and precision results of the point
estimators for the smaller datasets Yule50, Yule100, Coal40, and Coal80. The

0 accuracy results are shown in Fig. 15 (cf. Fig. 9) and the precision results are
shown in Fig. 16 (cf. Fig. 10).

Yule50 Yule100
0.10
0.09 .
Estimator
CCDO-MAP
Coald0 Coal8o — CCD1-MAP

—— greedy consensus

MCC

Distance to Truth (relative RF)

Sample Size

Fig. 15: The accuracy of the point estimates measured in terms of the mean rel-
ative RF distance to the true tree for different sample sizes of the large datasets.

In addition, we also computed the stability of the point estimates, that is, the
mean difference between the distances to the true tree between two corresponding
runs; see Fig. 17. We observe that the CCD-MAPs and greedy consensus are more

s stable than MCC, which is not surprising given their higher precision.
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Fig. 16: The precision of the point estimates in terms of the RF distance, that is,
the mean RF distance of the point estimates of the two runs of each simulation.

Yule50 Yule100

x\&&:

Yule200 Yule400

OFNWA

6 12 .
5 &: : z¥-s::: -
6
2 3 - _
0 3 CCDO-MAP
Coal40 Coalso — CCD1-MAP
1.5 3 —— greedy consensus
1.0 2
0.5 1 — MCC
0.0 0
Coall60 Coal320

Stability of Estimator (number of clades)

onuI~
ouwiowm

=

oo

0
2 O 0 O P OO O O 2P O 0 O O O O O O
YOS S S Ny OSSOSO
\/’b,\/Q,bQQQQQ N%@%OQQQQ
N )
Sample Size

Fig. 17: The stability of the point estimates in terms of the RF distance, that is,
the mean difference of RF distance of the point estimate to the truth of the two
runs of each simulation.
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