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30 Highlight

31  Wefound strong plasticity to growth environment in many phenotypic traits, but little effect
32  of parental environment, revealing capacity to respond rapidly to climate warming, and

33  potentia for evolutionary change.

34

35 Abstract

36  Phenotypic plasticity and rapid evolution are fundamental processes by which organisms can
37 maintain their function and fitness in the face of environmental changes. Here we quantified
38 theplasticity and evolutionary potential of an alpine herb Wahlenbergia ceracea. Utilising its
39  mixed-mating system, we generated outcrossed and self-pollinated families that were grown
40 ineither cool or warm environments, and that had parents that had also been grown in either
41  cool or warm environments. We then analysed the contribution of a range of environmental
42  and genetic factors to variation in nine phenotypic traits including phenology, leaf mass per
43  area, photosynthetic function, thermal tolerance, and reproductive fitness. The strongest

44  effect was that of current growth temperature, indicating strong phenotypic plasticity. All

45  traits except thermal tolerance were plastic, whereby warm-grown plants flowered earlier,

46  grew larger, produced more reproductive stems compared to cool-grown plants. Flowering
47  onset and biomass were heritable and under selection, with early flowering and larger plants
48  having higher relative fitness. There was little evidence for transgenerational plasticity,

49  materna effects, or genotype-by-environment interactions. Inbreeding delayed flowering and
50 reduced reproductive fitness and biomass. Overall, we found that W. ceracea has capacity to

51  respond rapidly to climate warming via plasticity, and the potential for evolutionary change.
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52 Introduction

53  Climate change is exposing organisms to ever increasing mean temperatures and more

54  frequent extreme events (Harris et al., 2018). Temperature is a universal, pervasive

55 environmental variable that limits aspecies’ occupiable niche, especialy for plants as they
56  cannot move to escape unfavourable temperatures (Nievola et al., 2017; Tattersall et al.,

57  2012; Walther, 2003). It is therefore unsurprising that steadily warming mean temperatures
58  have been observed to affect biological processes such as phenology globally (Parmesan and
59  Yohe, 2003; Walther et al., 2002). For example, in warmer years the date of flowering onset
60 in plantsoccurs considerably earlier, and has been shown to be tightly related to the pattern
61  of mean climatic warming (Parmesan and Hanley, 2015), especially in high elevation plants
62 (Dorji et al., 2020; Giménez-Benavides et al., 2011). Indirect reproductive effects dueto

63  phenologica changesfrom warming, as well as direct effects on fertility and reproductive
64 traits, can also have conseguences for individual- and population-level fitness (Anderson,

65  2016). To determine the realised impact of warming on natural selection and evolutionary
66  processes, we must assess how warming affects phenotypic responses and fitness, and how
67  thesevary among individualsin apopulation.

68 There are several mechanisms, not mutually exclusive, by which plants can tolerate
69 climatic and environmental changes. Plants could already have a high natural resilience or
70  standing tolerance to warmer temperatures, thereby partially or completely avoiding thermal
71  dtress (Andrew et al., 2023; De Kort et al., 2020). Alternatively, phenotypic plasticity — the
72  capacity of a single genotype to exhibit multiple phenotypes based on changes in the

73 environment (Bradshaw, 1965, 2006) — could facilitate short-term changes to their

74  phenotype, to limit exposure to stress effects or to mitigate damage (Brooker et al., 2022; Fox
75 etal., 2019; Nicotraet al., 2010). For instance, exposure to increased mean temperatures can
76  benefit some plants by acclimating (or priming) them to face more stressful conditionsin a
77  more prepared state, so that extreme events have a lesser impact (Hilker et al., 2016). The
78  widespread occurrence of phenotypic plasticity generates assumptions that it is an

79  evolutionary adaptation to environmental heterogeneity (Hendry, 2016). In other words,

80  selection will favour plasticity because it improves an individual’s performance or fitnessin a
81 particular environment and would therefore be considered adaptive (Bonser, 2021). Genotype
82  x environment interactions (GxE) refer to variation in plastic responses among genotypes

83  within apopulation, which is essential for plasticity to evolve (Josephs, 2018). Y et, evidence
84  suggeststhat plasticity being costly is about as common as it is being beneficial; the exact
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85  balance will depends on the severity of the stress and the relative strengths of the costs and
86  benefits of plasticity (Auld et al., 2010; Hendry, 2016; van Buskirk and Steiner, 2009).
87  Indeed, there is emerging evidence that trait canalisation (i.e., no plasticity, also called
88  robustness) in response to warming may be favoured when costs of plasticity are high or
89  plasticity is maladaptive (Arnold et al., 2019b; Stinchcombe et al., 2004; Svensson et al.,
90  2020).
91 While plasticity in response to warming is common in plants (Nicotra et al., 2010),
92  thedegreeto which different traits respond can differ markedly. From a global meta-analysis,
93 plasticity in leaf morphology, plant biomass, and several physiological traits (including
94  chlorophyll content and photosynthetic efficiency: Fy/Fy and 6PSII) al indicate strong
95  responses to increasing mean annual temperature (Stotz et al., 2021). However, within a
96  gpeciesthere may be substantial inter-trait variation in responses. For example, the alpine
97  herb Wahlenbergia ceracea exhibits different patterns of plasticity in response to
98 temperature, depending on trait type. Warmer, but not stressful, growth temperatures increase
99 leaf mass per area (LMA), heat tolerance traits, and reproductive output (flowers and
100 capsules), and also induce earlier flowering, decreased photosynthetic efficiency, and
101  lowered biomass (Arnold et al., 2022). Along with the variation in plastic responses among
102  traits of different types, thereis also substantial intraspecific variation in plastic responses to
103  temperature (Arnold et al., 2022).
104 The patterns of selection acting on plant traits may also be affected by climate and
105  environmental factors. Climate change has already had widespread effects on plant traits,
106  especialy the timing of reproductive events, where earlier flowering under warmer
107  conditions almost ubiquitously increases fitness and is therefore under strong directional
108  selection (Anderson, 2016; Anderson et al., 2012; Ehrlén and Valdés, 2020; Franks et al .,
109  2007; Wadgymar et al., 2018b). The relationship between functional traits and fitness
110  depends on the environment, yet other than phenology, empirical tests of selection on
111  functional traits due to climate warming are uncommon (Geber and Griffen, 2003; Kimball et
112 al., 2012). Totland (1999) found that Ranunculus acris were under selection for more flowers
113 inboth control and warmed field conditions, but selection for larger leaf size was only
114  apparent in control conditions. Using an urban (warmer and drier) environment as a climate
115 change analogueto test for its effect on selection, Lambrecht et al. (2016) found strong
116  evidence for selection on functional traits, including increased plant size, leaf number,

117  specific leaf area, and later senescence in urban conditionsin Crepis sancta. Establishing
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118  which phenotypic traits are correlated with fitness (i.e., under selection) under benign and
119  stressful conditionsisa crucial component for understanding the potential for rapid

120  evolutionary responses (Anderson, 2016). For evolutionary change to keep pace with climate
121  change, the phenotypic trait under selection must also have heritable variation on which

122 selection can act (Scheiner et al., 2020). However, there are also alternative mechanisms of
123  affecting phenotype change across generations.

124 Transgenerational plasticity or parental environmental effects can be demonstrated
125  when the conditions to which a parent is exposed shape offspring phenotype function and
126  fitnessin their environment (Bonduriansky, 2021; Mousseau and Fox, 1998), most cases of
127  which are mediated by maternal effects (Herman and Sultan, 2011). A factorial design of at
128  least two offspring and two parental environments that match or mismatch allows

129  transgenerational and within-generation plasticity to be tested simultaneoudy (Uller et al.,
130  2013). Adaptive transgenerational plasticity (also called ‘anticipatory parental effects’)

131  theory posits that selection on parenta responses to their environment confers benefits to the
132  offspring when their environment matches that of the parents, particularly when the

133 environmental conditions are stressful (Herman and Sultan, 2011; Uller, 2008). Conversely,
134  when the parent and offspring environments are not stable or are unpredictable, or when they
135  mismatch (e.g., due to change in season or annual change), there may be a cost to the

136  offspring of producing a phenotype that reflects the parental environment rather than the

137  current environment (Enggvist and Reinhold, 2016).

138 A previous meta-analysis has revealed little evidence for transgenerational plasticity
139  conferring a clear benefit in plants, especially when close proxies for fitness are used (Uller
140 etal., 2013). Yet, there are cases of strong parental effects in response to temperaturein

141  plants. For example, Whittle et al. (2009) found Arabidopsis thaliana plants substantially
142  increased reproductive output under relatively hot conditions (30°C) when prior generations
143 had also been grown in the same hot conditions. There is also generally stronger evidence for
144  transgenerational plasticity affecting early life traits like seed germination. For example,

145  Wadgymar et al. (2018a) showed greater and more variable transgenerational plasticity than
146  within-generation plasticity in germination of Boechera stricta plants across an elevation
147  gradient. The effects of parental temperature in W. ceracea have also been found to affect
148  germination and dormancy patterns, but to alesser extent than the temperaturesin which
149  seedsgerminated (Notarnicola et al., 2023b; Wang et al., 2021).
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150 Climatic warming is expected to increase rates of self-pollination in plants with

151  mixed-mating strategies (i.e., those that can facultatively self-pollinate in the absence of
152 cross-pollination), due to phenological mismatches with pollinators (Hegland et al., 2009).
153  However, while self-pollination is a contingency strategy that may assure reproductive

154  successin the face of climate warming, inbreeding depression may be worsened in stressful
155  environments (Armbruster and Reed, 2005) and it also reduces adaptive potential (Hamann et
156  al., 2021). While the effects of inbreeding under some stressors associated with climate

157  change (drought, herbivory, nutrient deficiency) have been studied in mixed-mating species
158 (Hamann et al., 2021), to our knowledge only one study has investigated the effects of

159  inbreeding with warming in a mixed-mating species (Wang et al., 2021).

160 In the current study, we used a large-scal e glasshouse experiment to measure asuite
161  of phenotypic traits on outcrossed and self-pollinated W. ceracea plants, from families that
162  were grown in either cool or warm environments that had parents that were grown in either

163  cool or warm environments. We addressed the following questions (Q):

164 1) What is the phenotypic plasticity in asuite of phenotypic traits in response to growth
165 temperature, and is there evidence of transgenerational plasticity?

166 2) Arethe phenotypic traits heritable, and are there either maternal effects or GXE

167 interactions?

168 3) What is selection on the traits and how does it vary with growth temperature? And is
169 there a benefit for offspring that are grown under conditions that match the conditions
170 their parents were grown in?

171 4) Arethere effects of inbreeding on the suite of traits, and does any inbreeding

172 depression vary with temperature?

173 For Q1, we hypothesised that the warmer growth temperature would be stressful,

174  reducing plant function and biomass, but that plants would also respond by flowering earlier,
175  which may compensate to result in equal or higher fitness, and that acclimatory processes
176  would improve heat tolerance. For Q2, we hypothesised that the heritable traits would be
177  flowering onset, biomass, LMA, and heat tolerance, based on previous findings of highly
178  plastic responses to temperature and intraspecific variation in these responses (Arnold et al.,
179  2022). For Q3, we hypothesised that traits under selection would be the same as those

180 heritablein Q2, and that the parental environment would have a small effect on offspring
181  phenotype (i.e., development of seed under parental temperatures that matched the offspring
182  growth temperature would improve fitness compared to mismatched offspring). For Q4, we
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183  predicted that inbreeding would reduce fitness and that there would be significant genetic
184  variation among families. Addressing this series of questions together will elucidate the

185  evolutionary potential of functional responses to warmer growth temperatures that are

186  expected under future climate change.

187

188 Materialsand methods

189  Speciesdescription and seed source and FO-F2 generations

190 Wahlenbergia ceracea Lothian (Campanulaceae) waxy bluebell is a short-lived, protandrous,
191  and facultatively autogamous biennial herb that is sparsely distributed across south-eastern
192  Australiaand Tasmania (Nicotraet al., 2015). For this study, seeds were collected between
193 1590 mand 2100 m a.s.l. from Kosciuszko National Park, NSW, Australia (36.43°S,

194  148.33°E) in 2015 and 2016 (see Notarnicola et al., 2021 for further details), and brought to
195 The Australian National University, Canberra, ACT, Australia. These seeds formed the FO
196  generation: we describe below their rearing and subsequent breeding design for F1, F2, and
197  F3 generations, with the F3 plants then being used for the analyses here of phenotypic

198  plasticity, transgenerational plasticity, heritable genetic variance, and inbreeding depression.
199

200 FO, F1, and F2 generations

201  Detailed descriptions of the conditions and breeding design for producing plants for

202  generations FO to F3 in this study have been given previously (Arnold et al., 2022;

203  Notarnicolaet al., 2021; Wang et al., 2021). Briefly, FO plants grown from field-collected
204  seedswere raised in glasshouses that mimicked average alpine summer temperatures

205  (25/15°C during germination and growth, which was reduced to 20/15°C at peak flowering).
206  F1 plants were produced by crossing 48 FO plants as pollen donors with 48 FO plants as ovule
207  donors (96 plants from 63 unique FO families) to produce 48 F1 families by hand-pollination.
208 F1 plants were raised under the same conditions as the FO plants (Supplementary Fig. S1).
209  The F2 generation was produced using a partial-diallel (maximising the number of parents
210  used to generate families) half-sib breeding design in which 12 F1 plants were used as pollen
211 donors and each outcrossed with at least four unrelated pollen receivers (48 pollen receivers
212 intotal). F2 plants were grown in glasshouses under two temperature regimes (‘ cool’:

213 20/15°C day/night conditions and ‘warm’ 30/25°C day/night conditions) that hereafter

214  constitute the ‘parental temperature’.

215
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216  F3breeding design and pedigree

217  Within each parental temperature treatment, 12 F2 lines were assigned as pollen donors and
218  these were each outcrossed with four unrelated pollen receivers, such that cool and warm F2
219  lineswere full-sibs of the same F1 parentage. Each of the F2 parent plants in each treatment
220  were aso self-pollinated to generate 12 F3 inbred maternal and 11 inbred paternal lines, in
221  addition to the 12 outcrossed F3 lines that were reciprocally outcrossed from paired F2 pollen
222 donors from each parental temperature treatment (Supplementary Fig. S1). In total, there
223 were 96 outcrossed F3 families and 46 inbred F3 families, all controlled by hand-pollination
224  and bagging flowers. The capsules that were formed after hand-pollination of the F2 plants
225  wereremoved after they had opened, dried, and the seeds had browned. All seeds taken from
226  these capsules were stored in adesiccator for at |east seven weeks at ~20°C before the

227  beginning of the experiment.

228

229  F3 growth experiment and temperature treatments

230  For each F3 cross, 20-30 seeds from a single capsule were sown across two 50 mm Petri

231  dishes containing 1% agar, each corresponding to a growth temperature treatment. The dishes
232 were sealed and moved to an incubator for cold stratification at 5°C in darkness for six weeks
233 toimprove germination success (Wang et al., 2021). At least eight healthy seedlings per dish
234 were transplanted into punnets containing seed raising mix (Debco Pty Ltd, VIC, Australia)
235  and moved into common glasshouse conditions (25/18°C) to grow for two months. Liquid
236  fertiliser (Thrive Soluble All Purpose Plant Food; Yates, NSW, Australia) at a concentration
237  of 0.5gL™" was added regularly to promote growth and seedlings were watered twice daily.
238  Upto eight healthy seedlings (6-40 mm in diameter) from each family were transplanted into
239  individua plastic pots (125 mm diameter, ~600 mL) filled with soil suitable for Australian
240  natives combined with 3 g L™* of low phosphorus slow-release fertiliser (Scotts Osmocote
241  Plus Trace Elements: Native Gardens; Evergreen Garden Care Australia, NSW, Australia).
242 The potted F3 plants were moved to their growth temperatur e treatment seven days
243 after transplantation (commenced 7 November 2019). For the cool treatment, plants were
244 placed in alarge glasshouse room set to 20/1507 (day/night) under natural photoperiod and
245  for the warm treatment, plants were placed in an adjacent glasshouse room set to 30/200]

246 (day/night). An automatic shade screen was active between 12:00-14:30 and when external
247  temperatures exceeded 30°C for the cool treatment and 33°C for the warm treatment, to

248  prevent excess solar radiation and overheating of the glasshouses, otherwise plants received
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249  naturd light. Plants were watered daily initially until growing well and then watered to

250 weight to ensure that the soil did not dry out and water was not limiting. As such, the plants
251  inthe warm treatment received more frequent watering than did the cool treatment. Pest

252 treatments (VectoBac larvicide for treating fungus gnats and sulphur evaporation for treating
253 powdery mildew) were conducted as required and liquid fertiliser 1 g L™ was applied

254  approximately fortnightly as required for maintaining healthy growth. Within each treatment,
255  we randomised the distribution of one plant from each family to each of four blocks

256  consisting of 29 columns and five rows, which was aso replicated across both rooms. Not all
257  families had eight healthy plants, but each had at least five plants that were distributed

258  randomly across both treatments. Empty pots were used in place of a missing plant, so that
259  theposition layout was preserved across all blocks. In total, there were 1,024 plants (out of an
260 ideal 1,152) at the beginning of the growth experiment (512 in each growth treatment).

261

262  F3 phenotypic trait measurement

263  We measured a series of phenotypic traits on the F3 plants grown in the two temperature
264  treatments. The date of the first flower produced by every plant was recorded throughout the
265  experiment, which was checked at least every 2-3 days, and this was converted to the day of
266  flowering onset since the beginning of the growth temperature treatments. After four weeks
267  inthetreatments (9 January 2020), we began phenotyping leaves for thermal tolerance limits
268  and photosynthetic parameters using chlorophyll fluorescence. We used a Pulse Amplitude
269  Modulated (PAM) chlorophyll fluorescence imaging system (M AXI-Imaging-PAM, Heinz
270  Walz GmbH, Effeltrich, Germany) to measure the photosystem |1 (PSII) operating efficiency
271 (gPS) and the maximum quantum efficiency of PSI1 photochemistry (Fv/Fy). We also

272 measured the heat and cold tolerance limits of leaves by measuring the temperature-

273 dependent change in chlorophyll fluorescence (T-Fo) using controllable thermoelectric Peltier
274  plates (plate: CP-121HT; controller: TC-36-25; TE-Technology, Inc., Michigan, USA) in
275  conjunction with imaging fluorimeters to extract heat tolerance (Teit-hot) and cold tolerance
276 (Twit-cod). The measurement protocols have been described in detail in Arnold et al. (2021)
277  and areincluded in Supplementary Methods. Briefly, one Imaging-PAM system was set up
278  for measuring the two photosystem Il traits (operating efficiency [¢PSII] and the maximum
279  quantum efficiency [Fv/Fm]) and heat tolerance limits, and separate similar system was set up
280  for measuring cold tolerance limits.

281
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282  The hailstormand measurements at harvest

283  Unfortunately, on 20 January 2020, one of the most severe hailstormsin recorded history in
284  Canberradamaged the glasshouses containing the plants (Rickards and Watson, 2020). There
285  was no direct damage to the study plants because a shade screen was present, but the two
286  controlled temperature treatments were lost due to damaged glasshouse infrastructure.

287  Cooling systems were restored 21 January 2020, but heating could not be restored. To ensure
288  wedid not therefore lose the investment in the long-term experiment, we took measurements
289  onal plantsimmediately following the hailstorm. Specifically, we measured chlorophyll

290  content using a handheld chlorophyll meter (SPAD-502; Konica MinoltaInc., Osaka, Japan)
291  and leaf mass per area (LMA) on all plants within four days following the storm. Three

292  healthy leaves were removed from each plant, immediately measured for chlorophyll content,
293  and then scanned for leaf area before being placed in adrying oven at 60°C for > 72 h for
294  weighing and calculating LMA. We had initially planned to continue the experiment until
295 autumn (afurther eight weeks), reduce temperatures to induce senescence, and then measure
296 lifetime fitness and biomass. However, since controlled senescence was not possible, and

297  sincedifferent plants were at various stages of flowering and producing seed at the time of
298  thestorm, we used a measure of reproductive fitness across all plants: the total number of
299  reproductive stems on an individual (i.e., flowers, capsules, and hardened, brown stems that
300 clearly indicated a capsule had matured on the stem). We confirmed that the total number of
301 reproductive stems was a suitable index of fitness by estimating its correlation with the

302 harvested capsule mass x number of capsules weighed from a representative subset of 100
303 plants. We found a strong correlation (Pearson’sr = 0.873 £+ 0.056), which did not differ

304 among treatments (Supplementary Table S2, Supplementary Fig. S2). On 24-25 January

305 2020, we counted the number of reproductive stems on all plants, as well as collecting mature
306  capsules. However, due to the hailstorm alternative controlled temperature growth space was
307 limited and we elected to systematically harvested half of al plants (blocks 2 and 4)

308 following the reproductive stem count. We harvested these plants and measured dry above-
309 ground biomassin bags for drying at 60°C for > 72 h and subsequent weighing.

310 Plants from the blocks that were not harvested immediately following the hailstorm
311  (blocks 1 and 3) were moved to four controlled environment Growth Capsules (Photon

312 Systems Instruments, Brno, Czech Republic) run by the Australian Plant Phenomics Facility,
313  ANU where we aimed to continue the experiment. The Growth Capsules were set to match

314  the glasshouse conditions as best possible, however the plants did not thrive in the Growth

10
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315  Capsules dueto lower light, reduced air flow, and higher humidity. After 10 days in Growth
316  Capsule conditions, we therefore measured thermal tolerance and chlorophyll fluorescence
317 traits on the plants that had not yet been measured, and then ceased the experiment on 13-14
318  February 2020. We repeated the reproductive stem count and added new stems to the count
319  from 24-25 January 2020, and then harvested these plants for biomass as above.
320 The sample sizes for each trait were n = 1,023 for number of reproductive stems,
321  n=1,003 for flowering onset, n = 988 for above-ground biomass, n = 984 for chlorophyll
322  content, n=975for LMA, n =717 for ¢PSII, n = 717 for Fy/Fm, n = 685 for Tit-hot, and
323 n =707 for Taitcoid- The inherent differences between the pre- and post-hailstorm
324  measurements and harvesting are explicitly accounted for in our statistical analyses.
325
326  Satistical analyses
327  For al analyses of the F3 phenotypic traits, models were fit using the R package brms
328  (Burkner, 2018) in the R environment for statistical computing v4.3.1 (R Core Team, 2020).
329  All brm models were run using four chains, each with 4000 iterations, 2000 of which were
330 sampling, with adapt_delta > 0.99 and max_treedepth = 15 so that the majority of R < 1.005,
331 indicating that chains had effectively mixed. All response variable distributions exhibited
332  some skewness, therefore we set skew_normal distributions for the univariate brm models,
333  which are an extension of the normal (Gaussian) distribution family that also estimate a skew
334  parameter. We verified that skew-normal models were a good fit to the data and that they
335  were abetter fit than models using a Gaussian distribution with posterior predictive checking
336 (Gabry et al., 2019). To facilitate model convergence, ¢PSII and F/Fy were both scaled by a
337  factor of ten to avoid very small parameter estimates.
338 To test the main effects of growth temperature, parental temperature, and inbreeding
339 oneach trait and its plasticity, we initially fit univariate random regression mixed models
340 (RRMMs; Arnold et al., 2019a) that included a structured pedigree (often called an ‘animal
341  modéd'; Kruuk, 2004; Wilson et al., 2010), following the R brms form:

y ~ Growth temp. x Parental temp. + Inbreed + Hail +

(1|Block) + (1|Maternal) + (1 + Growth temp. |A)

342  yisthe phenotypic trait. Fixed effects were Growth temp., atwo-level factor of growth
343  temperature; Parental temp., atwo-level factor of parental temperature; and their interaction;
344  Inbreed, atwo-level factor of inbreeding (outcrossed or self-pollinated); and Hail, atwo-level

345 factor of whether the measurement was taken before or after the hailstorm. Random

11


https://doi.org/10.1101/2024.02.20.581287
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.20.581287; this version posted February 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

346 intercepts were: Block, afour-level factor of experimental block; Maternal, an identification
347  term for the F2 ovule donor to quantify maternal effects with 102 levels; and A, the additive
348  genetic component with covariance structure defined by a pedigree of relatedness values

349  among individuals, which was converted into an inverse A matrix using the MCMCglmm
350 package (Hadfield, 2010). We included the random slope term Growth temp. with the A term
351 totest for agenotype x environment (GxE) interaction. To evaluate whether the GXE term
352  wasimportant, we compared models with and without the Growth temp. slope term using
353 leave-one-out cross validation (LOO-CV) to estimate predictive accuracy of each candidate
354 mode (Vehtari et al., 2017). We then calculated Bayesian stacking weights, which evaluate
355 the average performance of the combined posterior predictive distribution of candidate

356 models(Yao et al., 2018). We report the full model including the slope term given that our
357  models were not overparameterized relative to our sample sizes. We include R? values for
358  mixed-effects models: marginal R? (mR?) to estimate variance explained by fixed effects and
359 the difference between mR? and conditional R (cR?) to estimate variance explained by

360 random effects (Nakagawa and Schielzeth, 2013) using the perfor mance package (LUdecke et
361 al., 2021).

362 To calculate narrow-sense heritability h® we took the posterior distribution of the
363  additive genetic variance Va from the animal model and divided it by the total phenotypic
364  variance Vp, Wwhere Vp = (Va + Vg + WV + VR), and Vg is block variance, Vv is maternal

365 variance, and Vrisresidual variance. Since we included a maternal effect term in the models,
366  we also estimated the contribution of direct maternal effects Nt as Viu/Ve.

367 To test for linear (directional) and quadratic (stabilising or disruptive) selection on
368 traits, we fit multiple regression models of thetrait and fitness, smilarly to Noble et al.

369  (2013). We estimated standardised selection gradients by converting the number of

370  reproductive stems, which was our proxy for fitness, to relative fitness (w, by dividing by the
371  mean of each growth treatment) and each trait was mean-centred and standardised to unit
372  variance (Lande and Arnold, 1983), for the overall (all plants), cool-grown plants, and warm-
373 grown plants separately. For the overall model we also included linear and non-linear

374  interaction termswith the trait and temperature to determine if selection varied with

375 temperature. Linear selection gradients (3) came from regression models without quadratic
376  and the growth temperature x parental temperature interaction terms, whereas quadratic

377  selection gradients (y) come from models including these terms (Lande and Arnold, 1983).
378  Quadratic terms and their 95% credible intervals (95% CI) were doubled prior to reporting,

12


https://doi.org/10.1101/2024.02.20.581287
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.20.581287; this version posted February 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

379  such that they can beinterpreted as stabilising or disruptive selection gradients (Stinchcombe
380 etal., 2008).

381

382  Noteon the effects of the hailstormand later harvest date or later trait measurements

383  Theimpact of the hailstorm (which caused a delay in measurement of sometraits and later
384  harvest timefor asubset of plants) was evident in some traits. Importantly, all models in our
385 analysesincluded aterm to account for this effect. As expected, plants that were harvested
386 later had agreater number of reproductive stems and greater biomass than plants harvested
387 immediately after the hailstorm. The plants that had traits measured post-hailstorm also had
388  dlightly higher chlorophyll content and Fy/Fy, but oPSII and the thermal tolerance traits
389  (Tait-hot and Tait-coq) Were unaffected by the hailstorm (Tables 1 and 2).

390

391  Results

392  QI1: What is the phenotypic plasticity in a suite of phenotypic traits in response to growth
393 temperature, and isthere evidence of transgenerational plasticity?

394 Totest for plasticity in trait responses to temperature, we compared the change in mean trait
395  vaue between cool and warm growth temperatures among parental temperature and cross
396 type (self-pollinated vs outcrossed) groups. We present the overall mean effectsin Fig. 1 and
397 mean treatment- and family-level reaction normsin Supplementary Fig. S3, aswell as

398 summary statistics for each trait in Supplementary Table S1. Warm growth temperature had a
399 dignificant positive effect on reproductive fitness, biomass, chlorophyll content, LMA,

400 Fy/Fm, and 0PSII (Fig. 1A,C-G, Tables 1, 2). Flowering onset also occurred significantly
401  earlier (7.8 days on average) in warm-grown plants (Fig. 1B, Table 1). Seven traits showed
402  dignificant phenotypic plasticity to growth temperature, with extensive variation around these
403  average effects (Supplementary Fig. S3).

404 There was no evidence of growth temperature effects on either heat or cold tolerance
405  of PSII. Although the warm-grown plants exhibited a slightly higher Tgit.no than the cool-
406  grown plants, as would be expected with athermal acclimation response, this difference was
407 not significant and the average response was canalised (Fig. 1H, Table 2). Similarly, Tgit-cold
408  did not differ significantly between treatments and was also, on average, canalised (Fig. 1,
409 Table2).
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411  Fig. 1: Mean population-level reaction norms of phenotypic traits: (A) total reproductive
412 stems, (B) flowering onset, (C) biomass, (D) chlorophyll content, (E) LMA, aswell as

413  photosystem traits: (F) Fv/Fu and (G) ¢PSII, and thermal tolerance traits: (H) Tit-hot and (1)
414 Taitcod IN response to growth temperature treatments. Within each cool and warm growth
415  temperature treatment, plants were grown under an environment that was either cool (blues)
416  or warm (oranges) and were offspring plants were from either outcrossed (solid lines) or self-
417  pollinated (dotted lines) parents. Each parental x growth temperature combination is coloured
418 asfollows: parental plants grown under a cool environment that had offspring grown ini) a
419  cool environment (dark blue) or ii) awarm environment (light orange), and parental plants
420 grown under a warm environment that had offspring grown in iii) a cool environment (light
421  blue) or iv) awarm environment (dark orange). Reaction norms are drawn based on

422  connections between a shared parental environment and cross type (e.g., parental cool x

423 growth cool and outcrossed is connected to parental cool x growth warm and outcrossed).
424  Points and error bars represent means + S.E. of the raw data.
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Table 1: Model output summaries for five phenotypic traits representing reproductive fitness, phenology, biomass, and two leaf traits.

Total reproductive stems

Response variable: (n = 989)

Flowering onset
(n=1,003)

Dry biomass
(n=1987)

Chlorophyll content
(n=983)

LMA
(n=974)

Fixed effects

Estimate [95% Cl ]

Intercept (cool Growth temp.,
cool Parental temp.,
outcrossed)

Growth temp. (warm)

Parental temp. (warm)

Growth temp. x Parental temp.
Cross type (self-pollinated) -7.830[-10.957, -4.789]
Harvest date (later) 6.496 [4.119, 8.877]
Random effects: variance components

Estimate (SD) [95% Cl]

Vg intercept (block)

V, intercept (additive genetic)
V, slope (GXE) *

V, intercept-slope correlation
Vv intercept (maternal)

Vg (residual)

Model stacking weights

35.907 [28.982, 42.255]

3.946 [0.843, 7.060]
-1.393[-5.438, 2.449]
-0.543[-4.781, 3.743]

4,587 [1.216, 14.030]
4.271[0.743,7.317]
1.830 [0.070, 5.025]

-0.023[-0.927, 0.929)]
4.343[0.744, 7.101]
21.415 [20.277, 22.567]

Model with GxE * 0.000
Model without GXE * 1.000
RZ

mR? (fixed effects) 0.247
cR? - mR? (random effects) 0.561

45.421[43.721, 47.094]

-7.899[-8.861, -6.913]
1.153[-0.336, 2.676]

-0.592 [-1.866, 0.626]
1.492[0.458, 2.525]

0.409 [0.012, 1.709]
2.808 [1.948, 3.588]
1.130[0.232, 2.021]
-0.793[-0.993, -0.242]
0.964 [0.044, 2.059]
5.268 [5.009, 5.546]

0.396
0.604

0.582
0.241

7.550 [6.732, 8.343]

0.745[0.173, 1.344]
0.104 [-0.561, 0.758]
-0.153[-0.915, 0.608]

-1.297 [-1.833, -0.744]
4.416 [4.007, 4.820]

0.375[0.020, 1.401]
0.787 [0.336, 1.205]
0.664 [0.179, 1.147]
0.575 [-0.178, 0.984]
0.596 [0.051, 1.119]
2.788 [2.653, 2.930]

0.453
0.547

0.546
0.171

32.910 [31.322, 34.666]

3.186[1.908, 4.436]
-0.204[-1.468, 1.074]
0.265 [-1.282, 1.816]

0.785 [-0.227, 1.793]
1.173[0.376, 1.941]

0.990 [0.085, 3.328]
1.416 [0.274, 2.297]
1.538[0.219, 2.732]
0.124 [-0.678, 0.926]
1.018 [0.072, 2.015]
5.663 [5.391, 5.949]

0.594
0.406

0.228
0.387

1.044[0.946, 1.134]

0.100[0.047, 0.155]
0.025 [-0.024, 0.073]
-0.059 [-0.127, 0.011]

-0.002 [-0.041, 0.037]
0.155 [0.120, 0.189]

0.071 [0.018, 0.242]
0.028 [0.002, 0.063]
0.062 [0.014, 0.106]
0.294 [-0.735, 0.967]
0.028 [0.002, 0.063]
0.285 [0.271, 0.301]

0.716
0.284

0.026
0.032

Estimates are posterior modes with [95% Cls]; bold represents fixed effects that have 95% Cls that are distinct from zero; Harvest date refers to
plants that were harvested either immediately following the hailstorm or later, see Methods for details; * Model outputs reported are full models

that include GXxE term, however please see the Model stacking weights for whether there is statistical support (bold) for the G<E term.
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Table 2: Model output summaries for four phenotypic traits representing photosynthetic physiology and thermal tolerance.

Fv/Fu ¢PS| I Terithot (OC) Terit-cold (OC)

Response variable: (n=717) (n="717) (n =685) (n=707)

Fixed effects
Estimate [95% Cl ]
Intercept (cool Growth temp.,

cool Parental temp. outcrossee) 7.277[6.969,7.585]  2.574[2.134,2.981]  44.459[43.201,45.691] -13.256 [-14.312, -12.301]

Growth temp. (warm) 0.089[0.029, 0.150]  0.332[0.097, 0.560] 0.256 [-0.158, 0.675] 0.345 [-0.052, 0.750]
Parental temp. (warm) 0.054 [-0.005,0.115]  0.037 [-0.196, 0.270] -0.039 [-0.451, 0.376] 0.186 [-0.217, 0.591]
Growth temp. x Parental temp. ~ -0.033[-0.116, 0.047]  -0.023[-0.339, 0.290] 0.059 [-0.503, 0.627] -0.158 [-0.720, 0.398]
Cross type (self-pollinated) 0.036[-0.008,0.082]  0.082 [-0.091, 0.254] 0.003[-0.316, 0.326] -0.186 [-0.490, 0.119]
Hail (measured post-hail) -0.124[-0.221,-0.031] -0.028 [-0.312, 0.253] 0.395 [-0.208, 1.034] -0.101[-0.623, 0.491]

Random effects: variance components
Estimate (SD) [95% Cl]

"asua2l| [euoeualul 0’y AN-DN-AG-DDe J1apun a|gejrene

Vg intercept (block) 0.182[0.008,0.938]  0.245[0.007, 1.167] 0.880[0.157, 3.091] 0.663 [0.083, 2.414]
V, intercept (additive genetic) 0.027[0.001, 0.075]  0.124[0.0086, 0.310] 0.228 [0.012, 0.521] 0.182 [0.007, 0.462]
Va slope (GXE) * 0.042[0.002,0.110]  0.174[0.007, 0.423] 0.307 [0.017, 0.696] 0.334[0.025, 0.710]
V, intercept-slope correlation -0.268 [-0.976,0.902] -0.201 [-0.969, 0.902] -0.136 [-0.951, 0.921] -0.083[-0.942, 0.932]
Vi intercept (maternal) 0.022[0.001,0.059]  0.117 [0.0086, 0.267] 0.203 [0.009, 0.462] 0.141 [0.007, 0.367]
Vk (residual) 0.336[0.317,0.358]  1.015[0.958, 1.074] 1.793 [1.696, 1.901] 2.252 [2.123, 2.390]
Model stacking weights

Model with GxE * 0.041 0.001 0.000 0.309
Model without GXE * 0.959 0.999 1.000 0.691
RZ

mR2 (fixed effects) 0.011 0.023 0.018 0.011
cR? - mR? (random effects) 0.094 0.094 0.335 0.199

Estimates are posterior modes with [95% Cls]; bold represents fixed effects that have 95% Cls that are distinct from zero; Hail refersto plants
that were measured for these traits before or after the hailstorm, see Methods for details; * Model outputs reported are full models that include
GxE term, however please see the Model stacking weights for whether there is statistical support (bold) for the GXE term.
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433  Q2: Arethe phenotypic traits heritable, and are there either maternal effects or GxE

434 interactions?

435  Estimates of heritability were relatively low across al traits (ranging from 0.01 to 0.14), with
436  flowering onset, biomass, and chlorophyll content being the only traits for which there was
437  support for a non-zero heritability (Table 3). While maternal effects were included in all

438 models, estimates of their variance components were small and the credible intervals of the
439  estimates were not clearly distinct from zero (Table 3).

440 Our estimates of selection varied substantially among traits. We found evidence for
441  both linear (B; directional) and non-linear (7y; stabilising or disruptive) selection gradients for
442  flowering onset, biomass, and LMA (Table 4; Fig. 2), but no clear evidence of selection on
443  any other phenotypic trait (Table 4). Positive linear selection coefficients can be interpreted
444  asdirectional selection where individuals with larger phenotypic trait values have higher
445  relative fitness on average. Positive quadratic selection coefficients can be interpreted as
446  individuals with trait values at the edges of the trait distribution have higher relative fitness
447  on average (convex function shape; disruptive selection). Negative quadratic selection

448  coefficients can be interpreted as individuals with trait values in the centre of the trait

449  distribution have higher relative fitness on average (concave shape; stabilising selection). A
450 trait that has both significant linear and quadratic coefficients indicates an overarching

451  directiona change with a non-linear shape.

452 Relative fitness was higher in individuals with earlier flowering onset: individuals
453  flowering later had generaly very low fitness (Fig. 2A). The flowering onset of warm-grown
454 plants had astronger signal of selection than cool-grown plants (i.e., a more negative linear
455  selection coefficient and alarge quadratic coefficient; Table 4; Fig. 2B,C), where relative
456  fitness was lower in warm-grown plants that had intermediate to high values of flowering
457  onset (Fig. 2C; see Supplementary Tables S3—S6 for full models including the interaction
458  between selection and temperature). Relative fitness was lowest in low biomass individuals,
459  but there was a strong positive linear selection coefficient (increased fitness as biomass

460  increased) for all plants combined and under both growing temperatures separately (Table 4;
461  Fig. 2D,E). Selection patterns differed between cool-grown and warm-grown plants

462  (Supplementary Tables S3 and S5). Although there were no significant non-linear selection
463  patternsin cool-grown plants (Table 4), we present the predicted non-linear fits for direct

464  comparison to the warm-grown plants (Fig. 2). In warm-grown plants, there was a
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465  dignificantly negative quadratic selection coefficient for biomass, where the relationship

466  between relative fitness and biomass tapered off at very high values of biomass (Fig. 2F).
467 Flowering onset had a clear negative correlation between Va intercept and slope,

468 indicating that families that flowered early on average were those with the lowest plasticity.
469  However, we only found support for GXE (Va depending on growth environment) being

470  important for two traits: chlorophyll content and LMA (Table 1). LMA was under stabilising
471  selection for al plants combined, such that plants with intermediate values of LMA had

472  higher relative fitness (Table 4; Fig. 2G-I). Cool-grown plants had arelatively small positive
473  linear selection coefficient and a non-significant negative quadratic coefficient (Fig. 2H),
474  whereas warm-grown plants were not under linear selection but showed a stabilising

475  selection response that favoured intermediate LMA values (Fig. 21).

476

477

478  Table 3: Summary of heritability and maternal effects on each phenotypic trait.

Phenotypic trait

h? (Va/Vp)

m’ (VM / Vp)

Total reproductive stems
Flowering onset
Biomass

Chlorophyll content
LMA

0.040 [<0.001, 0.085]
0.142 [0.056, 0.226]
0.114 [0.043, 0.189]
0.078 [0.018, 0.137]

0.025 [<0.001, 0.054]

0.040 [<0.001, 0.085]
0.050 [<0.001, 0.136]
0.042 [<0.001, 0.107]
0.029 [<0.001, 0.082]
0.015 [<0.001, 0.045]

Fv/Fm 0.005 [<0.001, 0.019] 0.005 [<0.001, 0.020]

oPSI| 0.016 [<0.001, 0.052] 0.016 [<0.001, 0.051]

Terit-hot 0.017 [<0.001, 0.051] 0.014 [<0.001, 0.046]

Terit-cold 0.010[<0.001, 0.032] 0.005 [<0.001, 0.020]
479  V, isadditive genetic variance; Vp istotal phenotypic variance; Vi is maternal variance;
480 Valuesin bold represent phenotypic traits that have 95% Cls that are distinct from zero.
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481  Table4: Linear (B) and quadratic () selection coefficients on each of the phenotypic traits

482  (excluding total reproductive stems because it is used to calculated relative fitness) under

483

both growing conditions (all plants), and cool-grown and warm-grown plants alone.

Phenotypic trait B : All plants v : All plants
Flowering onset -0.215[-0.270, -0.162] * -0.024 [-0.843, 0.744] *
Biomass 0.451 [0.399, 0.502] * 0.321 [-0.045, 0.683] *

Chlorophyll content
LMA

-0.017 [-0.060, 0.026]
0.055 [0.012, 0.100]

-0.562 [-1.355, 0.252]
-0.518 [-1.104, 0.010]

Fv/Fm 0.023 [-0.025, 0.076] -0.394 [-3.368, 2.221]
oPSII 0.026 [-0.019, 0.073] -0.111 [-0.533, 0.341]
Terit-hot -0.030 [-0.083, 0.023] 1.107 [-2.455, 4.733]
Terit-cold -0.056 [-0.111, 0.001] 0.399 [-0.368, 1.151]
Phenotypic trait B : Cool-grown plants vy : Cool-grown plants
Flowering onset -0.159 [-0.206, -0.117] 0.067 [-0.611, 0.754]
Biomass 0.385[0.337, 0.433] 0.283 [-0.008, 0.565]

Chlorophyll content
LMA

-0.022 [-0.062, 0.018]
0.039 [0.001, 0.076]

-0.459 [-1.118, 0.230]
-0.321 [-0.754, 0.107]

FuvlFu 0.009 [-0.036, 0.057] -0.638 [-3.608, 1.972]
oPSl| 0.006 [-0.040, 0.053] -0.173 [-0.601, 0.259]
Terit-hot -0.021 [-0.070, 0.029] 1.050 [-2.334, 4.488]
Terit-cold -0.042 [-0.092, 0.007] 0.362 [-0.391, 1.118]
Phenotypic trait B : Warm-grown plants Y : Warm-grown plants
Flowering onset -0.276 [-0.327, -0.227] 0.978 [0.467, 1.471]
Biomass 0.386 [0.334, 0.438] -0.600 [-0.905, -0.292]

Chlorophyll content
LMA

0.001 [-0.047, 0.044]
0.020 [-0.028, 0.064]

-0.568 [-1.358, 0.192]
-0.733 [-1.356, -0.139]

Fv/Fm -0.010 [-0.074, 0.047] 1.257 [-0.970, 3.122]
oPSI| 0.009 [-0.038, 0.058] -0.329 [-0.873, 0.169]
Terit-hot -0.044 [-0.092, 0.007] 0.759 [-1.809, 3.380]
Terit-cold -0.028 [-0.079, 0.022] -0.567 [-1.305, 0.171]
484  Vauesin bold represent selection coefficients that have 95% Cls that are distinct from zero.
485  The modelsfor all plantsinclude interaction terms between trait x growth temperature
486  treatment for B and trait? x growth temperature treatment for  to test whether selection
487  differs by growth treatment. A * symbol denotes that the respective interaction term has 95%
488  Clsthat are distinct from zero, which indicates that selection varies depending on growth
489  temperature treatment (i.e., that selection on cool-grown and warm-grown plants differs for
490 that trait). Full model outputs are shown in Supplementary Table S3—-S6.
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493  Fig. 2: Relationships between relative fitness (w) and three standardised (within each

494  temperature treatment) phenotypic traits (A-C: flowering onset, D-F. biomass, G-1: LMA)
495  that demonstrated non-zero selection. Left panels are all plants combined, middle panels are
496  cool-grown plants, and right panels are warm-grown plants. Offspring plants were either

497  outcrossed (circles) or self-pollinated (triangles) and were derived from parents that had a
498  parenta environment that was either warm or cool. The overall quadratic model fit (posterior
499  predictions) is plotted on each panel. Note that scaling for standardising trait values on the x-
500 axisisapplied in each data subset and therefore individual data point positions differ along
501 thex-axisbetween all plants, cool-grown plants, and warm-grown plants. Linear (3) and

502  quadratic (y) selection coefficients and 95% Cls are given in Table 4.
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503 Q3: What is selection on the traits and how does it vary with growth temperature? And is
504 therea benefit for offspring that are grown under conditions that match the conditions their
505 parentsweregrownin?

506 Inthisexperiment, we used afactorial design to separate the effects of growing parental

507 plants under relatively cool and warm temperatures and the subsequent effects of their

508  offspring growing under the same (matched) or opposite (mismatched) temperature regimes.
509 Wehypothesised that development of seed under the parental temperature that matched the
510  offspring growth temperature (e.g., cool x cool, or warm x warm) would exhibit phenotypes
511 that performed better than mismatched offspring (e.g., cool x warm, or warm x cool).

512  However, we found no evidence that the parental temperature had any effect on any of the
513  measured traits (Fig. 1, Supplementary Fig. $4), nor of any significant interactions between
514  growth and parental temperatures (Tables 1 and 2). Therefore, there was no evidence in any
515 trait that matching parent-offspring environments was beneficial, nor was there any evidence
516  that mismatching was detrimental (Supplementary Figs S5 and S6).

517

518 Q4: Arethere effects of inbreeding on the suite of traits, and does any inbreeding depression
519  vary with temperature?

520 Wepredicted that plants that were the result of outcrossing as opposed to self-pollination
521  would have higher fitness due to inbreeding depression in the latter. Self-pollination had a
522  dgnificant negative effect on reproductive fitness (Table 1), such that these plants produced a
523  mean of 7.7 fewer reproductive stems than plants that were outcrossed (19.3% reduction;
524  Fig. 3A). Self-pollination delayed mean flowering onset by 2.1 days (5.1% reduction;

525 Fig. 3B) and reduced mean biomass by 1.35 g (13.2% reduction; Fig. 3C). None of the other
526 ledf traits, photosystem or thermal tolerance traits were affected significantly by self-

527  pollination (Supplementary Figs S7 and S8, Tables 1 and 2).
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529  Fig. 3. Tests for inbreeding depression. Mean differences between outcrossed and self-
530 pollinated plants for fitness and phenotypic traits: (A) total reproductive stems, (B) flowering
531 onset, and (C) biomass. Points and error bars represent means + S.E. of the raw data. All

532  phenotypic traits are shown in Supplementary Fig. S7. Model output is shown in Table 1.

533
534

535 Discussion

536  Inthisstudy we tested the effects of growth temperature, parental temperature, and

537 inbreeding on the multivariate phenotypes of an alpine plant with a mixed-mating system.
538  Wefound strong phenotypic plasticity for most traits, with even 10°C warmer average

539  growth temperatures having largely positive effects on fitness. There was substantial among-
540 family variation in trait values in each environment, as well as in the direction and magnitude
541  of reaction norms. Coupled with strong selection gradients and heritability of some traits, we
542  have evidence for plasticity in response to climate warming as well as evolutionary responses
543  inW. ceracea, with limited indication that plasticity itself is adaptive.

544

545  Growth temperature induces plastic responsesin all traits except thermal tolerance

546  Phenotypic plasticity isanearly ubiquitous response to warming conditions for functional
547  traitsthat are limited by thermally-dependent reaction rates, or for traits that respond to

548  abiotic cues associated with seasonal changes, such as photoperiod and temperature (Stotz et
549 al., 2021). While prolonged or chronic warming certainly can be limiting for plants

550 (Lippmann et al., 2019; Nievolaet al., 2017), alpine plant growth and reproduction is

551 typically restricted to arelatively short growing season that follows the release from cold

552  temperature constraints (Doleza et al., 2020; Korner, 2003). It is therefore reasonable to

553  propose that the non-limiting, well-watered, and warmer growing conditions, W. ceracea was

554  stimulated to both grow and reproduce more than the cool-grown plants. This supports our
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555  hypothesised responses, except for that of heat tolerance. Warm-grown plants that had higher
556  chlorophyll content and LMA, coupled with higher photosynthetic efficiency traits clearly
557  allowed higher biomass production than cool-grown plants. Then, faster development and
558  growth under warm conditions permitted earlier flowering onset that also increased the length
559  of thereproductive period while allowing greater investment in reproduction. Our results

560 indicate that these plastic responses are inducing an adaptive shift in the direction of higher
561 fitness (Radchuk et al., 2019), and our results are consistent with empirical field research that
562  findswarming in colder climate plant species stimulates growth and reproduction (Dolezal et
563 al., 2020). For example, temperature enhancement using open top chambersin thefield in
564  Germany stimulated both growth and reproduction significantly during the growing season in
565  apine grassland species, athough herbaceous perennials were less responsive than

566  graminoids or shrubs (Kudernatsch et al., 2008).

567 The capacity for plantsto increase their thermal tolerance has been predicted to be a
568  key response to climate warming (Geange et al., 2021). For example, Tgit-hot IS Well known to
569 increase rapidly by 4°C or more within hours to days during an acute heat stress event (e.g.,
570 Andrew et al., 2023; Zhu et al., 2023). Long-term exposure to warm growth temperatures can
571  asoincrease Teit-not, fOr example by ~0.16°C per 1°C of growth temperature (Zhu et al.,

572  2018). We have previously observed plasticity in heat tolerance (Tit-not) in the F1 and F2
573  generations of our W. ceracea experiments to long-term warming of 28-30°C. In those

574  experiments, warm-grown plantsincreased their critical heat tolerance limits by 0.7-3.2°C
575  relativeto cool growing conditions (Arnold et al., 2022; Notarnicolaet al., 2021), while also
576  having arange of important effects on phenotypic and reproductive traits. It is worth noting
577 that both these previous studies constrained pot sizes and used different, more confined

578  controlled growth environments, which limits the value of making comparisons to our current
579  glasshouse study (see Karitter et al., 2023 for a discussion of differences in phenotypic

580  expression among common-environment experiments). We have also shown that moderate
581  warming to 30°C can result in upregulation of genes related to post-transcriptional processes
582  and downregulation of genes related to photosynthesis-related processesin W. ceracea

583 (Notarnicolaet al., 2023a). These suites of genetic changes that differ between cool to warm
584  growing conditions may not correspond directly to changesin the phenotypic trait Teit-hot,
585  which increased by a mean of only ~0.26°C in the current study. Therefore, this canalisation
586  of Tuithot t0 Warming that we observed suggests that the warm-grown plants (while being

587  well-watered) were not severely stressed, despite 30°C being far warmer than typical growing
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588 conditionsfor alpine W. ceracea. The warm treatment may have also alleviated temperature
589 limitation on growth processes that can occur in alpine environments, which aligns with other
590 trait responses that we observed.

591

592  Strong non-linear selection on heritable traits, especially under warm conditions

593  Warming has the potential to drive rapid evolutionary change in plant phenotypes, provided
594  that phenotypic traits have arelationship with fitness and are therefore under selection, and
595 that variation in thetraitsis heritable (Anderson and Song, 2020; Scheiner et al., 2020). Here
596  our hypothesis that flowering onset, biomass, LMA, and hest tolerance would be heritable
597  and under selection was partially supported. We found that flowering onset, biomass, and
598 chlorophyll content were clearly heritablein W. ceracea. Chlorophyll content is proportional
599 to the concentration of photosynthetic pigments and nitrogen in aleaf (Ling et al., 2011); itis
600 heritablein wheat (Rosyaraet al., 2010; Said et al., 2022), and has arelatively strong

601  relationship with flowering in other crop species (Senger et al., 2014). To the best of our

602  knowledge, there has not been another study reporting the heritability of chlorophyll content
603 inawild species, but our findings here suggest that variation in photosynthetic pigment

604  concentration at least has a genetic basis. The low heritability of total reproductive stems
605  (i.e., our best measure of fitness) may reflect depletion of genetic variance for fitness as

606  expected from evolutionary theory (Falconer and Mackay, 1996; Kruuk et al., 2000), as well
607  aslarge other sources of variance.

608 Here we found that both flowering onset and biomass were heritable as well as under
609 relatively strong selection. There was significant negative directional selection () on

610 flowering onset in all cases, where earlier flowering is favoured, and relative fitness in warm-
611  grown plants also declined non-linearly (non-zero ) with later flowering. These observed
612  patterns of selection on flowering phenology align exactly with the findings from the relative
613  cool and warm ends of the spectrum from a natural geothermal heating experiment on

614  selection on flowering phenology in the short-lived perennia herb Cerastium fontanumin
615 Iceland (Valdéset al., 2019). In our study, biomass was under strong positive directional

616  selection across all environments, where larger plants had higher relative fitness, although
617  fitness tapered off for larger warm-grown plants. Biomass can be areasonable proxy for

618  fitness (Younginger et al., 2017), where selection can favour larger individual sizeto

619 facilitate plant performance (Aspi et al., 2003). Nevertheless, the plateau in relative fitness at

620 larger sizesin warm-grown plants may be because the largest individuals would have
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621  relatively higher water demands and stronger resource allocation trade-offs than their smaller
622  conspecifics under warming. Glasshouse studies can exacerbate effects of water limitation,
623  and indeed we anecdotally observed that at their peak size, larger individuals in the warm-
624  grown treatment began to wilt toward the end of hot, sunny days during the experiment.

625  Heritability of biomassin these F3 plants aligns with previous findings of high Va in both
626  early growth rate and biomass in F2 W. ceracea plants (Arnold et al., 2022).

627 LMA was under positive directional selection overall and in cool-grown plants, but
628  under stabilising selection in warm-grown plants, with intermediate to high but not extreme
629 LMA values being favoured. LMA is an estimate of the density of carbon and nutrientsin a
630 setareaof leaf tissue (i.e., the cost of tissue production for light interception) and is part of a
631 trait complex that determines photosynthetic capacity, and nitrogen and water use efficiency
632  (Funk et al., 2021; Poorter et al., 2009). Investment in high LMA may improve resource gain
633  but only without critical water deficit (Ivanovaet al., 2018), and potentially at the cost of
634  reinvesting the acquired resources into vegetative rather than reproductive tissues (Flores et
635 al., 2014). Thus, within a species, relatively low and high LMA values represent inefficient
636  resource acquisition-use strategies that trade-off with reproduction, hence extreme values of
637 LMA are selected against (Flores et al., 2014). Despite previously finding high intraspecific
638  variationin Tgitnot (Arnold et al., 2022), here it was neither heritable nor under selection,

639  perhaps because photosynthetic heat tolerance does not affect fitness directly.

640 Taken together, our results suggest that traits contributing to light interception,

641  growth, biomass, and flowering phenology are the key traits for ecological and evolutionary
642  responsesin plants to temperature. Growth, size, and reproductive traits respond to

643  temperature over longer timescales (weeks to months) and contribute directly to fitness,

644  whereas physiological traits regulate essential functions on shorter timescales (hours to days),
645  but do not contribute directly to fitness. We highlight the need for future studies to take a
646  demographic approach to studying plant responses to environmental stressors, integrating
647 acrossthelife cycle. Early life stages that are critical for establishment, growth, and survival,
648  and reproductive stages that may be sensitive to temperature extremes and which directly
649  affect fitness are typically less often studied than seeds or young adult plants. Finally,

650 considering that warm-grown plants have different (non-linear) patterns of selection to cool-
651  grown plants, future studies should concentrate on investigating novel or edge conditions to
652  determine tipping points or sensitivity for ecological and evolutionary responses.

653

654
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655  No evidence of transgenerational plasticity via parental temperature or maternal effects
656 By applying a reciprocally matched-mismatched parent-offspring environments design,

657  combined with the breeding structure, we could test for transgenerational plasticity viathe
658  parent environment effects and maternal effects through a pedigree (Uller et al., 2013).

659  Evidence for matching parent-offspring environments benefitting offspring is relatively weak
660 overal in plants (Uller et al., 2013). Based on earlier results with W. ceracea (Notarnicola et
661 al., 2023b; Wang et al., 2021), we hypothesised that there could be a small benefit for

662  offspring performance and fitness when matching their parent environment. However, we
663  found no convincing evidence for any form of transgenerational plasticity, beneficial or not.
664 Using the same breeding design for F2 and F3 families as in the current experiment,
665 Wang et al. (2021) tested for transgenerational plasticity in early life traitsin W. ceracea.
666  Seeds from parent plants grown in warm conditions had delayed germination (extended

667  dormancy) and reduced germination success irrespective of their germination temperature,
668  but none of these effects persisted to affect seedling growth (Wang et al., 2021). Ina

669  comprehensive reciprocal transplant experiment with Boechera stricta across an elevation
670  gradient, Wadgymar et al. (2018a) found transgenerational plagticity in the early life traits of
671  seed viability, germination, and dormancy. Transgenerational plasticity interplayed with

672  within-generation plasticity across elevations and the effects of both were complex and

673  context-specific, but parental environmental effects largely did not persist to later life

674 (Wadgymar et al., 2018a). However, in areciproca environment experiment on Lupinus
675  angustifolius under well-watered and drought stress treatments, Matesanz et al. (2022) found
676  significant transgenerational plasticity that affected functional traits and reproduction of the
677  offspring. Parental effects altered individual seed mass, flowering onset, and growth rate of
678  the offspring, but these effects were not always beneficial, and offspring environment effects
679 far outweighed the parental effects for specific leaf area, Fv/Fy, and lifetime reproductive
680 output (Matesanz et al., 2022). Seed provisioning through maternal resource allocation

681  affects seed viability, which in turn affects the probability of germination success (Haig and
682  Westoby, 1988). Unsuitable, limiting, or stressful parental environments can also have direct
683  adverse effects on reproductive tissues. For example, exposure to high temperature can

684  disrupt reproductive development and reduce pollen viability, leading to smaller and/or less
685  viable seeds, which have altered germination responses (Goel et al., 2023; Herman and

686  Sultan, 2011; Sehgal et al., 2018).These examples highlight that transgenerational plasticity
687  can certainly affect seed traits, but that persistent effects into adult phenotypes of the
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688  offspring might be less common or weaker (Herman and Sultan, 2011; Notarnicola et al.,
689  2023b; Wang et al., 2021), although there are notable exceptions (e.g., Whittle et al., 2009).
690

691 Inbreeding impairsreproduction and biomass but not physiological function

692  We predicted that inbreeding would significantly reduce plant performance and fitness

693  compared to crossing, due to inbreeding depression. Wahlenbergia ceracea is protandrous
694  and facultatively autogamous with a mixed-mating system (Nicotra et al., 2015), where self-
695  pollination of the same flower is delayed by several days following flower opening, which
696  provides reproductive assurance in the absence of external pollination (Goodwillieet al.,

697  2005). Many alpine species with a mixed-mating strategy depend on external pollination to
698  achieve their maximum potential seed set (Scheffknecht et al., 2007). It is therefore

699  unsurprising that we found that self-pollination in W. ceracea caused marginally delayed
700  flowering and slightly reduced total reproductive stems and biomass. The magnitude of the
701  inbreeding depression effect on these fithess-related traits is comparable to the expected

702  range from a meta-analysis of inbreeding effects on plant fitness (Angeloni et al., 2011).

703  Inbreeding effects can be exacerbated in stressful environments (Armbruster and Reed,

704  2005), however we did not observe this effect, nor did we find any inbreeding effect on

705  functional traits. We suggest that inbreeding (particularly in mixed-mating species) might
706  affect fitness directly rather than indirectly through traits that mediate resource acquisition.
707  However, we do not yet know whether negative effects of inbreeding on function and fitness
708  would be exacerbated under more challenging conditions (e.g., heat coupled with drought) or
709  extreme events (e.g., heatwaves).

710

711 Conclusions and future directions

712  The capacity for plantsto alter their phenotype in response to climate warming is frequently
713 thought to be adaptive. Here we show through comprehensive analyses that in this alpine
714  species, warming may alleviate restrictions on growth and reproduction, thereby improving
715  fitness under warming through plasticity. The exception to this conclusion was thermal

716  tolerance, which islikely already at sufficient levels. Only flowering onset and biomass were
717  both heritable and clearly under selection, which differed between the cool and warm growth
718  environments, and only chlorophyll content and LMA had any evidence for GXE. The effect
719  of growth environment far exceeded any influence of parental environment; we found little

720  evidence for substantial maternal effects or transgenerational plasticity in adult traits. Further,
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721  the effect of inbreeding by self-pollination was relatively small, providing reproductive

722  assurance at low cost. We can conclude that the mixed-mating alpine herb W. ceracea clearly
723  has capacity to respond rapidly to climate warming via phenotypic plasticity as well asthe
724  potential for evolutionary change across generations.

725 As the climate of alpine ecosystems changes, the duration of the growing season will
726  extend, generating both new opportunities and new challenges for its inhabitants. Our

727  experiment found that substantially warmer daytime temperatures (30°C) can still facilitate
728  growth and reproduction in an apine herb when water is not limiting. However, climate

729 changeisaso expected to progressively dry alpine ecosystems. Climate projections for areas
730  with seasona snowpack typically forecast reduced winter snowfall, earlier snowmelt in

731  spring, and potentially decreases in summer and autumn precipitation events (Gobiet et al.,
732  2014; Harris et al., 2016). Reductions in water supply have a clearly detrimental effect on
733  most apine plants (Sumner and Venn, 2021), and interactions between warming and water
734  limitation are undoubtedly relevant for future climate scenarios in apine plant communities
735 (DeBoeck et al., 2016; Winkler et al., 2016). Therefore, an essential next step in building an
736  understanding of the importance of eco-evolutionary responses to climate change will beto
737  testtherole of water limitation in altering plastic and evolutionary responses to temperature.
738 Heat stress events are predicted to become more frequent, intense, and longer duration
739  (Trancoso et al., 2020), on top of a background of mean climate warming (Harriset al .,

740  2018). Extreme events have the potential to change fitness drastically and could be stronger
741  selective events than gradual environmental change, which will alter evolutionary dynamics
742 of populationsin future (Gutschick and BassiriRad, 2003). The role of extreme eventsin the
743  eco-evolutionary dynamics of alpine plants remains largely unexplored, despite alpine

744  ecosystems being among the most vulnerable to and already impacted by climate change

745  (Verrall and Pickering, 2020). Using genomic approaches to study climate change responses
746  innatural populations could reveal the genomic architecture of traits exhibiting plasticity and
747  under selection, improving our understanding of the mechanisms behind stress responses and
748  their evolutionary potential (Notarnicolaet al., 2023a). Employing a multifaceted research
749  effort to strengthen our understanding of the roles of plasticity and evolutionary responses to
750  redlistic climate scenarios and extreme events is necessary to evaluate the potential for alpine
751  plantsto respond to future conditions.

752

753
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