

1 **The GPI sidechain of *Toxoplasma gondii* prevents parasite pathogenesis**

2
3 Julia A Alvarez^{1,2}, Elisabet Gas-Pascual³, Sahil Malhi¹, Ferdinand Ngale Njume¹, Juan
4 C Sánchez-Arcila¹, Hanke van der Wel³, Yanlin Zhao⁴, Gabriella Ceron¹, Jasmine
5 Posada¹, Scott P Souza^{1,2}, George S Yap⁴, Christopher M West³, Kirk D C Jensen^{1,5}
6 #Corresponding author: kjensen5@ucmerced.edu

7
8 ¹Department of Molecular and Cell Biology, School of Natural Sciences, University of
9 California, Merced, California, United States of America

10 ²Quantitative and Systems Biology Graduate Program, University of California, Merced,
11 California, United States of America

12 ³Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging
13 Global Diseases, and Complex Carbohydrate Research Center, University of Georgia,
14 Athens, Georgia, United States of America

15 ⁴Department of Medicine and Center for Immunity and Inflammation, New Jersey
16 Medical School, Rutgers University, Newark, New Jersey, United States of America

17 ⁵Health Sciences Research Institute, University of California, Merced, California, United
18 States of America

19
20 **RUNNING TITLE**

21 Role of the GPI sidechain in *T. gondii* pathogenesis

22
23 **ABBREVIATIONS**

24 GPI, Glycosylphosphatidylinositol; MFI, mean fluorescence intensity

25
26 **ABSTRACT**

27 Glycosylphosphatidylinositols (GPIs) are highly conserved anchors for eukaryotic cell
28 surface proteins. The apicomplexan parasite, *Toxoplasma gondii*, is a widespread
29 intracellular parasite of warm-blooded animals whose plasma membrane is covered
30 with GPI-anchored proteins, and free GPIs called GIPLs. While the glycan portion is
31 conserved, species differ in sidechains added to the triple mannose core. The functional
32 significance of the Glcα1,4GalNAcβ1- sidechain reported in *Toxoplasma gondii* has
33 remained largely unknown without an understanding of its biosynthesis. Here we
34 identify and disrupt two glycosyltransferase genes and confirm their respective roles by
35 serology and mass spectrometry. Parasites lacking the sidechain on account of deletion
36 of the first glycosyltransferase, PIGJ, exhibit increased virulence during primary and
37 secondary infections, suggesting it is an important pathogenesis factor. Cytokine
38 responses, antibody recognition of GPI-anchored SAGs, and complement binding to
39 PIGJ mutants are intact. In contrast, the scavenger receptor CD36 shows enhanced
40 binding to PIGJ mutants, potentially explaining a subtle tropism for macrophages
41 detected early in infection. Galectin-3, which bind GIPLs, exhibits a slight enhancement
42 of binding to PIGJ mutants, and the protection of galectin-3 knockout mice from lethality
43 suggests that Δ pigj parasite virulence in this context is sidechain dependent. Parasite
44 numbers are not affected by Δ pigj early in the infection in wildtype mice, suggesting a
45 breakdown of tolerance. However, increased tissue cysts in the brains of mice infected
46

47 with *Δpig1* parasites indicate an advantage over wildtype strains. Thus, the GPI
48 sidechain of *T. gondii* plays a crucial and diverse role in regulating disease outcome in
49 the infected host.

50

51 **Summary**

52 The functional significance of sidechain modifications to the GPI anchor is yet to be
53 determined because the glycosyltransferases responsible for these modifications have
54 not been identified. Here we present identification and characterization of both *T. gondii*
55 GPI sidechain-modifying glycosyltransferases. Removal of the glycosyltransferase that
56 adds the first GalNAc to the sidechain results in parasites without a sidechain on the
57 GPI, and increased parasite virulence. Loss of the second glycosyltransferase results in
58 a sidechain with GalNAc alone, and no glucose added, and has negligible effect on
59 parasite virulence. This indicates GPI sidechains as fundamental to host-parasite
60 interactions.

61

62 **Introduction**

63 Protozoan parasites are widespread and cause prominent diseases including
64 malaria, leishmaniasis, chagas, and toxoplasmosis. One notable feature of protozoans
65 is their extensive decoration of glycosylinositolphospholipids (GIPL) and GPI-anchored
66 proteins (GPI-AP). The GPI was first discovered and characterized in trypanosomes,
67 the protozoan parasite that causes African sleeping sickness in humans (1). Since its
68 discovery, it has been shown to have a conserved core structure across the eukaryotic
69 kingdom; EtNP-6Man α 1-2Man α 1-6Man α 1-4GlcN1-6 myo -inositol-phospholipid (where
70 EtNP, Man, and GlcN are ethanolamine phosphate, mannose, and glucosamine,
71 respectively) (1,2). Apicomplexan parasites use GPI-APs to assist attachment to and
72 cellular invasion of host cells (3) and as such, the core GPI synthetic pathway enzymes
73 are each essential gene products required for *Toxoplasma gondii* (*T. gondii*) and
74 *Plasmodium* sp. survival and intracellular infection (4,5).

75 In the case of *T. gondii*, a widespread apicomplexan parasite of warm-blooded
76 animals and humans, cellular attachment and invasion are mediated by a large family of
77 *T. gondii* GPI-APs called surface antigen glycoprotein (SAG)-related super family (SRS)
78 (6,7). It is known that these dominant SAG antigens are targeted by *T. gondii*-specific
79 antibodies following infection (8), but also play important roles in virulence. For
80 example, SAG1, the dominant antigen in the parasite's lytic stage has been shown to
81 promote small intestinal ileitis in mice (9), and promotes parasite survival *in vivo* (10)
82 and in activated macrophages, by an unknown mechanism (11). Another GPI-AP of *T.*
83 *gondii*, SRS35 (also known as p18 or SAG4), has been shown to promote mouse
84 macrophage invasion and virulence of the parasite (12). In contrast, overexpression of
85 the GPI-AP SRS29C (p35) quells *T. gondii* virulence and promotes mouse survival to an
86 otherwise lethal infection (6).

87 While many GPI-APs have been considered for their role in parasite virulence,
88 the GPI that anchors them has long been shown to be immunogenic in *T. gondii* and
89 other parasites. For instance, *T. cruzi* GIPLs are potent activators of TLR2 (13).
90 Similarly, GIPLs of *P. falciparum* are thought to be major pathogenesis factors, and are
91 shown to activate TLR2 and TLR4 (14), which in turn causes lethal inflammatory
92 responses (15). The GIPL of *T. gondii* activates TLR2 and TLR4 (16). *T. gondii* and

93 *Plasmodium* sp. GPIs are also robustly targeted by antibodies during the early stages
94 of infection in both humans and in mice (17–25). Collectively, these data demonstrate
95 that parasitic GPIs illicit robust innate and adaptive immune responses during infection.

96 Whereas the core GPI structure is conserved across the eukaryotic kingdom,
97 species differ in how their GPI is modified through the attachment of additional sugars
98 and other moieties to the mannose core, called sidechain modifications (26–28) (**Fig**
99 **S1**). The significance of these sidechains and why species possess structural diversity
100 in their GPI modifications is unclear because the responsible GPI glycosyltransferases
101 (GT) have remained unidentified in most species. However in humans, the
102 glycosyltransferase PGAP4 was recently determined to be the GT responsible for
103 adding D-GalNAc to the first mannose of the human GPI, the first subunit of the
104 sidechain (29). PGAP4 is widely conserved among eukaryotic species that are similarly
105 substituted, including *Caenorhabditis elegans*. In the case of *T. gondii*, the GPI
106 sidechain occurs on the same first mannose in two glycoforms: one consisting of a
107 single identically linked D-GalNAc, and the other in which the GalNAc is extended by an
108 α4-linked D-Glc (17). Interestingly, however, PGAP4 is not conserved in *T. gondii*
109 despite sharing the same GalNAc branch at the first mannose (**Fig S1**) (29). When the
110 PGAP4 homolog was deleted in mice the deficiency resulted in elevated blood alkaline
111 phosphatase levels, impaired bone formation, decreased locomotion, impaired memory,
112 and more enhanced vulnerability to prion diseases (30). These results point to GPI
113 sidechains having far-reaching and important roles in mammals.

114 In the context of eukaryotic microbes, even less is known regarding the functional
115 significance of the GPI sidechain. For example, in *Plasmodium* and fungi there is a
116 fourth mannose added as a sidechain to the third mannose of the core GPI by the
117 *SMP3* glycosyltransferase (**Fig S1**). Removal of *SMP3* in *Candida albicans* interferes
118 with fungal viability *in vitro* (31). In *P. falciparum* which has a fourth mannose GPI
119 sidechain, but lacks a homolog to *SMP3*, its GT *PIGB* that is responsible for adding the
120 third mannose to the GPI core can add the fourth mannose when complemented into *C.*
121 *albican Δsmp3* mutants. Whether *P. falciparum PIGB* encodes the GT responsible for
122 adding the mannose GPI sidechain is uncertain because *Δpigb* parasites fail to grow *in*
123 *vitro* (32). Multiple GPI sidechain GT's have been identified in *Trypanosoma brucei* (*T.*
124 *brucei*) parasites which exhibit multiple elaborately branched sidechains emanating from
125 the second mannose of its GPI core. The *T. brucei* GT *TbGT8*, which adds the first
126 branch point of one of the sidechain branches, was shown to be nonessential in
127 bloodstream- and procyclic-form stages of the parasite (33). *TbGT3* is expressed in the
128 bloodstream and procyclic stages of *T. brucei*, and mutants remained infectious to
129 tsetse flies, though the Gal addition to the non-reducing-terminal GlcNAc residue of the
130 GPI sidechain was lost (34). Loss of *TbGT10* resulted in a minor fitness cost evidenced
131 by reduced growth *in vitro*, likely a consequence of impaired carbohydrate synthesis,
132 but *TbGT10* was responsible for adding all β6 linkages to the GPI sidechain, resulting in
133 10 less sugars in *TbGT10* null parasites (35). Although removal of the aforementioned
134 *T. brucei* GT's reduces some of the GPI sidechain branching complexity, none of these
135 GT mutants lack a GPI sidechain, suggesting functional redundancy may exist between
136 different GPI glycoforms to support *T. brucei* fitness. Whether expression of specific
137 glycoforms of the GPI are required for *in vivo* fitness of eukaryotic microbes is largely
138 unknown.

139 While there have been several eukaryotic GPI sidechain modifying
140 glycosyltransferases identified to date, none have addressed whether lacking a GPI
141 sidechain entirely or whether specific glycoforms are required for microbial
142 pathogenicity. Therefore, we sought to address these questions in *T. gondii* and test
143 whether specific GPI glycoforms impact parasite virulence and immune recognition.
144 Here we identify the two sidechain-modifying glycosyltransferases in *T. gondii* and
145 report that loss of the GPI sidechain promotes virulence. Whereas antibody recognition
146 of parasite GPI-APs and inflammatory cytokines appear intact to GPI sidechain null
147 parasites, we present indirect evidence for galectin-3 and the scavenger receptor,
148 CD36, in mediating certain phenotypes associated with sidechain deficiency in *T. gondii*
149 strains.

150

151 MATERIALS & METHODS

152 Parasite strains and cell lines

153 Human foreskin fibroblasts (HFFs) monolayers were grown in DMEM GlutaMAXTM (4.5
154 g/L D-glucose) (Life Technologies #10-566-024) supplemented with 2 mM L-glutamine,
155 20% heat inactivated (HI) fetal bovine serum (FBS) (Omega Scientific), 1% penicillin-
156 streptomycin (Life Technologies, #15140122), and 0.2% gentamycin (Life Technologies
157 #15-710-072). Mouse Embryonic Fibroblasts (MEFs) were grown in DMEM GlutaMAXTM
158 (4.5 g/L D-glucose) supplemented with 10% HI FBS, 20mM HEPES, 1% penicillin-
159 streptomycin, and 0.2% gentamycin. *Toxoplasma gondii* strains were passaged in HFFs
160 in "Toxo medium" (4.5 g/L D-glucose, L-glutamine in DMEM GlutaMAXTM supplemented
161 with 1% HI FBS and 1% penicillin-streptomycin). The following clonal strains were used
162 (clonal types are indicated in parentheses): RH Δ ku80 Δ hxgprt (type I), RH GFP:cLUC
163 (type I) (clone 1-1), RH Δ ku80 Δ hxgprt Δ pigj::HXGPRT (type I) (clone C12), RH Δ ku80
164 Δ hxgprt Δ pige::DHFR-TS (type I) (36), GT1 (type I), GT1 Δ pige::DHFR-TS (type I) (clone
165 B8), GT1 Δ pige::DHFR-TS (type I) (clone C11), CEP hxgprt- (type III), CEP hxgprt-
166 GFP:cLUC (type III), CEP hxgprt- Δ pige::hxgprt GFP:cLUC (type III) (clone D10), CEP
167 hxgprt- Δ pige::HXGPRT PIGJ-HA_{3x}::DHFR-TS GFP:cLUC (type III) (clone C2), CEP
168 hxgprt- Δ pige::hxgprt GFP:cLUC (type III) (clone D4). All strains, oligos and plasmids
169 used for the generation of strains in this study can be found in **Table S1**.

170 Generation of gene edited *T. gondii* strains

171 Cas-9 and single guide RNA (gRNA) expression plasmid, pSS013 (gift from Jeroen
172 Saeij, University of California, Davis) was designed to target *Tg_207750* (Uniport
173 S8FC68), *PIGJ*. For *Tg_266320* (Uniport S7VW57), *PIGE* a modified dual-guide pU6-
174 universal plasmid targeting two different exons within the gene was previously
175 generated (36). Selectable markers were produced by PCR amplification. An amplicon
176 of the pyrimethamine selectable cassette (DHFR-TS) was amplified from the pLoxp-
177 DHFR-TS-mCherry plasmid (Addgene plasmid #70147) containing similar homology
178 arms to the targeted protospacer sequences. The amplicon of *HXGPRT* was generated
179 from the plasmid pTKO-att (a gift from Jeroen Saeij, University of California, Davis) with
180 homology arms flanking the targeted protospacer sequences of the targeted gene. The
181 expression Cas9/gRNA plasmid and amplicon were co-transfected via electroporation at
182 a 5:1 ratio. Transfectants were selected and cloned in medium containing
183 pyrimethamine (1 μ M) or 50 μ g/mL of MPA (Axxora) and 50 μ g/mL of xanthine (Alfa
184 Aesar) and screened for the disruption the locus by diagnostic PCR.

185 **Generation of the *PIGJ* complementation construct and complementation strain**
186 The pLIC-HA-DHFR-TS (gift from Jeroen Saeij, University of California, Davis) plasmid
187 was treated simultaneously with *Pac*I (NEB #R0547S) and *Avr*II (NEB #R0174S)
188 restriction endonucleases to allow for insertion of *TgVEG_PIGJ* by homology directed
189 ligation. The full-length coding region with introns spliced out of *PIGJ* was amplified
190 using the Q5 high fidelity polymerase (NEB, M0491) from a CEP cDNA library
191 preparation using primers designed to contain 19 bp homology with the 3' end of the
192 *PIGJ* promoter sequence and 25 bp homology with end of the digested pLIC-HA
193 plasmid that contains and provides a 3x HA tag, respectively. The CEP cDNA library
194 was prepared from CEP total RNA preparation using the High-Capacity cDNA Reverse
195 Transcription Kit (ThermoFisher, cat# 4368814) according to manufacturer's
196 instructions. For amplification of the *PIGJ* promoter region, a 1000 bp non-coding region
197 upstream of the start ATG of *PIGJ* was amplified from CEP genomic DNA with Q5 high
198 fidelity polymerase according to manufacturer's protocol. The forward primer contained
199 a 19 bp homology sequence to the end of the digested pLIC-HA plasmid and the
200 reverse shared a 22 bp homology sequence with the 5' end of the amplified *PIGJ*
201 coding-cDNA sequence described above. The amplified promoter and coding *PIGJ*
202 DNA sequence were first purified from 1% agarose gels using the ZymocleanTM Gel
203 DNA recovery kit (Zymo Research, #D4007) and assembled in frame into the digested
204 pLIC-HA -DHFR-TS plasmid in frame with the 3x HA tag using the NEBuilder HiFi DNA
205 Assembly cloning Kit (NEB, cat# E5520) according to the manufacturer's instructions.
206 The CEP *hxgprt- Apigj::HXGPRT GFP:cLUC* strain was transfected with the linearized
207 pLIC-HA-DHFR-TS *PIGJ-HA*_{3x} plasmid, grown in pyrimethamine selection medium and
208 cloned by limiting dilution to generate the *CEP Apigj::PIGJ-HA*_{3x} complementation
209 strain.

210 The HA tag was visualized by fluorescent microscopy. 8x10⁵ HFFs were plated
211 on coverslips in 24-well plates overnight before being infected with 8x10⁴ parasites
212 overnight. Cells were fixed with 3% formaldehyde and permeabilized with blocking
213 buffer (1X PBS with 10% normal goat serum, and 0.01% saponin) and stained with rat
214 anti-HA (1:50) (3F10, Sigma). Secondary goat anti-rat AF594 (Thermo Fisher
215 cat#A11007) antibodies were used at (1:3000), and DAPI (1:10000), for detection and
216 visualized using a fluorescent microscope (Nikon Eclipse Ti-5).

217 **Mice**

218 C57BL/6J (B6), A/J, and *Lgals3*^{-/-} (B6.Cg-*Lgals3*^{tm1Poi}/J) mice were purchased from
219 Jackson Laboratories. *Tlr2/4* double knockout B6 mice (B6.129P2-*Tlr4*^{tm1Aki} B6.129P2-
220 *Tlr2*^{tm1Aki}) were a generous gift from Dr. Greg Barton (UC Berkeley). Mice were
221 maintained under specific pathogen free conditions at UC Merced. Female mice of 6-10
222 weeks of age were used for experiments unless otherwise stated.

223 **Ethics statement**

224 Mouse work was performed in accordance with the National Institutes of Health Guide
225 to the Care and Use of Laboratory Animals. Mouse protocols used have been reviewed
226 and approved by UC Merced's Committee on Institutional Animal Care and Use
227 Committee (IACUC, #AUP-20-0015). UC Merced has an Animal Welfare Assurance
228 filed with OLAW (A4561-01), is registered with USDA (93-R-0518), and the UC Merced
229 Animal Care Program is AAALAC accredited (001318).

230 **Parasite infections and serotyping**

231 Parasite injections were prepared by scraping T-25 flasks containing vacuolated HFFs
232 and sequential syringe lysis first through a 25G needle followed by a 27G needle. The
233 parasites were spun at 34 x g for 5 minutes to remove debris and the supernatant was
234 transferred, followed by a spin at 611 x g and washing with sterile 1X PBS (Life
235 Technologies, #10-010-049). For primary infections, mice were infected intraperitoneally
236 (i.p.) with 104 tachyzoites of type III CEP *hxgprt*- parental and mutant strains. Parasite
237 viability of the inoculum was determined by a plaque assay. In brief, 100 or 300
238 tachyzoites were plated in HFF monolayers grown in a 24-well plate and 4-6 days later
239 were counted by microscopy (4x objective) (Nikon Eclipse Ti-5).

240 At 30 to 35 days after primary infection, 50 μ l of blood was harvested and
241 collected in Eppendorf tubes containing 5 μ L 0.5 M EDTA and placed on ice. Blood was
242 pelleted at 9391 x g for 5 minutes, and blood plasma was collected from the
243 supernatant and stored at -80°C. To evaluate the seropositivity of the mice, HFFs were
244 grown on coverslips and infected with green fluorescent protein (GFP)-expressing RH
245 (1-1) overnight. 18 hrs later, cells were fixed with 3% formaldehyde in PBS,
246 permeabilized with a permeabilization solution (3% bovine serum albumin fraction V
247 (Omega, FB-11), 2% normal goat serum (Omega, NG-11) 0.2 M Triton X-100, 0.01%
248 sodium azide), incubated with a 1:100 dilution of collected blood plasma for 2 hrs at
249 room temperature, washed with 1X PBS, and detected with Alexa Fluor 594-labeled
250 goat secondary antibodies specific for mouse IgG (Thermo Fisher, cat#A11032) in
251 permeabilization solution. Seropositive parasites were observed by
252 immunofluorescence microscopy.

253 For secondary infections, seropositive mice were infected i.p. with 5 \times 10⁴
254 tachyzoites of type I RH Δ ku80 parental and mutant strains. Parasite viability of the
255 inoculum was determined by plaque assay described above.

256 **Cyst enumeration using Dolichos-FITC**

257 To quantify brain cysts, brains were dissected and placed in 10mLs of 1X PBS on ice.
258 Brains were homogenized using a 10mL syringe with a 18G needle by extrusion several
259 times through the needle. The homogenate was spun at 611 x g for 7 minutes and then
260 resuspended in 1mL of 1X PBS. 100 μ L of the brain homogenate was fixed in ice cold
261 methanol at a 1:10 dilution for 5 minutes, spun in a microcentrifuge at 5200 x g for 5
262 minutes and washed once and resuspended in 1mL 1X PBS. The fixed homogenate
263 was stained with a 1:150 dilution of FITC-conjugated Dolichos biflorus agglutinin (Vector
264 Laboratories cat# FL-1031) in 1X PBS and slowly rotated at 4°C overnight. Samples
265 were washed twice with 1X PBS and resuspended in 1mL of 1X PBS. 50 μ L of stained
266 homogenate was plated in a 96 well plate and four replicates of each sample were
267 enumerated for cysts with an inverted fluorescence microscope using a 20x objective
268 (Nikon Eclipse Ti-5).

269 **Superinfections**

270 Mice that survived 35 days of secondary infection were euthanized and brain
271 homogenates were generated and resuspended in 1mL of 1X PBS as described above.
272 100 μ L of the homeogenate was cultured in HFFs and monitored for parasite growth.
273 Once parasite growth was established, the media was switched to selection media
274 containing MPA/xanthine for secondary infections to select against the primary infecting
275 CEP *hxgprt*- strain, and for *HXGPRT* expressing secondary infection strain. Parasites
276 that grew in selection media were also confirmed to be type I strains through restriction

277 fragment length polymorphism analysis. In brief, isolated DNA from MPA/xanthine
278 selected parasites was PCR amplified using GRA6 primers and the purified amplicon
279 was fragmented with MseI (NEB cat# R0525M). Products were run on a gel to
280 determine parasite type I or III based on unique fragmentation sizes indicative of the
281 genotype.

282 **SDS-PAGE and immunoblotting for parasite lysate antigen**

283 To generate parasite lysate antigens *T. gondii* was cultured in HFF monolayers and
284 expanded to approximately 2×10^8 parasites in a T175 flask. Parasites were syringe-
285 lysed, washed with sterile 1X PBS, and pelleted at $611 \times g$ for 7 minutes. The pelleted
286 parasites were lysed with Lameli Buffer (0.0625M Tris Base, 0.07M SDS, 10% glycerol,
287 5% β -mercaptoethanol) and centrifuged at $14,000 \times g$ for 20 minutes to remove large
288 insoluble debris. The supernatant was aliquoted and stored at -80°C . Parasite lysates
289 were separated via SDS-PAGE in 4-20% acrylamide hand cast gels before transfer to
290 PVDF membrane. Membranes were blocked with 10% fortified bovine milk (Raley's)
291 dissolved in Tris-Buffered Saline with 0.1% Tween (TBS-T 0.1%) for 1-2 hrs at room
292 temperature or overnight at 4°C . Blots were then probed with *T. gondii* GPI anchor
293 glycoform-specific antibody clones T3 3F12 (BEI) which binds GalNAc GIPL, or T5
294 4E10 (a gift from Jean Francois Dubremetz U. Montpellier) which binds GalNAc + Glc
295 GIPL in blocking buffer for 72 hrs at 4°C . Membranes were washed with TBS-T 0.1%
296 three times and incubated for one hr at room temperature with goat anti-mouse Ig
297 horseradish peroxidase (HRP)-conjugated antibodies (Southern Biotech, anti-IgM
298 secondary 1:1000 (cat# 1020-05), anti-IgG 1:7500 (cat# 1030-05)). Membranes were
299 then washed with TBS-T 0.1% three times and developed with Immobilon Forte
300 Western HRP Substrate (Millipore, WBLUF0500). All blots were imaged via
301 chemiluminescence on a ChemiDoc Touch (cat#12003153, Bio-Rad). Image Lab 6.1
302 software (Bio-Rad) was used for analysis of bands.

303 **NanoLC-MS and MALDI-TOF-MS analysis of GIPLs and GPI-anchored protein
304 glycans released from parasites**

305 Parasite pellets corresponding to approximately 3×10^8 parasites were harvested as
306 described in 2.2.6 but from 15 T175 flasks and thoroughly rinsed in ice-cold PBS
307 (Corning cat # 21-040 CV), before being pelleted and stored at 80°C . Control,
308 uninfected HFF monolayers were harvested in 1 mM EDTA in PBS and washed 3 times
309 in ice-cold PBS by centrifugation (8 minutes, $2000 \times g$, 4°C). Parasite and host cell
310 pellets were then delipidated, and the protein pellet was extracted with butan-1-ol
311 saturated water to enrich for GPI-anchored proteins, as described (36). GIPL fractions
312 were obtained from the clarified lipid extracts generated during initial pellet delipidation.
313 Fatty acids (FA) were removed from both GPI-anchored proteins and GIPLs by
314 incubation in 0.5 M NH_4OH (in water for GPI-anchored proteins or after bath sonication
315 in 70% ethanol for GIPLs) under rotation for 6 hrs at 4°C . The glycan core was then
316 released by hydrofluoric acid treatment, C18 cleaned up, re-N-acetylated,
317 permethylated, and dried as described (36).

318 For nLC-MS, permethylated glycans were redissolved in MeOH and $10\mu\text{l}$ of were
319 mixed with $90\mu\text{l}$ 0.1% FA in water. $10\mu\text{l}$ was injected into a PepMap Acclaim analytical
320 C18 (75 μm , 15 cm, 2 μm pore size) column maintained at 60°C in an Ultimate 3000
321 RSLC coupled to a Q-Exactive-Plus mass spectrometer (Thermo Fisher Scientific).
322 Column was equilibrated for 10 minutes at 97.5% LC-MS Buffer A (0.1% FA in water)

323 and ramped up to 35% LC-MS Buffer B (80% (v/v) over 2 minutes. Glycan separation
324 was achieved using a linear gradient from 35% to 70% Buffer B over 150 minutes at a
325 flow rate of 300 nL/minutes. The effluent was introduced into the mass spectrometer by
326 nanospray ionization in positive mode via a stainless-steel emitter with spray voltage set
327 to 1.9 kV and capillary temperature set at 275°C. The MS method consisted of a survey
328 Full MS scan at 70,000 resolution in positive ion mode, followed by MS(2) fragmentation
329 of the top 10 most intense peaks using HCD at 40% collision energy and an isolation
330 window of 2 m/z. Dynamic exclusion was set to exclude ions for fragmentation for 30
331 sec. All the data were processed manually using the Xcalibur 2.0 software package.

332 For MALDI-TOF-MS, permethylated samples were redissolved in MeOH and
333 0.5 μL aliquots were mixed 0.5 μL MeOH saturated with either 2,5-dihydroxybenzoic acid
334 (DHB) or α-cyano-4-hydroxycinnamic acid (CHCA) on the MALDI plate and allowed to
335 air dry. Samples were then analyzed on an ABI 4700 MALDI-TOF-MS operated in
336 positive ion reflectron mode for m/z range 500-5000.

337 **Flow cytometry of peritoneal exudate cells after infection**

338 Mice were infected i.p. with 10^6 tachyzoites, and 3 hrs post injection mice were
339 euthanized and peritoneal cavity lavaged with 4mL of 1X PBS and 3 mL of air. The
340 peritoneal exudate fluid was passed through a 70 μm cell strainer, cells were pelleted
341 for staining. Samples were blocked for 30 minutes in FACS buffer (2% FBS 1X PBS)
342 containing Fc Block anti-CD16/32 (2.4G2, BD Biosciences) (1:100 dilution), 5% normal
343 hamster serum, and 5% normal rat serum (Jackson ImmunoResearch). After blocking,
344 cells were stained at a 1:100 dilution for 30 minutes with the following antibodies:
345 CD11b BUV395 (M1/70, BD), Gr.1 PE (RB6-8C5, BioLegend), F4.80 BV421 (BM8,
346 Thermo Fisher), MHC II APC (AF6-120.2, Thermo Fisher), B220 APC-Cy7 (RA3-6B2,
347 BioLegend), CD19 BUV785 (6D5, BioLegend), NK 1.1 PE Cy7 (PK136, Thermo Fisher),
348 CD3ε BV510 (17A2, BD) and Propidium Iodine (PI) (1:1000). After incubation, cells
349 were washed three times in FACS buffer and resuspended in FACS buffer. Samples
350 were run on a ZE5 flow cytometer (Bio Rad) and analyzed using FlowJo software
351 version 10.

352 **Flow cytometry for parasite antigen expression**

353 Syringe lysed parasites were plated in a micro-titer plate at 8×10^5 parasites per well and
354 incubated with one of the following antibodies at (1:100) to detect antigen expression:
355 mouse anti-SAG1 (T4 IE5, BEI), mouse anti-SAG3 (T4 1F12, BEI), mouse anti-p35 (T4
356 3F12, BEI). After 20 minutes incubation on ice, parasites were washed twice with FACS
357 buffer and stained with (1:100) goat anti-mouse IgG-APC (BioLegend, cat# Poly4053).
358 After incubation, cells were washed and resuspended in FACS buffer as described
359 above. Samples were run on a ZE5 flow cytometer and analyzed using FlowJo
360 software version 10.

361 **Serum antibody parasite binding assay**

362 For serum reactivity analysis, syringe-lysed GFP-expressing strains were fixed in 3%
363 formaldehyde for 20 minutes, washed twice in PBS, and plated in 96-well micro-titer
364 plates at 4×10^5 parasites/well. The parasites were then incubated with serum from
365 chronically infected mice, in serum concentrations ranging from 10^{-2} to 10^{-6} diluted in
366 FACS buffer, for 20 minutes at 37°C. Parasites were then washed with FACS buffer and
367 placed on ice for incubation with anti-isotype detection antibodies depending on
368 application: anti-IgG3-BV421 (R40-82, BD Bioscience), anti-IgM-PE/Cy7 (RMM-1,

369 BioLegend), anti-IgG1-APC (RMG1-1, BioLegend), anti-IgG2b-PE (RMG2b-1,
370 BioLegend), anti-IgG2a-PerCP/Cy5.5 (RMG2a-62, BioLegend). Parasites were washed
371 and resuspended in FACS buffer as described before. Flow cytometry was performed
372 on an LSR analyzer (BD) and analyzed using FlowJo software version 10. The MFI was
373 computed by gating on forward and side scatter characteristics consistent with parasites
374 and further gated for GFP+ if the parasite expressed GFP using FlowJo.

375 **Complement C3b binding assay**

376 For analysis of C3b binding, parasites were syringe lysed, washed, and resuspended to
377 a concentration of 1×10^7 parasites per mL in Hank's Balancing Salt Solution Buffer
378 (HBSS) (ThermoFisher, cat#14175095). Parasites were plated in a 96-well plate at 10^6
379 parasites per well with 10% blood plasma from naive mice and incubated at 37°C for 30
380 minutes. After incubation, complement activation was stopped by washing with cold 1X
381 PBS. Parasites were spun down at 611 x g for 3 minutes and washed 3 times using cold
382 1X PBS. Parasites were then fixed using 3% formaldehyde for 10 minutes and then
383 washed using cold 1X PBS. Parasites were then stained with mouse anti-C3b (10C7)
384 (Invitrogen MA1-70054) (1:200) for 20 minutes. After primary stain, parasites were
385 washed with cold 1X PBS and stained with anti-mouse IgG1 APC (RMG1-1, BioLegend)
386 (1:100) for 20 minutes on ice. After incubation, parasites were washed 3 times and
387 resuspended in 1X PBS for analysis. Samples were run on a ZE5 machine and data
388 analyzed using FlowJo version 10.3. MFI was determined as described above.

389 **Galectin-3 binding assay**

390 Recombinant Gal-3 (R&D Systems, Cat# 1197-GA-050) was pre-diluted in phosphate-
391 buffered saline (PBS) containing 10% bovine serum albumin (BSA) and 14 mM β -
392 mercaptoethanol. Parasites were syringe lysed, washed, and 8×10^6 parasites were
393 incubated with either 10 or 5 μ g of recombinant Gal-3 for one hour at 4°C in FACS
394 buffer. Parasites were washed to remove unbound Gal-3 and incubated with a PE-
395 conjugated anti-Gal-3 antibody (eBioM3/38 (M3/38), Invitrogen) at a 1:100 dilution in
396 FACS buffer for 20 minutes at 4°C. After two further washes, the samples were
397 analyzed using a ZE5 Cell Analyzer (Bio-Rad) and data processed as described above.

398 **CD36-Fc binding assay**

399 10^7 parasites were incubated with 0.5 μ g recombinant human IgG Fc (R&D Systems,
400 cat# 110-HG) or recombinant CD36-Fc (R&D Systems, #2519-CD) in 50 μ l binding
401 buffer (0.14 M NaCl, 2.5 mM CaCl₂, 0.01 M HEPES (pH 7.4), 3% BSA) for 1 hr at 15°C.
402 Parasites were washed once to remove unbound recombinant protein and the parasites
403 were then incubated with mouse anti-SAG1-AF405 (TP3cc, Novus Biologicals) and
404 donkey anti-human IgG-Daylight 550 (Thermo Fisher, SA5-10127). The stained
405 parasites were acquired by Attune NXT flow cytometry. The CD36-Fc MFI was
406 computed by gating on GFP+/SAG1+ parasites using FlowJo.

407 **Opsonization and invasion assays**

408 Bone marrow-derived macrophages (BMDMs) were generated in L929 conditioned
409 medium from female C57BL/6J mice as previously described (37). BMDMs were plated
410 a day in advance on a coverslip lined 24-well plate at 8×10^5 cells in 1 mL per well, in
411 "BMDM media" supplemented with 10% L929 (20% HI FBS, 1% penicillin-streptomycin,
412 1% non-essential amino acids (ThermoFisher, cat#11-140-050), 1% sodium pyruvate).
413 The day of the experiment, freshly lysed parasites were washed and resuspended for
414 an MOI of 0.5 in Toxo media warmed to 37°C. In a 96-well plate, serum dilutions were

415 made in Toxo media that was pre-warmed to 37°C. Parasites were added to the diluted
416 serum and incubated at 37°C for 20 minutes before being added to the BMDM coverslip
417 wells with fresh Toxo medium. The BMDM plates were spun at 304 x g for 5 minutes to
418 synchronize parasite invasion between wells and incubated at 37°C for 40 minutes to
419 allow for phagocytosis or invasion. After 40 minutes, media was replaced with 300µl of
420 3% formaldehyde in 1X PBS, fixed for 20 minutes, washed three times with 1X PBS,
421 blocked and permeabilized with “Blocking Buffer” for 1 hr (1X PBS with 10% normal
422 goat serum, and 0.01% saponin). Cells were stained with rabbit anti-GRA7 (1:5000) (gift
423 from John Boothroyd, Stanford) and rat anti-LAMP1 (1D4B, BD Biosciences) (1:500)
424 diluted in blocking buffer for 1 hr or overnight at 4°C. After primary antibody incubation,
425 wells were washed three times with 1X PBS before secondary antibody incubation.
426 Secondary antibodies were goat anti-rabbit AF647 (1:3000) (Thermo Fisher,
427 cat#A21245) goat anti-rat AF594 (1:1000) (Thermo Fisher cat#A11007), and DAPI
428 (1:10000), and if parasites were not GFP-expressing, goat anti-Toxo conjugated FITC
429 (1:400) (ViroStat, cat#0283) was also used. Fluorescence microscopy was performed
430 (Nikon Eclipse Ti-5) and images were captured at 60x and blinded for analysis. Images
431 were processed (Nikon Elements) and 80-100 GFP+ events were quantified for parasite
432 association with Lamp1+ or for containment within a ring-like GRA7+ parasitophorous
433 vacuole (PV); fraction opsonization was calculated as (Lamp1+GFP+ counts /
434 Lamp1+GFP+ plus GRA7 PV+GFP+ total counts).

435 For invasion assays BMDMs were plated on coverslips in 24-well plates
436 overnight as described above and infected the next day at an MOI of 0.25 parasites.
437 Plates were spun at 304 x g to synchronize invasion and incubated at 37°C for 20
438 minutes before washing once in 1X PBS and fixing in 3% formaldehyde. Cells were not
439 permeabilized. Wells were washed and stained with mouse anti-SAG1 (1:5000) for 1 hr.
440 Cells were washed, and secondary antibodies goat anti-mouse AF594 (1:3000) and
441 DAPI (1:1000) were used for 1 hr. Fluorescence microscopy was performed as
442 described above, with 100 GFP+ parasites counted per slide and quantified for parasite
443 for SAG1+ staining. Invaded parasites were determined to be GFP+ SAG1-. Fraction of
444 invasion was calculated as (SAG1-GFP+ counts / total GFP+ counts).

445 **Neutralization assay**

446 MEFs were plated a day in advance in a 96-well plate at 5×10^5 cells per well in MEF
447 media. The day of the experiment, freshly lysed parasites were washed and
448 resuspended to a concentration of 1.6×10^7 in Toxo media warmed to 37°C. In a 96
449 well plate, blood plasma 1:10 dilution was made in Toxo media pre-warmed to 37°C and
450 incubated at 37°C in 10% serum for 20 minutes before being added to the MEFs, such
451 that in the absence of serum the MOI is approximately 0.5. The plate was spun at 304 x
452 g for 3 minutes to synchronize parasite invasion and incubated at 37°C for 2 hrs.
453 Supernatant was carefully removed, and 20µl of trypsin was added to each well and
454 incubated at 37°C for 5 minutes to dislodge cells from the plate. Cells were harvested
455 with 100µl of cold 1X PBS, transferred to a FACS plate and washed 3 times with FACS
456 buffer to remove trypsin. Cells were resuspended in 1:1000 PI in FACS buffer, and then
457 analyzed via flow cytometry for GFP+ PI- MEFs to indicate invasion. Neutralization was
458 defined as a ratio: the percentage of PI- cells infected with parasites incubated with
459 serum divided by the percentage of PI- cells infected with parasites without serum
460 incubation. For non-GFP+ expressing parasites, cells were fixed after trypsinization in

461 3% formaldehyde, washed, and blocked for 1 hr before staining with anti-Toxo-FITC
462 (ViroStat, cat#0283). Neutralization ratios were determined as described, but PI was not
463 included in the discrimination. Samples were run on a ZE5 machine and data analyzed
464 using FlowJo software version 10.

465 **Parasite lytic cycle**

466 For plaque sizes, HFFs were plated in 24-well plates and allowed to grow to confluence
467 before adding 100 or 300 syringe-lysed parasites and allowed to grow for 5 days.
468 Plaque sizes were measured (Nikon Elements) under 4x objective (Nikon Eclipse Ti-5).

469 For parasites per vacuole assays, 8×10^5 MEFs were plated on coverslips in 24-
470 well plates and allowed to adhere before infecting with 10^5 parasites. Plates were spun
471 at $475 \times g$ to synchronize invasion and incubated for 15 minutes at $37^\circ C$. After 15
472 minutes cells were washed twice to remove any unattached parasites. Fresh Toxo
473 media was added, and plates incubated at $37^\circ C$ for 16 hours before being fixed,
474 blocked with 0.1% saponin blocking buffer (as described above), and stained for 1 hr
475 with rabbit anti-GRA7 (1:3000) (Thermo Fisher, cat#A11037) and DAPI (1:10,000) for 1 hr.
476 100 GFP+ vacuoles per slide were quantified for number of parasites residing in GRA7+
477 vacuoles under 100X objective (Nikon Eclipse Ti-5).

478 For attachment time course assays, HFFs were plated in 24-well plates and
479 allowed to grow to confluence. 200 syringe lysed parasites were added per well and
480 plates were spun at $475 \times g$ to synchronize invasion and incubated for 30, 60, or 90
481 minutes before washing 5 times in 1X PBS to remove any unattached parasites. Fresh
482 Toxo media was added and plates were incubated at $37^\circ C$ for 5 days before counting
483 plaques under the microscope. Plaque numbers were normalized to those obtained
484 from wells that did not undergo any washes.

485 **Quantitative PCR for cytokine expression and parasite burden**

486 Cells were collected from mouse peritoneal lavages as described above and spleens.
487 Cells were filtered through a $70 \mu m$ filter and centrifuged $611 \times g$ for 7 minutes to pellet
488 and washed with sterile 1X PBS before pelleting again. Samples were removed of red
489 blood cells through treatment of ACK lysis buffer (0.5 M NH_4Cl , 0.01 M $KHCO_3$, .0001 M
490 EDTA) for 5 minutes before being washed with 1X PBS. Cells were stored in RNA-later
491 (ThermoFisher, cat#AM7021) in $-80^\circ C$ until RNA isolation. After thawing samples,
492 aliquots were removed and diluted with 1X PBS and centrifuged to pellet cells and
493 remove RNA-later. RNA was isolated using the RNEasy Mini Kit (QIAGEN, cat#74134)
494 and cDNA was synthesized using the Invitrogen High-Capacity cDNA Reverse
495 Transcription Kit (ThermoFisher, cat#4368814). Quantitative PCR was performed on
496 synthesized cDNA using iTaq Universal SYBR Green Supermix (BioRad, #172511).
497 Normalization of all samples was calculated in comparison to *Actb* expression levels.
498 Fold change in cytokines were determined through the $2^{-\Delta\Delta Ct}$ method.

499 For parasite burden determination by quantitative PCR, peritoneal exudate and
500 spleen cells, liver and lung tissues were harvested, and appropriate amounts were
501 digested according to manufacturer's protocols using the QIAGEN DNeasy Blood &
502 Tissue Kit (#69504). Brains were isolated and DNA purified as follows. In brief, whole
503 brains were harvested in 5 mL of 1X PBS and homogenized through an 18G needle of a
504 10mL syringe and passed up and down through the needle 10 times before being spun
505 down at $611 \times g$ for 7 minutes to pellet. 100 μL of brain homogenates were processed

507 using the QIAGEN DNeasy Blood & Tissue kit according to the manufacturer's
508 directions. Standard curves were made from known numbers of isolated parasite DNA
509 ranging from 10^1 to 10^6 parasites per well. Isolated DNA samples were amplified
510 targeting the *Toxoplasma*-specific B1 gene, and the standard curve was used to
511 quantify parasite number in each sample per μg of isolated DNA.

512 **Statistics**

513 Statistical analyses were performed with GraphPad Prism 8 software. Statistical
514 significance was defined as $P < 0.05$. P values between two groups were calculated
515 using paired or non-paired two-tailed t-tests. One or two-way ANOVA was used for
516 comparison across more than two groups with Tukey or Dunnett correction, as
517 recommended by Prism. Survival curve significance was calculated using log-rank
518 Mantel-Cox testing.

519 **RESULTS**

520

522 ***Tg_207750* and *Tg_266320* are predicted to be the *T. gondii* GPI sidechain- 523 modifying glycosyltransferases, PIGJ and PIGE, respectively.**

524 *T. gondii* strains are known to differ in virulence in various intermediate hosts
525 (38). In laboratory mice, type III strains are referred to as avirulent because they require
526 a dose of over 10^5 parasites to achieve 50% lethality (38,39). Meanwhile, type I strains
527 are highly virulent, and one parasite is enough to be 100% lethal in naïve mice (40,41).
528 However, when C57BL/6J mice given a primary infection with the avirulent type III strain
529 CEP and allowed to progress to a chronic infection, they survive secondary infections
530 (i.e., “challenge”) with high dose type I strain RH parasites due to protective
531 immunological memory responses that are generated following the initial parasite
532 exposure (42–44). In contrast, when mice infected with CEP are challenged with the
533 type I strain GT1 they succumb (43). RH and GT1 are highly similar type I strains and
534 the gene *Tg_207750* was noted to be six times more highly expressed in RH compared
535 to GT1 (45). Based on sequence analysis, *Tg_207750* was predicted to be a
536 glycosyltransferase that adds an acetylated hexose (HexNAc) to a core mannose of
537 complex N-glycans (45). Moreover, *Tg_207750* was one of two *T. gondii* β HexNAc
538 transferase-like GTs we proposed to be responsible for adding the GalNAc to the GPI of
539 *T. gondii* (36). Thus, we hypothesize that *Tg_207750* is partially responsible for
540 differences in secondary infection virulence between RH and GT1 type I strains and the
541 GPI GalNAc transferase we name here as “PIGJ” (**Fig 1A**).

542 Informatic analysis revealed *Tg_207750* is predicted to be a type 2
543 transmembrane protein (46) with a C-terminal glycosyltransferase domain with greatest
544 similarity to CAZy family GT17 (36) (**Fig 1B**). The occurrence of a non-synonymous
545 SNP within the GT17 CAZy-like domain was also noted between RH and GT1.
546 Reciprocal BLASTp studies indicate that PIGJ is coccidian specific and not found in
547 *Plasmodium* or *Cryptosporidium* spp., or Piroplasm apicomplexans (not shown). The
548 catalytic DxD domain is separated from the transmembrane domain by a stretch of
549 about 170 aa, which in other GTs comprises a stem-like region that may mediate
550 protein interactions or appropriately orient the catalytic domain. The 143-aa cytoplasmic
551 region is predicted to be disordered based on amino acid composition. AlphaFold
552 predictions confirm the potential of the GT17 region to fold as a GT-A superfamily

553 domain, but do not confidently predict a structure for the stem-like or cytoplasmic
554 regions. Now referred to as PIGJ, *Tg_207750* evolved independently of PGAP4, the GT
555 that catalyzes the same reaction in animals (30). PGAP4 is a CAZy GT109 family
556 member that bears no recognizable homology with CAZy GT17 sequences and has a
557 distinct architecture that includes a transmembrane hairpin inserted within the canonical
558 catalytic domain. Thus, formation of the same GalNAc1,4Man linkage in coccidian
559 apicomplexans and in animal hosts is the result of convergent evolution.

560 The gene *Tg_266320* was previously predicted to encode the GPI α GlcT that
561 mediates addition of the terminal Glc to GalNAc to complete the disaccharide sidechain
562 (36) (**Fig 1A**). *Tg_266320* is also predicted to be a type 2 transmembrane protein (**Fig.**
563 **1B**). Now referred to as “PIGE”, *Tg_266320* has greatest similarity to CAZy GT32
564 glycosyltransferases (36). BLASTp searches suggest that this protein is likewise
565 restricted to coccidian apicomplexans (not shown). The most similar GT found is
566 lactosylceramide 4-alpha-galactosyltransferase (a.k.a. globotriaosylceramide or Gb3
567 synthase), which attaches α Gal to the 4-position of a β -linked Gal acceptor across many
568 eukaryotes (47). Thus, the linkage formed is the same, but the donor and acceptor
569 sugars are distinct, which is an evolutionary variation common among CAZy GT32 GTs.
570 GT32 GTs utilize sugar nucleotide rather than Dol-P-sugar donors, as previously
571 documented for the enzyme that assembles the Glc α 1,4-linkage in the *Toxoplasma* GPI
572 (48). Though PIGE and Gb3 synthase are both type 2 membrane proteins that modify
573 glycolipids, PIGE is distinctive with its ~385 aa long stem-like region and a ~160 aa
574 poorly conserved, likely disordered cytoplasmic region, whereas Gb3 synthase is only
575 360 aa overall with a negligible cytoplasmic region. Given evidence for multiprotein
576 complexes in the GPI biosynthetic pathways of other organisms (49), the cytoplasmic
577 and stem-like regions of PIGJ and PIGE might integrate them into complexes for orderly
578 and efficient sequential GPI-assembly in the rER (50). This hypothesis is consistent with
579 the lack of KDEL-like rER retentions signals at their C-termini.

580
581 **Western blot analysis implicates *Tg_207750* as PIGJ**

582 To address their roles in the GPI sidechain synthetic pathway, each predicted GT
583 gene was targeted for disruption by CRISPR-Cas9 and repair with a drug selectable
584 marker (**Fig S2 S3**). Mutants of each gene were made in both type I (RH, GT1) and type
585 III (CEP) genetic backgrounds (**Table S1**), and integration of the selectable markers
586 was confirmed with diagnostic primers and PCR (**Fig S2 S3**). Using glycoform-specific
587 antibodies that bind the protein-free GPI lipid (GIPL) sidechains (17), western blot
588 analysis revealed these antibodies lose recognition of both sidechain glycoforms
589 derived from the GT1 Δ 207750 and CEP Δ 207750 strains (**Fig 1C**). This indicates that
590 the enzyme encoded by *Tg_207750* is likely responsible for GalNAc addition to the
591 mannose core of the GPI. Western blot analysis of GT1 Δ 266320 and CEP Δ 266320
592 mutants retained GIPL recognition by the T3 3F12 GalNAc GIPL glycoform specific
593 antibody, and in the case of GT1 Δ 266320 increased detection was routinely observed.
594 In contrast, recognition of the GalNAc + Glc glycoform by the T5 4E10 antibody was
595 unimpeded against GIPL from GT1 Δ 266320 and CEP Δ 266320 mutants (**Fig 1C**). A
596 technical note of importance, while the T5 4E10 antibody has preferential reactivity to
597 GalNAc + Glc compared to GalNAc GIPLs of *T. gondii* (17), it can detect GalNAc

598 sidechain bearing GPIs of human intermediate GPIs (29), suggesting significant cross-
599 reactivity to antigen by this antibody clone.

600 To further explore the recognition potential by these antibodies, we decided to
601 monitor their ability to bind intact parasites by flow cytometry. Like that of our western
602 blot analysis, T3 3F12 and T5 4E10 staining of the GT1 $\Delta 207750$ mutant was
603 significantly reduced compared to the parental parasite strain. However, the staining
604 was not entirely abrogated (**Fig S4**). Regarding the GT1 $\Delta 266320$ strain, T3 3F12
605 recognition of the mutant parasite is enhanced suggesting increased presence of the
606 GalNAc bearing GPI sidechains. In contrast, T5 4E10 recognition of GT1 $\Delta 266320$ is
607 only marginally reduced, calling into question whether this GT is responsible for adding
608 the terminal Glc to the GPI sidechain, at least using this antibody clone which has
609 significant cross-reactivity to GPI antigens (17,29). Finally, while *Tg_207750* is more
610 highly expressed in RH compared to GT1 type I strains (45,51), we do not detect GPIL
611 in the RH strain via western blot using these antibodies (**Fig 1C**), nor do we detect the
612 disaccharide sidechain by mass spectrometry of GPI anchors isolated from this strain
613 (36). Consistent with these observations, reduced T5 4E10 and T3 3F12 binding of the
614 RH strain relative to the GT1 strain is observed by flow cytometry, with only slight
615 reductions in T3 3F12 staining of the RH $\Delta 207750$ compared to the parental RH strain
616 is seen (**Fig S4**).

617

618 **Structural analysis confirms GPI sidechain glycosyltransferases of *T. gondii*.**

619 Given the low detection of GPIL in the RH background by GPIL-specific antibody
620 and mass spec, the GT1 strain was subjected to GPI sidechain structural analysis via
621 mass spectrometry (**Fig 2**). A previous study developed a new method to isolate and
622 analyze the glycan component of GPI anchors using mass spectrometry (36). The
623 method first enriched for GPI-anchored proteins using butan-1-ol extraction of material
624 delipidated by extraction with CHCl₃ and MeOH. The fraction was saponified to remove
625 potential fatty acids (FAs), and the glycan core was released by phosphodiester bond
626 cleavage with hydrofluoric acid (HF). Finally, the glycan was N-acetylated and
627 permethylated, and analyzed initially by MALDI-TOF-MS. The most abundant ion from
628 the parental GT1 strain corresponded to a glycan with the composition of four hexose
629 residues, two HexNAcs, and one hexitol, or H4N2Ino (**Fig 2A**). This composition
630 corresponds to the previously described structure consisting of three Man, one Glc, one
631 GalNAc, and one inositol, as shown in Figure 1A. In addition, less abundant ions were
632 found that correspond to H3N2Ino and H3N1Ino, suggesting the presence of isoforms
633 with a monosaccharide side arm, or none at all. Ions whose composition corresponded
634 to multimers of hexose, H3, H4 and H5, were also detected.

635 Since parasites are grown in HFFs, we assessed the potential contribution of
636 HFFs to these ions, since mammals also express GPI anchor glycans with a
637 disaccharide side chain on the α 4-linked (first) Man residue (29). Preliminary analysis of
638 N-glycans, performed as described in Gas-Pascual et al. (2019), showed the presence
639 of N-glycans from HFFs as well as tachyzoites (data not shown), such that >25% of the
640 sample was potentially of HFF origin. Therefore, a GPI-anchor fraction from HFFs was
641 examined. As shown in Figure 2D, this sample contained a series of hexose oligomers
642 whose abundance decreases with length, which potentially represent breakdown
643 products of glycogen, as well as an ion corresponding to H3N1Ino. Previous analysis of

644 a preparation of spontaneously lysed extracellular tachyzoites that were unlikely to be
645 contaminated by host cells, and that were washed extensively to minimize serum
646 contaminants, yielded no detectable hexosamers (36), consistent with the low level of
647 starch accumulation at the tachyzoite stage. However, the ratio of H3N1Ino to Hex4 was
648 small in HFFs compared to the large ratio in the GT1 sample (**Fig 2A, D**). If the amount
649 of H4 is used as a measure of contamination of HFFs to the parasite to sample, it is
650 evident that the great majority of the GPI glycans originated from the parasites.

651 To verify these interpretations, the GT1 GPI preparation was also examined by
652 MS analysis in an Orbitrap mass spectrometer after separation by C18 nano-HPLC. As
653 shown in Figure 3, the elution profile of all ions (base peak chromatogram) from the
654 GT1 strain included a prominent peak eluting at 49.04 min (**Fig 3A**). This peak
655 coincided with the extracted ion chromatogram analysis (EIC) of H4N2Ino in the lower
656 trace of panel A. A second peak eluting at about 33.77 min corresponded to the elution
657 positions of H3N1Ino and H3N2Ino, which were not well resolved by this method. These
658 ions eluted as a mixture of primarily singly charged H⁺ or NH₄⁺ ions, and doubly charged
659 ions in either 2H⁺ or H⁺/NH₄⁺ states, as shown in the right-hand panels. These ions
660 matched the expected *m/z* values with 1-2 orders of magnitude higher accuracy
661 compared to the MALDI-TOF-MS method. Furthermore, collision-based decomposition
662 (HCD MS-2) revealed a series of daughter ions that confirmed that it consisted of
663 various combinations of monosaccharides including non-reducing end Hex residues
664 (**Fig S5A**) that are completely consistent with structure shown in Figure 1A. As
665 expected, all 3 GPI isoforms were detected, but at a ratio of 1.0:0.25:0.13 for
666 H4N2Ino:H3N2Ino:H3N1Ino, respectively (**Fig 3A**), consistent with the MALDI-TOF-MS
667 data (**Fig 2A**). Most of the remaining ions in the base peak chromatogram matched the
668 elution positions of the H3, H4 and H5 hexosamers, as described for the HFF GPI
669 sample (**Fig 3D**). Note that these isomers elute in pairs with the same *m/z* value,
670 indicating that they represent a mixture of reducing end α - and β -anomers with distinct
671 elution times. While all three GPI isoforms were also detected in the HFF samples, they
672 were of very low relative abundance and H3N1Ino rather than H4N2Ino was the most
673 abundant ion. Taken altogether, the results confirm the presence of the previously
674 described Glc-GalNAc- side chain of parasite GPI anchors, and good evidence for
675 isomers with only GalNAc or no side chain at all.

676 To confirm the predicted role of PIGE as the GPI Glc transferase, the GPI
677 fraction from *Apige* parasites was analyzed as above. Strikingly, only the H3N2Ino and
678 H3N1Ino isoforms were detected, along with substantial levels of H4 and H5 (**Fig 2B**).
679 Using the more sensitive nLC-MS method, the full-length H4N2Ino isoform was
680 detected but at 0.005% of the level of H3N2Ino (**Fig 3B**), which is likely a contaminant
681 from the HFF cells. To confirm the predicted role of PIGJ as the GPI GalNAc
682 transferase, the GPI fraction from *Apigi* parasites was similarly analyzed. In this case,
683 essentially only the H3N1Ino glycan was detected together with substantial H3 and H4
684 glycans (**Fig 3C**). The trace levels of H4N2Ino and H3N2Ino glycans detected were
685 readily explained as carryover from the host HFF cells as indicated by the abundant H3
686 and H4 glycans. Both mutant forms of the GPI-anchor fragmented to yield expected
687 glycan products (**Fig S5B, C**).

688 *T. gondii* GPIPs have been described to possess the same Glc-GalNAc- sidearm
689 on the same α 4-linked core Man residue. To confirm the findings described above for

690 GPI-anchors, the method for isolating GPI-glycans was applied to the organic fraction
691 obtained from the initial delipidation step used to isolate GPI-anchored proteins, as
692 described in Material and Methods. Using the same MALDI-TOF-MS method as above
693 though with a different matrix, a series of ions was observed that suggested the
694 presence of H4N2Ino, H3N2Ino, H3N1Ino, and H4 (**Fig S6A**). However, the m/z values
695 for the parasite glycans were 36 units smaller than expected, whereas H4 had the
696 expected value. In comparison, a parallel analysis using a different matrix yielded the
697 expected m/z for the most abundant ion (**Fig S6A inset**) albeit also substantial -36 ion.
698 In addition, ions at -14 units were detected at low abundance, suggesting slightly
699 incomplete methylation. To examine whether these mass defects were an artifact of
700 MALDI-ionization, the sample was also analyzed by nLC-MS. Significantly, only ions
701 corresponding to the expected values were detected (**Fig S7A**), and ions with mass
702 defects of -36 and -14 were insignificant. Therefore, these defects, which were also
703 present at trace levels in the GPI-anchor analysis (**Fig 2B, C**) but not originally noted,
704 were evidently artifacts of the MALDI ionization method. The ratio of
705 H4N2Ino:H3N2Ino:H3N1Ino (1.0:0.33:0.17) was like that of the GPI isoform ratios
706 observed in the MALDI-TOF-MS method.

707 Analysis of the GPIL fractions from *Δpige* and *Δpigj* strains yielded the same
708 findings as from the GPI-anchor studies. Using either MALDI-TOF-MS (**Fig S6B**) or
709 nLC-MS (**Fig S7B**), the *Δpige* sample contained primarily the monosaccharide side
710 chain with negligible disaccharide side chain presence. Similarly, the *Δpigj* sample
711 lacked the side chain altogether (**Figs S6C, S7C**) with the minuscule levels of side chain
712 isoforms attributable to host cell contamination (**Figs S6D, S7C**). Thus, the same
713 glycosyltransferases act to generate the Glc-GalNAc- side-arm in both GPI-APs and
714 GPILs, and a significant fraction of glycans contain a monosaccharide or no side-arm in
715 the wildtype GT1 strain as well. In summary, mass spec results confirm the predicted
716 role of both glycosyltransferases. *Δ266320*, the gene hereon referred to as PIGE, lacks
717 the GalNAc + Glc glycoform, and *Δ207750*, the gene hereon referred to as PIGJ,
718 completely lacks both glycoforms of the sidechain (GalNAc, GalNAc + Glc) in the GT1
719 background.

720
721 **PIGJ mutants have increased primary and secondary infection virulence.**
722 With the knowledge that PIGJ and PIGE are the *T. gondii* GPI sidechain GTs, the
723 opportunity presented itself to test the role of distinct GPI glycoforms in microbial
724 virulence. To this end both primary and secondary infections were performed using the
725 PIGJ and PIGE mutant strains. Importantly, primary infections with the CEP *Δpigj* strain
726 resulted in 60% mortality compared to 0% mortality following wildtype infections (**Fig**
727 **4A**). In contrast, mice infected with CEP *Δpige* survived primary infections (**Fig 4A**).
728 Secondary infections were performed in mice chronically infected with the type III strain,
729 and as previously reported (43,44), these mice survive type I RH challenge due to the
730 formation of protective immunity (**Fig 4B**). Importantly, RH *Δpigj* but not RH *Δpige*
731 mutants caused lethal secondary infections. Chronically infected C57BL/6J mice were
732 also challenged with type I GT1 mutants and succumbed similarly to all three strains:
733 GT1, GT1 *Δpigj*, and GT1 *Δpige* (**Fig S8**). Given C57BL6/J mice are susceptible to GT1
734 challenges (43), it is difficult to observe virulence increases in this context. To explore
735 this further, the virulence phenotypes of the GPI sidechain mutants were screened in

736 A/J mice, which are genetically resistant to primary infections with low virulence type II
737 strains (52) and secondary type I GT1 infections (53). As observed in C57BL/6 mice,
738 CEP Δ pi g j caused lethality during primary infections in A/J mice (**Fig 4C**). During
739 secondary infections with the RH and GT1 GPI sidechain mutants, however, A/J mice
740 were still resistant (**Fig 4D**). Hence, the Δ pi g j deletion produces a virulence phenotype
741 that overcomes the genetic basis for resistance to primary but not secondary infections
742 in A/J mice. Collectively, these data suggest that the GPI sidechain of *T. gondii* prevents
743 lethal outcomes in its hosts, and that the virulence phenotype is less impacted by the
744 terminal Glc residue transferred by PIGE. Furthermore, the data is consistent with the
745 original hypothesis that differential *Tg_207750* gene expression contributes to the type I
746 strain differences in secondary infection virulence, at least in the susceptible C57BL/6
747 genetic background.

748

749 **Complementation of *PIGJ* partially rescues the survival phenotype.**

750 Given the most consistent phenotype surrounding the GPI sidechain occurred
751 with the CEP Δ pi g j strain, a PIGJ complementation strain was generated in this
752 background and efforts were focused on primary infection virulence. The full-length
753 coding region with introns spliced out of *TgVEG_207750* was amplified from cDNA and
754 fused with 1000 bps of the gene's promoter, followed by delivery as a transgene into
755 CEP Δ pi g j parasites using a pLIC-DHFR-3xHA plasmid which adds a C-terminal
756 hemagglutinin tag to the gene of interest (54). Western blot analysis shows the C2
757 complementation clone, CEP Δ pi g j + *PIGJ*_{3xHA}, has its GPI sidechain glycoforms
758 restored albeit to levels lower than wildtype (**Fig 5A**), and the presence of the HA tag is
759 detectable by fluorescence microscopy (**Fig 5B**). Both diffuse and puncta distribution of
760 *PIGJ*_{3xHA} are seen throughout the cell of the parasite with no distinctive localization
761 pattern to determine its subcellular localization. Survival, weight loss and cyst formation
762 following primary infection with the C2 complementation strain were assessed. While
763 complete rescue of the avirulence phenotype was not attained following C2 infections, a
764 significant increase in mouse survival and reduced weight loss occurred during primary
765 infections (**Fig 5C**), indicating a partial complementation of the virulence phenotype is
766 achieved. When brain cyst burdens were analyzed in the survivors of the primary
767 infections, significantly more brain cysts were detected in the mice infected with CEP
768 Δ pi g j compared to wildtype strains (**Fig 5D**). However, the complementation strain was
769 not significantly different compared to the WT or Δ pi g j mutant strains (**Fig 5D**).

770 To assess whether fitness defects may explain the *in vivo* phenotypes, lytic cycle
771 analysis was performed. Consistent with genome wide fitness studies (4) (**Fig 1A**),
772 deletion of PIGJ did not impede parasite growth in HFFs or MEFs, nor attachment to
773 host cells (**Fig S9**). It was noted CEP Δ pi g j had significantly larger plaque areas than
774 wildtype CEP, and this gain in plaque size was retained in the complementation strain,
775 suggesting that either the level of complementation of PIGJ was insufficient or the
776 background of the Δ pi g j strain gained a growth advantage during cloning irrespective of
777 the *PIGJ* gene (**Fig S9**). Regardless, differences in *in vitro* growth rates between strains
778 do not correlate with their pathogenesis phenotypes. In summary, virulence inversely
779 correlates with the expression of *PIGJ* and implicates the GPI sidechain of *T. gondii* as
780 a factor that inhibits pathogenesis.

781

782 **Early parasite burden and cytokine responses are unchanged following CEP**
783 ***Δpigj* primary infections.**

784 The early weight loss and death during primary infections pointed to a possible
785 immune defect responsible for the increased virulence of the PIGJ mutants. Therefore,
786 mice were infected with either the wildtype CEP or CEP *Δpigj* strains and multiple
787 organs were assessed for parasite burden as well as cytokine responses in the
788 peritoneal cavity (**Fig 6**). *T. gondii* elicits a robust TH1 response and IFNy is essential
789 for survival, therefore gene expression of major cytokines known to be involved in TH1
790 immunity (*Il6*, *Il12b*, *Ifng*, *Cxcl10*) and its regulation (*Il10*) were measured. As GPIL
791 induces robust TLR2/4-dependent TNF α production in macrophages (16), this cytokine
792 was measured (*Tnfa*), as well as type I IFN (*Ifna*, *Ifnb1*) and type I IFN induced genes
793 (*Isg15*, *Mx1*) due to the protective role this pathway plays during primary *T. gondii*
794 infection (55). While there were slight increases in some cytokine response to the PIGJ
795 mutant compared to wildtype infections, no significant differences were detected (**Fig**
796 **6A, C, E**). Moreover, parasite burden in the peritoneum, spleen, lung, and liver
797 appeared the same between mutant and parental strain as measured by qPCR (**Fig 6B,**
798 **D, F**), or by flowcytometry for GFP+ parasites in the peritoneum (**Fig S10**). Therefore,
799 host susceptibility to primary infection with the PIGJ mutant is not related to overt
800 dysregulation in the cytokine response or parasite burden during acute infection.
801

802 **Antibody reactivity, function and expression of GPI-anchored SAGs remain**
803 **largely intact to PIGJ mutants.**

804 We wondered whether the loss of the sidechain influenced regulation of GPI
805 anchored protein expression and/or antibody recognition of GPI-APs, and if this
806 correlated with parasite virulence. Some reports suggest GPI-sidechains may alter the
807 protein conformation of the GPI-AP (56), and the amount of time a GPI-AP spends
808 folded over on the plasma membrane (57), both of which could potentially impact
809 antibody recognition of GPI-APs. To this end, the surface expression of major GPI
810 anchored surface proteins SAG1, SAG3, and p35 on wildtype and *Δpigj* strains was
811 measured with monoclonal antibodies by flow cytometry. For both RH and CEP strains,
812 deletion of PIGJ did not prevent surface expression nor detection of the aforementioned
813 SAGs (**Fig 7A**).

814 Parasite-specific antibody derived from the sera of mice infected with *T. gondii*
815 allows a global assessment for any defects that polyclonal antibody recognition might
816 have against a multitude of surface antigens regulated by the GPI sidechain. To this
817 end, parasites were incubated with serum from chronically infected mice, and
818 fluorescently labeled anti-isotype secondary antibodies were used to detect isotypes of
819 parasite-bound serum antibodies as previously described (53). Again, no differences
820 were observed for IgM, IgG3, IgG1, Ig2a/c and IgG2b reactivity to wildtype and PIGJ
821 mutants over a range of serum dilutions (**Fig 7B**) (not shown). Complement component
822 3 (C3) binds the surface of *T. gondii* and is required for host resistance to infection (58).
823 Incubating parasites with naïve serum as a source of complement and detection with an
824 anti-C3 antibody revealed no difference in C3 recognition between WT and PIGJ mutant
825 strains (**Fig S11**).

826 To screen for any functional defects of immune or naïve sera due to the loss of
827 the GPI sidechain, opsonization and neutralization assays were performed. For

828 opsonization, parasites were incubated with sera before being added to bone marrow
829 derived macrophages (BMDMs) and allowed to either invade or be phagocytosed. Via
830 microscopy, successful invasion, and formation of the parasitophorous vacuole is
831 marked by GRA7+, while LAMP-1 marks the phagolysosome and when associated with
832 parasites, indicates opsonization (59). No significant differences in opsonization were
833 detected between parental and GPI mutant strains, although the CEP *Δpigj* strain
834 trended slightly higher compared to the parental CEP strain (**Fig 7C**). To assay
835 neutralization, serum coated parasites were incubated with mouse embryonic
836 fibroblasts (MEFs) and assessed for relative invasion by flow cytometry, and no
837 differences in antibody neutralization were observed between strains (**Fig 7D**).
838 Therefore, effector functions of immune and naïve sera are largely intact to GPI
839 sidechain null *T. gondii* parasites.
840

841 **The terminal glucose is required for immune serum IgM recognition of GIPL.**

842 Given the terminal Glc but not the GalNAc+Glc GPI sidechains is recognized by
843 serum from humans latently infected with *T. gondii* (21), GIPL reactivity of serum from
844 chronically infected mice was assessed against the GPI mutants by western analysis.
845 Sera from both C57BL/6J (**Fig 8A**) and A/J mice were used (**Fig 8B**). First, GIPL
846 reactivity, as observed by a band at 4-5 kDa when probed with anti-mouse IgM, is more
847 robust using A/J mouse serum, but faint recognition can be seen with the C57BL/6J
848 serum as well. Second, and consistent with the flow cytometry data, antibody reactivity
849 to parasite antigens 18 kDa and larger did not change between the wildtype and
850 knockout parasites. Third, RH GIPL is not detected by poly clonal immune sera, which
851 is again consistent with previous mass-spectrometry and western blot analysis.
852 Importantly, loss of IgM GIPL reactivity to *Δpige* and *Δpigj* was clearly observed for both
853 GT1 and CEP mutants (**Fig 8A B**). Therefore, the GalNAc + Glc glycoform of the GPI
854 sidechain is required for serum antibody recognition of GIPL, as previously inferred
855 (17,21). However, given the drop in serum IgM reactivity to both virulent (*Δpigj*) and
856 avirulent (*Δpige*) mutants, we reason this phenotype is unrelated to primary and
857 secondary infection virulence in mice.
858

859 **Non-significant macrophage tropism but enhanced CD36 binding of PIGJ 860 mutants.**

861 To test whether cellular tropism of GFP+ expressing parasites may explain
862 difference in host susceptibility early in infection, mice were infected with 10^6 parasites
863 and 3 hours later peritoneal exudate cells were analyzed by flow cytometry as
864 previously described (60). Invasion of PECs was estimated by analyzing FSC and SSC
865 parameters of GFP+ events to differentiate by size (**Fig 9A**). Given similar GFP signal
866 (**Fig 9B**), no differences in cell associated and intracellular ($FSC^{int-hi} SSC^{int-hi}$) vs. non-
867 cell associated and extracellular ($FSC^{lo} SSC^{lo}$) GFP+ parasites were observed between
868 strains (**Fig 9C**). Cell death, as inferred by PI staining, was also similar between
869 parasites, suggesting similar death kinetics of parasite infected peritoneal cells (**Fig 9D**).
870

871 The cell associated GFP+ events were further analyzed for markers to identify
872 infected cell types as a means of assessing parasite tropism. Gr-1^{hi} Cd11b+ neutrophils
873 had no significant differences in parasite infection (**Fig 9E**). Regarding macrophages,
there was a higher frequency of bone marrow-derived macrophages ($MHCII^{hi} F4/80^{lo}$

874 “BMDM” cells) infected with CEP *Δpigj* compared to WT strains, indicating a tropism for
875 BMDMs (**Fig 9F**). Infection frequencies of BMDMs with the complementation strain
876 mirrored that of the WT strain and was reduced in relation to *Δpigj*. A similar trend was
877 observed for MHCII^{hi}, F4/80^{hi} yolk-sack macrophages (YSM) (**Fig 9G**). However, due to
878 the biological variability, differences in BMDM or YSM tropism between strains did not
879 reach statistical significance. To test whether this subtle tropism was related to
880 enhanced invasion of macrophages, invasion assays were performed using *in vitro*
881 differentiated BMDMs. When BMDMs were infected for 20 minutes and
882 intracellular/extracellular parasites were quantified, no difference in cellular invasion
883 was observed between the parental and *Δpigj* strains (**Fig 9H**).

884 CD36 is a scavenger receptor expressed in many tissues and immune cells that
885 plays a role in fatty acid uptake, angiogenesis and phagocytosis (61). Moreover, *T.*
886 *gondii* tropism for macrophages is mediated in part by CD36 (60). Therefore, parasites
887 were incubated with recombinant CD36, and binding was measured via flow cytometry.
888 CD36 binding was found to be significantly increased to CEP *Δpigj* compared to
889 wildtype CEP strains (**Fig 9I J**). Whether macrophage tropism is inhibited by PIGJ,
890 presumably through the addition of the GPI sidechain, and whether strain-dependent
891 differences in macrophage association are mediated by CD36 is unknown.
892

893 **Virulence of *Δpigj* strains is galectin-3 and sex dependent, but not TLR-2 nor -4 894 dependent.**

895 Since TLR2 and TLR4 (16) and galectin-3 recognize *T. gondii* GPIL (50), we
896 hypothesized that TLR and/or galectin-3 signaling would mediate differences in the
897 PIGJ-dependent virulence. First, *Tlr2/Tlr4* *-/-* double knockout mice were used to study
898 survival. However, the double knockout mice similarly succumbed to CEP *Δpigj* while
899 surviving to CEP (**Fig 10A**), suggesting that differences in the GPI sidechain do not
900 impact host-parasite interactions mediated by these PRRs. In contrast, mice lacking the
901 gene for galectin-3, *Lgals3* *-/-*, survived both to CEP and to CEP *Δpigj* infections (**Fig
902 10B**). This indicates that the *Δpigj* virulence observed in wildtype mice is dependent on
903 galectin-3. The CEP *Δpigj* infected mice still had significant weight loss, but this
904 occurred later in the infection (**Fig 10C**). Despite the weight loss, the mice survived, and
905 did not have significant differences in brain cyst burdens (**Fig 10D**). When recombinant
906 galectin-3 binding was measured on whole parasites via flow cytometry, an increase in
907 galectin-3 binding to CEP *Δpigj* parasites was observed (**Fig 10E F**). It is unknown
908 whether host factors like CD36 and galectin-3, unimpeded by a sidechain, preferentially
909 bind the GPI mannose core to regulate the pathogenesis of *Δpigj* strains. Regardless,
910 when mice lack galectin-3, *Δpigj* virulence is disrupted and the *Lgals3* *-/-* mice are
911 protected.

912 One final and surprising observation was that male C57BL/6J mice infected in
913 these studies were resistant to both primary and secondary infections with *Δpigj*
914 mutants (**Fig S12**). These mice sustained their weight similarly to the wildtype infected
915 mice (**Fig S12B D**) and had similar survival (**Fig S12A C**). There are sex differences in
916 a variety of immune responses, which have been reviewed (62). Specifically in *T.*
917 *gondii*, females have been shown to be more susceptible to acute infections compared
918 to males, with different cytokine kinetics, and the females were found to have higher

919 brain cyst burdens (63). While the sex basis for this phenotype was not explored further,
920 this observation may help unravel the mechanism behind Δ pigj virulence.
921

922 DISCUSSION

923 This study aimed to address the following questions and gaps in the field's
924 knowledge: 1) What are the GPI sidechain-modifying enzymes of *T. gondii*, and 2) Does
925 the sidechain of *T. gondii* play a role in parasite virulence? In our attempts to answer
926 these questions we made several critical observations. Firstly, we identified the two
927 glycosyltransferases responsible for GPI sidechain modification in *T. gondii*,
928 *Tg_207750*, named PIGJ, which adds the GalNAc to the mannose of the core
929 backbone, and *Tg_266320*, named PIGE, which adds the glucose to the GalNAc
930 sidechain. We confirmed their activity using mass spectrometry analysis of the GPI in
931 the knockout parasites, which clarified ambiguities using monoclonal antibodies which
932 apparently have some cross-reactivity to unknown epitopes. In addition to the
933 characterization of these glycosyltransferases, we explored their role in parasite
934 virulence in both primary and secondary infections which revealed that PIGJ mutants
935 are virulent in both settings. This study is a first analysis for the role of the GPI
936 sidechain for any microbe in pathogenesis.
937

938 Removal of the core GPI synthesizing enzymes is lethal in mammals and in
939 eukaryotic microbes. However, it remained an outstanding question whether complete
940 removal of the GPI sidechain would have fitness bearing impacts in parasites. The
941 genes identified here do not have deleterious impacts on the lytic cycle, and the fitness
942 scores for PIGJ and PIGE align with this supposition (Fig 1A). In performing reciprocal
943 blasts using *T. gondii* PIGJ and PIGE, we find evidence that homologous enzymes exist
944 in coccidian species, but not in more distantly related apicomplexan species such as
945 *Plasmodium* and *Cryptosporidium* (not shown). Coccidia parasites are orally acquired
946 parasites of warm-blooded animals that have an intra-epithelial stage in their
947 development, but many form tissue cysts, which require parasite dissemination
948 following infection. Whether all coccidia parasites express similar GalNAc + Glc bearing
949 sidechains is unknown but would be expected from the identification of PIGJ and PIGE
950 homologs across this subclass of parasites. It is tempting to speculate that the GPI
951 sidechain, with a structure similar to that of mammals (Fig S1), use this similarity as the
952 result of convergent evolution, to mimic a fundamental biological process mediated by
953 this glycoform and required in these environments.

954 In our search for PIGJ and PIGE functions, we characterized and knocked out
955 the enzymes responsible for GPI sidechain synthesis in both type I (GT1, RH) and a
956 type III (CEP) strains of *T. gondii*. Parasites lacking PIGJ, but not those lacking PIGE,
957 exhibit increased virulence in primary and secondary infections, demonstrating the GPI
958 sidechain modulates parasite virulence by preventing lethality in its host. To elucidate
959 the mechanism for increased virulence of the PIGJ mutant we characterized a variety of
960 immune parameters and parasite burden following infection. Our findings indicate early
961 parasite burden in the peritoneal cavity, liver, and lung are similar, yet the PIGJ mutants
962 can evade clearance and establish higher cyst burdens in the brain. Cytokine
963 responses, antibody reactivity, opsonization, neutralization, and parasite surface
964 antigen expression were all similar between strains that express a GPI sidechain and

965 those that do not. We speculate that a breakdown of infectious tolerance occurs early
966 during infection when the parasite lacks a GPI sidechain. Whether enhanced tissue
967 damage results following infection with GPI sidechain null parasites, is unknown.

968 To further explore where the pathogenesis might take place, a subtle cell tropism
969 for BMDMs was observed in the peritoneal cavity 3 hrs after infection, and CD36
970 binding was found to be increased with CEP *Δpigj*. We also found that *Lgals3* -/- mice
971 were protected against primary infections with CEP *Δpigj*, indicating a fundamental role
972 of galectin-3 in the susceptibility of wildtype mice to CEP *Δpigj* infections. Galectin-3 is
973 one of the few known host factors that bind *T. gondii* GIPL (50), and recombinant
974 galectin-3 preferentially bound CEP *Δpigj* strains. Galectin-3 was previously shown to
975 be required for macrophage TNF α production in response to *T. gondii*, and it was
976 proposed that galectin-3 might act as a co-receptor that presents the GPI to TLR2 (50).
977 Our data of PIGJ infections in double knockout mice of *Tlr2/4* -/- indicated that TLR2/4
978 signaling was not involved in the virulence differences. It is likely there are other cellular
979 functions mediated by galectin-3 binding to GIPL that do not involve TLR2/4, however,
980 the exact mechanisms are unknown. Previous reports have shown that following *T.*
981 *gondii* infection, galectin-3 is upregulated in peripheral tissues during acute infection of
982 *T. gondii* and were susceptible to intraperitoneal infections with type II strains of *T.*
983 *gondii* (64). Interestingly, *Lgals3* -/- mice had higher Th1 responses with increased IL-
984 12p40 and IFNy detected in the sera, as well as from cultured splenocytes after
985 infection (64). It is possible the enhanced Th1 response underpins the resistance of
986 *Lgals3* -/- mice to type III strains but renders them susceptible to more virulent type II
987 strains. Regardless, further mechanistic insight is required to draw correlations between
988 galectin-3 and the GPI sidechain, and to place this interaction as central to the disease
989 outcome of PIGJ mutants.

990 Of further note on the CD36 pathway, it is possible that mice infected with *Δpigj*
991 strains are more able to phagocytose parasites via CD36, allowing for enhanced
992 infection and escape via the phagosome cellular-invasion route reported for less virulent
993 parasite strains (59). *Cd36* -/- susceptibility to *T. gondii* infections was suggested to
994 correlate with a breakdown in tissue homeostasis following infection (60). This was
995 revealed by monitoring serum indicators of tissue stress including GDF-15 and FGF21.
996 GDF-15 induces anorexia by binding to the GFRAL receptor expressed by neurons of
997 the hindbrain (65), while GFG21 is a hormone that controls energy homeostasis and
998 adiposity (66) and is often induced in multiple tissues by nutrient starvation and
999 endoplasmic reticulum stress (67). Given the PIGJ mutants appear normal with respect
1000 to parasite burden and the disease outcome is sex linked, we suspect the GPI sidechain
1001 promotes tissue homeostasis during infection by potentially controlling mechanisms of
1002 tolerance via CD36 interactions and/or other host pathways yet to be identified.

1003 In our initial approach to confirm the loss of the Glc and GalNAc sidechain
1004 additions, we utilized glycoform specific antibodies T3 3F12 and T5 4E10. While
1005 complete removal of the sidechain in the *Δpigj* mutants was clearly observed through
1006 western blotting, the removal of the glucose addition was not. The T5 4E10 antibody,
1007 though it is described to be specific for the GalNAc + Glc glycoform, has considerable
1008 cross-reactivity to the GalNAc only glycoform, as seen in previous studies utilizing it
1009 (17,29). The T3 3F12 antibody clone is an IgG3 isotype, and the T5 4E10 clone is an
1010 IgM isotype. It is interesting to note, B-1 cells preferentially produce antibodies of IgM

1011 and IgG3 isotypes. B-1 cells are responsible for natural self-reactive IgM antibodies
1012 and are known to contribute to T-independent response, most of which are against non-
1013 protein antigens (68). We originally looked into the GPI as a non-protein antigen after
1014 we found that B-1 cells are important for immunity to secondary infections of *T. gondii*
1015 (53). With respect to the IgM response, we did note that IgM recognition of GIPL was
1016 highly sensitive to the terminal glucose (**Fig 8**), as previously observed using chemically
1017 synthesized GPI and serum from latently infected humans (21). Whether the antibody
1018 response to GIPL is from B-1 cells is unknown. Regardless, the lack of antibody
1019 reactivity to GIPLs of the PIGE and PIGJ mutants, cannot account for why these strains
1020 differ in primary and secondary infection virulence.

1021 The analysis of the type I RH strain presents additional insights into the
1022 significance of the sidechain and its biosynthesis. Previous reports have indicated
1023 detection of RH GIPL and its sidechain (17). However, a recent report using mass
1024 spectrometry of RH GPI-AP revealed only the linear mannose core of GPI with no
1025 sidechain (36). A potential cause for this could be the lab adaptation of this strain. This
1026 strain was initially passaged in mice and then in tissue culture for over 60 years before
1027 ever being frozen down. Due to this, the RH strain has become lab adapted, and
1028 acquired some unique characteristics (45). For instance, RH has lost its ability to form
1029 orally infectious tissue cysts, grows much more rapidly than other strains, and has
1030 increased extracellular viability (69,70). We have discovered that the type I RH strain
1031 has lost its ability to evade immunological memory responses that are generated
1032 following vaccination or natural infection, which we demonstrated to occur with other
1033 type I strains like GT1 (43,53). It is likely that for whatever reason, RH has lost its
1034 expression of the GPI sidechain through this laboratory evolution. However, it was an
1035 initial report that the gene *Tg_207750* was almost 6 times more highly expressed in RH
1036 compared to GT1 that led us to investigate it as a GPI sidechain GT candidate (45).
1037 Overexpression may play a role in the loss of the sidechain, and a second possible
1038 explanation is the previously reported non-synonymous SNP that generates a L620R
1039 substitution uniquely in this strain relative to all other available sequences (**Fig 1B**) (not
1040 shown). This position is conserved as a hydrophobic core of this region of the enzyme
1041 that is involved in coordinating a PO₄ group of the UDP-GalNAc substrate. Whether this
1042 acquired mutation in RH is inactivating to PIGJ, which in turn leads this strain to
1043 compensate by overexpressing the gene is unknown. Interestingly, full deletion of the
1044 gene increased virulence in secondary infections, suggesting an additional role for PIGJ
1045 that might be mediated by other regions of the protein. It is possible that PIGJ, like most
1046 other enzymes in the GPI processing pathway (49), belongs to a multiprotein complex
1047 that depends in part on the presence of the PIGJ protein, and that its absence disturbs
1048 some other aspect of GPI anchor assembly such as selectivity or efficiency.

1049 In conclusion, this study identified and characterized both GPI sidechain
1050 modifying glycosyltransferases of *T. gondii*. In addition, for the first time in any microbe,
1051 the effects of the complete loss of the sidechain were studied for its role in
1052 pathogenicity. The results presented here indicate a fundamental role of the presence of
1053 the sidechain in host survival, and that when the sidechain of the GPI is lost, so is host
1054 resistance to *T. gondii*. Although most of the major surface antigens (SAGs) of *T. gondii*
1055 are GPI-anchored proteins and the GPI is known to be targeted by antibody responses
1056 in a variety of protozoan infections (19,26), our findings here would suggest that for *T.*

1057 *T. gondii* antigens, the sidechain presence does not impact antibody reactivity to GPI-
1058 anchored proteins. However, whatever other humoral functions are at play regarding
1059 host recognition of GPIL, they are wildly disrupted when the sidechain is lost. We
1060 suggest both a fundamental, and yet diverse role for the GPI sidechain in microbial
1061 pathogenesis. Based on our data, we propose a model in which enhanced CD36 and
1062 galectin-3 binding of PIGJ mutants lead to pathology, perhaps through differences in
1063 cellular tropism and unknown inflammatory mediators yet to be defined (**Fig S13**).
1064

1065 ACKNOWLEDGEMENTS

1066 Jean François-Dubremetz (U Montpellier) for the T5 4E10 ascites. Boris Striepen (U
1067 Penn) for technical support and guidance. John Boothroyd (Stanford) for the rabbit
1068 GRA7 polyclonal antibody. Gregory Barton (UC Berkeley) for the *Tlr2/4* -/- mice. Jeroen
1069 Saeij (UC Davis) for plasmids. Dave Gravano for assistance with flow cytometry (UC
1070 Merced, SCIF). The following monoclonal antibodies (produced *in vitro*) were obtained
1071 through BEI Resources, NIAID, NIH: Anti-*Toxoplasma gondii*
1072 Glycosylphosphatidylinositol Anchor, Clone T3 3F12, NR-50253; anti-*T. gondii* Surface
1073 Antigen 1, Clone T4 1E5, NR-50255, anti-*T. gondii* Surface Antigen 3, Clone T4 1F12,
1074 NR-50257, anti-*T. gondii* Surface Antigen P35, Clone T4 3F12, NR-50259. This work
1075 was supported by NIH grants 1R01 AI137126 and 1R21 AI176186 to KDCJ; 1R21
1076 AI123161 to CW; R21 AI171670 to GY. JP was supported by the supplement 3R01
1077 AI137126-04S1, and GC was supported by a UC LEADS fellowship.
1078

1079 FIGURE LEGENDS

1080 **Figure 1: Glycoform specific antibodies implicate *Tg_207750* as the GalNAc GPI 1081 sidechain modifying enzyme, PIGJ.**

1082 A) Schematic of the *T. gondii* GPI with known and putative glycosyltransferases
1083 involved in the GPI synthetic pathway. Transferases show their gene ID, gene name,
1084 transferase type, fitness score (the more negative the fitness score being more lethal to
1085 the parasite when inactivated) (4), and the linkage they form. The two novel
1086 glycosyltransferases identified and characterized in this study are labeled in color and
1087 named 'PIGJ' and 'PIGE' responsible for the GalNAc and Glc additions, respectively. B)
1088 Gene models for *Tg_207750* (PIGJ) and *Tg_266320* (PIGE) from ToxoDB were
1089 translated and subjected to BLASTp and other homology searches to predict the
1090 evolution and function of the proteins. Regions of predicted function are represented:
1091 TM transmembrane, putative stem region, DxD catalytic site, N-sequon potential
1092 glycosylation sites and a non-synonymous SNP at position 620 in PIGJ between GT1
1093 (L) and RH (R) type I strains. C) Representative western blots confirming the loss of the
1094 sidechain in $\Delta 207750$ mutants through sidechain specific antibody reactivity to the low
1095 molecular weight (<10 kDa) GPIL antigen (Clones: T3 3F12 binds to the GalNAc
1096 glycoform and T5 4E10 prefers the GalNAc + Glc glycoform of GPIL). GPIL from CEP
1097 and GT1 $\Delta 266320$ mutants are recognized by both glycoform-specific antibodies. GPIL
1098 from RH was not detected by T3 3F12 nor T5 4E10. Representative of 3-5 experiments.
1099

1100 **Figure 2: MALDI-TOF-MS analysis of GPI preparations from GPI-anchored 1101 proteins reveal the identities of PIGE and PIGJ as GPI sidechain 1102 glycosyltransferases.**

1103 Glycans isolated from GPI-anchored proteins from tachyzoite stage parasites were N-
1104 acetylated, permethylated, mixed with CHCA matrix and analyzed in reflectron and
1105 positive ion mode. The m/z range of 800-1700 is shown. Ions that correspond to singly
1106 charged (z=1) sodiated GPI glycans are labeled in green, with the observed
1107 monoisotopic m/z value (in dark red), and the predicted m/z values for the assignment
1108 (in black). As an example, the composition assignment for an ion possessing three
1109 hexoses (known to be mannoses), one HexNAc (known to be N-acetylglucosamine),
1110 and one hexitol (known to be inositol) is represented as H3N1Ino. Ions that correspond
1111 to Hex(n) oligomers are labeled in red. A) Parental GT1 strain. B) *Δpige*. C) *Δpigj*. D)
1112 Host cells (HFFs).

1113
1114 **Figure 3: nLC-MS analysis of GPI-anchor preparations confirm the GPI sidechain**
1115 **transferase activity of PIGJ and PIGE in *T. gondii*.**

1116 Isolated GPI permethylated glycans described in Figure 2 were reanalyzed by nLC
1117 separation on a C18 column and hyphenated analysis in an Orbitrap mass spectrometer
1118 in positive ion mode. The left column of panels shows base peak chromatograms (all
1119 ions m/z 500-2000) and extracted ion chromatograms (EIC) for each of the indicated
1120 targets (m/z ranges are specified in panels A and D). The ratio of ion intensities over the
1121 EIC m/z ranges shown for H3N1Ino, H3N2Ino, and H4N2Ino are shown relative to the
1122 most abundant ion. The most abundant ions are labeled in the base peak
1123 chromatogram. The right column of panels shows representative mass spectra of the
1124 two most abundant ions eluting with the target and used for quantitating relative levels.
1125 Levels of hexosamers were not quantitated. Observed m/z values are in dark red,
1126 expected values are in black, and the charge state is as indicated. A) Parental GT1
1127 strain. B) *Δpige*. C) *Δpigj*. D) Host cells (HFFs).

1128
1129 **Figure 4: Deletion of the GPI sidechain glycosyltransferase PIGJ but not PIGE**
1130 **results in increased parasite virulence.**

1131 A) C57BL/6J (B6) mice were given primary infections of 10^4 parasites (i.p.) of the
1132 indicated variants of the avirulent type III CEP *hxgprt*- *GFP:cLuc* strains. Cumulative
1133 survival from 2-4 experiments is plotted (mice; n = 20 CEP, 19 CEP *Δpigj*, n = 11 CEP
1134 *Δpige*). B) B6 mice given a primary infection with CEP *hxgprt*- and 35 days later (i.e.
1135 "chronically infected") were given a secondary infection with 5×10^4 parasites of the
1136 indicated variants of the type I RH strain and tracked for survival. Cumulative survival
1137 from 4 experiments is plotted (mice; n = 9 RH, n = 12 RH *Δpigj*, n = 6 RH *Δpige*). C) A/J
1138 mice were given primary infections of 10^4 parasites of either CEP or CEP *Δpigj* and
1139 monitored for survival for 30 days. Cumulative survival from 2 experiments is plotted
1140 (mice; n = 20 CEP, n = 20 CEP *Δpigj*). D) After A/J mice were given a primary infection
1141 with the avirulent type III strain CEP, 35 days later were given a secondary infection
1142 with 5×10^4 parasites of the indicated type I strains and tracked for survival. A single
1143 experiment was performed (mice; n = 5 RH, n = 3 RH *Δpigj*, n = 2 GT1, n = 5 GT1 *Δpigj*,
1144 n = 10 GT1 *Δpige*). For survival analysis, significance was determined by Log-rank
1145 (Mantel-Cox) test, **** p <0.001, *** p<0.01.

1146
1147 **Figure 5: Complementation of PIGJ into *Δpigj* partially restores avirulence of the**
1148 **type III CEP strain.**

1149 A) Western blot analysis using glycoform specific antibodies for the two GPI sidechains
1150 demonstrates GPIL reactivity is restored to the complementation strain. B)
1151 Fluorescence microscopy showing HA-tagged PIGJ localization in CEP Δ pigj +
1152 $PIGJ_{3XHA}$ parasites. The complementation strain expresses GFP, as all CEP GPI
1153 mutants were derived from a CEP *hxpprt-GFP:cLuc* parental strain. C) Mice were
1154 injected i.p. with 10^4 parasites of CEP, CEP Δ pigj, or CEP Δ pigj + $PIGJ$ strains and
1155 monitored for survival for 30 days. Weight loss after primary infection was normalized to
1156 the initial weight (=1), the average +/- SD of each cohort is shown. Cumulative results
1157 from 5 experiments are plotted (mice; n = 4 CEP, n = 14 CEP Δ pigj, n = 36 CEP Δ pigj +
1158 $PIGJ$). D) Brain cysts were numerated from survivors of the indicated. Each dot
1159 represents an individual mouse, and the cumulative average +SD from 2 experiments is
1160 plotted. Statistical significance for weight loss was calculated by one-way ANOVA with
1161 multiple comparisons and a Dunnett correction (D14 and D21 * p<0.05 CEP vs. CEP
1162 Δ pigj, D28 *** p<0.001 CEP vs. CEP Δ pigj). Statistical significance for brain cysts was
1163 calculated by a one-way ANOVA with multiple comparisons and a Tukey correction; *
1164 p<0.05, n.s. non-significant.

1165

1166 **Figure 6: Early parasite burden and cytokine responses are similar between PIGJ**
1167 **mutant and wildtype strains.**

1168 A) Day 3 and C) day 5 after infection with the indicated parasite strains, peritoneal
1169 cavity exudate cells and E) splenocytes were harvested and RNA isolated. cDNA was
1170 synthesized from RNA and qPCR was performed to measure gene expression levels,
1171 which were normalized to uninfected mouse levels (naive=1). Cumulative results from 2-
1172 5 experiments are plotted. Each dot is the result of an individual mouse. B) Day 3 and
1173 D) 5 after infection, DNA was isolated from the peritoneal exudate cells and qPCR was
1174 performed using the *Toxoplasma* specific B1 primers to measure parasite burden
1175 relative to the DNA in each sample. Cumulative results of 2-3 experiments is plotted,
1176 with each dot representing an individual mouse. F) 5 days after infection, spleen, liver,
1177 and lungs were harvested, DNA was isolated, and qPCR was performed using the
1178 *Toxoplasma* specific B1 primers to measure parasite burden between infections. Each
1179 dot represents the result of an individual mouse and cumulative results from 2
1180 experiments are plotted. Statistics were performed with an unpaired t-tests, for which no
1181 condition revealed a significant difference between CEP and CEP Δ pigj infections.

1182

1183 **Figure 7: Surface expression of GPI-anchored SAGs, antibody recognition and**
1184 **functions against PIGJ mutants are intact.**

1185 A) Parasite surface expression of p35, SAG3, and SAG1. Fixed parasites were
1186 incubated with primary antibodies against the respective surface antigen, and
1187 secondary fluorescent anti-isotype antibodies were used to measure via flow cytometry.
1188 Representative histograms of 4 different experiments shown. CEP and CEP Δ pigj (top
1189 row); RH and RH Δ pigj (bottom row). B) Fixed parasites were incubated with serum
1190 from CEP chronically infected C57BL/6J mice, and antibodies bound to parasites were
1191 detected with fluorescent anti-isotype antibodies. Representative histograms of 2-3
1192 experiments displaying parasite-specific antibody reactivity to the indicated CEP strains
1193 at 10^{-2} serum dilution (top row), or RH strains (bottom row). C) Parasites were incubated
1194 with 1% serum from CEP chronically infected C57BL/6J mice ("chronic serum") or naïve

1195 mice for 20 minutes before allowing to invade or be phagocytosed for 40 minutes.
1196 Opsonization was calculated as LAMP1+/ total LAMP1+ or GRA7+ for each parasite
1197 observed. Each dot represents the ratio obtained after counting 100 parasites by
1198 fluorescence microscopy for an individual serum, and samples were blinded. Plotted is
1199 the average ratio +SD; no serum controls were also assessed. D) Parasites were
1200 incubated with 10% chronic serum from C57BL/6J mice for 20 minutes before allowing
1201 to invade MEFs for 2 hours. MEFs were measured for GFP+ (CEP strains) or by
1202 intracellular staining with FITC-labeled parasite-specific antibodies (RH strains)
1203 indicating parasite invasion and normalized to infections in the absence of serum. Each
1204 dot represents the result from an individual serum. Statistics for opsonization was
1205 calculated with one-way ANOVA with Tukey correction and neutralization were
1206 calculated with unpaired t-tests; ns, non-significant
1207

1208 Figure 8: Sera IgM recognition of GIPL requires the terminal glucose.

1209 Parasite lysate was analyzed via western blot. Blots were probed with serum from CEP
1210 chronically infected A) C57BL/6J (B6) or B) A/J mice and anti-mouse IgM-HRP was
1211 used to detect IgM reactivity to parasite lysate antigens of the indicated genotypes. Red
1212 boxes and arrows indicate the region where the low molecular weight 4-5 kDa GIPL
1213 antigen migrates.
1214

**1215 Figure 9: Enhanced CD36 binding and slight macrophage tropism 3 hours after
1216 infection.**

1217 Mice (C57BL/6J) were injected i.p. with 10^6 parasites of either CEP, CEP *Δpigj* or CEP
1218 *Δpigj* + *PIGJ* and PECs were analyzed 3 hours later by flow cytometry. A) Gating
1219 strategy for B-G. B) Total GFP+ signal in the peritoneal exudate; GFP frequency of total
1220 events. C) GFP+ events were separated by size using FSC and SSC parameters to
1221 determine extracellular or “non cell associated” and intracellular or “cell associated”
1222 GFP+ parasites. D) Frequency PI+ cells of the indicated GFP+ category. E) Frequency
1223 of cell associated GFP+ events that were GR-1^{hi} Cd11b+ neutrophils. F) Frequency of
1224 cell associated GFP+ events that were MHCII^{hi} F4/80^{lo} bone marrow-derived
1225 macrophages (BMDM), or G) MHCII^{lo} F4/80^{hi} yolk sack-derived macrophages (YSM).
1226 Plotted is cumulative of 7 experiments, each dot represents a single mouse (mice; n =
12 wt, n = 12 *Δpigj*, n = 8 *Δpigj* + *PIGJ*). Statistics performed were one-way ANOVAs
1227 with multiple comparisons and a Tukey correction; none were significant, values are
1228 indicated. H) *In vitro* differentiated BMDMs were plated on coverslips overnight and
1229 infected with 100 and 300 of GFP+ parasites per well, and parasites were allowed 20
1230 minutes to invade cells before being fixed and stained for fluorescence microscopy. No
1231 permeabilization was used, and SAG1 staining was performed. Intracellular parasites
1232 were not stained with SAG1 but were GFP+, while extracellular parasites are
1233 SAG1+GFP+. The fraction of intracellular parasites is plotted, each dot is a
1234 representative of one experiment, n = 3 experiments. I) Parasites were incubated for 1
1235 hr with recombinant CD36-Fc and CD36 binding was measured with anti-human-IgG-
1236 Daylight-550 via flow cytometry. Representative histogram, and J) average +SD MFI of
1237 CD36 binding from 4 experiments is plotted.
1238

1239 Figure 10: CEP *Δpigj* virulence is galectin-3 dependent.

1241 A) *Tlr2/4* $^{-/-}$ mice were given primary infections of 10^4 parasites of CEP or CEP Δ *Apigj*
1242 and monitored for survival for 30 days. Plotted are cumulative results from 2
1243 experiments (mice; n = 5 CEP, n = 6 CEP Δ *Apigj*). B) *Lgals3* $^{-/-}$ mice were given primary
1244 infections of 10^4 parasites of CEP or CEP Δ *Apigj* and monitored for survival for 30 days.
1245 Plotted are the cumulative results from 4 experiments (mice; n = 15 CEP, n = 23 CEP
1246 Δ *Apigj*). C) Plotted is the average +/-SD fraction of initial weight for each cohort analyzed
1247 in B. D) Brain cysts were quantified from surviving mice in B. Shown are 2 experiments,
1248 (mice; n = 2 CEP, n = 5 CEP Δ *Apigj*). For survival analysis, significance was determined
1249 by Log-rank (Mantel-Cox) test, * p <0.05. For weight loss, significance was determined
1250 by one-way ANOVA test, * p <0.05. For brain cysts unpaired t-tests were performed, ns
1251 = non-significant. E) Whole parasites were incubated with 10 ug/mL of recombinant
1252 mouse galectin-3 and galectin-3 binding was detected with anti-Gal-3-PE by flow
1253 cytometry. Representative histogram of galectin-3 binding; N-1 control is the staining in
1254 the absence of galectin-3. F) MFIs of galectin-3 parasite binding from 9 experiments are
1255 plotted. MFI values are connected by experiment and statistical analysis was performed
1256 with a paired, one-tailed t-test. Normalized MFIs values (CEP=1) are also plotted, and
1257 statistical analysis was performed with an unpaired, one-tailed t-test; * p < 0.05.
1258

1259 **SUPPLEMENTAL FIGURE LEGENDS**

1260 **Figure S1. GPI sidechains differ between eukaryotic species.**

1261 Schematic of the diversity of GPI sidechains between species (*T. gondii*, *P. falciparum*,
1262 *T. brucei* procyclic stage, *H. sapiens*). Note the conserved mannose backbone with
1263 species variability of sidechain modifications. Not all GPI glycoforms for each species
1264 are represented.

1265 **Figure S2: Approach and PCR confirmation of *Tg_207750* disruption.**

1266 Schematic of the CRISPR Cas9 targeted disruption of the *Tg_207750* (*PIGJ*) locus and
1267 insertion of the selectable marker *HXGPRT* in A, or *DHFR-TS* in B. C-E) PCR
1268 confirmation of disruption of the targeted locus and insertion of the selectable marker
1269 within the cut site using the primers indicated in panels A or B.

1270 **Figure S3: Approach and PCR confirmation of *Tg_266320* disruption.**

1271 Schematic of the CRISPR Cas9 targeted disruption of the *TGGT1_266320* (*PIGE*) locus
1272 and insertion of the selectable marker *HXGPRT* in A, or *DHFR-TS* in B. C-D) PCR
1273 confirmation of disruption of the target locus and insertion of the selectable marker
1274 within the cut site using primers in A or B. In the case of CEP Δ 266320, the *HXGPRT*
1275 selectable marker inserted into the Cas9 cut site in exon one in reverse orientation, but
1276 not the second site in exon 3. In the case of GT1 Δ 266320, the *DHFR-TS* selectable
1277 marker inserted in reverse orientation in the Cas9 cut site in exon 1, while the cut site in
1278 exon 3 was repaired with a concatemerized DHFR-TS as proposed based upon the
1279 diagnostic PCR.

1280 **Figure S4: Decreased T3 3F12 and T5 4E10 recognition of GT1 Δ *Apigj* mutants by 1281 flow cytometry.**

1282 A) Fixed parasites of the indicated type I GT1 and RH parasite strains were stained with
1283 GPIL glycoform specific antibodies T3 3F12 (mouse IgG3) and T5 4E10 (mouse IgM).

1287 Secondary fluorescent anti-isotype antibodies were used to detect T3 3F12 and T5
1288 4E10 binding. SAG3 positive parasites were analyzed to distinguish parasites from
1289 debris. Data is representative of 3-8 experiments. B) Representative histograms from
1290 the flow cytometry analysis comparing the parental with the mutant strains of the data
1291 shown in A. In addition, a no staining control is plotted for comparison (grey histogram).
1292

1293 Figure S5. Fragmentation analysis of GPI-anchor glycans.

1294 Isolated primary GPI ions were selected in MS(1) as described in Figure 3 and
1295 subjected to collision-based MS(2) fragmentation during the nLC-MS run. Residual
1296 parent ions are labeled at the high m/z end, and decomposition products at lower m/z
1297 values. Green arrows trace sequential fragmentation pathways. A) H4N2 glycan from
1298 strain GT1. B) H3N2 glycan from GT1 Δ pige. C) H3N1 from GT1- Δ pigi.
1299

**1300 Figure S6: MALDI-TOF-MS analysis of GPIL preparations is consistent with PIGE
1301 and PIGJ as being the GPI sidechain glycosyl transferases in *T. gondii*.**

1302 Glycans isolated from GPIL samples from tachyzoite stage parasites were N-acetylated
1303 and permethylated, and mixed with DHB matrix and analyzed as in Figure 2. A) Parental GT1 strain. The inset shows a sample prepared in CHCA rather than DHB
1304 matrix. See text for the basis of assignment of ions that differ by a m/z defect of -36. B)
1305 Δ pige. C) Δ pigi. D) Host cells (HFFs).
1306

**1307 Figure S7: nLC-MS analysis of GPIL preparations is consistent with PIGE and
1308 PIGJ as being the GPI sidechain glycosyl transferases in *T. gondii*.**

1309 Isolated GPIL fractions described in Figure S6 were reanalyzed by nLC separation on a
1310 C18 column and hyphenated analysis in an Orbitrap mass spectrometer in positive ion
1311 mode. The left-hand column of panels shows base peak chromatograms (all ions m/z
1312 500-2000) and extracted ion chromatograms (EIC) for each of the indicated targets (m/z
1313 ranges given in panels A and D). The ratio of ion intensities over the EIC m/z ranges
1314 shown for H3N1Ino, H3N2Ino, and H4N2Ino are shown relative to the most abundant
1315 ion. The most abundant ions are labeled in the base peak chromatogram. The right-
1316 hand column of panels shows representative mass spectra of the one or two most
1317 abundant ions eluting with the target and used for quantitating relative levels. Levels of
1318 hexosamers were not quantitated. Observed m/z values are in dark red, expected
1319 values are in black, and the charge state is as indicated. A) Parental GT1 strain. B)
1320 Δ pige. C) Δ pigi. D) Host cells (HFFs).
1321

**1322 Figure S8: C57BL/6J mice succumb to secondary infections with the type I GT1
1323 GPI sidechain mutants similarly to the parental GT1 strain.**

1324 C57BL/6J (B6) mice given a primary infection with the avirulent type III strain CEP, 35
1325 days later were given a secondary infection with 5×10^5 parasites of the type I strain
1326 GT1, GT1 Δ pigi or GT1 Δ pige strains and tracked for survival. Plotted is the result from
1327 one experiment (mice; n = 3 wt GT1, n=5 GT1 Δ pigi, n=1 GT1 Δ pige).
1328

1329 Figure S9: PIGJ mutants have no apparent fitness defects *in vitro*.

1330 A) HFF cells in 24 well plates were infected with either CEP, CEP Δ pigi, or CEP Δ pigi +
1331 PIGJ and allowed to grow for 5 days. On day 5 plaque sizes were measured and
1332

1333 plotted. Cumulative data from 4 experiments is shown, each dot represents a single
1334 plaque area.

1335 B) MEFs were infected for 16 hours before being fixed and stained for GRA7 to mark
1336 the PV. Parasites per vacuole were quantified, counting 100 vacuoles per experiment,
1337 and fractions are plotted for each experiment. Cumulative data from 4 experiments is
1338 plotted, each dot is fraction obtained from an individual experiment. C) HFFs were
1339 infected with 200 parasites per well and allowed various timepoints to attach before
1340 being washed extensively and cultured for 5 days before quantifying plaque numbers,
1341 which were normalized to the plaque counts from wells that were not washed (=1).
1342 Cumulative average +/-SD from 4 experiments is plotted. For panels A-B, statistics
1343 performed were one-way ANOVAs with multiple comparisons, and a Holm-Sidak's
1344 correction; **** p < 0.0001 (GFP vs KO), *** p < 0.001 (GFP vs C2); ns, not significant.
1345 For panel C, t-tests yielded non-significant values.

1346
1347 **Figure S10: Parasite burden is similar between wildtype and PIGJ mutant strains**
1348 **in peritoneal exudate cells as assessed by flow cytometry.**

1349 3 and 5 days after infection with the indicated GFP expressing parasite strains,
1350 peritoneal cavity exudate cells (PerC) were harvested and PI negative cells were
1351 analyzed by flow cytometry. Average frequency (+SD) of infected GFP+ PerC among
1352 total PI- cells is shown for each infection. Cumulative results from 2-3 experiments is
1353 plotted, with each dot representing an individual mouse. Statistics were performed with
1354 an unpaired t-test and values indicated, no condition revealed a significant difference
1355 between CEP and CEP *Δpigj* infections.

1356
1357 **Figure S11: Complement C3b binding is unimpaired to PIGJ mutants.**

1358 Live parasites were incubated with serum from naïve mice and C3b binding was
1359 measured with anti-C3b-APC. A) Representative histogram from 4 experiments each
1360 with different naïve serums is shown. Staining controls include use of heat inactivated
1361 serum and N-1, which is the staining in the absence of serum. C) Average +/-SD MFI of
1362 C3b binding, each dot is the value of a different serum.

1363
1364 **Figure S12: Male C57BL/6J mice are protected against *Δpigj* primary and**
1365 **secondary infections.**

1366 A-B) Male C57BL/6J (B6) mice were given primary infections i.p. with 10^4 parasites of
1367 either CEP or CEP *Δpigj* and monitored for survival in A, and weight loss in B, for 30
1368 days. Cumulative results from 2 experiments are plotted (mice; n = 6 wt, n = 8 *Δpigj*). C-
1369 D) Male B6 mice were first given a primary infection of 10^4 CEP parasites, and after 35
1370 days were given a challenge infection of either RH or RH *Δpigj* and monitored for
1371 survival in C, and weight loss in D. Cumulative results from 2 experiments are plotted
1372 (mice; n = 2 wt, n = 4 *Δpigj*). For survival analyses, significance was determined by Log-
1373 rank (Mantel-Cox) test, and for weight loss, significance was determined by a one-way
1374 ANOVA test with multiple comparisons with Dunnett correction, none of which were
1375 found significant.

1376
1377 **Figure S13: Working model of *Δpigj* pathogenicity.**

1378 With the loss of sidechain in *Δpigj* mutants we have found an increase in CD36 binding,
1379 an increase in BMDM tropism, and an increase in galectin-3 binding. We hypothesize
1380 that there are other inflammatory signals possibly leading to tissue damage that
1381 ultimately are responsible for the death of the hosts, and the cause for increased
1382 pathogenicity in sidechain-null mutants.

1383

1384 **SUPPLEMENTAL TABLE LEGEND**

1385 **Table S1. Parasite strains, oligos and plasmids.**

1386 Parasite strains, oligos and plasmids used in this study are described and their origins
1387 indicated.

1388

1389

1390 **REFERENCES**

1. Ferguson MAJ, Homans SW, Dwek RA, Rademacher TW. Glycosyl-phosphatidylinositol moiety that anchors *Trypanosoma brucei* variant surface glycoprotein to the membrane. *Science* (80-). 1988;239(4841):753–9.
2. Nosjean O, Briolay A, Roux B. Mammalian GPI proteins: sorting, membrane residence and functions. *Biochim Biophys Acta - Rev Biomembr.* 1997;1331(2):153–86.
3. Paing MM, Tolia NH. Multimeric Assembly of Host-Pathogen Adhesion Complexes Involved in Apicomplexan Invasion. *PLoS Pathog.* 2014;10(6).
4. Sidik SM, Huet D, Ganesan SM, Huynh MH, Wang T, Nasamu AS, et al. A Genome-wide CRISPR Screen in *Toxoplasma* Identifies Essential Apicomplexan Genes. *Cell.* 2016;166(6):1423–1435.e12.
5. Basagoudanavar SH, Feng X, Krishnegowda G, Muthusamy A, Gowda DC. *Plasmodium falciparum* GPI mannosyltransferase-III has novel signature sequence and is functional. *Biochem Biophys Res Commun.* 2007;364(4):748–54.
6. Wasmuth JD, Pszenny V, Haile S, Jansen EM, Gast AT, Sher A, et al. Integrated bioinformatic and targeted deletion analyses of the SRS gene superfamily identify SRS29C as a negative regulator of *toxoplasma* virulence. *MBio.* 2012;3(6).
7. Lekutis C, Ferguson DJP, Grigg ME, Camps M, Boothroyd JC. Surface antigens of *Toxoplasma gondii*: Variations on a theme. *Int J Parasitol.* 2001;31(12):1285–92.
8. Manger ID, Hehl AB, Boothroyd JC. The surface of *Toxoplasma tachyzoites* is dominated by a family of glycosylphosphatidylinositol-anchored antigens related to SAG1. *Infect Immun.* 1998;66(5):2237–44.
9. Rachinel N, Buzoni-Gatel D, Dutta C, Mennechet FJD, Luangsay S, Minns LA, et al. The Induction of Acute Ileitis by a Single Microbial Antigen of *Toxoplasma gondii*. *J Immunol.* 2004;173(4):2725–35.
10. Tachibana Y, Hashizaki E, Sasai M, Yamamoto M. Host genetics highlights IFN- γ -dependent *Toxoplasma* genes encoding secreted and non-secreted virulence factors in *in vivo* CRISPR screens. *Cell Rep.* 2023;42(6):112592.
11. Krishnamurthy S, Maru P, Wang Y, Bitew MA, Mukhopadhyay D, Yamaryo-botté Y. RESEARCH ARTICLE CRISPR Screens Identify *Toxoplasma* Genes That Determine. 2023;(March):1–20.
12. Hamie M, Tawil N, El Hajj R, Najm R, Moodad S, Hleihel R, et al. P18 (SRS35/TgSAG4) Plays a Role in the Invasion and Virulence of *Toxoplasma gondii*. *Front Immunol.* 2021;12(June):1–16.
13. Campos MAS, Almeida IC, Takeuchi O, Akira S, Valente EP, Procópio DO, et al. Activation of Toll-Like Receptor-2 by Glycosylphosphatidylinositol Anchors from a Protozoan Parasite. *J Immunol.* 2001;167(1):416–23.
14. Krishnegowda G, Hajjar AM, Zhu J, Douglass EJ, Uematsu S, Akira S, et al. Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositol of *Plasmodium falciparum*: Cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. *J Biol Chem.* 2005;280(9):8606–16.
15. Schofield L, Hewitt MC, Evans K, Slomos MA, Seeberger PH. Synthetic GPI as a

1436 candidate anti-toxic vaccine in a model of malaria. *Nature*. 2002;418(6899):785–
1437 9.

1438 16. Debierre-Grockiego F, Campos MA, Azzouz N, Schmidt J, Bieker U, Resende
1439 MG, et al. Activation of TLR2 and TLR4 by glycosylphosphatidylinositols derived
1440 from *Toxoplasma gondii*. *J Immunol*. 2007;179(2):1129–37.

1441 17. Striepen B, Zinecker CF, Damm JBL, Melgers PAT, Gerwig GJ, Koolen M, et al.
1442 Molecular structure of the “low molecular weight antigen” of *Toxoplasma gondii*: A
1443 glucose α1-4 N-acetylgalactosamine makes free glycosyl-phosphatidylinositols
1444 highly immunogenic. *J Mol Biol*. 1997;266(4):797–813.

1445 18. Tomavo S, Couvreur G, Leriche MA, Sadak A, Achbarou A, Fortier B, et al.
1446 Immunolocalization and characterization of the low molecular weight antigen (4-5
1447 kDa) of *Toxoplasma gondii* that elicits an early IgM response upon primary
1448 infection. *Parasitology*. 1994;108(2):139–45.

1449 19. Naik RS, Branch OH, Woods AS, Vijaykumar M, Perkins DJ, Nahlen BL, et al.
1450 Glycosylphosphatidylinositol Anchors of *Plasmodium falciparum*. *J Exp Med*.
1451 2000;192(11):1563–76.

1452 20. Giraldo M, Cannizzaro H, Ferguson MAJ, Almeida IC, Gazzinelli RT. Fractionation
1453 of membrane components from tachyzoite forms of *Toxoplasma gondii*:
1454 Differential recognition by immunoglobulin M (IgM) and IgG present in sera from
1455 patients with acute or chronic toxoplasmosis. *J Clin Microbiol*. 2000;38(4):1453–
1456 60.

1457 21. Götze S, Azzouz N, Tsai YH, Groß U, Reinhardt A, Anish C, et al. Diagnosis of
1458 toxoplasmosis using a synthetic glycosylphosphatidyl-inositol glycan. *Angew
1459 Chemie - Int Ed*. 2014;53(50):13701–5.

1460 22. Naik RS, Krishnegowda G, Ockenhouse CF, Gowda DC. Naturally elicited
1461 antibodies to glycosylphosphatidylinositols (GPIs) of *Plasmodium falciparum*
1462 require intact GPI structures for binding and are directed primarily against the
1463 conserved glycan moiety. *Infect Immun*. 2006;74(2):1412–5.

1464 23. Gilson PR, Nebl T, Vukcevic D, Moritz RL, Sargeant T, Speed TP, et al.
1465 Identification and stoichiometry of glycosylphosphatidylinositol-anchored
1466 membrane proteins of the human malaria parasite *Plasmodium falciparum*. *Mol
1467 Cell Proteomics*. 2006;5(7):1286–99.

1468 24. França CT, Li Wai Suen CSN, Carmagnac A, Lin E, Kiniboro B, Siba P, et al. IgG
1469 antibodies to synthetic GPI are biomarkers of immune-status to both *Plasmodium
1470 falciparum* and *Plasmodium vivax* malaria in young children. *Malar J*.
1471 2017;16(1):1–10.

1472 25. Sharma SD, Mullenax J, Araujo FG, Erlich HA, Remington JS. Western Blot
1473 analysis of the antigens of *Toxoplasma gondii* recognized by human IgM and IgG
1474 antibodies. *J Immunol*. 1983;131(2):977–83.

1475 26. Ropert C, Gazzinelli RT. Signaling of immune system cells by
1476 glycosylphosphatidylinositol (GPI) anchor and related structures derived from
1477 parasitic protozoa. *Curr Opin Microbiol*. 2000;3(4):395–403.

1478 27. Debierre-Grockiego F, Schwarz RT. Immunological reactions in response to
1479 apicomplexan glycosylphosphatidylinositols. *Glycobiology*. 2010 Jul 1;20(7):801–
1480 11.

1481 28. Ferguson MAJ. The structure, biosynthesis and functions of

1482 glycosylphosphatidylinositol anchors, and the contributions of trypanosome
1483 research. *J Cell Sci.* 1999;112(17):2799–809.

1484 29. Hirata T, Mishra SK, Nakamura S, Saito K, Motooka D, Takada Y, et al.
1485 Identification of a Golgi GPI-N-acetylgalactosamine transferase with tandem
1486 transmembrane regions in the catalytic domain. *Nat Commun.* 2018;9(1).

1487 30. Hirata T, Kobayashi A, Furuse T, Yamada I, Tamura M, Tomita H, et al. Loss of
1488 the N-acetylgalactosamine side chain of the GPI-anchor impairs bone formation
1489 and brain functions and accelerates the prion disease pathology. *J Biol Chem.*
1490 2022;298(3):101720.

1491 31. Grimme SJ, Colussi PA, Taron CH, Orlean P. Deficiencies in the essential Smp3
1492 mannosyl-transferase block glycosylphosphatidylinositol assembly and lead to
1493 defects in growth and cell wall biogenesis in *Candida albicans*. *Microbiology*.
1494 2004;150(10):3115–28.

1495 32. Cortes LK, Scarcelli JJ, Taron CH. Complementation of essential yeast GPI
1496 mannosyltransferase mutations suggests a novel specificity for certain
1497 *Trypanosoma* and *Plasmodium* pigB proteins. *PLoS One.* 2014;9(1):1–9.

1498 33. Izquierdo L, Nakanishi M, Mehlert A, Machray G, Barton GJ, Ferguson MAJ.
1499 Identification of a glycosylphosphatidylinositol anchor-modifying β 1-3 N-
1500 acetylglucosaminy transferase in *Trypanosoma brucei*. *Mol Microbiol*.
1501 2009;71(2):478–91.

1502 34. Izquierdo L, Acosta-Serrano A, Mehlert A, Ferguson MA. Identification of a
1503 glycosylphosphatidylinositol anchor-modifying β 1-3 galactosyltransferase in
1504 *Trypanosoma brucei*. *Glycobiology*. 2015;25(4):438–47.

1505 35. Duncan SM, Nagar R, Damerow M, Yashunsky D V., Buzzi B, Nikolaev A V., et
1506 al. A *Trypanosoma brucei* β 3 glycosyltransferase superfamily gene encodes a β 1-
1507 6 GlcNAc-transferase mediating N-glycan and GPI anchor modification. *J Biol
1508 Chem.* 2021;297(4):14–6.

1509 36. Gas-Pascual E, Ichikawa HT, Sheikh MO, Serji MI, Deng B, Mandalasi M, et al.
1510 CRISPR/Cas9 and glycomics tools for *Toxoplasma* glycobiology. *J Biol Chem.*
1511 2019;294(4):1104–25.

1512 37. Kongsomboonvech AK, Rodriguez F, Diep AL, Justice BM, Castallanos BE,
1513 Camejo A, et al. Naïve CD8 T cell IFNy responses to a vacuolar antigen are
1514 regulated by an inflammasome-independent NLRP3 pathway and *Toxoplasma*
1515 *gondii* ROP5. Vol. 16, *PLoS Pathogens*. 2020. 1–35 p.

1516 38. Mukhopadhyay D, Arranz-Solís D, Saeij JPJ. Influence of the Host and Parasite
1517 Strain on the Immune Response During *Toxoplasma* Infection. *Front Cell Infect
1518 Microbiol.* 2020;10(October).

1519 39. Howe DK, Sibley LD. *Toxoplasma gondii* Comprises Three Clonal Lineages :
1520 Correlation of Parasite Genotype with Human Disease. *J Infect Dis.*
1521 1995;172(6):1561–6.

1522 40. Pfefferkorn ER and LCP. *Toxoplasma gondii*: Isolation and Preliminary
1523 Characterization of Temperature-Sensitive Mutants. *Experim.*
1524 1976;376(39):365–76.

1525 41. Sibley LD, Boothroyd JC. Virulent strains of *Toxoplasma gondii* comprise a single
1526 clonal lineage. *Nature*. 1992;359(6390):82–5.

1527 42. Gigley JP, Bhadra R, Khan IA. CD8 T cells and toxoplasma gondii: A new

1528 paradigm. *J Parasitol Res.* 2011;2011.

1529 43. Jensen KDC, Grotzbreg GM, Frickel E-M, Julien L, Cordeiro C, Camejo A, et al.

1530 Toxoplasma gondii Superinfection and Virulence during Secondary Infection

1531 Correlate with the Exact ROP5/ROP18 Allelic Combination. *MBio.* 2015;6(2):1–

1532 15.

1533 44. Split SD, Souza SP, Valentine KM, Castellanos BE, Curd AB, Hoyer KK, et al.

1534 PD-L1, TIM-3, and CTLA-4 Blockade Fails To Promote Resistance to Secondary

1535 Infection with Virulent Strains of Toxoplasma gondii . *Infect Immun.* 2018;86(9):1–

1536 16.

1537 45. Yang N, Farrell A, Niedelman W, Melo M, Lu D, Julien L, et al. Genetic basis for

1538 phenotypic differences between different Toxoplasma gondii type I strains. *BMC*

1539 *Genomics* [Internet]. 2013;14(1):1. Available from: *BMC Genomics*

1540 46. Hallgren J, Tsirigos KD, Damgaard Pedersen M, Juan J, Armenteros A, Marcatili

1541 P, et al. DeepTMHMM predicts alpha and beta transmembrane proteins using

1542 deep neural networks. *bioRxiv* [Internet]. 2022;2022.04.08.487609. Available

1543 from:

1544 <https://www.biorxiv.org/content/10.1101/2022.04.08.487609v1%0Ahttps://www.bi>

1545 orxiv.org/content/10.1101/2022.04.08.487609v1.abstract

1546 47. Keusch JJ, Manzella SM, Nyame KA, Cummings RD, Baenziger JU. Cloning of

1547 GB3 synthase, the key enzyme in globo-series glycosphingolipid synthesis,

1548 predicts a family of α 1,4-glycosyltransferases conserved in plants, insects, and

1549 mammals. *J Biol Chem.* 2000;275(33):25315–21.

1550 48. Striepen B, Dubremetz JF, Schwarz RT. Glucosylation of

1551 glycosylphosphatidylinositol membrane anchors: Identification of uridine

1552 diphosphate-glucose as the direct donor for side chain modification in toxoplasma

1553 gondii using carbohydrate analogues. *Biochemistry.* 1999;38(5):1478–87.

1554 49. Komath S, Fujita M, Hart G. *Essentials of Glycobiology*. In: 4th ed. Cold Spring

1555 Harbor (NY): Cold Spring Harbor Laboratory Press; 2022.

1556 50. Debierre-Grockiego F, Niehus S, Coddeville B, Elass E, Poirier F, Weingart R, et

1557 al. Binding of Toxoplasma gondii glycosylphosphatidylinositols to galectin-3 is

1558 required for their recognition by macrophages. *J Biol Chem.* 2010;285(43):32744–

1559 50.

1560 51. Minot S, Melo MB, Li F, Lu D, Niedelman W, Levine SS, et al. Admixture and

1561 recombination among Toxoplasma gondii lineages explain global genome

1562 diversity. *Proc Natl Acad Sci U S A.* 2012;109(33):13458–63.

1563 52. McLeod R, Eisenhauer P, Mack D, Brown C, Filice G, Spitalny G. Immune

1564 responses associated with early survival after peroral infection with Toxoplasma

1565 gondii. *J Immunol.* 1989;142(9):3247–55.

1566 53. Souza SP, Split SD, Sanchez-Arcila JC, Alvarez JA, Wilson JN, Wizzard S, et al.

1567 Genetic mapping reveals Nfkbid as a central regulator of humoral immunity to

1568 Toxoplasma gondii. Vol. 17, *PLoS Pathogens.* 2021. 1–33 p.

1569 54. Huynh M-H, Carruthers VB. Tagging of Endogenous Genes in a Toxoplasma

1570 gondii Strain Lacking Ku80 . *Eukaryot Cell.* 2009;8(4):530–9.

1571 55. Matta SK, Olias P, Huang Z, Wang Q, Park E, Yokoyama WM, et al. Toxoplasma

1572 gondii effector TgIST blocks type I interferon signaling to promote infection. *Proc*

1573 *Natl Acad Sci U S A.* 2019;116(35):17480–91.

1574 56. Bate C, Nolan W, Williams A. Sialic acid on the glycosylphosphatidylinositol
1575 anchor regulates PrP-mediated cell signaling and prion formation. *J Biol Chem.*
1576 2016;291(1):160–70.

1577 57. Banerjee P, Silva DV, Lipowsky R, Santer M. The importance of side branches of
1578 glycosylphosphatidylinositol anchors: a molecular dynamics perspective.
1579 *Glycobiology.* 2022;32(11):933–48.

1580 58. Sikorski PM, Commodaro AG, Grigg ME. *Toxoplasma gondii* Recruits Factor H
1581 and C4b-Binding Protein to Mediate Resistance to Serum Killing and Promote
1582 Parasite Persistence in vivo. *Front Immunol.* 2020;10(January):1–16.

1583 59. Zhao Y, Marple AH, Ferguson DJP, Bzik DJ, Yap GS. Avirulent strains of
1584 *Toxoplasma gondii* infect macrophages by active invasion from the phagosome.
1585 *Proc Natl Acad Sci U S A.* 2014;111(17):6437–42.

1586 60. Zhao Y, Reyes J, Rovira-Diaz E, Fox BA, Bzik DJ, Yap GS. Cutting Edge: CD36
1587 Mediates Phagocyte Tropism and Avirulence of *Toxoplasma gondii*. *J Immunol.*
1588 2021;207(6):1507–12.

1589 61. Silverstein RL, Febbraio M. CD36, a Scavenger Receptor Involved in Immunity,
1590 Metabolism, Angiogenesis, and Behavior. *Sci Signal.* 2010;2(72):1–16.

1591 62. Klein SL, Flanagan KL. Sex differences in immune responses. *Nat Rev Immunol.*
1592 2016;16(10):626–38.

1593 63. Roberts CW, Cruickshank SM, Alexander J. Sex-determined resistance to
1594 *Toxoplasma gondii* is associated with temporal differences in cytokine production.
1595 *Infect Immun.* 1995;63(7):2549–55.

1596 64. Bernardes ES, Silva NM, Ruas LP, Mineo JR, Loyola AM, Hsu DK, et al.
1597 *Toxoplasma gondii* infection reveals a novel regulatory role for galectin-3 in the
1598 interface of innate and adaptive immunity. *Am J Pathol.* 2006;168(6):1910–20.

1599 65. Hsu JY, Crawley S, Chen M, Ayupova DA, Lindhout DA, Higbee J, et al. Non-
1600 homeostatic body weight regulation through a brainstem-restricted receptor for
1601 GDF15. *Nature.* 2017;550(7675):255–9.

1602 66. BonDurant LD, Ameka M, Naber MC, Markan KR, Idiga SO, Acevedo MR, et al.
1603 FGF21 Regulates Metabolism Through Adipose-Dependent and -Independent
1604 Mechanisms. *Cell Metab.* 2017;25(4):935–944.e4.

1605 67. Tezze C, Romanello V, Sandri M. FGF21 as modulator of metabolism in health
1606 and disease. *Front Physiol.* 2019;10(MAR):1–9.

1607 68. Baumgarth N. A Hard(y) Look at B-1 Cell Development and Function. *J Immunol.*
1608 2017;199(10).

1609 69. Villard O, Candolfi E, Ferguson DJP, Marcellin L, Kien T. Loss of oral infectivity of
1610 tissue cysts of *Toxoplasma gondii* RH strain to outbred Swiss Webster mice. *Int J*
1611 *Parasitol.* 1997;27(12):1555–9.

1612 70. Khan A, Behnke MS, Dunay IR, White MW, David Sibley L. Phenotypic and gene
1613 expression changes among clonal type i strains of toxoplasma gondit. *Eukaryot*
1614 *Cell.* 2009;8(12):1828–36.

1615

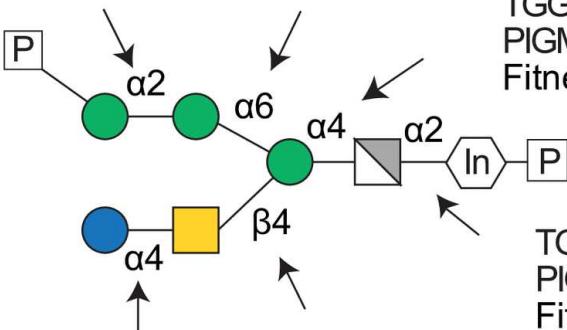
1616

1617

CC-BY-NC-ND 4.0 International license. <https://creativecommons.org/licenses/by-nd/4.0/>. The use, distribution or reproduction in other forms is prohibited.

© 2005 BY KODAK. NO INTERNATIONAL LICENSE.

TGGT1_321660
PIGB; DPM α 2ManT
Fitness -3.27


TGGT1_270220
PIGV; DPM α 6ManT
Fitness -3.05

TGGT1_310100
PIGM; DPM α 4ManT
Fitness -4.66

TGGT1_266320
PIGE; α 4GlcT
Fitness -0.99

TGGT1_207750
PIGJ; β 4GalNAcT
Fitness -0.47

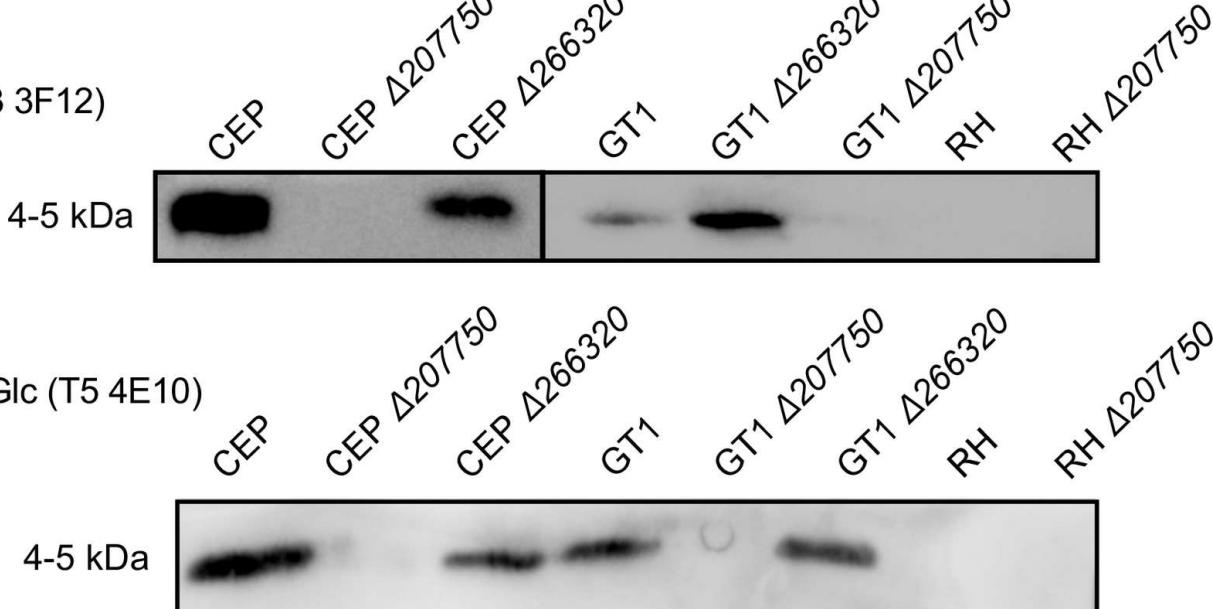
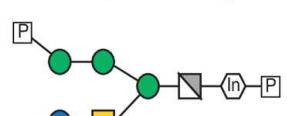
TGGT1_241860
PIGA; PI α 6GlcNAcT
Fitness -5.14

- Phosphate
- Inositol
- Glucosamine
- Mannose
- GalNAc
- Glucose

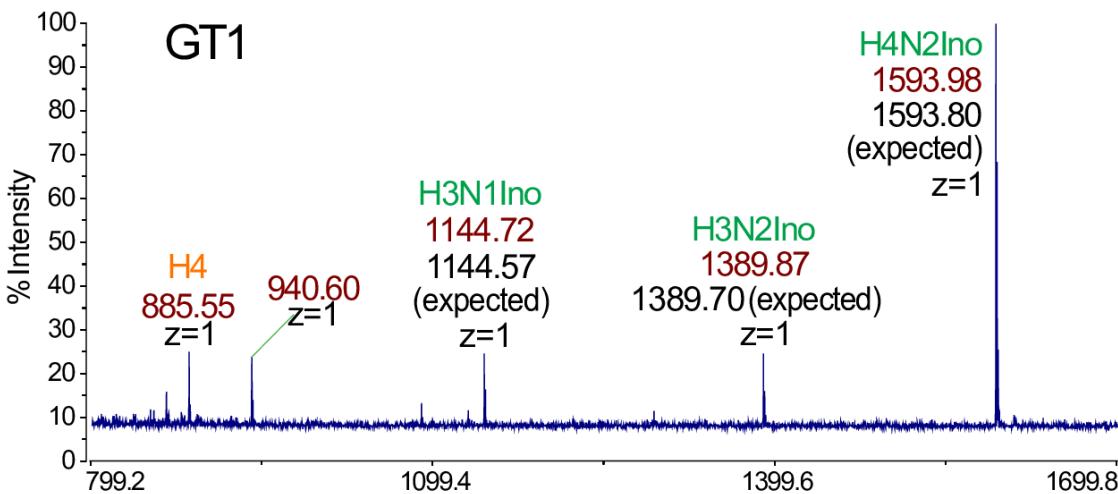
B

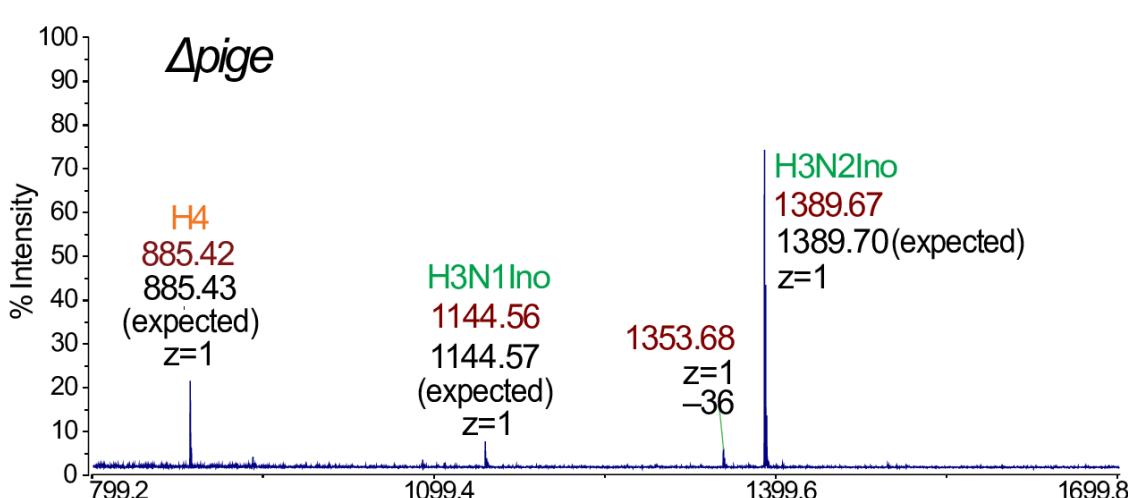
TGGT1_207750 PIGJ Uniprot S8FC68 851 aa

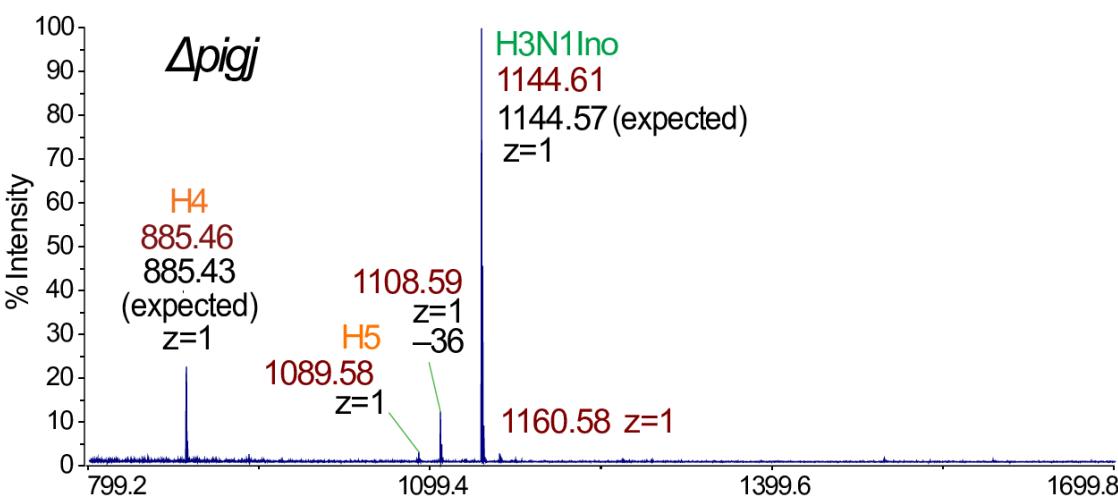
TGGT1_266320 PIGE Uniprot S7VW57 1097 aa

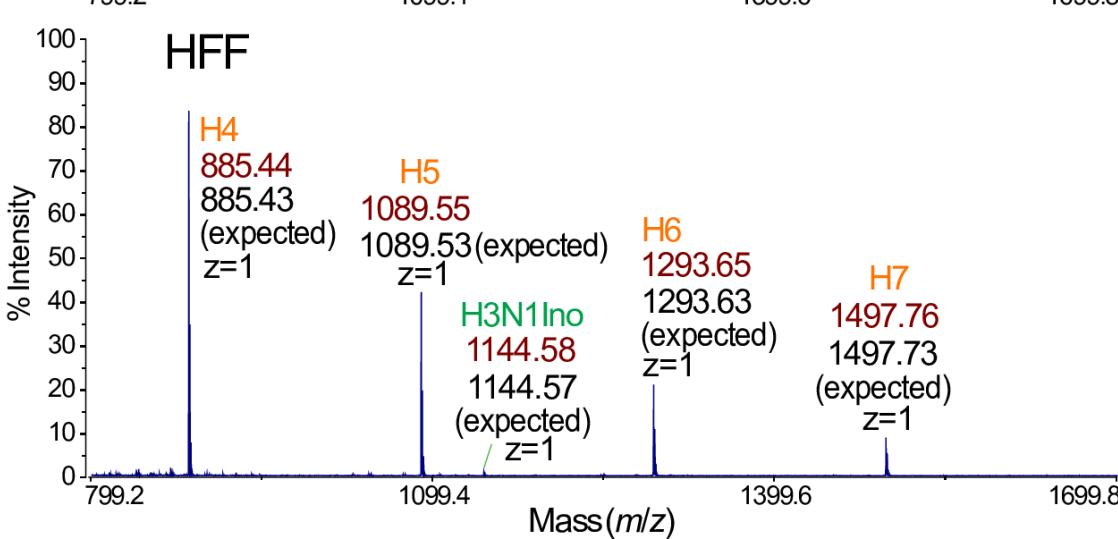



C

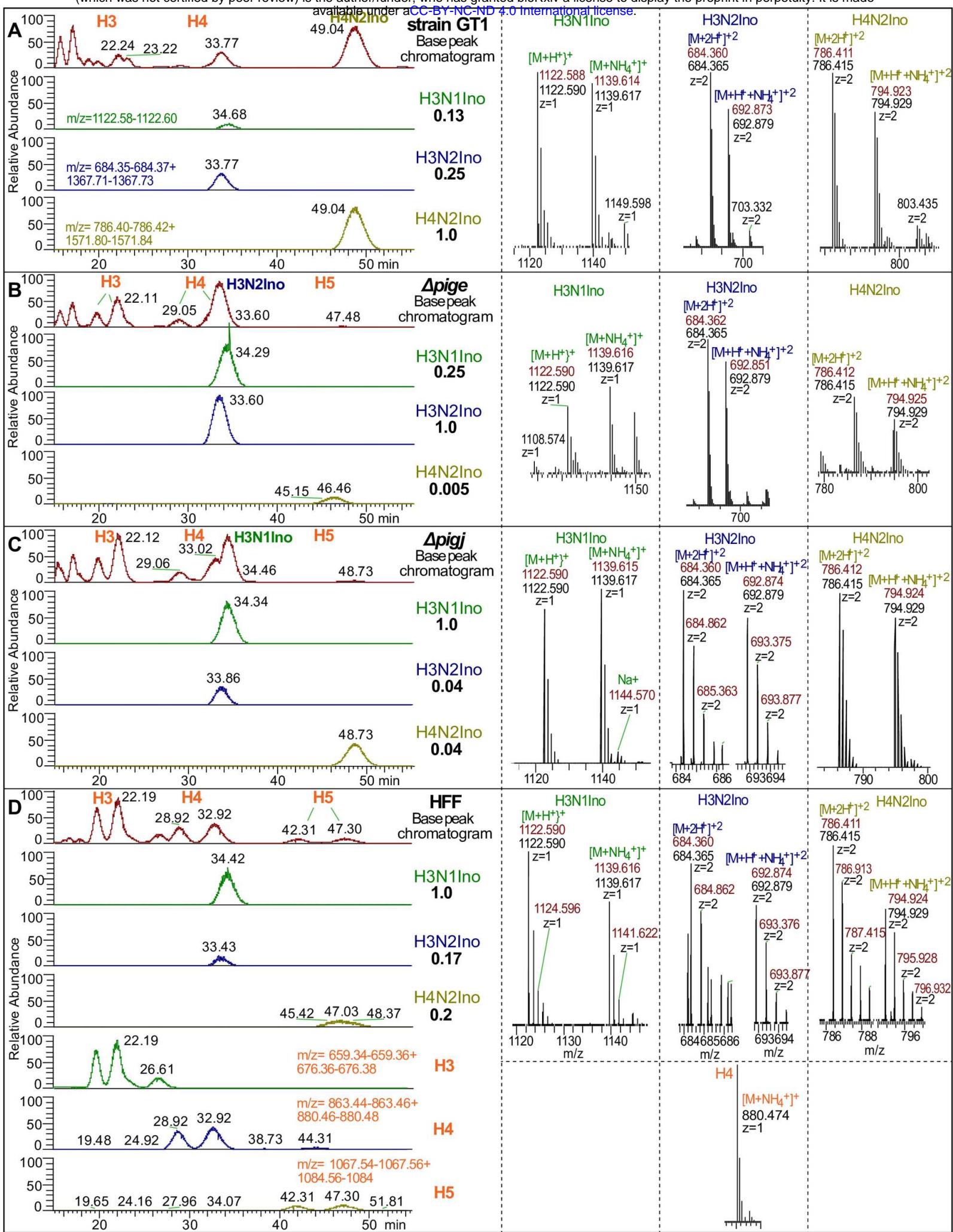

Primary: anti-GalNAc (T3 3F12)
Secondary: anti-IgG

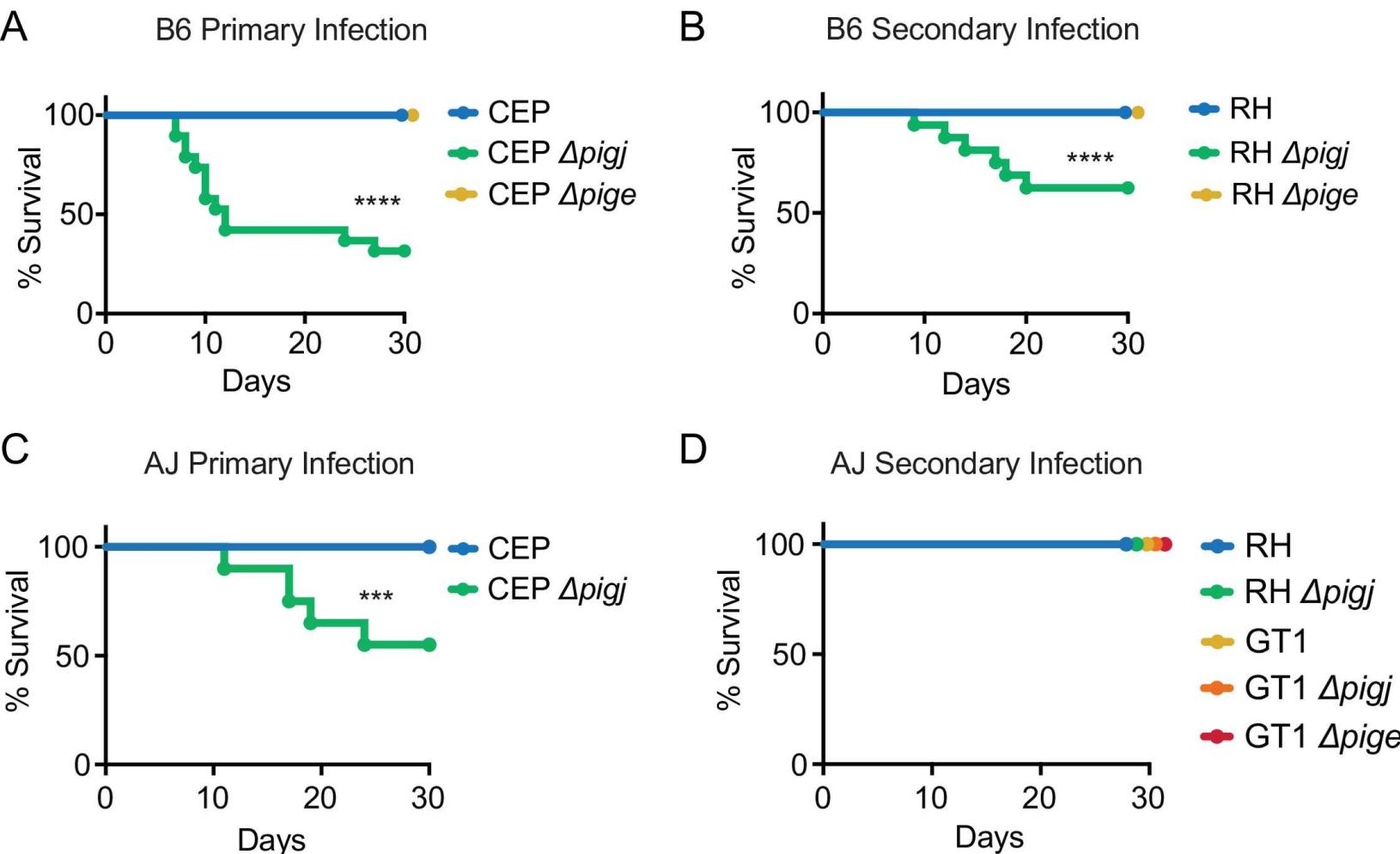

Primary: anti-GalNAc + Glc (T5 4E10)
Secondary: anti-IgM

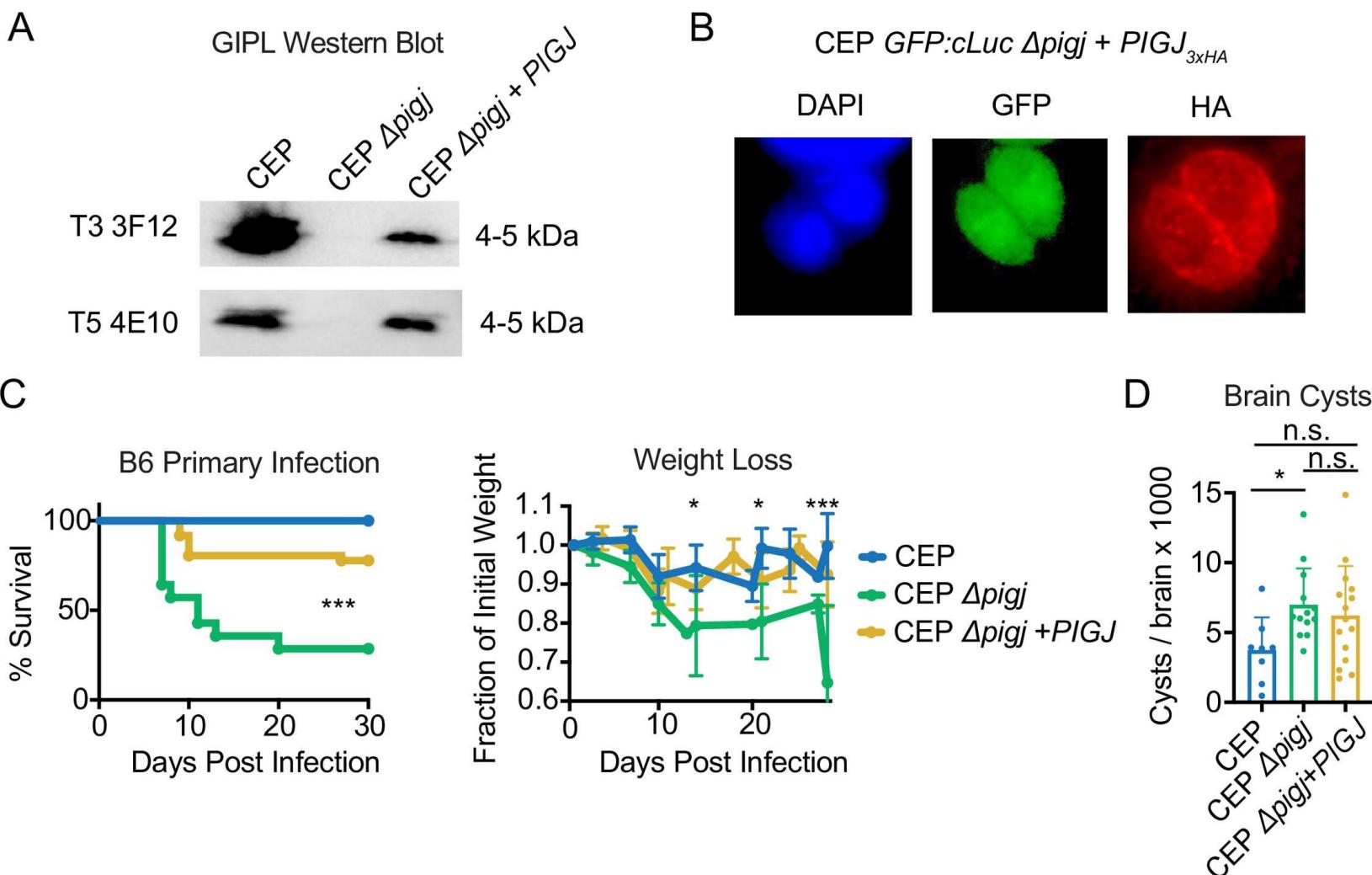

A

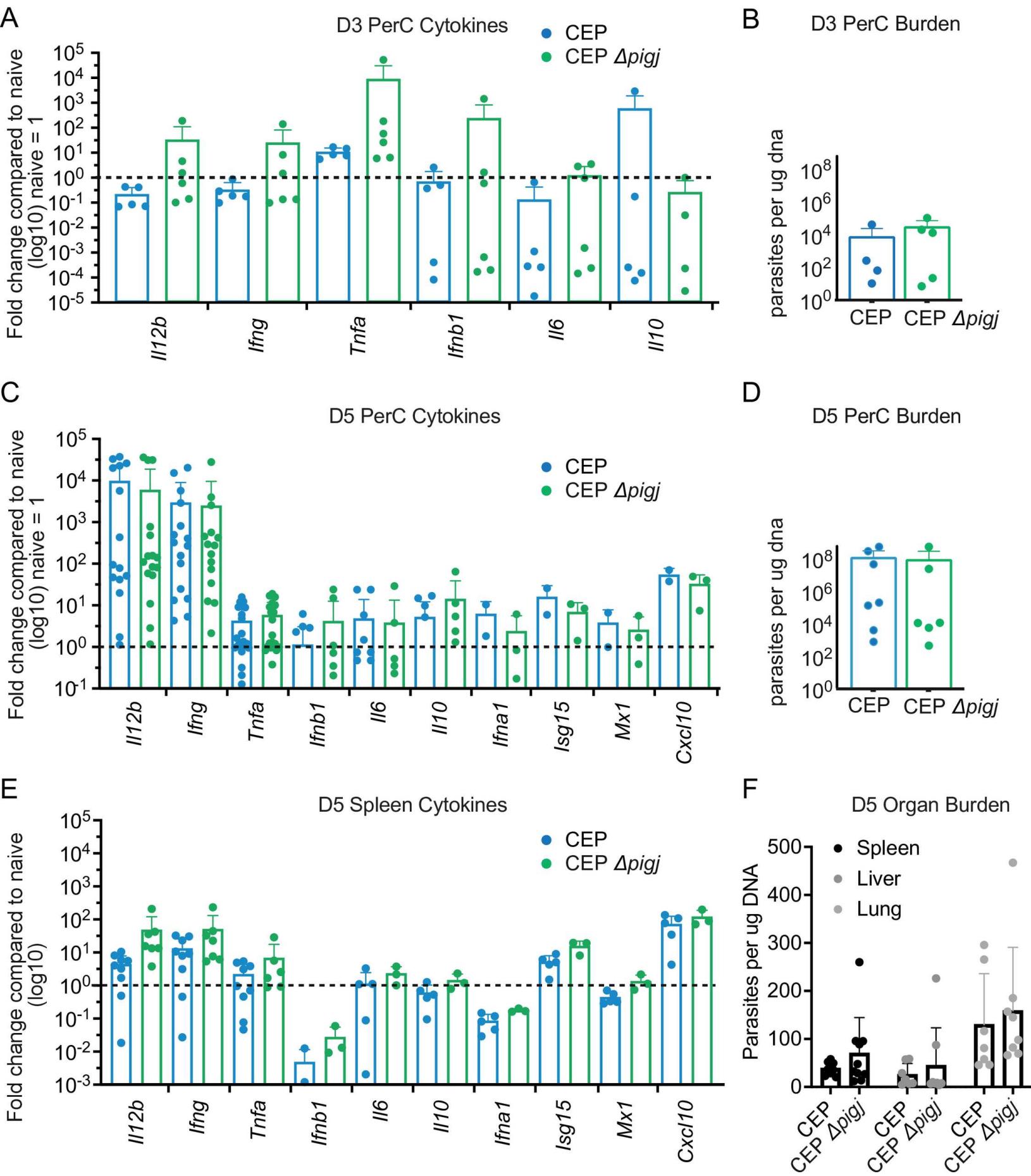

B

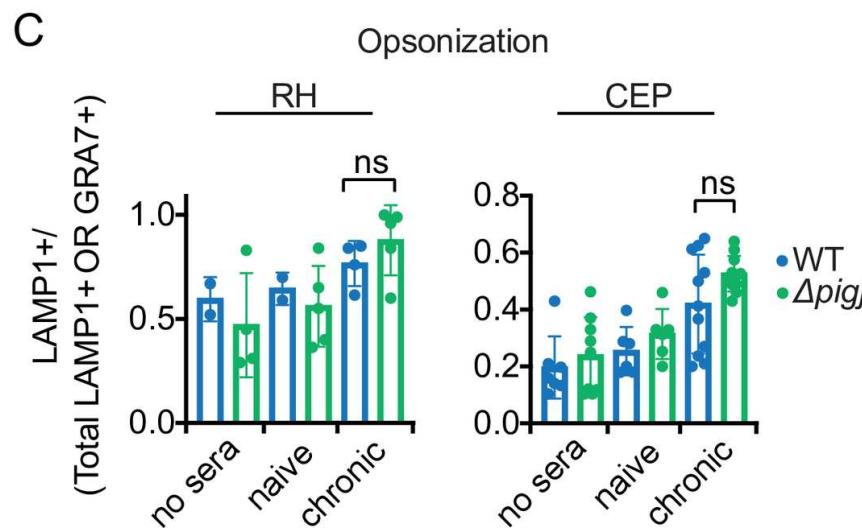
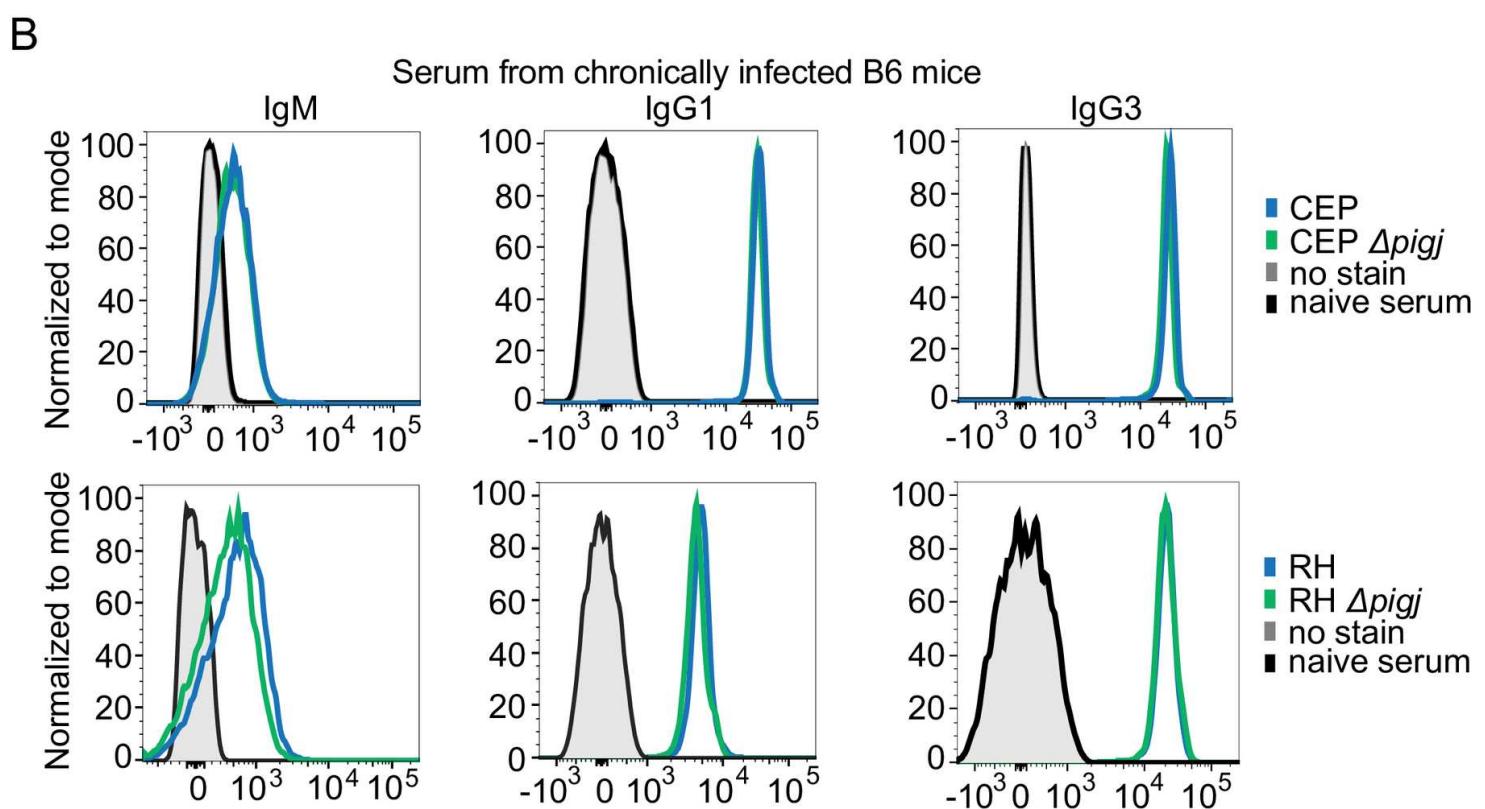
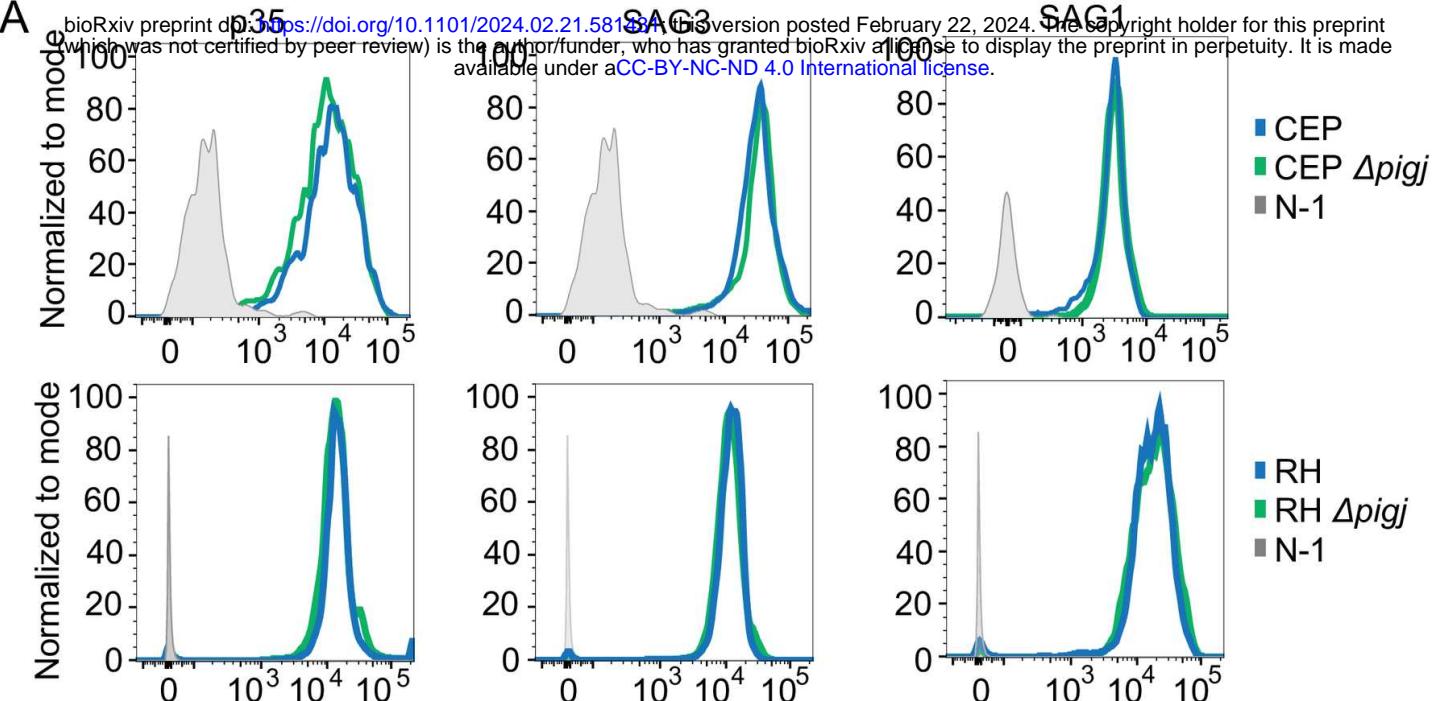
C

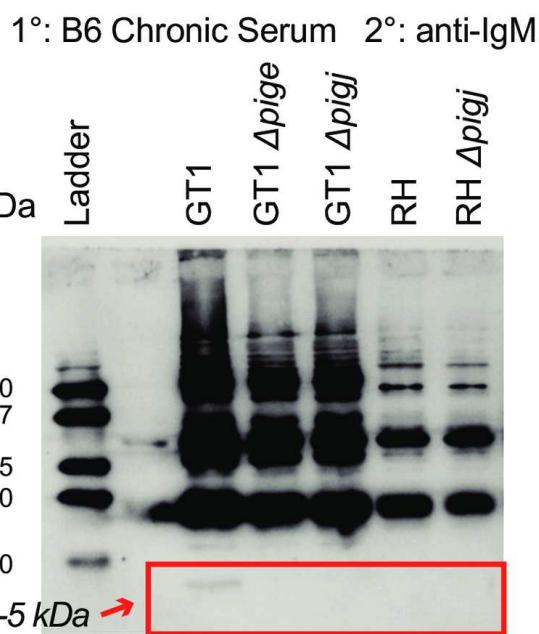


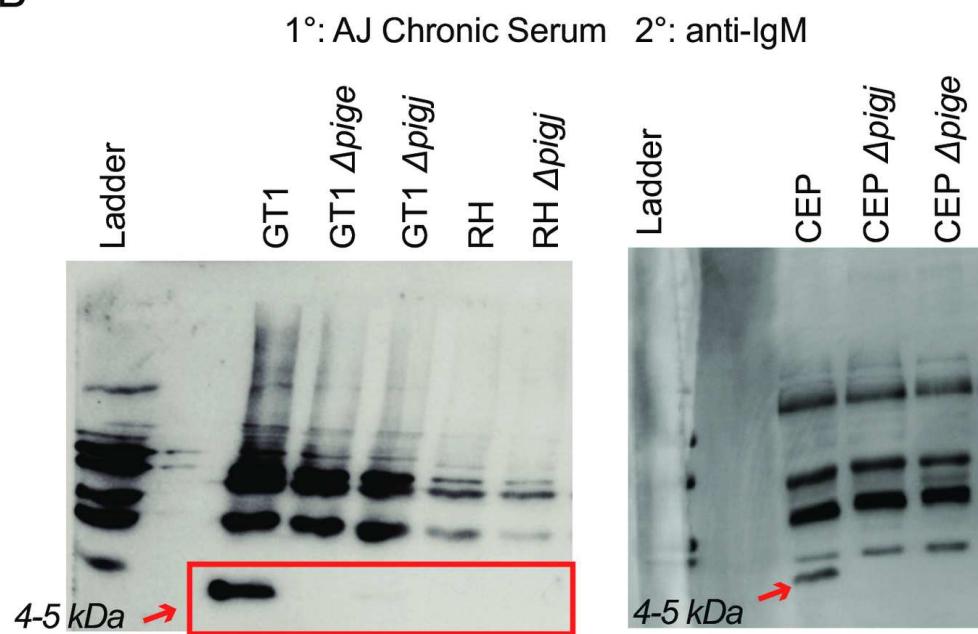

D

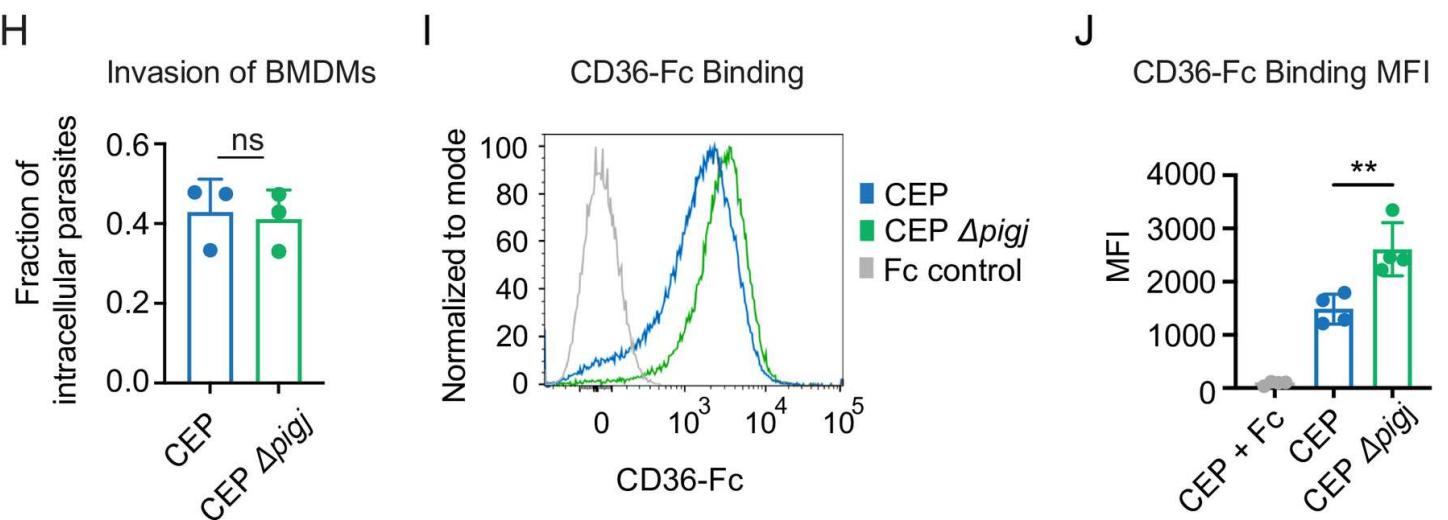
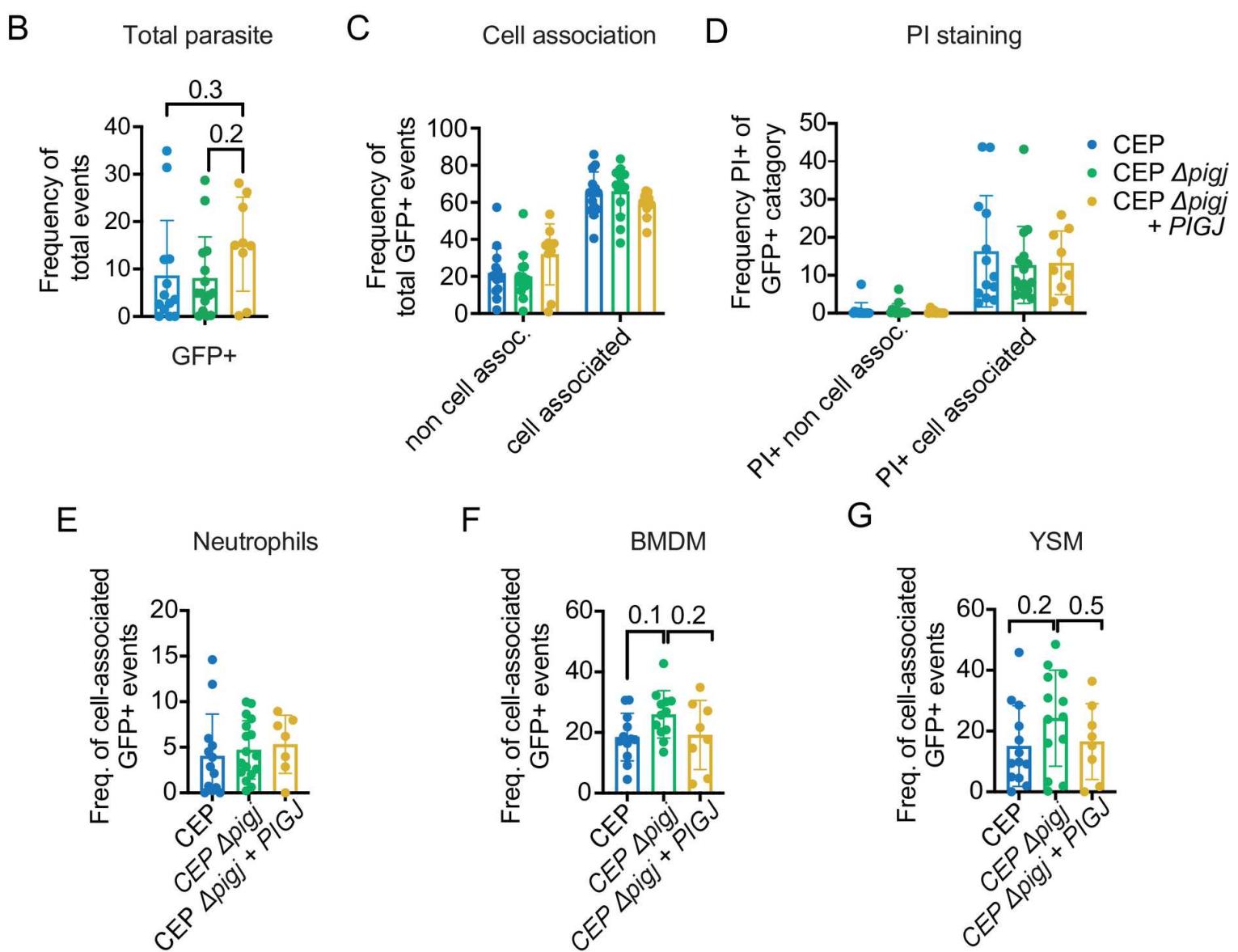
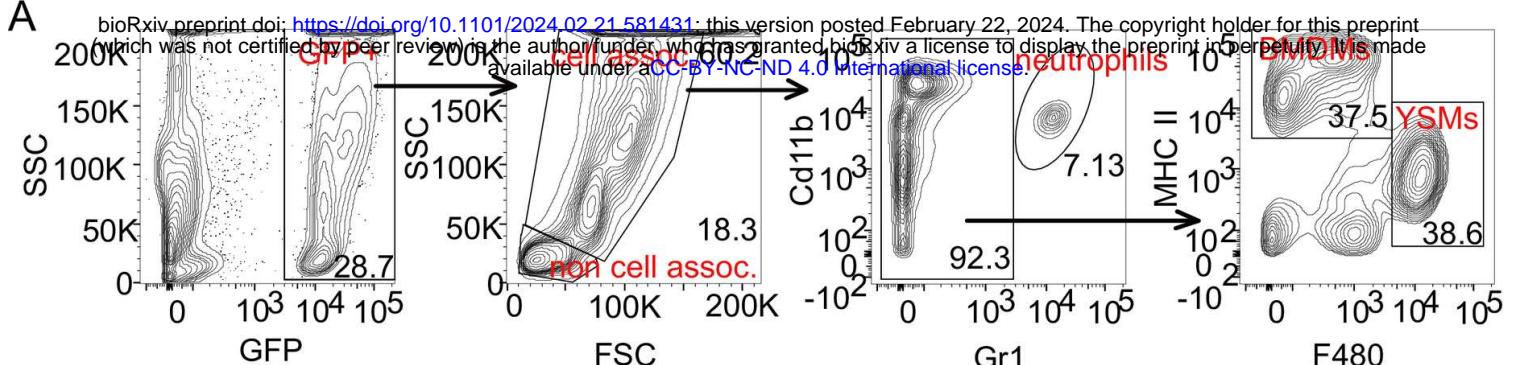



nLC-MS analysis of GPI anchor preparations

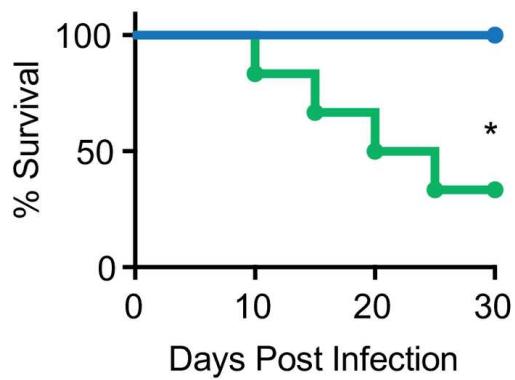



bioRxiv preprint doi: <https://doi.org/10.1101/2024.02.21.581431>; this version posted February 22, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

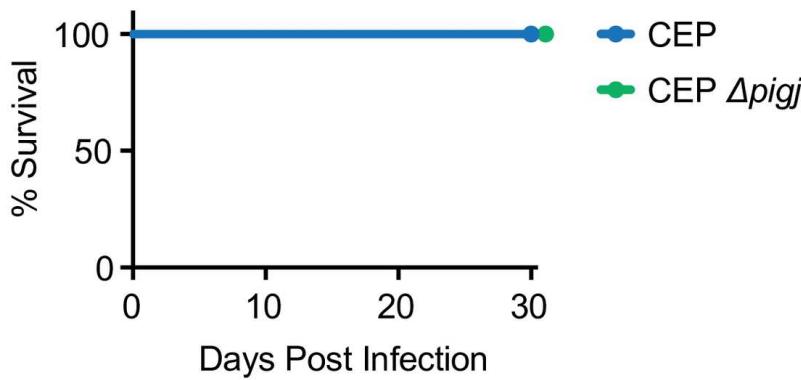




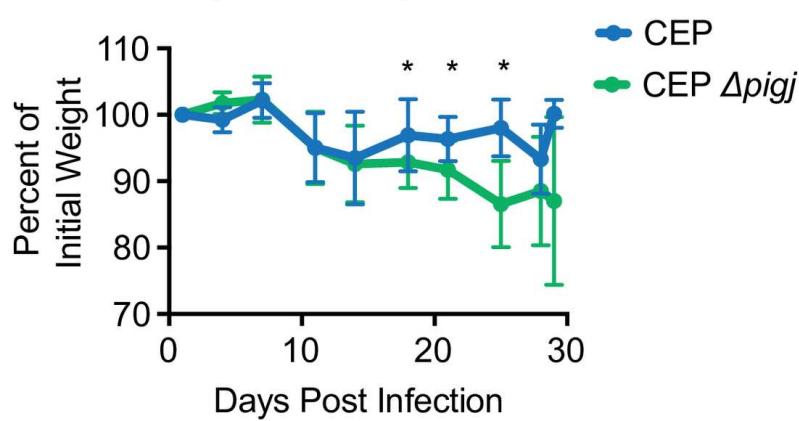




A

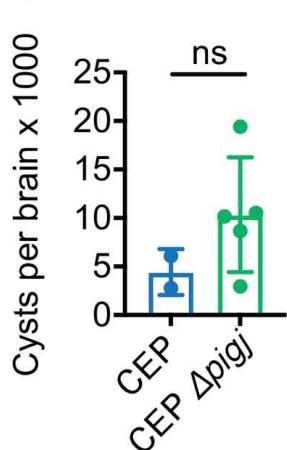

B


A

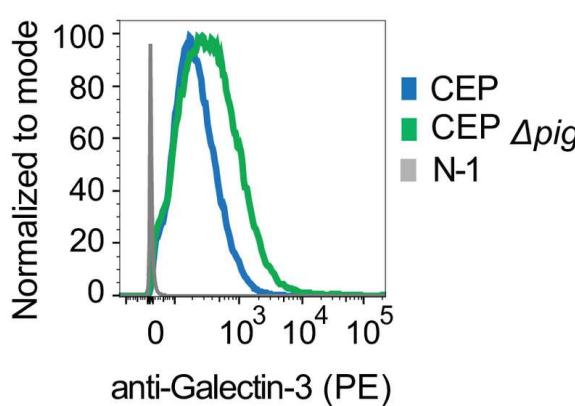
Tlr2/4 $^{-/-}$ Survival


B

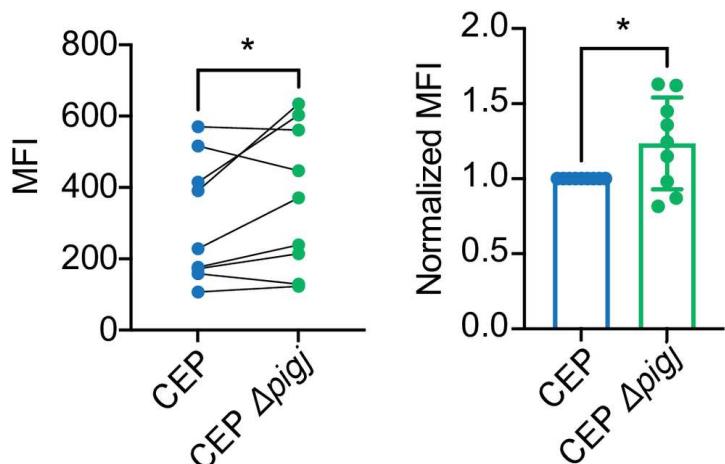
Lgals3 $^{-/-}$ Survival


C

Lgals3 $^{-/-}$ Weight Loss


D

Lgals3 $^{-/-}$ Brain Cysts


E

Galectin-3 Binding

F

Galectin-3 Binding MFI

