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Abstract

Background:

Streptomyces is a highly diverse genus known for the production of secondary or specialized
metabolites with a wide range of applications in the medical and agricultural industries. Several
thousand complete or nearly-complete Streptomyces genome sequences are now available,
affording the opportunity to deeply investigate the biosynthetic potential within these organisms
and to advance natural product discovery initiatives.

Result:

We performed pangenome analysis on 2,371 Streptomyces genomes, including approximately
1,200 complete assemblies. Employing a data-driven approach based on genome similarities, the
Streptomyces genus was classified into 7 primary and 42 secondary MASH-clusters, forming the
basis for a comprehensive pangenome mining. A refined workflow for grouping biosynthetic gene
clusters (BGCs) redefined their diversity across different MASH-clusters. This workflow also
reassigned 2,729 known BGC families to only 440 families, a reduction caused by inaccuracies
in BGC boundary detections. When the genomic location of BGCs is included in the analysis, a
conserved genomic structure (synteny) among BGCs becomes apparent within species and
MASH-clusters. This synteny suggests that vertical inheritance is a major factor in the acquisition
of new BGCs.

Conclusion:

Our analysis of a genomic dataset at a scale of thousands of genomes refined predictions of BGC
diversity using MASH-clusters as a basis for pangenome analysis. The observed conservation in
the order of BGCs’ genomic locations showed that the BGCs are vertically inherited. The
presented workflow and the in-depth analysis pave the way for large-scale pangenome
investigations and enhance our understanding of the biosynthetic potential of the Streptomyces
genus.

Keywords: Pangenome analysis, Streptomyces, Genome mining, Biosynthetic Gene Clusters,
Phylogenetic analysis, Metabolism.
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Background

Streptomyces, a genus of soil bacteria, is known for its ability to produce various natural products
that have applications in medicine and biotechnology. These organisms are characterized by their
complex and diverse biosynthetic gene clusters (BGCs), which are responsible for the
biosynthesis of these bioactive compounds [1]. Over the past decades, several genomic studies
have revealed that the full range of metabolites produced by Streptomyces and the associated
biosynthetic pathways are not yet fully known [2].

The same genomic studies have revealed extensive genomic and phylogenetic diversity within
the Streptomyces genus. This diversity provides a huge potential for natural product discovery,
but at the same time complicates comparative analyses across different species and strains. To
mitigate this challenge, there is a growing consensus for the need to cluster Streptomyces into
distinct groups or genus-equivalents [3,4]. Such refined classification aims to facilitate more
precise comparisons to understand the biosynthetic diversity and evolution within the genus.

Recent advances in sequencing technology and genome mining tools have allowed for the data-
driven discovery of natural products [5]. Several genome mining tools such as antiSMASH, BiG-
SCAPE, and BiG-SLICE have revealed that various bacterial species encode previously unknown
biosynthetic potential [6-9]. While genome mining tools have significantly advanced our
understanding of biosynthetic potential, there is a recognition that the estimates of diversity and
novelty can be constrained by the inherent limitations of these individual tools and reference
databases. These limitations include inaccurate definitions of BGC boundaries or incomplete
entries in reference databases such as MIBIG [10]. The strategy of integrating results from
different tools can partially mitigate these challenges [11].

Large-scale pangenome mining studies help to understand the evolutionary patterns of
biosynthetic gene clusters (BGCs) along with a deep characterization of the biosynthetic
repertoire of a given bacterial species or genus [12—15]. Detailed comparative studies are now
gathering evidence that vertical inheritance facilitates the diversification of BGCs more frequently
than horizontal gene transfer [16]. Earlier pangenomic investigations of Streptomyces, examining
121 genomes [17] and 205 genomes [18], respectively, have underscored that the pangenome of
Streptomyces is quite open and represents high diversity. These analyses brought to light a
limited number of core genes—633 [17] and 304 [18]—found across all strains considered in each
study, respectively. Recent sequencing efforts have significantly increased the publicly available
high-quality genomes of Streptomyces [19]. In light of this explosion of sequencing data, there is
an emerging need to re-investigate the Streptomyces pangenome and the biosynthetic diversity
within these organisms.

In this study, we aim to address these questions by conducting the largest pangenome mining
study of Streptomyces to date. By combining insights from various genome mining tools and
clustering the organisms into distinct phylogroups, we seek to enhance our understanding of the
biosynthetic potential, diversity, and evolutionary patterns inherent to this phylogenetically diverse
genus.
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89 Results

90 The dataset of Streptomyces genomes

91 In this study, we comprehensively analyzed genomes of the Streptomyces genus, sourcing both
92 from the public database and from our newly published dataset [19]. As of 30 June 2023, we
93 obtained accession IDs for 2,938 Streptomycetaceae genomes of all qualities from the NCBI
94  RefSeq database (Data S1, Figure 1A). We also incorporated 902 newly sequenced [19] high-
95 quality complete actinomycete genomes for a total of 3,840 genomes (Figure S1).

96 These 3,840 genomes were then curated further. To ensure a uniform taxonomic classification

97 derived from whole genome sequences, we employed GTDB (version R214) [20,21] for

98 taxonomic assignments (Figure S2). Out of the 3,840 genomes, 3,569 were identified as

99 belonging to the Streptomyces genus. Using different assembly statistics, we grouped the
100 selected 3,569 Streptomyces genomes into high-quality (HQ, 1,215 genomes), medium-quality
101 (MQ, 1,156 genomes), and low-quality (LQ, 1,198 genomes) (Figure S1, S3). The final dataset,
102  post-curation, included 2,371 genomes of sufficiently good quality (HQ or MQ).

103  We next classified the genomes at the species level. Of the 2,371 good-quality genomes, 1,956
104  were assigned to one of the 608 GTDB-defined species. The remaining 415 genomes lacked
105  species assignments, representing potentially novel species beyond the GTDB catalog. Based
106  ona 95% genomic similarity threshold using the MASH distance matrix, these 415 genomes were
107  grouped into 202 species. Combining GTDB and MASH-based assignments, the dataset
108 encompasses at least 810 Streptomyces predicted species, with 468 species represented by a
109  single genome. Overall, these statistics indicate that the dataset is highly diverse, necessitating
110  the careful grouping of these genomes for pangenome analysis.

111 The Streptomyces pangenome exhibited wide-ranging genomic characteristics. Genome sizes
112  spanned from 4.8 Mbp to 13.6 Mbp, with a median of 8.5 Mbp (Figure 1B). Interestingly, the
113  strains with the smallest genome sizes mainly belong to actinomycetoma-related pathogenic
114  species of S. sudanensis and S. somaliensis [22]. In contrast, the largest-sized genomes primarily
115  belong to S. rapamycinicus or to novel species. GC content ranged between 68.6% and 74.8%,
116  with a median of 71.6%.
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118  Figure 1. Dataset of Streptomyces genomes and BGC statistics. A) Number of Streptomyces genomes
119  from the NCBI RefSeq database as of 30 June 2023. The final bar includes newly sequenced high quality
120  genomes from our prior study [19]. Genomes are categorized by assembly quality: HQ (high-quality), MQ
121 (medium-quality), and LQ (low-quality). B) Scatter plot illustrating the relationship between genome length
122  and the number of BGCs in 2,371 genomes of the MQ and HQ categories. Annotations represent
123  information on selected strains. C) Breakdown of the twenty most common types of BGCs detected in the
124 HQ and MQ genomes. The remaining BGC types are bundled under “Other_combined,” which may contain
125 hybrids of some of the listed types. Color-coded bars highlight BGC similarity percentages against the
126 MIBIG database: gray for <50%, light green for 50-80%, and green for >80%. Bar annotations represent a
127  tally of MIBIiG entries with >80% similarity for the detected BGCs.

128  Types of BGCs identified and similarity to known BGCs

129  Utilizing antiSMASH v7 [6], we identified a total of 70,561 BGCs in the 2,371 HQ or MQ genomes
130 (Data S4). It is essential to highlight that genome quality can significantly influence the number of
131 BGCs predicted for a particular genome. Specifically, when BGCs are located on contig edges,
132  their count can be artificially increased when analyzed with antiSMASH as a broken BGC is likely
133  to be counted twice. Thus the number of BGCs on the contig edge is a metric of genome quality
134  for BGC analysis [23]. We identified only 6,524 BGCs (9.2%) situated at contig edges indicating
135  a high quality of the collected dataset at capturing mostly complete BGCs [24]. Among the 1,215
136  genomes with complete assemblies (HQ), the number of BGCs per genome ranged between 11
137  and 56 with a median of 29 BGCs. It should be noted that the set of HQ assemblies included
138  several S. albidoflavus strains in which multiple BGCs had been deleted, thus explaining the lower
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139  BGC count. The number of BGCs increased with the size of the genomes in accordance with prior
140  observations (Figure 1B) [25,26].

141 The predominant BGC types in our dataset are terpene (11,095 BGCs), NRPS-independent (NI)
142  siderophore (5,711 BGCs), nonribosomal peptide synthetase (NRPS) (3,599 BGCs), typef
143  polyketide synthase (T1PKS) (3,092 BGCs), ribosomally synthesized and post-translationally
144  modified peptide like (RiPP-like) (2,933 BGCs), T3PKS (2,562 BGCs), ectoine (2,458 BGCs),
145  butyrolactone (2,277 BGCs), melanin (2,244 BGCs), T2PKS (1,536 BGCs), and NRPS-T1PKS
146 (1,536 BGCs). One can estimate the number of BGCs that encode known secondary metabolites
147 by comparing the BGCs against the curated MIBIG database [10]. This estimate is provided
148  automatically during antiSMASH analysis: the program generates “knownclusterblast” similarity
149  scores that estimate how similar a certain region is to the BGCs in MIBiG by calculating a
150 percentage of similar genes [6,10]. A threshold on the knownclusterblast score of greater than
151 80% of similar genes led to 21,404 BGCs (~30%) that matched one of the 475 characterized
152  BGCs from the MIBiG database. The most recurrent known BGCs were linked to the biosynthesis
153  of compounds such as ectoine (2,230), desferrioxamine (1,685), geosmin (1,412), hopene
154  (1,095), spore pigment (1,083), isorenieratene (852), albaflavenone (807), e-Poly-L-lysine (730),
155 and alkylresorcinol (708). These BGCs are known to be found commonly across the
156  Streptomyces genus [27]. On average, 31% of the BGCs per genome matched to known BGCs
157  in MIBIiG. A further 8,161 BGCs (~11.6%) had similarity scores between 60% to 80%, dominated
158 by 1,116 hopene-like BGCs, while as many as 27,029 (38.3%) BGCs had similarity scores of less
159  than 30%.

160  While estimates of novel BGCs provide valuable insights, they inherently depend on the
161  completeness of the MIBiG database, potentially introducing bias. To further dissect this aspect,
162  we examined the number of known BGCs across some of the abundant BGC types (Figure 1C).
163  We found that certain BGC types—ectoine, NRP-metallophore-NRPS hybrid, T3PKS, T2PKS,
164  lanthipeptide-class-iii, non-alpha polyamino group acids (NAPAA), and terpene—exhibited a
165  significant similarity with the MIBIG database, as evidenced by over 40% of these BGCs having
166 a knownclusterblast similarity of above 80%. In contrast, BGC types such as RiPP-like,
167  lanthipeptide-class-i, butyrolactone, NRPS, NRPS-like, T1PKS, and NRPS-like-T1PKS hybrid
168  showed less than 15% of their BGCs aligning with the MIBIG database with the same similarity
169  threshold. However, it is essential to recognize that some BGC types, such as ectoine or NAPAA,
170  are naturally less diverse and represent only a few compounds. For example, the majority of the
171 ectoine-type BGCs (2,173 in total) were primarily aligned with just two MIBiG entries, both coding
172  for the same compound ectoine (BGC0000853 and BGC0002052). Similarly, recognized BGC
173  types like NAPAA, lanthipeptide-class-iii, melanin, and NI-siderophore matched fewer than eight
174  MIBIiG entries, and some of them are naturally less diverse.

175 MASH-based analysis revealed 7 primary and 42 secondary MASH-clusters

176  Within the vast genomic landscape of the Streptomyces genus, the clearly defined classification
177  of strains is essential for comparative analysis. Historically, comparative genome mining studies
178  have predominantly centered on examining single species. However, this approach is limiting,
179  especially in a genus like Streptomyces where many species are represented by a single genome
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180 sequence in public databases. This limitation has often necessitated a broader lens,
181  encompassing genomes from the entire genus [4,17,18]. As valuable as genus-level insights are,
182 the detection of over 800 species of Streptomyces demands a more focused approach.
183  Accordingly, we sought to define distinct, sub-genus level groups.

184  Here, we propose a MASH-based whole genome similarity metric to empower comparative
185 pangenome analysis by providing a statistical grouping of strains instead of the taxonomic
186  delineations [28,29]. The MASH-clusters were generated by optimal K-means clustering in
187  synergy with the highest average silhouette scores (Figure S4, Data S2). This analysis yielded
188  seven primary MASH-clusters among 1,999 genomes, termed M1 through M7 (Figure 2, Data
189  S2). To ensure the robustness of these clusters, a stringent silhouette score cutoff (0.4) was
190 iteratively employed, leading to the removal of 372 genomes (Figure S5). These filtered genomes
191  are less likely to be part of one of the 7 major MASH-clusters and may form additional clusters
192  upon future sequencing efforts of these clades (Figure 2B). Venturing deeper, all primary MASH-
193  clusters were subjected to an additional round of clustering, revealing 42 secondary MASH-
194  clusters that encompassed 1,670 genomes after refinement based on silhouette scores with the
195  same cutoffs (Figure S6-S12).

196  Several MASH-clusters stood out in this analysis. M2 emerged as the largest primary MASH-
197  cluster representing 871 genomes. M2 harbors key species such as S. coelicolor, S. rochei, and
198 S. canus. The second largest MASH-cluster, M3, represented 510 genomes with species such
199 as S. anulatus, S. bacillaris and S. papulosus. MASH-cluster M5 stood out as the ancestral group
200 and showed the poorest clustering (Figure 2C). However, a significant portion of genomes from
201 MASH-cluster M5 were excluded from the refined MASH-clusters due to their low silhouette
202  scores (Figure S5). MASH-cluster M4 represented 119 genomes, mostly of the species S.
203  albidoflavus (previously designated S. albus), and was noteworthy for its high average clustering
204  score (Figure 2D, Figure S9).
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206  Figure 2. Mash-based clustering of the Streptomyces genus provides a basis for pangenome
207  analysis. A) The average silhouette scores of all samples against the number of primary clusters with
208  hierarchical clustering based on the MASH distance matrix. The orange line represents the original dataset
209  of 2371 genomes, whereas the blue represents the dataset after filtering poorly clustered samples. B) A
210  phylogenetic tree reconstructed using getphylo with K. setae strain KM-6054 as an outgroup. See Figure
211 S13 for trees constructed using different methods and the consensus. The colored ranges represent the
212  MASH-cluster assignment with gray color representing filtered genomes. The outer color strip represents
213  the colors for secondary MASH-clusters (see Figures S6 to S12 for details). C) Heatmap representing the
214 MASH distances between the 2371 genomes. The rows and columns are clustered using the hierarchical
215 clustering method where the colors on columns represent the seven primary MASH-clusters (with gray color
216  representing filtered-out genomes). The highlighted text on the heatmap represents some of the abundant
217  species. D) Heatmap representing the MASH distances between the 119 genomes of the selected M4
218  cluster. The rows and columns are clustered using the hierarchical clustering method where the colors on
219 columns represent the five secondary MASH-clusters (M4_1 to M4_5). M4_1 represents S. diastaticus
220  whereas M4_2 to M4_5 represent different clusters within S. albidoflavus.
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221 Comparison of MASH-clusters with phylogenetic trees

222  The biggest drawback of using a similarity metric like MASH is the lack of an evolutionary model.
223  Therefore, to evaluate the evolutionary relevance of the MASH-clusters, we compared them to
224  genome-scale phylogenetic trees (Figure 2B). We constructed three trees by employing three
225  distinct methodologies: autoMLST [30], GTDB-Tk (de novo workflow) [21], and getphylo [31]
226  (Figure S13, Data S3). Upon comparison, a broad consensus was observed between the MASH-
227  defined clusters and the clades delineated by different phylogenetic trees. There were, however,
228  some outliers, chiefly clusters M1 and M7, which appeared to be paraphyletic (Figure S13). Upon
229 closer inspection, however, these outliers fell within parts of the phylogenetic trees that were
230  poorly supported and incongruent between the different methodologies. Further analysis revealed
231  a striking level of incongruence between the three phylogenies. Only 62% of the branches were
232  supported by a majority consensus and 33% by all three methodologies. The genus Streptomyces
233 and its two major clades (represented by M2 and M3) are fully congruent, as well as many of the
234  species and species complexes. However, lineages show a high degree of polytomy at the sub-
235 generic level. This incongruence demonstrates the potential fallibility of phylogenetic methods
236  when studying the intra-genus level relationships of Streptomyces.

237  Finally, we also compared the MASH-clusters with the RED_groups (relative evolutionary
238  divergence-based groups) defined in a recent study as bacterial groups analogous to genera but
239 characterized by equal evolutionary distance [4] (Figure S14). A consensus was observed for
240  major groups except that the MASH-based method has split the RG_2 [4] into two separate
241 MASH-clusters, M3 and M6. In this fashion, MASH-clustering proposed here complements the
242  phylogenetic methods to produce statistically correlated groups.

243 BGC diversity predictions based on known cluster similarity

244  To assess the diverse biosynthetic potential across genomes, it is helpful to group BGCs into
245  gene cluster families (GCFs). GCFs are groups of BGCs that are homologous to each other, and
246  thus are hypothesized to encode molecules that have similar chemical structures. GCFs are
247  calculated by clustering BGCs using specialized tools such as BiG-SCAPE [7] or BiG-SLICE [8].
248  As a first step, we opted for BiG-SLICE (optimal with larger datasets) to execute this clustering
249  across the entire dataset. Utilizing default parameters, we identified a total of 11,528 GCFs from
250 the 70,561 BGCs (Figure 3A, Data S5). However, as highlighted in previous work [11], integrating
251  diverse genome mining tools can enhance GCF refinement. For instance, minor genetic variations
252 in regions adjacent to, but not directly involved in, biosynthesis can inadvertently lead to the
253 classification of BGCs that code for identical secondary metabolites into disparate GCFs. To
254  mitigate these issues, as a second step of defining GCFs, we used antiSMASH's
255  knownclusterblast results (with a similarity threshold of >80% of genes) to regroup the GCFs with
256  the presence of predicted known BGCs.

257 A total of 2,729 GCFs predicted by BiG-SLICE in the first step were associated with known
258  secondary metabolites according to knownclusterblast results. After regrouping these GCFs at
259 the second step, we effectively reduced the count of known GCFs from 2,729 to 440 (Figure 3A,
260 Data S5). For instance, BGCs that code for spore pigment, alkylresorcinol, coelichelin, and
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261 isorenieratene (in the second step) were detected as 153, 151, 138, and 138 different GCFs (in
262 the first step), respectively (Figure 3B). We investigated whether these reductions of GCF
263  diversity predictions are dependent on the type of BGCs (Figure 3C). For example, BGC types
264  such as lanthipeptide-class-iii, terpene, NRP_metallophore-NRPS hybrid, and T3PKS showed a
265  high level of reduction in the diversity of GCFs when knownclusterblast results were integrated.
266  In contrast, types such as NRPS or T1PKS showed a relatively lower reduction in the diversity of
267  GCFs as was predicted in the first step using BiG-SLICE (Figure 3C).

268 We also note that these regrouped GCFs could contain minor internal variations. For a more
269 precise investigation, we constructed a similarity network of two regrouped GCFs coding for spore
270  pigment (153 originally predicted GCFs) and isorenieratene (138 originally predicted GCFs). We
271  used a BiG-SCAPE generated distance matrix to create this network (more optimal for a relatively
272  small dataset) (Figure S15A, and S15C). We also aligned the selected BGCs, which showed that
273 the overestimated diversity of these known BGCs can be attributed to inaccurate BGC
274  boundaries. For instance, variation in BGCs from different MASH-clusters was largely due to
275  differences in the neighboring regions of the detected BGCs. The differential neighboring regions
276  causing variation within the regrouped GCF were generally conserved within genomes from the
277  same MASH-clusters (Figure S15B and S15D). In general, we observed that the types requiring
278  fewer genes for core biosynthesis, such as terpene, T2PKS, T3PKS, siderophore, or RiPPs, were
279  also among the most affected by these variations in neighboring regions.
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281 Figure 3. Advanced clustering of BGCs redefines known GCFs with reduced diversity in specific
282  types of BGCs. A) Workflow used to detect BGCs, GCFs based on BiG-SLICE, and regrouping GCFs
283  based on knownclusterblast similarity (>80% of genes). Several examples of known GCFs are reported in
284  the bottom boxes, classified into common, accessory, or unique GCFs to MASH-clusters. B) Percentage
285  abundance of the top twenty known GCFs across different primary MASH-clusters. Each row corresponds
286  to a known compound (GCF). The number in parentheses denotes the number of BiG-SLICE detected
287  GCFs that were regrouped into one GCF. C) Overview of the number of GCFs that were regrouped across
288  the twenty most abundant BGC types. Gray bars represent the number of GCFs detected using only BiG-
289  SLICE, whereas blue bars represent the reduced number of GCFs after regrouping based on
290  knownclusterblast.

291  Diversity of GCFs across genomes from different MASH-clusters

292  Subsequently, we examined the distribution patterns of GCFs across the genomes delineated by
293 the seven primary MASH-clusters to identify BGCs associated with specific MASH-clusters
294  (Figure 3B). MASH-cluster M2 contained 2,606 GCFs that did not appear in any other MASH
295  cluster. Similarly, MASH-clusters M3 and M6 contained 811 and 648 GCFs, respectively, that
296  were specific to those MASH clusters (Figure S16). We also note that a total of 2,338 GCFs were
297  specific to the 372 genomes that were dropped from the MASH-cluster definitions, and are likely
298  to represent further diversity. It is imperative to note that MASH-clusters M2 and M3 constitute
299 the most populous clades which may explain their apparent diversity of GCFs.

300 To gain deeper insights into the biosynthetic signatures of different MASH-clusters, we analyzed
301  all GCFs containing at least five BGCs. This encompassed 289 known and 1,457 putatively novel
302 GCFs. We found that 48 of the known GCFs (such as ectoine, hopene, desferrioxamine, etc.)
303 displayed a widespread genomic distribution, being present in genomes across all MASH-
304  clusters. We detected 174 known GCFs (such as germicidin, streptamidine, SGR-PTM, etc.) in
305 the genomes across multiple, but not all, MASH-clusters. Finally, 67 of the known GCFs (such as
306 informatipeptin, 5-DMAIAN, echoside, etc.) were specific to genomes from only one of the major
307 MASH-clusters, representing the biosynthetic signatures of these groups of genomes (Figure
308 S17). We also observed the same pattern of conservation of unknown GCFs in specific MASH-
309 clusters (Figure S18). This observed presence of GCFs across MASH-clusters implies certain
310 BGCs are likely to be found in certain MASH-clusters at primary or secondary levels (Figure S17-
311 S18).

312 Conservation of chromosomal synteny of BGCs

313  Finally, we present a novel workflow to capture BGC diversity by analyzing synteny within a
314  MASH-cluster. The diversity of the BGCs and their functions is computationally predicted using
315  similarity metrics and by visualization of the similarity networks (e.g., using BiG-SCAPE detected
316  similarity scores). To explore the syntenic relationship between BGCs, we extended this network
317 by adding edges between the BGCs that are neighbors on the chromosomes. Thus, all BGCs in
318 any genome would be connected by edges in the order of presence on chromosomes.

319  As an example, we selected 49 complete genomes from MASH-cluster M4 that were further
320 grouped into five secondary MASH-clusters (M4_1 to M4_5) (Figure 4A, Data S6). These strains
321 primarily belonged to S. albidoflavus (M4_2 to M4_5) and S. diastaticus species. The resulting
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322  network of BGCs showed remarkable conservation of the order in which the BGCs have evolved
323  onthe chromosomal location (Figure 4B). We observed that different BGCs are either inserted or
324  deleted from specific locations while maintaining the order of the seven commonly present BGCs
325  across the M4 MASH-cluster genomes. We also observed that these differences are conserved
326  within the secondary MASH-clusters (Figure 4B). This observation implicates the vertical
327 inheritance of BGCs as strains evolve across different clades or groups.

328 We focused on a specific region between two of the conserved BGCs coding for a type 2
329 lanthipeptide and NI-siderophore (Figure 4C). The genomes belonging to MASH-clusters M4_1
330 and M4_4 did not possess any BGCs in this chromosomal region, along with some of the M4_3
331  genomes. The majority of the M4_2 genomes harbored an NRPS BGC coding for the known
332  molecule cyclofaulknamycin (Figure 4D). The genomes of the M4_5 MASH-cluster showed
333 interesting variation in this region. Two genomes were observed to harbor a reduced version of
334  the cyclofaulknamycin BGC that could have a differential or loss of function, whereas the other
335 M4_5 genome has acquired a completely different TIPKS BGC in the same region, one that
336 codes for neoabyssomicin (Figure 4D)[32]. The genomes in M4_5 also harbor as yet
337  uncharacterized T1PKS-NRPS hybrid BGC in the region. Some of the M4_2 genomes have
338 additional BGCs in the region coding for the known PKS-like molecule paulomycin, whereas the
339 others from M4_3 have a T1PKS-PKS-like hybrid that codes for arsono-polyketide, which is
340  widespread across Streptomyces sp. [33].

341 To comprehend the actual diversity and investigate the evolution of BGCs, adopting a
342 chromosomal syntenic perspective emerged as a crucial strategy. This recurrent pattern held true
343  not only within MASH-cluster M4 but extended across our entire dataset, underscoring the
344  robustness of the analytical framework. For instance, the incorporation of syntenic relationships
345 into the similarity network revealed distinctive variations among five species within the M2_3
346  secondary MASH-cluster, including the model strain S. coelicolor A3(2) (Figure S19). This multi-
347 dimensional overview of BGC diversity, grounded in expansive, high-quality genomic data,
348  establishes a comprehensive tool for unraveling the nuanced intricacies of BGC evolution.
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350 Figure 4. Synteny of BGCs across MASH-clusters M4_1 to M4_5 showed conserved and variable
351 regions. A) Phylogenetic tree (top) of all 2371 genomes with highlighted M4 primary MASH-cluster.
352 Phylogenetic tree (bottom) of complete HQ genomes from the M4 primary MASH-cluster grouped into five
353  secondary MASH-clusters M4_1 through M4_5. M4_1 represents S. diastaticus whereas M4_2 to M4_5
354  represent different clusters within S. albidoflavus. B) Synteny network view of GCFs where the nodes
355  represent detected BGCs across 49 high-quality complete genomes from M4. Seven of the BGCs were
356  present across all 49 genomes and in the same order. The edges with solid lines represent BiG-SCAPE-
357  based similarity between BGCs. C) A selected portion of the synteny network from part B. The leftmost
358 BGC s atype 2 lanthipeptide and the rightmost BGC is a NI-siderophore. They are two of the seven BGCs
359  conserved in all genomes. The middle BGCs are variable. D) Alignment of several variable BGCs from part
360  C across strains from different secondary MASH-clusters.
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361 Discussion

362 In this study, we conducted pangenome mining of the biosynthetic potential inherent in the
363  Streptomyces genus, leveraging a dataset totaling over 2,370 genomes. Our investigative
364  approach was underpinned by a comprehensive workflow that encompassed crucial steps for
365 robust analysis. These steps included taxonomic identification, data quality checks, MASH-based
366 clustering, as well as the detection of BGCs and GCFs. Furthermore, our methodology involved
367  the regrouping of known GCFs to discern functional diversity and a thorough examination of
368 synteny among BGCs distributed across the chromosomes. This comprehensive analytical
369 framework has provided insights into both genomic architecture and the functional diversity
370 inherent in these prolific secondary metabolite producers.

371  We emphasized the critical role of data curation as the foundational step in comparative genomic
372  analysis, ensuring the establishment of a consistent dataset. Our workflow included an
373  assessment of critical assembly metrics such as the number of contigs, N50 score, completeness,
374  and contamination, enabling the classification of genomes into high, medium, and low quality. The
375 genus's vast diversity became evident, with as many as 810 detected species using GTDB and
376  MASH. To delineate meaningful groups of genomes for comparative analysis, we employed a
377  data-driven approach based on clustering MASH-based similarities. This methodology not only
378 facilitated the grouping of genomes into distinct MASH-clusters but also emphasized those
379  consistently clustered. While acknowledging the inherent limitations of clustering algorithms, we
380 employed a strict silhouette score as a necessary metric, recognizing that these algorithms have
381  their drawbacks, especially when dealing with unevenly distributed starting datasets.
382  Consequently, we omitted 372 strains from MASH-cluster assignments, prioritizing the integrity
383 of our analytical framework. Validation of the MASH-cluster definitions against different
384  phylogenetic trees underscored the robustness of this grouping strategy for comparative analysis.

385 Expanding our analysis, the diversity and classification of GCFs were found to be notably
386 influenced by several factors, including the type of BGC, the definition of BGC boundaries, and
387  the completeness of the MIBIG database. This observation emphasizes the crucial role of manual
388 inspection and refinement of existing genome mining tools in accurately characterizing the
389 inherent diversity of detected BGCs. In the course of our study, the integration of similarity scores
390 derived from knownclusterblast with the BiG-SLICE-based network highlighted a noteworthy
391  finding—that the diversity of computationally predicted BGCs may be considerably constrained,
392 especially in BGC types where the core biosynthetic regions are notably smaller than the
393 predicted boundary regions. While we anticipate that improvements in GCF detection algorithms
394  may yield more accurate predictions, the prediction of boundaries remains a substantial challenge
395  in the genome mining field.

396 Leveraging the definition of MASH-clusters in our analysis, we identified GCFs demonstrating
397  specificity or commonality across distinct MASH-clusters. Some of the common GCFs putatively
398 coded for secondary metabolites such as ectoine, hopene, and desferrioxamine among others.
399 This approach also facilitated the discernment of signature BGCs associated with groups of
400 strains at different MASH-cluster levels. It is crucial to note that the variable size of MASH-clusters
401 introduced variability in the number of signature BGCs observed across different clusters. As
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402  genome mining advances, these insights contribute to the ongoing refinement of methodologies,
403 paving the way for more accurate and comprehensive assessments of biosynthetic potential
404  across microbial genomes.

405 A detailed exploration of BGCs within MASH-cluster M4, which was further categorized into five
406  secondary MASH-clusters, uncovered a striking observation - BGC order along the chromosome
407  appears to be conserved. We observed shared genomic events such as deletions, insertions, and
408 modifications of BGCs in specific chromosomal regions across distinct secondary MASH-clusters.
409 Importantly, these patterns extend beyond M4, resonating across various MASH-clusters and
410  species. Our investigation extends to the species level, exemplified by a comparative analysis
411 involving five species, including S. coelicolor, within the secondary MASH-cluster M2_3 (Figure
412  S19). This analysis illustrates how neighboring species have evolved distinct strategies to harbor
413 diverse BGCs at specific chromosomal positions. The comparative examination provides insights
414 into the evolutionary adaptations of these species, shaping their secondary metabolite
415 biosynthetic capabilities. Notably, the findings underscore the role of vertical descent in the
416  evolution of BGCs across species and MASH-clusters, aligning with a growing body of evidence
417  inthe literature [13,16,34,35].

418  With the exponential growth of genome sequencing, the influence of vertical descent is becoming
419 increasingly apparent in the evolution of BGCs. The findings from this study significantly
420  contribute to our understanding of these vertical inheritance mechanisms along with a need for
421  manual inspection to more accurately capture the functional diversity of GCFs. These insights
422  have broader implications for understanding the adaptive strategies employed by these prolific
423  secondary metabolite producers in diverse ecological niches and environments.

424 Conclusion

425 In conclusion, our study presents a pangenome analysis of the biosynthetic diversity of
426  Streptomyces, a genus of high industrial importance. Data-driven clustering of nearly 2,400
427  Streptomyces genomes into MASH-clusters revealed 1) the diversity (or lack thereof) of
428 computationally predicted BGCs, especially when automatically grouped into GCFs, 2) that
429  certain BGCs/GCFs are specific to certain MASH-clusters, thus acting as potential biosynthetic
430 signatures for the MASH-cluster, and 3) that synteny among BGCs are conserved, implying that
431  vertical inheritance plays a major role in the evolution of BGCs. Taken together, our work not only
432  contributes to advancing our understanding of secondary metabolite biosynthesis in
433  Streptomyces but also highlights the evolving capabilities of pangenome analytics for biosynthetic
434  diversity exploration.

435 Methods

436 Data collection, taxonomy detection, and quality check

437  The starting dataset to select Streptomyces genomes was gathered from two sources: NCBI and
438 from those presented in a recent study [19]. As of 30 June 2023, we collected a total of 2,938
439 genomes of all assembly levels from NCBI RefSeq belonging to the family Streptomycetaceae
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440 (Data S1). We used this broader family of Streptomycetaceae with the aim of assigning taxonomy
441  based on GTDB consistently (version R214) [20,21]. We collected an additional 902 of the 1,034
442  actinomycete genomes from a recent study [19] (Data S1). We note that 121 genomes of the
443 1,034 were already available on NCBI on 30 June 2023 and 11 were added later to the other
444  study [19]. These genomes were processed through BGCFlow and different tools to assess the
445  quality of the genomes were run [11]. The BGCFlow workflow used for the generation of results
446 is available at hitps:/github.com/NBChub/bgcflow. Out of these 3,840 genomes, 3,569 were
447  identified as belonging to the Streptomyces genus as per GTDB definitions (Data S1, Figure S2).

448 The Streptomyces dataset of 3,569 genomes was processed with multiple quality checks. We
449  calculated genome completeness and contamination metrics using CheckM [36]. When cutoffs of
450  greater than 90% completeness and less than 5% contamination were used, 59 genomes were
451  found to have low-quality assemblies (Figure S3). We also used the assembly statistics on the
452  contigs and N50 scores for further curation. The genomes designated as complete or
453 chromosome-level assembly as per NCBI were classified as high-quality (HQ). From the
454  remaining genomes with scaffold or contig level assembly, we further annotated the genomes
455  with more than 100 contigs or N50 score of less than 100 kb as low-quality (LQ). Genomes with
456  fewer than 100 contigs were classified as medium-quality (MQ) (Figure S3).

457  In total, there were 1,215 HQ, 1,156 MQ, and 1,198 LQ genomes (Figure S1, S3). We defined
458  “good quality” genomes as a set of 2,371 high-quality and medium-quality genomes. The date of
459  submission was extracted from the NCBI metadata to represent the historical progress of
460  genomes with different genome qualities (Figure 1A).

461 MASH-based clustering analysis

462 The GTDB taxonomy assignment revealed 608 species for 1,956 genomes in the dataset of 2,371
463 curated Streptomyces genomes. The remaining 415 genomes lacked species assignments as
464  they did not have similar representatives in the GTDB database. We calculated the MASH-based
465  similarity network where the edges represent genome-wide similarity of greater than 95% (typical
466  threshold for species detection). We used the community detection method [37] to define the best
467  partitions that were assigned different MASH-based species totaling up to 202 novel species.
468  Four species were highly represented (>30 genomes) in our dataset: S. albidoflavus (or S. albus)
469 (109 genomes), S. anulatus (58 genomes), S. olivaceus (46 genomes) and S. bacillaris (33
470 genomes). Given such a diverse dataset, we proposed MASH-based clustering of the dataset as
471  explained below.

472  We used a whole genome sequence similarity-based workflow to cluster the genomes into
473  different subgroups of the Streptomyces genus. A similar workflow with MASH-based analysis
474  was shown to capture the phylogroups in the past [29]. Following this method, we calculated
475  MASH-distance for all pairs of genomes in the dataset using a BGCFlow rule that runs MASH
476 (Data S2) [28]. We computed pairwise distances using Pearson's correlation coefficient and
477  performed hierarchical clustering using the ward.D2 method.

478 We added additional steps to the MASH-based analysis method [29] to identify the optimal
479  number of clusters. We followed the elbow method to find the optimal number of k-means clusters
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480 and validated them using the average silhouette scores. We detected 7 optimal clusters based
481  on both adjusted inertia for the K-means method and the high average silhouette score across
482  the given dataset (Figure S4). The heatmap visualizations represented the diverse MASH-clusters
483 defined here (Figure S4). Next, we visualized the silhouette scores across different MASH-
484  clusters to validate the clustering using swarm plots (Figure S5). A random cutoff of 0.4 was
485 chosen to select the genomes that have good cluster assignments. This cutoff results in the
486  majority of the dataset being clustered consistently (except for MASH-cluster M5 that appears to
487  be poorly clustered). We iteratively removed the poorly clustered genomes from the dataset until
488  all genomes consistently scored above 0.4 on silhouette scores.

489  These curated steps resulted in the assignment of 1,999 genomes to a valid MASH-cluster (Data
490 S2). We further identified MASH-clusters within each of the above-defined primary MASH-
491 clusters. This secondary level of analysis led to the identification of 42 consistent secondary
492  MASH-clusters across 1,670 of the 1,999 genomes. We note that the assignment of the MASH-
493 clusters is dependent on the abundance of genomes collected in each cluster and will likely
494  change as the number of genomes increases.

495 Comparing MASH-clusters against phylogenetic trees

496 We constructed phylogenetic trees for all 2,371 curated Streptomyces genomes using an
497  outgroup genome of the Kitasatospora genus (K. setae strain KM-6054). We used 3 different
498 methods: GTDB-Tk [21], autoMLST [30], and getphylo [31] (Figure S13, Data S3). We calculated
499 the consensus branch support depending on whether a particular branch was supported
500 consistently by different methods (Figure S13). The branches supported by only one of the 3 trees
501  were deleted to visualize the consensus tree (Figure S13D). We also extracted the RED_groups
502 (relative evolutionary distance) calculated in a prior phylogenetic study based on GTDB [38].
503 These genomes were annotated on the color strip of the tree to compare against corresponding
504 MASH-cluster assignments from our analysis (Figure S14). The tree visualizations were
505 generated using iTOL [39]. The colored ranges for branches represented primary MASH-cluster
506 assignments, whereas the outer colorstrip represent secondary level of MASH-cluster
507  assignments. This qualitative comparison was used to compare MASH-cluster assignment results
508 against the clades detected using different phylogenetic methods.

509 Genome mining to detect BGCs

510 For alarge-scale comparative pangenome analysis, it is common to annotate the genomes using
511 a consistent method. Here, we annotated all genomes using prokka v1.14.6 [40]. We also used a
512 list of seven selected genomes with high-quality manually curated annotations as a priority while
513  running prokka using the parameter “--proteins” (Data S4). We used antiSMASH v7.0.0 on the
514  annotated genomes to detect secondary metabolite BGCs (Data S4) [6]. The knownclusterblast
515  results were used for primary assessment of whether the detected BGC regions show substantial
516  similarity against the BGCs from MIBiG database [41]. We note that this parameter does have
517  some pitfalls depending on various factors such as BGC region boundary definition, multiple
518 BGCs being part of the same BGCs region, and incomplete information within the MIBiG database
519 of some BGCs. Nonetheless, this metric still provides a way to quickly analyze large datasets
520  such as the one presented here. We used a strict cutoff of greater than 80% knownclusterblast
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521  similarity to tentatively identify BGCs that produce known secondary metabolites (Figure 1C, Data
522  S4). BGCs with 50 to 80% similarity were similarly marked as producers of known secondary
523  metabolites but with lower confidence.

524 Detection of GCFs

525  We detected over 70,000 BGCs. Subsequently, we used BiG-SLICE to calculate gene cluster
526  families (GCFs) using the default parameters (threshold of 900) [8] (Data S5). We further
527  annotated the GCFs as known if they had BGCs with knownclusterblast similarity above 80%
528  (Figure 3A). Different GCFs that contained BGCs with hits against the same MIBIG entry were
529 combined into a single “regrouped” GCF and putatively associated with known BGCs (Data S5).
530 The regrouped GCFs may still represent minor functional diversity; however, the large number of
531 GCFs often stemmed from variation in neighboring genes that were not part of the BGC as
532  reported in MIBiG. For example, spore pigment, alkylresorcinol, coelichelin, and isorenieratene
533 BGCs were regrouped from a large number of predicted GCFs. This study prioritized the analysis
534  of the known BGCs and left the unknown BGCs out of such regrouping analysis.

535 The abundance of some of the common GCFs (after regrouping) was calculated across different
536 MASH-clusters (Figure 3B). The UpSet plot was used to visualize the overlap of GCFs across
537  MASH-clusters (Figure S16). Selected BGCs from two GCFs putatively coding for spore pigment
538 and isorenieratene were further extracted for in-depth comparison. For more accurate similarity
539 calculation, we used BiG-SCAPE to generate a similarity network with a default threshold of 0.3
540 on the distance metric [7]. The network was visualized using Cytoscape where node colors
541  represented different MASH-clusters [42]. Representative BGCs from different BiG-SCAPE
542  predicted GCFs were further chosen to visualize the BGC region alignment using clinker tool [43]
543  (Figure S15).

544 Integrated network of BGCs similarity and chromosomal order

545 We developed a custom workflow to simultaneously visualize BGC diversity and the order of
546  BGCs along the chromosome. As a case study, we selected BGCs from 49 high-quality complete
547  genomes from MASH-cluster M4 that spanned 5 secondary-level MASH-clusters (Figure 4, Data
548  S6). Each node in the network represents a BGC, and nodes were connected with two types of
549  edges. The first type represented BiG-SCAPE-based similarity. The second type reflected the
550 order of BGCs present on the chromosome (Figure 4). A specific region of the chromosome with
551  two conserved BGCs was extracted for manual inspection of the variation of this region (Figure
552  4C). The selected BGCs were visualized using the clinker [43] to observe the alignments (Figure
553  4D). A similar integrated network was also reconstructed for 23 genomes from 5 different GTDB-
554  defined species that belonged to MASH-cluster M2_3 (Figure S19, Data S8).
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743  Legends for Data S1 to S6
744  Data S1. Metadata of the genomes used

745  Genomes Metadata: List of 3,840 genomes used at the start of the study with information on the
746  source, quality assigned, taxonomic information based on GTDB, checkM metrics of assembly
747  quality, bioproject accession numbers for all genomes, assigned MASH clusters at two levels for
748  selcted Streptomyces genomes, and the RED groups from prior study.

749
750 Data S2. MASH-based clustering and silhouette scores
751  MASH distances: Table with MASH based distances across all 2,371 selected genomes.

752  Silhouette scores (primary): Table with list of 2,371 genomes with assigned clusters based on
753  clustering analysis. The columns represent the assigned clusters after each filtering round (upto
754  5). The genomes being removed based on silhouette score cutoff of 0.4 are annotated as
755  “Dropped”. The columns also mention the silhouette score at each round of filtering. The final
756  round includes 1,999 genomes with primary MASH-cluster assignments.

757  Silhouette scores (secondary): Table with list of 1,999 genomes with assigned clusters at
758  secondary level based on clustering analysis. The columns represent the assigned clusters after
759  each filtering round (upto 3). The genomes being removed based on silhouette score cutoff of 0.4
760  are annotated as “Dropped”. The columns also mention the silhouette score at each round of
761  filtering. The final round includes 1,670 genomes with secondary MASH-cluster assignments.

762
763  Data S3. Phylogenetic trees using different methods

764  Three different phylogenetic tree files were calculated using autoMLST, getphylo and GTDB-Tk
765  methods.

766 The iTOL project with all the phylogenetic tree can be found at the link below:
767  https://itol.embl.de/shared/omkar31

768

769  Data S4. Detected BGCs across 2,371 genomes of HQ and MQ quality

770  BGCs counts: Table with number of BGCs detected in each of the genomes analyzed.
771 BGC information: Metadata table with information on each of the detected BGCs

772

773  Data S5: Detected GCFs using BiGSLiCE and regrouping of known GCFs
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GCFs (BiGSLICE): List of detected GCFs using BiGSLICE with metadata on number of BGCs
and combined GCF ID that were regrouped based on shared known clusters blast hits

GCFs (Regrouped): List of GCFs as defined in this study using BIGSLICE along with
knownclusterblast similarity with metadata on number of BGCs BiGSLICE defined GCFs.

BGC information: Assignment of GCFs and combined GCFs for each BGC

Data S6: Cytoscape file of BiG-SCAPE similarity network for BGCs in M4 Mash-cluster

The network visualizations corresponding to Figures 4B and 4C. The network included edges
based on BiGSCAPE similarity. Additional edges were added if the BGCs appeared next to each
other on the chromosome.
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Overview of starting dataset

et. al. 2024
om NCBI)

tomyces

Figure S1. Dataset overview

Treemap illustrating the number of genomes during various filtering stages. The primary rectangles denote
the genome source. Genomes were sourced from NCBI on 30 June, 2023 and our prior study [1]. Part of
the genomes form our prior study were already available at NCBI on 30 June, 2023 and were sourced from
there. The secondary layer signifies the GTDB-based genus assignment to Streptomyces. The tertiary layer
classifies genomes by the assembly quality as defined in this study: HQ (High Quality), MQ (Medium
Quality), or LQ (Low Quality). HQ: Genomes with complete or chromosome-level assemblies. MQ:
Genomes with contig or scaffold level assembly with less than 100 contigs. LQ: Genomes with contig or
scaffold level assembly with more than 100 contigs.
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GTDB-based reclassification of the genera
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801

802 Figure S2. GTDB-based taxonomic assignment

803  The genomes of the Streptomycetaceae family from NCBI RefSeq and actinomycetes from our recnet study
804 (Jorgensen et al. 2024) (also known as NBC collection) (left) were assigned genus definitions based on
805 GTDB R214 (right). Note that 38 Streptomyces genomes were reassigned to different genera using GTDB
806 taxonomy (25 to Kitasatospora)

807

808
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809

810 Figure S3. Assembly quality overview and filtering of the dataset

811 A) Scatter plot representing the distribution of completeness and contamination score calculated using
812  CheckM across 3,569 Streptomyces genomes. Genomes with completeness of less than 90% or
813  contamination of more than 5% were dropped. B) Scatter plot representing the distribution of N50 score
814 and number of contigs across 3,569 Streptomyces genomes. The colors represent the quality (HQ, MQ, or
815  LQ) whereas the shapes represent the source of the genome (NCBI or NBC). HQ: Genomes with complete
816  or chromosome level assemblies. MQ: Genomes with contig or scaffold level assembly with less than 100
817  contigs. LQ: Genomes with contig or scaffold level assembly with more than 100 contigs.
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820 Figure S4. Detection of optimal clusters using K-means and Silhouette scores on the
821 curated dataset of 2371 genomes

822  A) Adjusted inertia against different K-means clusters representing optimal clustering with 7 Mash-clusters.
823  B) Average Silhouette score of all samples for different numbers of clusters showing 7 optimal Mash-
824  clusters. C) Hierarchical dendrogram with clustermap representing MASH distance values across
825 genomes. The column colors represent the 7 optimal Mash-clusters. The top 20 abundant species are
826  highlighted in the clustermap.
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827

828  Figure S5. Iterative filtering of poorly clustered genomes using Silhouette score cutoff

829  A) Swarmplot representing silhouette values of each sample genome across the 7 predicted MASH-
830 clusters. The genomes with silhouette values lower than 0.4 are removed to detect the clusters accurately.
831 C) to F) lteratively reducing the size of the dataset until all samples have silhouette values higher than 0.4.
832 B) Final dataset of 1999 genome samples plotted on the original clustering in panel A. The color of the dots
833 represents one of the seven predicted primary MASH-clusters with grey color denoting the poorly clustered
834  sample genomes that are filtered out.
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836  Figure S6. Detection of secondary MASH-clusters using Silhouette scores within the M1

837  primary MASH-cluster

838 A) The average silhouette scores of all samples against the number of defined clusters with
839  hierarchical clustering based on the MASH distance matrix. The orange line plot represents the
840 original dataset of M1 MASH-cluster genomes whereas the blue represents the dataset after
841  removing poorly clustered samples. B) The silhouette scores of each sample across 7 secondary
842  MASH-clusters. The cutoff of 0.4 was used to select the samples with good clustering. The grey
843 dots represent 1 genome that was removed from the clustering analysis. C) Heatmap
844  representing the MASH distances between the genomes from the refined dataset. The rows and
845 columns are clustered using the hierarchical clustering method where the colors on columns
846  represent the 7 secondary MASH-clusters. The highlighted text on the heatmap represents some
847  of the abundant species.
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849  Figure S7. Detection of secondary MASH-clusters using Silhouette scores within the M2
850 primary MASH-cluster

851 A) The average silhouette scores of all samples against the number of defined clusters with
852 hierarchical clustering based on the MASH distance matrix. The orange line plot represents the
853 original dataset of M2 MASH-cluster genomes whereas the blue represents the dataset after
854  removing poorly clustered samples. B) The silhouette scores of each sample across 7 secondary
855 MASH-clusters. The cutoff of 0.4 was used to select the samples with good clustering. The grey
856  dots represent 215 genomes that were removed from the clustering analysis. C) Heatmap
857  representing the MASH distances between the genomes from the refined dataset. The rows and
858 columns are clustered using the hierarchical clustering method where the colors on columns
859 represent the 7 secondary MASH-clusters. The highlighted text on the heatmap represents some
860 of the abundant species. Note: S. anthocyanicus is the renamed species of S. coelicolor as per
861 GTDB.
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863  Figure S8. Detection of secondary MASH-clusters using Silhouette scores within the M3

864  primary MASH-cluster

865 A) The average silhouette scores of all samples against the number of defined clusters with
866 hierarchical clustering based on the MASH distance matrix. The orange line plot represents the
867  original dataset of M3 MASH-cluster genomes whereas the blue represents the dataset after
868  removing poorly clustered samples. B) The silhouette scores of each sample across 6 secondary
869  MASH-clusters. The cutoff of 0.4 was used to select the samples with good clustering. The grey
870  dots represent 44 genomes that were removed from the clustering analysis, including an entire
871  cluster 2. C) Heatmap representing the MASH distances between the genomes from the refined
872  dataset. The rows and columns are clustered using the hierarchical clustering method where the
873  colors on columns represent the 5 secondary MASH-clusters (note that cluster 2 was completely
874  removed). The highlighted text on the heatmap represents some of the abundant species.
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876  Figure S9. Detection of secondary MASH-clusters using Silhouette scores within the M4
877  primary MASH-cluster

878 A) The average silhouette scores of all samples against the number of defined clusters with
879 hierarchical clustering based on the MASH distance matrix. The orange line plot represents the
880 original dataset of M4 MASH-cluster genomes whereas the blue represents the dataset after
881  removing poorly clustered samples. B) The silhouette scores of each sample across 5 secondary
882  MASH-clusters. The cutoff of 0.4 was used to select the samples with good clustering. The grey
883 dots represent 1 genome that was removed from the clustering analysis. C) Heatmap
884  representing the MASH distances between the genomes from the refined dataset. The rows and
885 columns are clustered using the hierarchical clustering method where the colors on columns
886  represent the 5 secondary MASH-clusters. The highlighted text on the heatmap represents some
887  of the abundant species including S. albidoflavus as a major contributor of the M4 MASH-cluster.
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889  Figure S10. Detection of secondary MASH-clusters using Silhouette scores within the M5
890 primary MASH-cluster

891 A) The average silhouette scores of all samples against the number of defined clusters with
892 hierarchical clustering based on the MASH distance matrix. The orange line plot represents the
893 original dataset of M5 MASH-cluster genomes whereas the blue represents the dataset after
894  removing poorly clustered samples. B) The silhouette scores of each sample across 8 secondary
895 MASH-clusters. The cutoff of 0.4 was used to select the samples with good clustering. The grey
896  dots represent 4 genomes that were removed from the clustering analysis. C) Heatmap
897  representing the MASH distances between the genomes from the refined dataset. The rows and
898 columns are clustered using the hierarchical clustering method where the colors on columns
899 represent the 8 secondary MASH-clusters. The highlighted text on the heatmap represents some
900 of the abundant species. Note that the M5 MASH-cluster is one of the most diverse and likely
901  poorly sampled in the dataset.
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903 Figure S11. Detection of secondary MASH-clusters using Silhouette scores within the M6
904 primary MASH-cluster

905 A) The average silhouette scores of all samples against the number of defined clusters with
906 hierarchical clustering based on the MASH distance matrix. The orange line plot represents the
907  original dataset of M6 MASH-cluster genomes whereas the blue represents the dataset after
908 removing poorly clustered samples. B) The silhouette scores of each sample across 7 secondary
909 MASH-clusters. The cutoff of 0.4 was used to select the samples with good clustering. The grey
910 dots represent 26 genomes that were removed from the clustering analysis. C) Heatmap
911 representing the MASH distances between the genomes from the refined dataset. The rows and
912 columns are clustered using the hierarchical clustering method where the colors on columns
913  represent the 7 secondary MASH-clusters. The highlighted text on the heatmap represents some
914  of the abundant species.
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916  Figure S12. Detection of secondary MASH-clusters using Silhouette scores within the M7

917  primary MASH-cluster

918 A) The average silhouette scores of all samples against the number of defined clusters with
919  hierarchical clustering based on the MASH distance matrix. The orange line plot represents the
920 original dataset of M7 MASH cluster genomes whereas the blue represents the dataset after
921 removing poorly clustered samples. B) The silhouette scores of each sample across 4 secondary
922  MASH-clusters. The cutoff of 0.4 was used to select the samples with good clustering. The grey
923 dots represent 38 genomes that were removed from the clustering analysis. C) Heatmap
924  representing the MASH distances between the genomes from the refined dataset (note that 3
925 clusters were generated in the refined dataset). The rows and columns are clustered using the
926  hierarchical clustering method where the colors on columns represent the 3 secondary MASH-
927 clusters. The highlighted text on the heatmap represents some of the abundant species.
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Figure S13. Comparative assessment of MASH clusters aligned against different
phylogenetic trees

Phylogenetic trees were reconstructed using 3 different methods: A) GTDB-Tk denovo, B)
getphylo, and C) autoMLST. D) A consensus tree generated from the getphylo tree where the
branches supported in at least two trees were kept. E) Color legend representing the primary and
secondary level of MASH clusters. For example, M2 and M2_3 are highlighted in panel D. F)
Number of branches in individual trees showing the consensus across the other trees, with
getphylo showing maximum number of consensus branches.
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938 Figure S14: Comparison of MASH-clusters with groups proposed by Gavriilidou et. al.

' —

939 The RED (relative evolutionary divergence) groups as defined by Gavriilidou et. al.[2] were
940 mapped to the consensus tree and the MASH-clusters. The top 6 RED_groups are represented
941 by different colors on the external strip with the remaining RED_groups colored in grey. The GTDB
942  species that were not part of the earlier study are ignored on color color strip.
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943

944  Figure S15. Distribution and variation within common GCFs.

945  A) Similarity network based on BiG-SCAPE indicating detection of different GCFs for BGCs with
946  hits against a common MIBIG entry of isorenieratene. B) The alignment of selected BGCs from
947  panel A (highlighted with numbers) indicates mostly conserved core biosynthetic genes with
948 variations arising from extended cluster boundary definitions. C) Similarity network based on BiG-
949  SCAPE indicating detection of different GCFs for BGCs with hits against a common MIBIG entry
950 of spore pigment. D) The alignment of selected BGCs from panel C (highlighted with numbers)
951  again indicating highly conserved core biosynthetic genes with variations arising from extended
952  cluster boundary definitions.
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954 Figure S16. UpSet plot representation of GCFs present across different primary MASH-clusters

955  The ‘NA’category is represented by genomes with no MASH-cluster assigned. The top 20 most abundant
956 intersections are selected for the visualization. The bars along the top represent total GCFs present in each
957 MASH-cluster. The bars along the right represent the number of GCFs in the corresponding intersection.
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959  Figure S17: The presence-absence heatmap of GCFs with knownclusterblast similarity hits against
960 the MIBIG database.

961 The top 20 GCFs were selected from each of the three categories: present in more than 6 MASH-clusters,
962  present in 2 to 6 MASH-clusters, and present in only one of the MASH-clusters. The row colors represent
963  MASH-cluster assignment at both primary and secondary levels. The secondary MASH-cluster colors are
964  assigned within each primary MASH-cluster. For example, M4_1 to M4_5 are assigned the colors of Mx_1
965 to Mx_5 in the legend for secondary MASH-clusters.
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Figure S18. The presence-absence heatmap of GCFs without knownclusterblast similarity hits
against the MIBiG database.

The top 20 GCFs were selected from each of the three categories: present in more than 6 MASH-clusters,
present in 2 to 6 MASH-clusters, and present in one of the MASH-clusters. The row colors represent MASH-
cluster assignment at both primary and secondary levels. The secondary MASH-cluster colors are assigned
within each primary MASH-cluster. For example, M4_1 to M4_5 are assigned the colors of Mx_1 to Mx_5
in the legend for secondary MASH-clusters.
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974
975  Figure S19. Similarity network integrated with chromosomal order of BGCs across multiple species

976  (Left) Phylogenetic tree representing 23 genomes belonging to M2_3 secondary MASH-cluster. The other
977  clades of the MASH-cluster were collapsed. (Right) Similarity network integrating chromosomal order
978  across 5 different species of MASH-cluster M2_3 depicting the conserved and variable BGCs across the
979  genomes.
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