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Abstract 23 

Background: 24 

Streptomyces is a highly diverse genus known for the production of secondary or specialized 25 
metabolites with a wide range of applications in the medical and agricultural industries. Several 26 
thousand complete or nearly-complete Streptomyces genome sequences are now available, 27 
affording the opportunity to deeply investigate the biosynthetic potential within these organisms 28 
and to advance natural product discovery initiatives.  29 

Result: 30 

We performed pangenome analysis on 2,371 Streptomyces genomes, including approximately 31 
1,200 complete assemblies. Employing a data-driven approach based on genome similarities, the 32 
Streptomyces genus was classified into 7 primary and 42 secondary MASH-clusters, forming the 33 
basis for a comprehensive pangenome mining. A refined workflow for grouping biosynthetic gene 34 
clusters (BGCs) redefined their diversity across different MASH-clusters. This workflow also 35 
reassigned 2,729 known BGC families to only 440 families, a reduction caused by inaccuracies 36 
in BGC boundary detections. When the genomic location of BGCs is included in the analysis, a 37 
conserved genomic structure (synteny) among BGCs becomes apparent within species and 38 
MASH-clusters. This synteny suggests that vertical inheritance is a major factor in the acquisition 39 
of new BGCs. 40 

Conclusion: 41 

Our analysis of a genomic dataset at a scale of thousands of genomes refined predictions of BGC 42 
diversity using MASH-clusters as a basis for pangenome analysis. The observed conservation in 43 
the order of BGCs9 genomic locations showed that the BGCs are vertically inherited. The 44 
presented workflow and the in-depth analysis pave the way for large-scale pangenome 45 
investigations and enhance our understanding of the biosynthetic potential of the Streptomyces 46 
genus. 47 

Keywords: Pangenome analysis, Streptomyces, Genome mining, Biosynthetic Gene Clusters, 48 
Phylogenetic analysis, Metabolism.  49 
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Background 50 

Streptomyces, a genus of soil bacteria, is known for its ability to produce various natural products 51 
that have applications in medicine and biotechnology. These organisms are characterized by their 52 
complex and diverse biosynthetic gene clusters (BGCs), which are responsible for the 53 
biosynthesis of these bioactive compounds [1]. Over the past decades, several genomic studies 54 
have revealed that the full range of metabolites produced by Streptomyces and the associated 55 
biosynthetic pathways are not yet fully known [2].  56 

The same genomic studies have revealed extensive genomic and phylogenetic diversity within 57 
the Streptomyces genus. This diversity provides a huge potential for natural product discovery, 58 
but at the same time complicates comparative analyses across different species and strains. To 59 
mitigate this challenge, there is a growing consensus for the need to cluster Streptomyces into 60 
distinct groups or genus-equivalents [3,4]. Such refined classification aims to facilitate more 61 
precise comparisons to understand the biosynthetic diversity and evolution within the genus. 62 

Recent advances in sequencing technology and genome mining tools have allowed for the data-63 
driven discovery of natural products [5]. Several genome mining tools such as antiSMASH, BiG-64 
SCAPE, and BiG-SLICE have revealed that various bacterial species encode previously unknown 65 
biosynthetic potential [639]. While genome mining tools have significantly advanced our 66 
understanding of biosynthetic potential, there is a recognition that the estimates of diversity and 67 
novelty can be constrained by the inherent limitations of these individual tools and reference 68 
databases. These limitations include inaccurate definitions of BGC boundaries or incomplete 69 
entries in reference databases such as MIBiG [10]. The strategy of integrating results from 70 
different tools can partially mitigate these challenges [11]. 71 

Large-scale pangenome mining studies help to understand the evolutionary patterns of 72 
biosynthetic gene clusters (BGCs) along with a deep characterization of the biosynthetic 73 
repertoire of a given bacterial species or genus [12315]. Detailed comparative studies are now 74 
gathering evidence that vertical inheritance facilitates the diversification of BGCs more frequently 75 
than horizontal gene transfer [16]. Earlier pangenomic investigations of Streptomyces, examining 76 
121 genomes [17] and 205 genomes [18], respectively, have underscored that the pangenome of 77 
Streptomyces is quite open and represents high diversity. These analyses brought to light a 78 
limited number of core genes4633 [17] and 304 [18]4found across all strains considered in each 79 
study, respectively. Recent sequencing efforts have significantly increased the publicly available 80 
high-quality genomes of Streptomyces [19]. In light of this explosion of sequencing data, there is 81 
an emerging need to re-investigate the Streptomyces pangenome and the biosynthetic diversity 82 
within these organisms. 83 

In this study, we aim to address these questions by conducting the largest pangenome mining 84 
study of Streptomyces to date. By combining insights from various genome mining tools and 85 
clustering the organisms into distinct phylogroups, we seek to enhance our understanding of the 86 
biosynthetic potential, diversity, and evolutionary patterns inherent to this phylogenetically diverse 87 
genus. 88 
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Results 89 

The dataset of Streptomyces genomes 90 

In this study, we comprehensively analyzed genomes of the Streptomyces genus, sourcing both 91 
from the public database and from our newly published dataset [19]. As of 30 June 2023, we 92 
obtained accession IDs for 2,938 Streptomycetaceae genomes of all qualities from the NCBI 93 
RefSeq database (Data S1, Figure 1A). We also incorporated 902 newly sequenced [19] high-94 
quality complete actinomycete genomes for a total of 3,840 genomes  (Figure S1). 95 

These 3,840 genomes were then curated further. To ensure a uniform taxonomic classification 96 
derived from whole genome sequences, we employed GTDB (version R214) [20,21] for 97 
taxonomic assignments (Figure S2). Out of the 3,840 genomes, 3,569 were identified as 98 
belonging to the Streptomyces genus. Using different assembly statistics, we grouped the 99 
selected 3,569 Streptomyces genomes into high-quality (HQ, 1,215 genomes), medium-quality 100 
(MQ, 1,156 genomes), and low-quality (LQ, 1,198 genomes) (Figure S1, S3). The final dataset, 101 
post-curation, included 2,371 genomes of sufficiently good quality (HQ or MQ). 102 

We next classified the genomes at the species level. Of the 2,371 good-quality genomes, 1,956 103 
were assigned to one of the 608 GTDB-defined species. The remaining 415 genomes lacked 104 
species assignments, representing potentially novel species beyond the GTDB catalog. Based 105 
on a 95% genomic similarity threshold using the MASH distance matrix, these 415 genomes were 106 
grouped into 202 species. Combining GTDB and MASH-based assignments, the dataset 107 
encompasses at least 810 Streptomyces predicted species, with 468 species represented by a 108 
single genome. Overall, these statistics indicate that the dataset is highly diverse, necessitating 109 
the careful grouping of these genomes for pangenome analysis. 110 

The Streptomyces pangenome exhibited wide-ranging genomic characteristics. Genome sizes 111 
spanned from 4.8 Mbp to 13.6 Mbp, with a median of 8.5 Mbp (Figure 1B). Interestingly, the 112 
strains with the smallest genome sizes mainly belong to actinomycetoma-related pathogenic 113 
species of S. sudanensis and S. somaliensis [22]. In contrast, the largest-sized genomes primarily 114 
belong to S. rapamycinicus or to novel species. GC content ranged between 68.6% and 74.8%, 115 
with a median of 71.6%. 116 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2024. ; https://doi.org/10.1101/2024.02.20.581055doi: bioRxiv preprint 

https://paperpile.com/c/wgK6jH/WUp4
https://paperpile.com/c/wgK6jH/WUp4
https://paperpile.com/c/wgK6jH/yqbh+Vx3N
https://paperpile.com/c/wgK6jH/nqCK
https://doi.org/10.1101/2024.02.20.581055
http://creativecommons.org/licenses/by-nc/4.0/


 117 

Figure 1. Dataset of Streptomyces genomes and BGC statistics. A) Number of Streptomyces genomes 118 
from the NCBI RefSeq database as of 30 June 2023. The final bar includes newly sequenced high quality 119 
genomes from our prior study [19]. Genomes are categorized by assembly quality: HQ (high-quality), MQ 120 
(medium-quality), and LQ (low-quality). B) Scatter plot illustrating the relationship between genome length 121 
and the number of BGCs in 2,371 genomes of the MQ and HQ categories. Annotations represent 122 
information on selected strains. C) Breakdown of the twenty most common types of BGCs detected in the 123 
HQ and MQ genomes. The remaining BGC types are bundled under <Other_combined,= which may contain 124 
hybrids of some of the listed types. Color-coded bars highlight BGC similarity percentages against the 125 
MIBiG database: gray for <50%, light green for 50-80%, and green for >80%. Bar annotations represent a 126 
tally of MIBiG entries with >80% similarity for the detected BGCs. 127 

Types of BGCs identified and similarity to known BGCs 128 

Utilizing antiSMASH v7 [6], we identified a total of 70,561 BGCs in the 2,371 HQ or MQ genomes 129 
(Data S4). It is essential to highlight that genome quality can significantly influence the number of 130 
BGCs predicted for a particular genome. Specifically, when BGCs are located on contig edges, 131 
their count can be artificially increased when analyzed with antiSMASH as a broken BGC is likely 132 
to be counted twice. Thus the number of BGCs on the contig edge is a metric of genome quality 133 
for BGC analysis [23]. We identified only 6,524 BGCs (9.2%) situated at contig edges indicating 134 
a high quality of the collected dataset at capturing mostly complete BGCs [24]. Among the 1,215 135 
genomes with complete assemblies (HQ), the number of BGCs per genome ranged between 11 136 
and 56 with a median of 29 BGCs. It should be noted that the set of HQ assemblies included 137 
several S. albidoflavus strains in which multiple BGCs had been deleted, thus explaining the lower 138 
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BGC count. The number of BGCs increased with the size of the genomes in accordance with prior 139 
observations (Figure 1B) [25,26]. 140 

The predominant BGC types in our dataset are terpene (11,095 BGCs), NRPS-independent (NI) 141 
siderophore (5,711 BGCs), nonribosomal peptide synthetase (NRPS) (3,599 BGCs), type1 142 
polyketide synthase (T1PKS) (3,092 BGCs), ribosomally synthesized and post-translationally 143 
modified peptide like (RiPP-like) (2,933 BGCs), T3PKS (2,562 BGCs), ectoine (2,458 BGCs), 144 
butyrolactone (2,277 BGCs), melanin (2,244 BGCs), T2PKS (1,536 BGCs), and NRPS-T1PKS 145 
(1,536 BGCs). One can estimate the number of BGCs that encode known secondary metabolites 146 
by comparing the BGCs against the curated MIBiG database [10]. This estimate is provided 147 
automatically during antiSMASH analysis: the program generates  <knownclusterblast” similarity 148 
scores that estimate how similar a certain region is to the BGCs in MIBiG by calculating a 149 
percentage of similar genes [6,10]. A threshold on the knownclusterblast score of greater than 150 
80% of similar genes led to 21,404 BGCs (~30%) that matched one of the 475 characterized 151 
BGCs from the MIBiG database. The most recurrent known BGCs were linked to the biosynthesis 152 
of compounds such as ectoine (2,230), desferrioxamine (1,685), geosmin (1,412), hopene 153 
(1,095), spore pigment (1,083), isorenieratene (852), albaflavenone (807), ε-Poly-L-lysine (730), 154 
and alkylresorcinol (708). These BGCs are known to be found commonly across the 155 
Streptomyces genus [27]. On average, 31% of the BGCs per genome matched to known BGCs 156 
in MIBiG. A further 8,161 BGCs (~11.6%) had similarity scores between 60% to 80%, dominated 157 
by 1,116 hopene-like BGCs, while as many as 27,029 (38.3%) BGCs had similarity scores of less 158 
than 30%. 159 

While estimates of novel BGCs provide valuable insights, they inherently depend on the 160 
completeness of the MIBiG database, potentially introducing bias. To further dissect this aspect, 161 
we examined the number of known BGCs across some of the abundant BGC types (Figure 1C). 162 
We found that certain BGC types4ectoine, NRP-metallophore-NRPS hybrid, T3PKS, T2PKS, 163 
lanthipeptide-class-iii, non-alpha polyamino group acids (NAPAA), and terpene4exhibited a 164 
significant similarity with the MIBiG database, as evidenced by over 40% of these BGCs having 165 
a knownclusterblast similarity of above 80%. In contrast, BGC types such as RiPP-like, 166 
lanthipeptide-class-i, butyrolactone, NRPS, NRPS-like, T1PKS, and NRPS-like-T1PKS hybrid 167 
showed less than 15% of their BGCs aligning with the MIBiG database with the same similarity 168 
threshold. However, it is essential to recognize that some BGC types, such as ectoine or NAPAA, 169 
are naturally less diverse and represent only a few compounds. For example, the majority of the 170 
ectoine-type BGCs (2,173 in total) were primarily aligned with just two MIBiG entries, both coding 171 
for the same compound ectoine (BGC0000853 and BGC0002052). Similarly, recognized BGC 172 
types like NAPAA, lanthipeptide-class-iii, melanin, and NI-siderophore matched fewer than eight 173 
MIBiG entries, and some of them are naturally less diverse. 174 

MASH-based analysis revealed 7 primary and 42 secondary MASH-clusters  175 

Within the vast genomic landscape of the Streptomyces genus, the clearly defined classification 176 
of strains is essential for comparative analysis. Historically, comparative genome mining studies 177 
have predominantly centered on examining single species. However, this approach is limiting, 178 
especially in a genus like Streptomyces where many species are represented by a single genome 179 
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sequence in public databases. This limitation has often necessitated a broader lens, 180 
encompassing genomes from the entire genus [4,17,18]. As valuable as genus-level insights are, 181 
the detection of over 800 species of Streptomyces demands a more focused approach. 182 
Accordingly, we sought to define distinct, sub-genus level groups.  183 

Here, we propose a MASH-based whole genome similarity metric to empower comparative 184 
pangenome analysis by providing a statistical grouping of strains instead of the taxonomic 185 
delineations [28,29]. The MASH-clusters were generated by optimal K-means clustering in 186 
synergy with the highest average silhouette scores (Figure S4, Data S2). This analysis yielded 187 
seven primary MASH-clusters among 1,999 genomes, termed M1 through M7 (Figure 2, Data 188 
S2). To ensure the robustness of these clusters, a stringent silhouette score cutoff (0.4) was 189 
iteratively employed, leading to the removal of 372 genomes (Figure S5). These filtered genomes 190 
are less likely to be part of one of the 7 major MASH-clusters and may form additional clusters 191 
upon future sequencing efforts of these clades (Figure 2B). Venturing deeper, all primary MASH-192 
clusters were subjected to an additional round of clustering, revealing 42 secondary MASH-193 
clusters that encompassed 1,670 genomes after refinement based on silhouette scores with the 194 
same cutoffs (Figure S6-S12). 195 

Several MASH-clusters stood out in this analysis. M2 emerged as the largest primary MASH-196 
cluster representing 871 genomes. M2 harbors key species such as S. coelicolor, S. rochei, and 197 
S. canus. The second largest MASH-cluster, M3, represented 510 genomes with species such 198 
as S. anulatus, S. bacillaris and S. papulosus. MASH-cluster M5 stood out as the ancestral group 199 
and showed the poorest clustering (Figure 2C). However, a significant portion of genomes from 200 
MASH-cluster M5 were excluded from the refined MASH-clusters due to their low silhouette 201 
scores (Figure S5). MASH-cluster M4 represented 119 genomes, mostly of the species S. 202 
albidoflavus (previously designated S. albus), and was noteworthy for its high average clustering 203 
score (Figure 2D, Figure S9). 204 
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 205 

Figure 2. Mash-based clustering of the Streptomyces genus provides a basis for pangenome 206 
analysis. A) The average silhouette scores of all samples against the number of primary clusters with 207 
hierarchical clustering based on the MASH distance matrix. The orange line represents the original dataset 208 
of 2371 genomes, whereas the blue represents the dataset after filtering poorly clustered samples. B) A 209 
phylogenetic tree reconstructed using getphylo with K. setae strain KM-6054 as an outgroup. See Figure 210 
S13 for trees constructed using different methods and the consensus. The colored ranges represent the 211 
MASH-cluster assignment with gray color representing filtered genomes. The outer color strip represents 212 
the colors for secondary MASH-clusters (see Figures S6 to S12 for details). C) Heatmap representing the 213 
MASH distances between the 2371 genomes. The rows and columns are clustered using the hierarchical 214 
clustering method where the colors on columns represent the seven primary MASH-clusters (with gray color 215 
representing filtered-out genomes). The highlighted text on the heatmap represents some of the abundant 216 
species. D) Heatmap representing the MASH distances between the 119 genomes of the selected M4 217 
cluster. The rows and columns are clustered using the hierarchical clustering method where the colors on 218 
columns represent the five secondary MASH-clusters (M4_1 to M4_5). M4_1 represents S. diastaticus 219 
whereas M4_2 to M4_5 represent different clusters within S. albidoflavus. 220 
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Comparison of MASH-clusters with phylogenetic trees 221 

The biggest drawback of using a similarity metric like MASH is the lack of an evolutionary model. 222 
Therefore, to evaluate the evolutionary relevance of the MASH-clusters, we compared them to 223 
genome-scale phylogenetic trees (Figure 2B). We constructed three trees by employing three 224 
distinct methodologies: autoMLST [30], GTDB-Tk (de novo workflow) [21], and getphylo [31] 225 
(Figure S13, Data S3). Upon comparison, a broad consensus was observed between the MASH-226 
defined clusters and the clades delineated by different phylogenetic trees. There were, however, 227 
some outliers, chiefly clusters M1 and M7, which appeared to be paraphyletic (Figure S13). Upon 228 
closer inspection, however, these outliers fell within parts of the phylogenetic trees that were 229 
poorly supported and incongruent between the different methodologies. Further analysis revealed 230 
a striking level of incongruence between the three phylogenies. Only 62% of the branches were 231 
supported by a majority consensus and 33% by all three methodologies. The genus Streptomyces 232 
and its two major clades (represented by M2 and M3) are fully congruent, as well as many of the 233 
species and species complexes. However, lineages show a high degree of polytomy at the sub-234 
generic level. This incongruence demonstrates the potential fallibility of phylogenetic methods 235 
when studying the intra-genus level relationships of Streptomyces.  236 

Finally, we also compared the MASH-clusters with the RED_groups (relative evolutionary 237 
divergence-based groups) defined in a recent study as bacterial groups analogous to genera but 238 
characterized by equal evolutionary distance [4] (Figure S14). A consensus was observed for 239 
major groups except that the MASH-based method has split the RG_2 [4] into two separate 240 
MASH-clusters, M3 and M6. In this fashion, MASH-clustering proposed here complements the 241 
phylogenetic methods to produce statistically correlated groups. 242 

BGC diversity predictions based on known cluster similarity 243 

To assess the diverse biosynthetic potential across genomes, it is helpful to group BGCs into 244 
gene cluster families (GCFs). GCFs are groups of BGCs that are homologous to each other, and 245 
thus are hypothesized to encode molecules that have similar chemical structures. GCFs are 246 
calculated by clustering BGCs using specialized tools such as BiG-SCAPE [7] or BiG-SLICE [8]. 247 
As a first step, we opted for BiG-SLICE (optimal with larger datasets) to execute this clustering 248 
across the entire dataset. Utilizing default parameters, we identified a total of 11,528 GCFs from 249 
the 70,561 BGCs (Figure 3A, Data S5). However, as highlighted in previous work [11], integrating 250 
diverse genome mining tools can enhance GCF refinement. For instance, minor genetic variations 251 
in regions adjacent to, but not directly involved in, biosynthesis can inadvertently lead to the 252 
classification of BGCs that code for identical secondary metabolites into disparate GCFs. To 253 
mitigate these issues, as a second step of defining GCFs, we used antiSMASH's 254 
knownclusterblast results (with a similarity threshold of >80% of genes) to regroup the GCFs with 255 
the presence of predicted known BGCs. 256 

A total of 2,729 GCFs predicted by BiG-SLICE in the first step were associated with known 257 
secondary metabolites according to knownclusterblast results. After regrouping these GCFs at 258 
the second step, we effectively reduced the count of known GCFs from 2,729 to 440 (Figure 3A, 259 
Data S5). For instance, BGCs that code for spore pigment, alkylresorcinol, coelichelin, and 260 
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isorenieratene (in the second step) were detected as 153, 151, 138, and 138 different GCFs (in 261 
the first step), respectively (Figure 3B). We investigated whether these reductions of GCF 262 
diversity predictions are dependent on the type of BGCs (Figure 3C). For example, BGC types 263 
such as lanthipeptide-class-iii, terpene, NRP_metallophore-NRPS hybrid, and T3PKS showed a 264 
high level of reduction in the diversity of GCFs when knownclusterblast results were integrated. 265 
In contrast, types such as NRPS or T1PKS showed a relatively lower reduction in the diversity of 266 
GCFs as was predicted in the first step using BiG-SLICE (Figure 3C). 267 

We also note that these regrouped GCFs could contain minor internal variations. For a more 268 
precise investigation, we constructed a similarity network of two regrouped GCFs coding for spore 269 
pigment (153 originally predicted GCFs) and isorenieratene (138 originally predicted GCFs). We 270 
used a BiG-SCAPE generated distance matrix to create this network (more optimal for a relatively 271 
small dataset) (Figure S15A, and S15C). We also aligned the selected BGCs, which showed that 272 
the overestimated diversity of these known BGCs can be attributed to inaccurate BGC 273 
boundaries. For instance, variation in BGCs from different MASH-clusters was largely due to 274 
differences in the neighboring regions of the detected BGCs. The differential neighboring regions 275 
causing variation within the regrouped GCF were generally conserved within genomes from the 276 
same MASH-clusters (Figure S15B and S15D). In general, we observed that the types requiring 277 
fewer genes for core biosynthesis, such as terpene, T2PKS, T3PKS, siderophore, or RiPPs, were 278 
also among the most affected by these variations in neighboring regions. 279 

 280 
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Figure 3. Advanced clustering of BGCs redefines known GCFs with reduced diversity in specific 281 
types of BGCs. A) Workflow used to detect BGCs, GCFs based on BiG-SLICE, and regrouping GCFs 282 
based on knownclusterblast similarity (>80% of genes). Several examples of known GCFs are reported in 283 
the bottom boxes, classified into common, accessory, or unique GCFs to MASH-clusters. B) Percentage 284 
abundance of the top twenty known GCFs across different primary MASH-clusters. Each row corresponds 285 
to a known compound (GCF). The number in parentheses denotes the number of BiG-SLICE detected 286 
GCFs that were regrouped into one GCF. C) Overview of the number of GCFs that were regrouped across 287 
the twenty most abundant BGC types. Gray bars represent the number of GCFs detected using only BiG-288 
SLICE, whereas blue bars represent the reduced number of GCFs after regrouping based on 289 
knownclusterblast. 290 

Diversity of GCFs across genomes from different MASH-clusters 291 

Subsequently, we examined the distribution patterns of GCFs across the genomes delineated by 292 
the seven primary MASH-clusters to identify BGCs associated with specific MASH-clusters 293 
(Figure 3B). MASH-cluster M2 contained 2,606 GCFs that did not appear in any other MASH 294 
cluster. Similarly, MASH-clusters M3 and M6 contained 811 and 648 GCFs, respectively, that 295 
were specific to those MASH clusters (Figure S16). We also note that a total of 2,338 GCFs were 296 
specific to the 372 genomes that were dropped from the MASH-cluster definitions, and are likely 297 
to represent further diversity. It is imperative to note that MASH-clusters M2 and M3 constitute 298 
the most populous clades which may explain their apparent diversity of GCFs. 299 

To gain deeper insights into the biosynthetic signatures of different MASH-clusters, we analyzed 300 
all GCFs containing at least five BGCs. This encompassed 289 known and 1,457 putatively novel 301 
GCFs. We found that 48 of the known GCFs (such as ectoine, hopene, desferrioxamine, etc.) 302 
displayed a widespread genomic distribution, being present in genomes across all MASH-303 
clusters. We detected 174 known GCFs (such as germicidin, streptamidine, SGR-PTM, etc.) in 304 
the genomes across multiple, but not all, MASH-clusters. Finally, 67 of the known GCFs (such as 305 
informatipeptin, 5-DMAIAN, echoside, etc.) were specific to genomes from only one of the major 306 
MASH-clusters, representing the biosynthetic signatures of these groups of genomes (Figure 307 
S17). We also observed the same pattern of conservation of unknown GCFs in specific MASH-308 
clusters (Figure S18). This observed presence of GCFs across MASH-clusters implies certain 309 
BGCs are likely to be found in certain MASH-clusters at primary or secondary levels (Figure S17-310 
S18). 311 

Conservation of chromosomal synteny of BGCs 312 

Finally, we present a novel workflow to capture BGC diversity by analyzing synteny within a 313 
MASH-cluster. The diversity of the BGCs and their functions is computationally predicted using 314 
similarity metrics and by visualization of the similarity networks (e.g., using BiG-SCAPE detected 315 
similarity scores). To explore the syntenic relationship between BGCs, we extended this network 316 
by adding edges between the BGCs that are neighbors on the chromosomes. Thus, all BGCs in 317 
any genome would be connected by edges in the order of presence on chromosomes.   318 

As an example, we selected 49 complete genomes from MASH-cluster M4 that were further 319 
grouped into five secondary MASH-clusters (M4_1 to M4_5) (Figure 4A, Data S6). These strains 320 
primarily belonged to S. albidoflavus (M4_2 to M4_5) and S. diastaticus species. The resulting 321 
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network of BGCs showed remarkable conservation of the order in which the BGCs have evolved 322 
on the chromosomal location (Figure 4B). We observed that different BGCs are either inserted or 323 
deleted from specific locations while maintaining the order of the seven commonly present BGCs 324 
across the M4 MASH-cluster genomes. We also observed that these differences are conserved 325 
within the secondary MASH-clusters (Figure 4B). This observation implicates the vertical 326 
inheritance of BGCs as strains evolve across different clades or groups. 327 

We focused on a specific region between two of the conserved BGCs coding for a type 2 328 
lanthipeptide and NI-siderophore (Figure 4C). The genomes belonging to MASH-clusters M4_1 329 
and M4_4 did not possess any BGCs in this chromosomal region, along with some of the M4_3 330 
genomes. The majority of the M4_2 genomes harbored an NRPS BGC coding for the known 331 
molecule cyclofaulknamycin (Figure 4D). The genomes of the M4_5 MASH-cluster showed 332 
interesting variation in this region. Two genomes were observed to harbor a reduced version of 333 
the cyclofaulknamycin BGC that could have a differential or loss of function, whereas the other 334 
M4_5 genome has acquired a completely different T1PKS BGC in the same region, one that 335 
codes for neoabyssomicin (Figure 4D)[32]. The genomes in M4_5 also harbor as yet 336 
uncharacterized T1PKS-NRPS hybrid BGC in the region. Some of the M4_2 genomes have 337 
additional BGCs in the region coding for the known PKS-like molecule paulomycin, whereas the 338 
others from M4_3 have a T1PKS-PKS-like hybrid that codes for arsono-polyketide, which is 339 
widespread across Streptomyces sp. [33]. 340 

To comprehend the actual diversity and investigate the evolution of BGCs, adopting a 341 
chromosomal syntenic perspective emerged as a crucial strategy. This recurrent pattern held true 342 
not only within MASH-cluster M4 but extended across our entire dataset, underscoring the 343 
robustness of the analytical framework. For instance, the incorporation of syntenic relationships 344 
into the similarity network revealed distinctive variations among five species within the M2_3 345 
secondary MASH-cluster, including the model strain S. coelicolor A3(2) (Figure S19). This multi-346 
dimensional overview of BGC diversity, grounded in expansive, high-quality genomic data, 347 
establishes a comprehensive tool for unraveling the nuanced intricacies of BGC evolution. 348 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2024. ; https://doi.org/10.1101/2024.02.20.581055doi: bioRxiv preprint 

https://paperpile.com/c/wgK6jH/uPGR
https://paperpile.com/c/wgK6jH/bOsU
https://doi.org/10.1101/2024.02.20.581055
http://creativecommons.org/licenses/by-nc/4.0/


 349 

Figure 4. Synteny of BGCs across MASH-clusters M4_1 to M4_5 showed conserved and variable 350 
regions. A) Phylogenetic tree (top) of all 2371 genomes with highlighted M4 primary MASH-cluster. 351 
Phylogenetic tree (bottom) of complete HQ genomes from the M4 primary MASH-cluster grouped into five 352 
secondary MASH-clusters M4_1 through M4_5. M4_1 represents S. diastaticus whereas M4_2 to M4_5 353 
represent different clusters within S. albidoflavus. B) Synteny network view of GCFs where the nodes 354 
represent detected BGCs across 49 high-quality complete genomes from M4. Seven of the BGCs were 355 
present across all 49 genomes and in the same order. The edges with solid lines represent BiG-SCAPE-356 
based similarity between BGCs. C) A selected portion of the synteny network from part B. The leftmost 357 
BGC is a type 2 lanthipeptide and the rightmost BGC is a NI-siderophore. They are two of the seven BGCs 358 
conserved in all genomes. The middle BGCs are variable. D) Alignment of several variable BGCs from part 359 
C across strains from different secondary MASH-clusters. 360 
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Discussion 361 

In this study, we conducted pangenome mining of the biosynthetic potential inherent in the 362 
Streptomyces genus, leveraging a dataset totaling over 2,370 genomes. Our investigative 363 
approach was underpinned by a comprehensive workflow that encompassed crucial steps for 364 
robust analysis. These steps included taxonomic identification, data quality checks, MASH-based 365 
clustering, as well as the detection of BGCs and GCFs. Furthermore, our methodology involved 366 
the regrouping of known GCFs to discern functional diversity and a thorough examination of 367 
synteny among BGCs distributed across the chromosomes. This comprehensive analytical 368 
framework has provided insights into both genomic architecture and the functional diversity 369 
inherent in these prolific secondary metabolite producers. 370 

We emphasized the critical role of data curation as the foundational step in comparative genomic 371 
analysis, ensuring the establishment of a consistent dataset. Our workflow included an 372 
assessment of critical assembly metrics such as the number of contigs, N50 score, completeness, 373 
and contamination, enabling the classification of genomes into high, medium, and low quality. The 374 
genus's vast diversity became evident, with as many as 810 detected species using GTDB and 375 
MASH. To delineate meaningful groups of genomes for comparative analysis, we employed a 376 
data-driven approach based on clustering MASH-based similarities. This methodology not only 377 
facilitated the grouping of genomes into distinct MASH-clusters but also emphasized those 378 
consistently clustered. While acknowledging the inherent limitations of clustering algorithms, we 379 
employed a strict silhouette score as a necessary metric, recognizing that these algorithms have 380 
their drawbacks, especially when dealing with unevenly distributed starting datasets. 381 
Consequently, we omitted 372 strains from MASH-cluster assignments, prioritizing the integrity 382 
of our analytical framework. Validation of the MASH-cluster definitions against different 383 
phylogenetic trees underscored the robustness of this grouping strategy for comparative analysis. 384 

Expanding our analysis, the diversity and classification of GCFs were found to be notably 385 
influenced by several factors, including the type of BGC, the definition of BGC boundaries, and 386 
the completeness of the MIBiG database. This observation emphasizes the crucial role of manual 387 
inspection and refinement of existing genome mining tools in accurately characterizing the 388 
inherent diversity of detected BGCs. In the course of our study, the integration of similarity scores 389 
derived from knownclusterblast with the BiG-SLICE-based network highlighted a noteworthy 390 
finding4that the diversity of computationally predicted BGCs may be considerably constrained, 391 
especially in BGC types where the core biosynthetic regions are notably smaller than the 392 
predicted boundary regions. While we anticipate that improvements in GCF detection algorithms 393 
may yield more accurate predictions, the prediction of boundaries remains a substantial challenge 394 
in the genome mining field. 395 

Leveraging the definition of MASH-clusters in our analysis, we identified GCFs demonstrating 396 
specificity or commonality across distinct MASH-clusters. Some of the common GCFs putatively 397 
coded for secondary metabolites such as ectoine, hopene, and desferrioxamine among others. 398 
This approach also facilitated the discernment of signature BGCs associated with groups of 399 
strains at different MASH-cluster levels. It is crucial to note that the variable size of MASH-clusters 400 
introduced variability in the number of signature BGCs observed across different clusters. As 401 
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genome mining advances, these insights contribute to the ongoing refinement of methodologies, 402 
paving the way for more accurate and comprehensive assessments of biosynthetic potential 403 
across microbial genomes. 404 

A detailed exploration of BGCs within MASH-cluster M4, which was further categorized into five 405 
secondary MASH-clusters, uncovered a striking observation - BGC order along the chromosome 406 
appears to be conserved. We observed shared genomic events such as deletions, insertions, and 407 
modifications of BGCs in specific chromosomal regions across distinct secondary MASH-clusters. 408 
Importantly, these patterns extend beyond M4, resonating across various MASH-clusters and 409 
species. Our investigation extends to the species level, exemplified by a comparative analysis 410 
involving five species, including S. coelicolor, within the secondary MASH-cluster M2_3 (Figure 411 
S19). This analysis illustrates how neighboring species have evolved distinct strategies to harbor 412 
diverse BGCs at specific chromosomal positions. The comparative examination provides insights 413 
into the evolutionary adaptations of these species, shaping their secondary metabolite 414 
biosynthetic capabilities. Notably, the findings underscore the role of vertical descent in the 415 
evolution of BGCs across species and MASH-clusters, aligning with a growing body of evidence 416 
in the literature [13,16,34,35]. 417 

With the exponential growth of genome sequencing, the influence of vertical descent is becoming 418 
increasingly apparent in the evolution of BGCs. The findings from this study significantly 419 
contribute to our understanding of these vertical inheritance mechanisms along with a need for 420 
manual inspection to more accurately capture the functional diversity of GCFs. These insights 421 
have broader implications for understanding the adaptive strategies employed by these prolific 422 
secondary metabolite producers in diverse ecological niches and environments. 423 

Conclusion 424 

In conclusion, our study presents a pangenome analysis of the biosynthetic diversity of 425 
Streptomyces, a genus of high industrial importance. Data-driven clustering of nearly 2,400 426 
Streptomyces genomes into MASH-clusters revealed 1) the diversity (or lack thereof) of 427 
computationally predicted BGCs, especially when automatically grouped into GCFs, 2) that 428 
certain BGCs/GCFs are specific to certain MASH-clusters, thus acting as potential biosynthetic 429 
signatures for the MASH-cluster, and 3) that synteny among BGCs are conserved, implying that 430 
vertical inheritance plays a major role in the evolution of BGCs. Taken together, our work not only 431 
contributes to advancing our understanding of secondary metabolite biosynthesis in 432 
Streptomyces but also highlights the evolving capabilities of pangenome analytics for biosynthetic 433 
diversity exploration. 434 

Methods 435 

Data collection, taxonomy detection, and quality check 436 

The starting dataset to select Streptomyces genomes was gathered from two sources: NCBI and 437 
from those presented in a recent study [19].  As of 30 June 2023, we collected a total of 2,938 438 
genomes of all assembly levels from NCBI RefSeq belonging to the family Streptomycetaceae 439 
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(Data S1). We used this broader family of Streptomycetaceae with the aim of assigning taxonomy 440 
based on GTDB consistently (version R214) [20,21]. We collected an additional 902 of the 1,034 441 
actinomycete genomes from a recent study [19] (Data S1). We note that 121 genomes of the 442 
1,034 were already available on NCBI on 30 June 2023 and 11 were added later to the other 443 
study [19]. These genomes were processed through BGCFlow and different tools to assess the 444 
quality of the genomes were run [11]. The BGCFlow workflow used for the generation of results 445 
is available at https://github.com/NBChub/bgcflow. Out of these 3,840 genomes, 3,569 were 446 
identified as belonging to the Streptomyces genus as per GTDB definitions (Data S1, Figure S2). 447 

The Streptomyces dataset of 3,569 genomes was processed with multiple quality checks. We 448 
calculated genome completeness and contamination metrics using CheckM [36]. When cutoffs of 449 
greater than 90% completeness and less than 5% contamination were used, 59 genomes were 450 
found to have low-quality assemblies (Figure S3). We also used the assembly statistics on the 451 
contigs and N50 scores for further curation. The genomes designated as complete or 452 
chromosome-level assembly as per NCBI were classified as high-quality (HQ). From the 453 
remaining genomes with scaffold or contig level assembly, we further annotated the genomes 454 
with more than 100 contigs or N50 score of less than 100 kb as low-quality (LQ). Genomes with 455 
fewer than 100 contigs were classified as medium-quality (MQ) (Figure S3).  456 

In total, there were 1,215 HQ, 1,156 MQ, and 1,198 LQ genomes (Figure S1, S3). We defined 457 
<good quality= genomes as a set of 2,371 high-quality and medium-quality genomes. The date of 458 
submission was extracted from the NCBI metadata to represent the historical progress of 459 
genomes with different genome qualities (Figure 1A). 460 

MASH-based clustering analysis 461 

The GTDB taxonomy assignment revealed 608 species for 1,956 genomes in the dataset of 2,371 462 
curated Streptomyces genomes. The remaining 415 genomes lacked species assignments as 463 
they did not have similar representatives in the GTDB database. We calculated the MASH-based 464 
similarity network where the edges represent genome-wide similarity of greater than 95% (typical 465 
threshold for species detection). We used the community detection method [37] to define the best 466 
partitions that were assigned different MASH-based species totaling up to 202 novel species. 467 
Four species were highly represented (>30 genomes) in our dataset: S. albidoflavus (or S. albus) 468 
(109 genomes), S. anulatus (58 genomes), S. olivaceus (46 genomes) and S. bacillaris (33 469 
genomes). Given such a diverse dataset, we proposed MASH-based clustering of the dataset as 470 
explained below. 471 

We used a whole genome sequence similarity-based workflow to cluster the genomes into 472 
different subgroups of the Streptomyces genus. A similar workflow with MASH-based analysis 473 
was shown to capture the phylogroups in the past [29]. Following this method, we calculated 474 
MASH-distance for all pairs of genomes in the dataset using a BGCFlow rule that runs MASH 475 
(Data S2) [28]. We computed pairwise distances using Pearson's correlation coefficient and 476 
performed hierarchical clustering using the ward.D2 method. 477 

We added additional steps to the MASH-based analysis method [29] to identify the optimal 478 
number of clusters. We followed the elbow method to find the optimal number of k-means clusters 479 
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and validated them using the average silhouette scores. We detected 7 optimal clusters based 480 
on both adjusted inertia for the K-means method and the high average silhouette score across 481 
the given dataset (Figure S4). The heatmap visualizations represented the diverse MASH-clusters 482 
defined here (Figure S4). Next, we visualized the silhouette scores across different MASH-483 
clusters to validate the clustering using swarm plots (Figure S5). A random cutoff of 0.4 was 484 
chosen to select the genomes that have good cluster assignments. This cutoff results in the 485 
majority of the dataset being clustered consistently (except for MASH-cluster M5 that appears to 486 
be poorly clustered). We iteratively removed the poorly clustered genomes from the dataset until 487 
all genomes consistently scored above 0.4 on silhouette scores.  488 

These curated steps resulted in the assignment of 1,999 genomes to a valid MASH-cluster (Data 489 
S2). We further identified MASH-clusters within each of the above-defined primary MASH-490 
clusters. This secondary level of analysis led to the identification of 42 consistent secondary 491 
MASH-clusters across 1,670 of the 1,999 genomes. We note that the assignment of the MASH-492 
clusters is dependent on the abundance of genomes collected in each cluster and will likely 493 
change as the number of genomes increases. 494 

Comparing MASH-clusters against phylogenetic trees 495 

We constructed phylogenetic trees for all 2,371 curated Streptomyces genomes using an 496 
outgroup genome of the Kitasatospora genus (K. setae strain KM-6054). We used 3 different 497 
methods: GTDB-Tk [21], autoMLST [30], and getphylo [31] (Figure S13, Data S3). We calculated 498 
the consensus branch support depending on whether a particular branch was supported 499 
consistently by different methods (Figure S13). The branches supported by only one of the 3 trees 500 
were deleted to visualize the consensus tree (Figure S13D). We also extracted the RED_groups 501 
(relative evolutionary distance) calculated in a prior phylogenetic study based on GTDB [38]. 502 
These genomes were annotated on the color strip of the tree to compare against corresponding 503 
MASH-cluster assignments from our analysis (Figure S14). The tree visualizations were 504 
generated using iTOL [39]. The colored ranges for branches represented primary MASH-cluster 505 
assignments, whereas the outer colorstrip represent secondary level of MASH-cluster 506 
assignments. This qualitative comparison was used to compare MASH-cluster assignment results 507 
against the clades detected using different phylogenetic methods. 508 

Genome mining to detect BGCs 509 

For a large-scale comparative pangenome analysis, it is common to annotate the genomes using 510 
a consistent method. Here, we annotated all genomes using prokka v1.14.6 [40]. We also used a 511 
list of seven selected genomes with high-quality manually curated annotations as a priority while 512 
running prokka using the parameter <--proteins” (Data S4). We used antiSMASH v7.0.0 on the 513 
annotated genomes to detect secondary metabolite BGCs (Data S4) [6]. The knownclusterblast 514 
results were used for primary assessment of whether the detected BGC regions show substantial 515 
similarity against the BGCs from MIBiG database [41]. We note that this parameter does have 516 
some pitfalls depending on various factors such as BGC region boundary definition, multiple 517 
BGCs being part of the same BGCs region, and incomplete information within the MIBiG database 518 
of some BGCs. Nonetheless, this metric still provides a way to quickly analyze large datasets 519 
such as the one presented here. We used a strict cutoff of greater than 80% knownclusterblast 520 
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similarity to tentatively identify BGCs that produce known secondary metabolites (Figure 1C, Data 521 
S4). BGCs with 50 to 80% similarity were similarly marked as producers of known secondary 522 
metabolites but with lower confidence.  523 

Detection of GCFs 524 

We detected over 70,000 BGCs. Subsequently, we used BiG-SLICE to calculate gene cluster 525 
families (GCFs) using the default parameters (threshold of 900) [8] (Data S5). We further 526 
annotated the GCFs as known if they had BGCs with knownclusterblast similarity above 80% 527 
(Figure 3A). Different GCFs that contained BGCs with hits against the same MIBiG entry were 528 
combined into a single <regrouped= GCF and putatively associated with known BGCs (Data S5). 529 
The regrouped GCFs may still represent minor functional diversity; however, the large number of 530 
GCFs often stemmed from variation in neighboring genes that were not part of the BGC as 531 
reported in MIBiG. For example, spore pigment, alkylresorcinol, coelichelin, and isorenieratene 532 
BGCs were regrouped from a large number of predicted GCFs. This study prioritized the analysis 533 
of the known BGCs and left the unknown BGCs out of such regrouping analysis.  534 

The abundance of some of the common GCFs (after regrouping) was calculated across different 535 
MASH-clusters (Figure 3B). The UpSet plot was used to visualize the overlap of GCFs across 536 
MASH-clusters (Figure S16). Selected BGCs from two GCFs putatively coding for spore pigment 537 
and isorenieratene were further extracted for in-depth comparison. For more accurate similarity 538 
calculation, we used BiG-SCAPE to generate a similarity network with a default threshold of 0.3 539 
on the distance metric [7]. The network was visualized using Cytoscape where node colors 540 
represented different MASH-clusters [42]. Representative BGCs from different BiG-SCAPE 541 
predicted GCFs were further chosen to visualize the BGC region alignment using clinker tool [43] 542 
(Figure S15).  543 

Integrated network of BGCs similarity and chromosomal order 544 

We developed a custom workflow to simultaneously visualize BGC diversity and the order of 545 
BGCs along the chromosome. As a case study, we selected BGCs from 49 high-quality complete 546 
genomes from MASH-cluster M4 that spanned 5 secondary-level MASH-clusters (Figure 4, Data 547 
S6). Each node in the network represents a BGC, and nodes were connected with two types of 548 
edges. The first type represented BiG-SCAPE-based similarity. The second type reflected the 549 
order of BGCs present on the chromosome (Figure 4). A specific region of the chromosome with 550 
two conserved BGCs was extracted for manual inspection of the variation of this region (Figure 551 
4C). The selected BGCs were visualized using the clinker [43] to observe the alignments (Figure 552 
4D). A similar integrated network was also reconstructed for 23 genomes from 5 different GTDB-553 
defined species that belonged to MASH-cluster M2_3 (Figure S19, Data S8). 554 
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Legends for Data S1 to S6 743 

Data S1. Metadata of the genomes used 744 

Genomes Metadata: List of 3,840 genomes used at the start of the study with information on the 745 
source, quality assigned, taxonomic information based on GTDB, checkM metrics of assembly 746 
quality, bioproject accession numbers for all genomes, assigned MASH clusters at two levels for 747 
selcted Streptomyces genomes, and the RED groups from prior study. 748 

 749 

Data S2. MASH-based clustering and silhouette scores 750 

MASH distances: Table with MASH based distances across all 2,371 selected genomes. 751 

Silhouette scores (primary): Table with list of 2,371 genomes with assigned clusters based on 752 
clustering analysis. The columns represent the assigned clusters after each filtering round (upto 753 
5). The genomes being removed based on silhouette score cutoff of 0.4 are annotated as 754 
<Dropped=. The columns also mention the silhouette score at each round of filtering. The final 755 
round includes 1,999 genomes with primary MASH-cluster assignments. 756 

Silhouette scores (secondary): Table with list of 1,999 genomes with assigned clusters at 757 
secondary level based on clustering analysis. The columns represent the assigned clusters after 758 
each filtering round (upto 3). The genomes being removed based on silhouette score cutoff of 0.4 759 
are annotated as <Dropped=. The columns also mention the silhouette score at each round of 760 
filtering. The final round includes 1,670 genomes with secondary MASH-cluster assignments. 761 

 762 

Data S3. Phylogenetic trees using different methods 763 

Three different phylogenetic tree files were calculated using autoMLST, getphylo and GTDB-Tk 764 
methods. 765 

The iTOL project with all the phylogenetic tree can be found at the link below: 766 
https://itol.embl.de/shared/omkar31  767 

 768 

Data S4. Detected BGCs across 2,371 genomes of HQ and MQ quality 769 

BGCs counts: Table with number of BGCs detected in each of the genomes analyzed. 770 

BGC information: Metadata table with information on each of the detected BGCs 771 

 772 

Data S5: Detected GCFs using BiGSLiCE and regrouping of known GCFs 773 
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GCFs (BiGSLICE): List of detected GCFs using BiGSLICE with metadata on number of BGCs 774 
and combined GCF ID that were regrouped based on shared known clusters blast hits 775 

GCFs (Regrouped): List of GCFs as defined in this study using BiGSLICE along with 776 
knownclusterblast similarity with metadata on number of BGCs BiGSLICE defined GCFs. 777 

BGC information: Assignment of GCFs and combined GCFs for each BGC 778 

 779 

Data S6: Cytoscape file of BiG-SCAPE similarity network for BGCs in M4 Mash-cluster 780 

The network visualizations corresponding to Figures 4B and 4C. The network included edges 781 
based on BiGSCAPE similarity. Additional edges were added if the BGCs appeared next to each 782 
other on the chromosome. 783 

 784 

 785 

 786 

 787 

  788 
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 789 
Figure S1. Dataset overview 790 
Treemap illustrating the number of genomes during various filtering stages. The primary rectangles denote 791 
the genome source. Genomes were sourced from NCBI on 30 June, 2023 and our prior study [1]. Part of 792 
the genomes form our prior study were already available at NCBI on 30 June, 2023 and were sourced from 793 
there. The secondary layer signifies the GTDB-based genus assignment to Streptomyces. The tertiary layer 794 
classifies genomes by the assembly quality as defined in  this study: HQ (High Quality), MQ (Medium 795 
Quality), or LQ (Low Quality). HQ: Genomes with complete or chromosome-level assemblies. MQ: 796 
Genomes with contig or scaffold level assembly with less than 100 contigs. LQ: Genomes with contig or 797 
scaffold level assembly with more than 100 contigs. 798 
 799 
  800 
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 801 
Figure S2. GTDB-based taxonomic assignment 802 
The genomes of the Streptomycetaceae family from NCBI RefSeq and actinomycetes from our recnet study 803 
(Jorgensen et al. 2024) (also known as NBC collection) (left) were assigned genus definitions based on 804 
GTDB R214 (right). Note that 38 Streptomyces genomes were reassigned to different genera using GTDB 805 
taxonomy (25 to Kitasatospora) 806 
 807 
   808 
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 809 
Figure S3. Assembly quality overview and filtering of the dataset 810 
A) Scatter plot representing the distribution of completeness and contamination score calculated using 811 
CheckM across 3,569 Streptomyces genomes. Genomes with completeness of less than 90% or 812 
contamination of more than 5% were dropped. B) Scatter plot representing the distribution of N50 score 813 
and number of contigs across 3,569 Streptomyces genomes. The colors represent the quality (HQ, MQ, or 814 
LQ) whereas the shapes represent the source of the genome (NCBI or NBC). HQ: Genomes with complete 815 
or chromosome level assemblies. MQ: Genomes with contig or scaffold level assembly with less than 100 816 
contigs. LQ: Genomes with contig or scaffold level assembly with more than 100 contigs.  817 
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 818 
 819 
Figure S4. Detection of optimal clusters using K-means and Silhouette scores on the 820 
curated dataset of 2371 genomes 821 
A) Adjusted inertia against different K-means clusters representing optimal clustering with 7 Mash-clusters. 822 
B) Average Silhouette score of all samples for different numbers of clusters showing 7 optimal Mash-823 
clusters. C) Hierarchical dendrogram with clustermap representing MASH distance values across 824 
genomes. The column colors represent the 7 optimal Mash-clusters. The top 20 abundant species are 825 
highlighted in the clustermap.  826 
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 827 

Figure S5. Iterative filtering of poorly clustered genomes using Silhouette score cutoff 828 

A) Swarmplot representing silhouette values of each sample genome across the 7 predicted MASH-829 
clusters. The genomes with silhouette values lower than 0.4 are removed to detect the clusters accurately. 830 
C) to F) Iteratively reducing the size of the dataset until all samples have silhouette values higher than 0.4. 831 
B) Final dataset of 1999 genome samples plotted on the original clustering in panel A. The color of the dots 832 
represents one of the seven predicted primary MASH-clusters with grey color denoting the poorly clustered 833 
sample genomes that are filtered out.  834 
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 835 
Figure S6. Detection of secondary MASH-clusters using Silhouette scores within the M1 836 
primary MASH-cluster 837 

A) The average silhouette scores of all samples against the number of defined clusters with 838 
hierarchical clustering based on the MASH distance matrix. The orange line plot represents the 839 
original dataset of M1 MASH-cluster genomes whereas the blue represents the dataset after 840 
removing poorly clustered samples. B) The silhouette scores of each sample across 7 secondary 841 
MASH-clusters. The cutoff of 0.4 was used to select the samples with good clustering. The grey 842 
dots represent 1 genome that was removed from the clustering analysis. C) Heatmap 843 
representing the MASH distances between the genomes from the refined dataset. The rows and 844 
columns are clustered using the hierarchical clustering method where the colors on columns 845 
represent the 7 secondary MASH-clusters. The highlighted text on the heatmap represents some 846 
of the abundant species.  847 
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 848 
Figure S7. Detection of secondary MASH-clusters using Silhouette scores within the M2 849 
primary MASH-cluster 850 

A) The average silhouette scores of all samples against the number of defined clusters with 851 
hierarchical clustering based on the MASH distance matrix. The orange line plot represents the 852 
original dataset of M2 MASH-cluster genomes whereas the blue represents the dataset after 853 
removing poorly clustered samples. B) The silhouette scores of each sample across 7 secondary 854 
MASH-clusters. The cutoff of 0.4 was used to select the samples with good clustering. The grey 855 
dots represent 215 genomes that were removed from the clustering analysis. C) Heatmap 856 
representing the MASH distances between the genomes from the refined dataset. The rows and 857 
columns are clustered using the hierarchical clustering method where the colors on columns 858 
represent the 7 secondary MASH-clusters. The highlighted text on the heatmap represents some 859 
of the abundant species. Note: S. anthocyanicus is the renamed species of S. coelicolor as per 860 
GTDB.  861 
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 862 
Figure S8. Detection of secondary MASH-clusters using Silhouette scores within the M3 863 
primary MASH-cluster 864 

A) The average silhouette scores of all samples against the number of defined clusters with 865 
hierarchical clustering based on the MASH distance matrix. The orange line plot represents the 866 
original dataset of M3 MASH-cluster genomes whereas the blue represents the dataset after 867 
removing poorly clustered samples. B) The silhouette scores of each sample across 6 secondary 868 
MASH-clusters. The cutoff of 0.4 was used to select the samples with good clustering. The grey 869 
dots represent 44 genomes that were removed from the clustering analysis, including an entire 870 
cluster 2. C) Heatmap representing the MASH distances between the genomes from the refined 871 
dataset. The rows and columns are clustered using the hierarchical clustering method where the 872 
colors on columns represent the 5 secondary MASH-clusters (note that cluster 2 was completely 873 
removed). The highlighted text on the heatmap represents some of the abundant species. 874 
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 875 

Figure S9. Detection of secondary MASH-clusters using Silhouette scores within the M4 876 
primary MASH-cluster 877 

A) The average silhouette scores of all samples against the number of defined clusters with 878 
hierarchical clustering based on the MASH distance matrix. The orange line plot represents the 879 
original dataset of M4 MASH-cluster genomes whereas the blue represents the dataset after 880 
removing poorly clustered samples. B) The silhouette scores of each sample across 5 secondary 881 
MASH-clusters. The cutoff of 0.4 was used to select the samples with good clustering. The grey 882 
dots represent 1 genome that was removed from the clustering analysis. C) Heatmap 883 
representing the MASH distances between the genomes from the refined dataset. The rows and 884 
columns are clustered using the hierarchical clustering method where the colors on columns 885 
represent the 5 secondary MASH-clusters. The highlighted text on the heatmap represents some 886 
of the abundant species including S. albidoflavus as a major contributor of the M4 MASH-cluster. 887 
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 888 

Figure S10. Detection of secondary MASH-clusters using Silhouette scores within the M5 889 
primary MASH-cluster 890 

A) The average silhouette scores of all samples against the number of defined clusters with 891 
hierarchical clustering based on the MASH distance matrix. The orange line plot represents the 892 
original dataset of M5 MASH-cluster genomes whereas the blue represents the dataset after 893 
removing poorly clustered samples. B) The silhouette scores of each sample across 8 secondary 894 
MASH-clusters. The cutoff of 0.4 was used to select the samples with good clustering. The grey 895 
dots represent 4 genomes that were removed from the clustering analysis. C) Heatmap 896 
representing the MASH distances between the genomes from the refined dataset. The rows and 897 
columns are clustered using the hierarchical clustering method where the colors on columns 898 
represent the 8 secondary MASH-clusters. The highlighted text on the heatmap represents some 899 
of the abundant species. Note that the M5 MASH-cluster is one of the most diverse and likely 900 
poorly sampled in the dataset.  901 
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 902 
Figure S11. Detection of secondary MASH-clusters using Silhouette scores within the M6 903 
primary MASH-cluster 904 

A) The average silhouette scores of all samples against the number of defined clusters with 905 
hierarchical clustering based on the MASH distance matrix. The orange line plot represents the 906 
original dataset of M6 MASH-cluster genomes whereas the blue represents the dataset after 907 
removing poorly clustered samples. B) The silhouette scores of each sample across 7 secondary 908 
MASH-clusters. The cutoff of 0.4 was used to select the samples with good clustering. The grey 909 
dots represent 26 genomes that were removed from the clustering analysis. C) Heatmap 910 
representing the MASH distances between the genomes from the refined dataset. The rows and 911 
columns are clustered using the hierarchical clustering method where the colors on columns 912 
represent the 7 secondary MASH-clusters. The highlighted text on the heatmap represents some 913 
of the abundant species.  914 
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 915 
Figure S12. Detection of secondary MASH-clusters using Silhouette scores within the M7 916 
primary MASH-cluster 917 

A) The average silhouette scores of all samples against the number of defined clusters with 918 
hierarchical clustering based on the MASH distance matrix. The orange line plot represents the 919 
original dataset of M7 MASH cluster genomes whereas the blue represents the dataset after 920 
removing poorly clustered samples. B) The silhouette scores of each sample across 4 secondary 921 
MASH-clusters. The cutoff of 0.4 was used to select the samples with good clustering. The grey 922 
dots represent 38 genomes that were removed from the clustering analysis. C) Heatmap 923 
representing the MASH distances between the genomes from the refined dataset (note that 3 924 
clusters were generated in the refined dataset). The rows and columns are clustered using the 925 
hierarchical clustering method where the colors on columns represent the 3 secondary MASH-926 
clusters. The highlighted text on the heatmap represents some of the abundant species. 927 
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Figure S13. Comparative assessment of MASH clusters aligned against different 929 
phylogenetic trees 930 

Phylogenetic trees were reconstructed using 3 different methods: A) GTDB-Tk denovo, B) 931 
getphylo, and C) autoMLST. D) A consensus tree generated from the getphylo tree where the 932 
branches supported in at least two trees were kept. E) Color legend representing the primary and 933 
secondary level of MASH clusters. For example, M2 and M2_3 are highlighted in panel D. F) 934 
Number of branches in individual trees showing the consensus across the other trees, with 935 
getphylo showing maximum number of consensus branches.  936 
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 937 

Figure S14: Comparison of MASH-clusters with groups proposed by Gavriilidou et. al. 938 

The RED (relative evolutionary divergence) groups as defined by Gavriilidou et. al.[2] were 939 
mapped to the consensus tree and the MASH-clusters. The top 6 RED_groups are represented 940 
by different colors on the external strip with the remaining RED_groups colored in grey. The GTDB 941 
species that were not part of the earlier study are ignored on color color strip.  942 
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 943 

Figure S15. Distribution and variation within common GCFs. 944 

A) Similarity network based on BiG-SCAPE indicating detection of different GCFs for BGCs with 945 
hits against a common MIBiG entry of isorenieratene. B) The alignment of selected BGCs from 946 
panel A (highlighted with numbers) indicates mostly conserved core biosynthetic genes with 947 
variations arising from extended cluster boundary definitions. C) Similarity network based on BiG-948 
SCAPE indicating detection of different GCFs for BGCs with hits against a common MIBiG entry 949 
of spore pigment. D) The alignment of selected BGCs from panel C (highlighted with numbers) 950 
again indicating highly conserved core biosynthetic genes with variations arising from extended 951 
cluster boundary definitions. 952 
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 953 

Figure S16. UpSet plot representation of GCFs present across different primary MASH-clusters 954 

The 8NA’ category is represented by genomes with no MASH-cluster assigned. The top 20 most abundant 955 
intersections are selected for the visualization. The bars along the top represent total GCFs present in each 956 
MASH-cluster. The bars along the right represent the number of GCFs in the corresponding intersection. 957 
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 958 

Figure S17: The presence-absence heatmap of GCFs with knownclusterblast similarity hits against 959 
the MIBiG database.  960 

The top 20 GCFs were selected from each of the three categories: present in more than 6 MASH-clusters, 961 
present in 2 to 6 MASH-clusters, and present in only one of the MASH-clusters. The row colors represent 962 
MASH-cluster assignment at both primary and secondary levels. The secondary MASH-cluster colors are 963 
assigned within each primary MASH-cluster. For example, M4_1 to M4_5 are assigned the colors of Mx_1 964 
to Mx_5 in the legend for secondary MASH-clusters.    965 
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 966 

Figure S18. The presence-absence heatmap of GCFs without knownclusterblast similarity hits 967 
against the MIBiG database.  968 

The top 20 GCFs were selected from each of the three categories: present in more than 6 MASH-clusters, 969 
present in 2 to 6 MASH-clusters, and present in one of the MASH-clusters. The row colors represent MASH-970 
cluster assignment at both primary and secondary levels. The secondary MASH-cluster colors are assigned 971 
within each primary MASH-cluster. For example, M4_1 to M4_5 are assigned the colors of Mx_1 to Mx_5 972 
in the legend for secondary MASH-clusters.    973 
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974 
Figure S19. Similarity network integrated with chromosomal order of BGCs across multiple species 975 

(Left) Phylogenetic tree representing 23 genomes belonging to M2_3 secondary MASH-cluster. The other 976 
clades of the MASH-cluster were collapsed. (Right) Similarity network integrating chromosomal order 977 
across 5 different species of MASH-cluster M2_3 depicting the conserved and variable BGCs across the 978 
genomes. 979 

 980 

  981 
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