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Abstract

Computational (generative) modelling of behaviour has considerable potential for clinical applications.
In order to unlock the potential of generative models, reliable statistical inference is crucial. For this,
Bayesian workflow has been suggested which, however, has rarely been applied in Translational
Neuromodeling and Computational Psychiatry (TN/CP) so far. Here, we present a worked example of
Bayesian workflow in the context of a typical application scenario for TN/CP.

This application example uses Hierarchical Gaussian Filter (HGF) models, a family of computational
models for hierarchical Bayesian belief updating. When equipped with a suitable response model, HGF
models can be fit to behavioural data from cognitive tasks; these data frequently consist of binary
responses and are typically univariate. This poses challenges for statistical inference due to the limited
information contained in such data. We present a novel set of response models that allow for
simultaneous inference from multivariate (here: two) behavioural data types. Using both simulations
and empirical data from a speed-incentivised associative reward learning (SPIRL) task, we show that
harnessing information from two different data streams (binary responses and continuous response
times) improves the accuracy of inference (specifically, identifiability of parameters and models).
Moreover, we find a linear relationship between log-transformed response times in the SPIRL task and
participants’ uncertainty about the outcome.

Our analysis illustrates the benefits of Bayesian workflow for a typical use case in TN/CP. We argue
that adopting Bayesian workflow for generative modelling helps increase the transparency and
robustness of results, which in turn is of fundamental importance for the long-term success of TN/CP.
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Introduction

Psychiatry suffers from a dearth of tests that are based on biological or cognitive mechanisms (Kapur
et al,, 2012). In response, computational approaches to psychiatry begun gaining attention a decade
ago (Montague et al., 2012). A particular focus has been on generative models and their potential for
inference on individual disease mechanisms, as a basis for overcoming the limitations of contemporary
symptom-based diagnostic classifications (Stephan & Mathys, 2014).

Computational approaches to psychiatry encompass two main branches: Translational Neuromodeling
(TN) which is concerned with the development and validation of computational assays —i.e. generative
models for inferring mechanisms underlying neurophysiology, behaviour, and cognition — and
Computational Psychiatry (CP) which focuses on the application of these models to clinical questions
such as differential diagnosis, stratification, and treatment prediction. Generative models represent a
cornerstone of TN/CP because they (i) exploit the advantages of Bayesian approaches to inference, (ii)
enforce mechanistic thinking, and (iii) provide estimates of system states and/or parameters that
enable interpretable out-of-sample predictions by machine learning (an approach called generative
embedding; for review, see Stephan et al., 2017).

However, there are numerous practical challenges for generative modelling. These include — but are
not limited to — the choice of sensible priors for model parameters, identifiability both at the level of
parameters and models, validation of the inference algorithm, as well as questions regarding model
evaluation. Successfully managing these challenges is essential in order to obtain robust statistical
results from Bayesian data analysis (BDA), which in turn is paramount to the success of TN/CP.

The motivation for this paper is twofold: First, we present a novel generative model in the framework
of the Hierarchical Gaussian Filter (HGF; Mathys et al., 2011, 2014), a computational model for
hierarchical Bayesian belief updating that has seen numerous applications in TN/CP (e.g. Hein et al.,
2021; Iglesias et al., 2013; Lawson et al., 2017, 2021; Marshall et al., 2016; Powers et al., 2017; Sapey-
Triomphe et al., 2023; Sporn et al., 2020). Our new generative model exploits two sources of
information from behavioural responses, namely trial-wise predictions (binary responses) and
associated response times (RTs). By exploiting two coupled streams of information for model inversion,
we hoped to increase both parameter and model identifiability — issues which have proven challenging
for some HGF applications (Broker et al., 2018), particularly with binary response data (e.g. see
Harrison et al., 2021; Iglesias et al., 2021). In order to acquire suitable data for this endeavour, we
developed a novel speed-incentivised associative reward learning (SPIRL) task. In combination with a
set of custom-built combined response models in the HGF framework, we demonstrate the utility of
our dual-stream generative model, using both simulations and empirical data from the SPIRL task.

Second, we provide a worked example of Bayesian workflow that may usefully guide application of
generative models in TN/CP, beyond the particular examples studied in this paper. This example
extends previous tutorials that discussed a workflow for modelling behavioural data, but were
restricted to frequentist (maximum likelihood) estimation (Wilson & Collins, 2019). We emphasise that
the Bayesian workflow presented in this paper was not invented by us. Instead, it was derived from
earlier proposals by others (Betancourt, 2020; Gelman et al., 2020; Schad et al., 2020; van de Schoot
et al,, 2021) and enriched with additional components, e.g. Bayesian comparison of model families
(Penny et al., 2010). We focused on those steps of BDA that — independent from the chosen inference
scheme — are particularly relevant for robustness of results from generative models.


https://doi.org/10.1101/2024.02.19.581001
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.19.581001; this version posted February 22, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Methods

The analysis methods of this study were specified in a preregistered analysis plan (see section below
for details). For consistency, we reuse text from our analysis plan in this Methods section, in adapted
and extended form. We start by describing the behavioural learning task which was developed for this
study. In what follows, we give a detailed summary of our modelling approach, both the development
of novel response models combining different data modalities in the framework of the HGF as well as
their application within Bayesian workflow. Our analysis had the following two central aims:

Aim 1: Provide a quantitative comparison of response models (for the HGF) that utilise binary and
continuous-valued response data in different ways.

Aim 2: Provide a quantitative assessment of whether (and how) parameters characterizing subject-
specific learning behaviour are associated with an individual’s measured response times.

Analysis Plan, Data and Code Availability

A version-controlled and time-stamped analysis plan was created, detailing the analysis pipeline ex
ante. The analysis plan provides a more in-depth description of the analysis protocol and is provided
at https://doi.org/10.5281/zen0do.10669944. For the analysis, a custom-built pipeline was
implemented in MATLAB R2019b (The MathWorks, Natick, MA, USA; code available at
https://gitlab.ethz.ch/tnu/code/hessetal spirl analysis). Various open-source software packages
were used for the analysis such as the HGF Toolbox (v7.1) as part of the ‘Translational Algorithms for
Psychiatry-Advancing Science’ (TAPAS v6.0.1, commit 604c568) package (Frassle et al., 2021), the
Variational Bayesian Analysis Toolbox (VBA, commit aa46573; Daunizeau et al.,, 2014) and the
RainCloudPlot library (commit d5085be, Allen et al., 2021). Note that we are using an updated version
of TAPAS compared to what was stated in the analysis plan; this version already includes functionalities
to use combined response models with the HGF. All of these packages are included as submodules in
the analysis code repository. The entire analysis pipeline underwent an internal code review (by a
researcher not involved in the initial data analysis) in order to identify errors and ensure reproducibility
of results. The data set wused for the analysis is available on Zenodo
(https://doi.org/10.5281/zen0d0.10663643) in a form adhering to the FAIR (Findable, Accessible,
Interoperable, and Re-usable) data principles (Wilkinson et al., 2016). We used Psychtoolbox-3 (Kleiner
et al., 2007) to program the task of this study. The code that we used to run the experiment in the lab
is available at https://gitlab.ethz.ch/tnu/code/hessetal spirl task.

Behavioural Study Procedure

Participants

In total, 91 right-handed healthy individuals (59 females, 32 males; age 24.7+4.3) completed the study.
The data set consists of a pilot data set (N = 23) and a main data set (N = 68). For lack of a better
term, we refer to the former as a ‘pilot’ data set; however, we emphasise that from the beginning, the
designated purpose of this data set was to inform the specification of priors by independent data. All
participants gave written informed consent prior to data acquisition and were financially reimbursed
for their participation. The study was approved by the Ethics Commission of ETH Zurich (ETH-EK-Nr.
2021-N-05).

Our study applied the following exclusion criteria for participation: known psychiatric or neurological
diseases (past or present), regular intake of medication (except contraceptives), current participation
in other studies using pharmacological interventions or stimulation of brain nerves, and alcohol or drug
intake during three days prior to the measurement.

Additionally, we excluded measured data sets from analysis according to quality criteria that had been
pre-specified in the analysis plan. These criteria included: failure to complete the task, >10 ignored (no
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response and feedback) or irregular (RT <0.1s) trials, and <65% correct responses (adjusted for the
probabilistic nature of the task). Eleven of the participants were excluded because they did not meet
our criteria for adequate data quality and one participant was excluded due to contradicting
information regarding the exclusion criteria, leaving us with a data set of N;,tq; = 79 (pilot data set

Npitor = 20, main data set Nyq;n, = 59; 52 females, 27 males; age 24.7+4.4).

Behavioural paradigm

Each participant attended one experimental session during which they performed the SPIRL task
(Figure 1). In this task, participants were required to learn the probabilistic association between two
fractals and a monetary reward over a period of 160 trials. In each trial, participants were asked to
select one of the two displayed fractals during a response window of 1.7s. After 1.7s from the trial
onset, the outcome of the trial was revealed to the participant, i.e. whether the selected fractal was
associated with a monetary reward on the given trial. Subsequently, a new response window started,
and participants were again able to choose between the two fractals. Participants received visual
feedback about their response times on every trial via a time bar. A customised payoff structure served
to incentivise fast responses while still emphasizing the importance of correct predictions (Heitz,
2014). For details regarding the reward calculation, please refer to the analysis plan (Appendix A).
Participants were informed about the payoff structure before the experiment. The trial structure is
visualised in Figure 1a.

The probability of reward for one of the two fractals in the SPIRL task is shown in Figure 1b. The black
dots indicate whether the respective fractal was rewarded on a given trial (1=reward, 0=no reward).
The reward probabilities of the two fractals were designed to be complementary (summing to 1 at any
given point during the experiment). Thus, the reward probability of the second fractal was simply the
mirrored trajectory of the displayed trajectory, and on every trial exactly one of the two fractals was
rewarded. Critically, the underlying probabilistic associations were changing over time during the
experiment. The probability sequence was designed to incorporate different phases during the task
indicated by colour shadings: phases with high volatility (blue), i.e. rapid switches in probability; phases
where the probability was stable over a prolonged period of time (white); a phase with high
uncertainty, i.e. where the outcome is unpredictable (grey). The probability sequence was fixed across
participants to ensure comparability of the induced learning process. The factors fractal position
(which of the two fractals was presented left) and fractal reward probability (which fractal was
associated with a high reward probability in the beginning of the task) were counterbalanced across
participants in the sample. Participants were told that on each trial, one of the two fractals would be
rewarded and were informed about the probabilistic nature of the association between the two
fractals and the monetary reward. They were also informed about the reward probabilities of the two
fractals being complementary and that these probabilities were subject to changes throughout the
experiment. Importantly, a priori they had no information about the values these probabilities could
take as well as the order and duration of different blocks with constant probabilities.
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Figure 1 | The speed-incentivised reward learning (SPIRL) task. A shows the trial structure of the
SPIRL task protocol. A yellow and a green fractal were presented on every trial together with a time
bar indicating the remaining time of the 1.7s long response window. The participants had to predict
on each trial, which fractal would be rewarded monetarily. After the response window, the trial
outcome was revealed (reward/no reward) concurrently with the start of the new response window
of the next trial. In B, the probability of reward for one of the two fractals over the entire 160 trials
is displayed (black line). The individual trial outcomes for this fractal are indicated by black dots
(1=reward, 0O=no reward). The reward probabilities of the two fractals were complementary
(summing to 1) across the entire task. The colour shadings represent different phases during the
task (white: stable; blue: high volatility, grey: highly unpredictable).
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Analysis

Model-agnostic analyses

The acquired behavioural data from the SPIRL task (binary responses and continuous response times)
were subject to several descriptive analysis steps, mostly in the form of different visualisations of the
data set. The goal of these steps was to perform a set of basic sanity checks and to identify particular
characteristics of the data set. For the binary response data, adjusted correctness of the participants’
predictions (adjusted in the sense that we account for the probabilistic structure of our experiment as
in (Iglesias et al., 2021), meaning that out of the total 160 trials, 122 correct predictions amount to an
adjusted correctness of 100% in this task) was calculated as part of the inclusion criteria for the
analysis. The descriptive analysis of the response times included different visualisations of the log-
transformed response time trajectories as well as their empirical distribution in a histogram.
Furthermore, we compared log RTs by task phase (stable, volatile and unpredictable according to the
colour shadings in Figure 1). A one-way ANOVA of average log RTs over subjects including the factor
phase was conducted as a quantitative assessment of the effect of task phase on log RTs.

Computational modelling

For the model-based analysis, we follow the general steps of Bayesian workflow outlined in previous
work (Betancourt, 2020; Gelman et al., 2020; Schad et al., 2020; van de Schoot et al., 2021) and
adjusted it to our specific application at hand. Our Bayesian workflow includes the specification of an
initial model space, the choice of suitable prior configurations, the choice of model inversion technique
and its validation, model inversion given the empirical data set, model comparison (hypothesis testing),
and model evaluation. The general steps of Bayesian workflow as well as their implementation in the
context of our application are visualised in Figure 2 and described in more detail below.
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Figure 2 | Bayesian workflow for generative modelling in Computational Psychiatry. The general
steps of Bayesian workflow are visualised. These include the specification of a model space, prior
specification, model inversion and validation of computation, model comparison as well as model
evaluation. For each step, the concrete implementation in the context of our application is shown.
Above the dashed line are analysis steps that involve the pilot data set as well as synthetic data
generated using parameter values sampled from the priors. Below the dashed line are analysis steps
including the main data set and synthetic data generated using parameter values sampled from the
posteriors. Filled red boxes are analysis steps involving synthetic data. The green boxes highlight
analysis steps that specifically refer to our research aim 1 (comparison of RT model families) and
research aim 2 (assessment of individual RT model parameters).
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Model space

The set of models was based on hierarchical Gaussian filtering (HGF), a generative modelling
framework for hierarchical Bayesian belief updating, describing the evolution of (hidden) states and
how these give rise to the sensory inputs (1) an agent receives (Mathys et al., 2011, 2014). We used a
3-level enhanced HGF (eHGF) for binary inputs for the current application, where the states evolve as
Gaussian random walks (GRW) at all but the first level and the step-size of the GRW at any given level
depends on the next higher level (variance-coupling). The probability of the binary states at the lowest
level originates from a sigmoid transformation of the quantity at the second level. The generative
model of the eHGF is visualized as graphical model in the upper part of Figure 3 and described by the
following set of equations

. (xék)|x§k_1),w3) = N (x{; 2, o)

» (xgk)|x§k—1)'x?(’k)) - N (xgk);xék—l),e(;czxgk)+w2))

» (xik)|x§k)) — (xgk))xgk) (s (xgk)))l—xi"), withs(x) = ———

p (4} = 9 1 - s
Further details and equations of the generative model can be found in Mathys et al. (2011).

The 3-level eHGF for binary inputs represents a concrete implementation of the meta-Bayesian
‘observing the observer’ framework, where an observation or response model serves to specify a
mapping from inferred beliefs of an agent to observed responses as recorded during our experiment
(Daunizeau et al., 2010a; Daunizeau et al., 2010b). The response model uses the perceptual model
indirectly via its inversion (Mathys et al., 2014). In this study, we augmented the perceptual model
(eHGF) with a novel set of response models combining binary responses and continuous-valued
response times.

In the eHGF, variational inversion of the agent’s model of the world (perceptual model) using
Variational Bayes (VB) under a mean-field approximation and a quadratic approximation to the
variational energies give rise to a set of analytical trial-by-trial update equations that resemble the
general structure of Reinforcement Learning (RL) models but explicitly represent inferential
uncertainty. For example, the update of the belief at the second level of the eHGF about the cue-
outcome contingency takes the form of

— k k
u? =g + 0306

where superscripts refer to trial indices and subscripts to the level in the hierarchy of the model. In
other words, the prediction (,ugk)) at trial k is equal to the sum of the prediction at the previous trial
ugk_l) and a learning rate O'Z(k) multiplied with a prediction error term 61(k). Here the prediction error

61(k) describes the mismatch between the actual (1) and the predicted sensory input (ﬂgk))

800wt () _ g

where the predicted sensory input is simply a sigmoid transformation of the belief at the second level

A0 et 1
Hio = k-1
1+eH
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Notably, in the HGF, the learning rate az(k) is dynamic and corresponds to a function of the temporary

evolving uncertainty of the agent’s belief about the cue-outcome contingency ,ugk). A full account of

the update equations describing the evolution of beliefs at all levels of the 3-level eHGF for binary
inputs can be found in the analysis plan (Appendix A3).
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Figure 3 | Graphical model representation of M1. In the left part of the figure, a schematic
representation of the generative model of the 3-level eHGF for binary inputs (perceptual model) is
presented above the dashed arrows. Below the dashed arrows, the response data modalities are
visualised (response model). Shaded circles represent known quantities (inputs shaded black,
response data shaded red). Unshaded circles represent estimated time-independent parameters
(black circles) and time-varying states with trial indices as superscript. Dashed lines indicate the
result of an inferential process, i.e. the response model builds on a perceptual model inference. Solid
lines indicate generative processes. Dark turquoise lines indicate the probabilistic network on trial
k. Light turquoise lines indicate the network at other points in time. On the right side of the figure,
average belief trajectories of the perceptual model are shown in blue in the upper four panels. The
four belief trajectories represent the average trajectory over participants (Ny,4in = 59) of the states
that enter the log RT GLM of M1. In the lower two panels, average response data over participants
are shown. For the binary response modality, the red line represents average binary prediction
(¥pin), the blue line represents the average belief about the probability of the outcome (f,)
according to M1. For the continuous response modality, the red line represents average log-
transformed RTs and the average predicted log RTs by M1 are shown in blue.
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We defined a set of combined response models that are all paired with a 3-level eHGF for binary inputs
(perceptual model). The combination of binary responses and continuous response times in these
response models is accomplished by summing the log-likelihood of two individual response models,
assuming independence of the two response data modalities conditional on the parameters of the
perceptual model. All seven models in our model space are listed in Table 1.

As binary part of the response model, we used a unit-square sigmoid function mapping from the belief

ﬁgk) at the lowest level of the eHGF that the next outcome will be 1 onto the probabilities p (ylgg = 1)

and p (ylgg = 0) that the agent will choose response 1 or 0 (for simplicity, in the following equation

we use m) & ﬁgk) and we omit time indices on y and m):

mé (1 -m)s
(mf +(1- m)f)y(mi + (1 —m)S

_ 1-
PWpinlm, ¢) = )

Here, the parameter { determines the steepness of the sigmoid function and is referred to as inverse
decision temperature or inverse decision noise. For reasons of comparability, the binary part was kept
constant across all response models in our model space.

For the continuous part of the response models, we used seven different variants of a general linear
model (GLM) to predict the log-transformed RTs on a trial-by-trial basis. The regressors of models 1-4
(M1-M4) are belief trajectories from the perceptual model (eHGF), e.g., an individual’s estimated

uncertainty about the outcome (él(k)) at trial k. This was inspired by the approaches used in previous
work where reaction time data had been modelled using the HGF framework (Lawson et al., 2017,
2021; Marshall et al., 2016). A set of alternative combined response models (M5-M7) predicted RTs
independently of the perceptual model (eHGF); including these models allowed us to test whether
informing RTs by inferred states from the eHGF would improve the models at all.

Our model space can thus be divided into 2 families based on the continuous part of the response
models (since the perceptual model and the binary part of the response models were held constant).
M1-M4 are ‘informed’ RT models and M5-M7 are ‘uninformed’ RT models. Note that Bayesian model
comparison is based on the (log) evidence and therefore requires the data to be the same across all
models. In our case, it is thus not possible to include a model that does not model RT at all in the model
comparison.

The GLM equations of M1-M7 are listed in Table 1, and a graphical representation of M1 is presented
in Figure 3. Concerning the first (informed) set of models, the GLM of M1 was adapted from a model
used by Lawson et al. (2017) and tailored towards the specific properties of the SPIRL task. Models M2-
M4 are custom built response models with the following underlying motivation: Firstly, the goal was
to reduce the number of regressors entering the GLM and hence the complexity of the models
compared to M1. Secondly, the idea was to include different types of uncertainty from different levels
of the hierarchy described by the perceptual model (eHGF). The eHGF accommodates various forms of
uncertainty. Two sources of uncertainty, informational and environmental uncertainty, respectively,
are represented in the update equations of the eHGF. M2 includes estimates of informational

uncertainty (az(k)) and phasic volatility (ﬂék)). M3 includes estimates of informational uncertainty at

~(k) (k) . (Kzugk_l)ﬂuz)
the outcome level (6;"") and at the second level (g, ) as well as environmental (e )

uncertainty whereas M4 only includes estimates about the two latter quantities. For a more detailed
discussion of the different forms of uncertainty captured by the eHGF, please see Mathys et al. (2014).

By contrast, the second (uninformed) set of models, M5-M7, have response time GLMs where the
regressors are independent of the perceptual model. M5 is a null model, representing the assumption
11
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that log RTs are simply noise around a constant intercept. M6 allows for a linear decay over time in the
response times, and M7 corresponds to a null model with two different intercepts for correct and
incorrect response trials (referring to the binary response data).

Table 1 | Model Space. All seven models in our model space are composed of a perceptual (Prc)
model and an observation (Obs) or response model. The perceptual model as well as the binary part
of the response model is held constant across all seven models. The equations of the log RT GLMs
(continuous part of the response model) of M1-M4 (family of informed RT models) contain belief
trajectories of the perceptual model as regressors. The update equations for the perceptual model
(eHGF) are listed in the analysis plan. M5-M7 (uninformed RT family) predict log RTs independent of
the perceptual model.

Obs model Obs model

Model  Prc model (continuous) (binary)

log (y£)) ~ N (Bo + BiS® D + g6 + a6

~ (k)
u

M1 eHGF . T haet ’Z) Unit-square

with ) sigmoid

§(k=1) ger —log2(A; ) if udh =1
—log,(1— ™) ifu® V=0

W0\ _ ) () Unit-square

M2 eHGF log (yrt ) N(Bo + proy” + Fftz ", 2) sigmoid
. (K X (k-1) Unit-square

M3 eHGF  log(y))~ NBy + B16 + B0 4 peliens+e2) 3y sigmoid
o ) (k—1) Unit-square

M4 eHGF log (}’rt ) ~N(Bo + P10y + Brelats +92) x) sigmoid
Y _ Unit-square

M5 eHGF log (yrt ) N(Bo, ) sigmoid
k Unit-square

()
M6 eHGF log (yrt ) ~NBo+hig2) sigmoid
k k
log (7¢”) ~ N (", 2)
-th i -

M7 eHGF w oo (k-1) (k—-1) Um‘t Squ'are

(k) gor ) Y lf Ypin T U sigmoid

0 b, if ylgk_l) + yk-1)

in
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Prior specification

Prior elicitation. Since the central questions of the present study are addressed by Bayesian model
comparison (whose central quantity, the model evidence, takes into account the models' priors), the
specification of priors is a critical step. We aim to specify priors that lay in the range of actual human
behaviour for the present task, while at the same time minimising the subjectivity involved in the
choice of priors. In order to avoid problems of double-dipping, we made use of an independent data
set, i.e. the 20 participants from our pilot study, for the elicitation of prior densities. Recently, similar
approaches have been used for comparable modelling endeavours (Harrison et al., 2021; Schobi et al.,
2021). We used a two-step procedure for elicitation of prior densities that were subsequently used in
the analysis of the main data set (for the results, see Supplementary Material S2). We estimated the
sufficient statistics (mean and variance) of the prior densities as follows (all priors take the form of a
normal distribution):

1. Inversion of M1-M7 given the pilot data set (N, = 20) using initial prior means and
variances. These initial prior means and variances represent the default prior configurations of
the eHGF in the HGF Toolbox.

2. For every model m, we defined:

a. anew prior mean pE,, as the robust mean estimate over Maximum a posteriori (MAP)
estimates obtained in step 1.

b. a new prior variance pC,, as the robust variance estimate over MAP estimates
obtained in step 1.

For the robust estimation of mean and variance, we used a variant of the minimum covariance
determinant (MCD) method, namely the FAST-MCD algorithm developed by (Rousseeuw & Van
Driessen, 1999), as implemented in the ‘robustcov’ function in MATLAB R2019b. We refer to this new
set of priors, that we estimated via the above described procedure, as empirical priors (as informed by
the pilot data set). Please note that our procedure is distinct from commonly employed ‘empirical
Bayesian’ procedures that estimate priors and parameter values from the same data set, using a
hierarchical model. The advantage of our procedure is that the data which inform the choice of priors
is fully independent from the data that inform parameter estimation.

Prior predictive checking. In order to get an intuition for the range of behaviours which can be
generated by our models under the initial and empirical priors, we looked at their prior predictive
distributions. More specifically, we randomly sampled 100 parameter values from the respective prior
densities and simulated belief trajectories and responses. Adequacy of our chosen prior distributions
was determined in a qualitative manner (visualisations) as well as in a quantitative fashion in the form
of different recovery analyses (see paragraph ‘Validation of model inversion’). More detailed
information describing our choice of priors and prior predictive checking can be found in the analysis
plan.

Model inversion

We inverted the generative models using approximate Bayesian inference as implemented in the HGF
Toolbox. MAP estimates are computed as the minimum of the negative log joint using gradient-based
optimisation techniques. By default, the HGF Toolbox uses an optimisation algorithm from the quasi-
Newton methods family (Broyden-Fletcher-Goldfarb-Shanno algorithm; BFGS) (Broyden, 1970;
Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). The covariance of the posterior was obtained under a
Laplace approximation to the negative log joint at the MAP. This allowed for the specification of
credible intervals on the obtained parameter estimates as well as the calculation of an approximate
log model evidence (LME) as a measure of ‘model goodness’. For the present analyses, a multi-start
optimisation approach was used to alleviate issues with the optimisation algorithm getting stuck in
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local extrema of the objective function. Specifically, 400 different starting points were used for the
inversion of each subject and model. Of these 400 starting points, one always corresponded to the
prior mean values of the different parameters (representing the default setting in the HGF Toolbox),
whereas the other 399 starting points were randomly sampled values from the respective prior density
of the parameters.

It should be noted that this choice of inference technique means that we are dealing with a simplified
case of BDA. That is, we only obtain a point estimate of the posterior and approximate the posterior
uncertainty. An advantage of our model inversion procedure is the computational efficiency and the
avoidance of concerns about convergence, as in the case of Markov Chain Monte Carlo (MCMC)
procedures. Having said this, for the specific purpose of our paper, the choice of model inversion
approach is not critical.

Validation of model inversion

To examine the identifiability of parameters from the models in our model space, we performed a set
of and recovery analyses using synthetic data (for a tutorial introduction to recovery analyses, albeit
in the context of maximum likelihood estimation, see Wilson and Collins (2019)). Examining the
identifiability (or recoverability) of parameters and models can also be seen as a test of face validity,
i.e. asking whether the models actually do what they are supposed to do: allowing for veridical
parameter estimates and representing a distinct explanation of observed data that can be
distinguished from other explanations. This step is an important part of Bayesian workflow because it
establishes a boundary between the type of questions that can be addressed using the model space at
hand, and those questions for which a meaningful answer cannot be expected. In other words, we
assessed whether in principle (i.e., knowing the ‘true’ data-generating models and parameter values),
we would be able to identify the data-generating model as the model that explained the data best
(model identifiability) and the parameter values of the data generating model (parameter recovery),
respectively. In a second step, we assessed whether data-generating model families could be
recovered using family-level comparisons.

For each model, we generated a synthetic data set (Ng;;,;, = 100) by randomly drawing 100 samples
from the empirical prior densities and plugging these values into the likelihood function. We then fit
the synthetic data sets by each of the models in our model space under the respective empirical priors.
Parameter recovery was assessed by visually comparing simulated parameter values to MAP estimates
obtained using the data-generating model and by calculating Pearson correlation coefficients r. Model
identifiability was quantified both as the proportion of correctly identified models according to
approximate LME scores in a classification analysis, and calculating protected exceedance probabilities
(PXP) as part of random-effects (RFX) Bayesian model selection (BMS) (Rigoux et al., 2014; Stephan et
al., 2009). Moreover, we computed a balanced accuracy score for the LME winner classification and
compared it to the upper bound of a 90%-Cl when assuming each model to be selected with equal
probability. Family level recovery was quantified using approximate LME scores obtained during the
model identifiability analysis to create 5’000 synthetic data sets of N¢gmsim = 60 subjects each, with
different ratios of data generating families. We compared true family frequencies with expected
posterior family frequency (Ef) and family exceedance probabilities (XP) resulting from family-level RFX
BMS (Penny et al., 2010). More details on the background of BMS methods can be found in the next
section (‘Model comparison’) and in the referenced literature.

Model comparison
After careful investigation of our model space and validation of the chosen inference algorithm, we
inverted the models given the main data set in order to address the following aims:
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Aim 1. Perform a quantitative comparison of response models that utilise binary and continuous-
valued response data in different ways. More specifically, we tested whether the family of informed
RT models explained the collected data better than the uninformed RT model family, or vice-versa. To
this and, we performed family-level RFX BMS as implemented in the VBA Toolbox. Family-level
inference serves to reduce uncertainty about aspects of model structure other than the characteristic
of interest (Penny et al., 2010). In the present study, we had no specific hypothesis about which of our
candidate models explained the data best. Instead, we aimed to show that informing our response
time models using quantities from the perceptual model (informed RT family) resulted in a better
explanation of the data than using different variants of response time models that explain response
times independent of the perceptual model (uninformed RT family). RFX BMS represents a hierarchical
approach to model selection, treating the model as a random variable among subjects, allowing for
inference on posterior family and model probabilities. RFX BMS accounts for group heterogeneity
(different participants may be using different winning models/families) and provides robustness
against outliers as opposed to fixed-effects (FFX) procedures (Stephan et al., 2009).

For the family-level RFX BMS, we specified a uniform prior at the family level to avoid biasing our
inference (Penny et al., 2010). We computed the posterior family probabilities which correspond to
the posterior belief that family k generated the data. Additionally, we computed family XPs which
correspond to the belief that family k is more likely than any other of the K families, given the data
from all participants.

Aim 2. A quantitative assessment of whether and how parameters characterising subject-specific
learning behaviour were associated with an individual’s measured response times. To this end, we first
needed to identify a single winning model —i.e. the model that best describes the measured data — by
conducting a second RFX BMS analysis on the entire model space, this time at the level of individual
models.

Once this model had been identified and in case it belonged to the family of informed RT models, we
analysed the influence of the individual regressors of its response time GLM in a second step by
examining the posterior parameter estimates of the winning model. To quantify the importance of
each free parameter, we tested its significance against the initial prior mean (i.e. 0) using one-sample
t-tests at a significance threshold of p < 0.05, Bonferroni-corrected for the number of performed
tests (i.e. free parameters).

Model evaluation

After we had fit our models to empirical data and performed a set of statistical tests to answer our
research questions, it still remained to be evaluated whether our model(s) actually provided a good
explanation of the data, i.e. an assessment of model quality in absolute terms, using posterior
predictive checks (van de Schoot et al., 2021). This approach is distinct from the purpose of (Bayesian)
model comparison which assesses the quality of candidate models in relative terms.

Specifically, we performed qualitative posterior predictive checks (van de Schoot et al., 2021) by
simulating new data conditional on the obtained subject-specific posteriors. For this, we used the
Hessian of the negative log joint at the MAP estimate obtained during the optimisation to determine
the posterior covariance matrix. This allowed us to construct an approximate multi-dimensional
posterior for each model and participant. We then sampled parameter values (N, = 100) from the
calculated approximate posterior densities of each participant and model and used the sampled
parameter values to generate synthetic response data (binary and continuous). Subsequently, the
generated data were compared to the empirical data at an individual subject level. In order to
determine the quality of the posterior predictions of our model, we pre-specified the following criteria
in our analysis plan which we deemed critical characteristics of the collected data set: Calculated
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adjusted correctness of binary responses, and the plausibility of predicted log RT trajectories assessed

in a qualitative fashion.

Results

Model-agnostic results

Here, we report descriptive statistics of behavioural data from N,,,,;, = 59 participants in our main
sample. In Figure 3, mean and standard deviation of trial-wise binary responses and log RTs across
participants are visualised in red. Figure 4A displays a trial-wise summary of percentage of incorrect
responses over all participants. A histogram of log-transformed RTs is presented in Figure 4B.
Behavioural data of individual participants can be found in the Supplementary Material (S1). A one-
way ANOVA of log-transformed RTs did not reveal a significant main effect of factor phase (p = 0.15).

percentage incorrect responses and average absolute PE about the outcome
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Figure 4 | Binary responses and continuous log-transformed response times. In A, the red line
represents a trial-wise summary of percentage of incorrect responses (inverted for true probabilities
0.2 indicated by the black line) over all participants (Np,qin = 59) and the average absolute
prediction error about the trial outcome (|8;]) of M1 in red. Black dots represent the reward of
fractal A on each trial (1=reward, 0=no reward) and the black line shows the underlying probability
structure of the task. B shows the histogram of log-transformed RTs over all participants in ms. The
histogram of residuals of log RT model fits obtained by M1 are visualised in C.

Computational Modelling
Prior specification
A detailed treatment of the initial priors including their sufficient statistics, prior predictive

distributions, and a grid search for different parameter values of the eHGF is presented in the analysis
16
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plan (Table 1, Figures 3 and Al). Here, we focus on the empirical priors which are used for the analysis
of the main data set.

In Figure 5A empirical prior densities for all free parameters of M1 are shown alongside the MAP
estimates from model inversion on the pilot data set (N,;;,; = 20) as well as the initial prior densities.
(Note that these reported empirical priors differ slightly from the specifications in the analysis plan,
which is due to the fact that we are using a later version of TAPAS to run the analysis. However,
qualitatively the empirical priors do not differ between the two versions.) It can be seen that the
informativeness of the priors increased from the initial to the empirical priors. Again, it is worth
emphasising that we avoided problems of circularity (i.e. informing the prior by the same data set in
whose analysis the prior is applied), achieved by using an independent data set to estimate the
sufficient statistics of the empirical priors.

Prior predictive checks using the empirical priors are visualized in Figures 5B and 5C. Figure 5B shows
the distribution of predicted belief trajectories fi; at the outcome level of the eHGF as well as the trial-
wise frequency of simulated binary responses of M1 (Ng;,,, = 100). Since we assume relatively little
decision noise under the empirical priors, the frequency of binary responses is higher than the average
predicted belief for trials where fi; > 0.5 and vice-versa for trials where fi; < 0.5. Figure 5C displays
simulated log RT trajectories for M1 under the empirical priors. Visualisations of the empirical prior
densities, the respective prior predictive distributions at all three levels of the perceptual model as
well as simulated log RT data for all seven models in our model space are included in the
Supplementary Material (S2).

Across models, our prior predictive checks using the empirical priors showed that — as expected by the
construction of the model space — all our models produce similar behaviour at the level of the
perceptual model and how they predict binary response data. By contrast, they differ considerably in
the way they predict log RT data (see Supplementary Material Figures S20-S2P). Moreover, all of them
allow for a wide range of behaviour indicating that the elicited empirical prior densities are flexible
enough to account for inter-individual differences between participants. This serves as qualitative
sanity check of our prior elicitation procedure.
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Figure 5 | Prior configurations of M1. A shows the empirical prior densities for each free parameter
of M1 (solid line) as estimated using MAP estimates (black dots) obtained from a separate pilot data
set (Np;0r = 20) using the initial priors (dashed lines). A detailed description of M1 can be found in
Table 1 and in the main text. Prior predictive distributions under the empirical priors of M1 are
displayed for both response data modalities. In B, belief trajectories about the outcome (i, ) at the
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lowest level of the eHGF is displayed in blue with the thick blue line representing the resulting belief
trajectory using the empirical prior mean parameter values and the yellow line representing the
average simulated binary response (Ng;;;; = 100). In C, simulated log RT data are shown in blue, the
dashed black lines are the boundaries given by the length of the response window in each trial. The
thick blue line represents the average simulated log RT trajectory (Ng;,, = 100).

Validation of computation

Results from the family-level recovery analysis (Figure 6A) show good recoverability of true family
frequencies for the 5000 synthetic data sets (Nfgmsim = 60 simulated subjects per data set).
Reassuringly, both Ef as well as XP values show little to no bias towards either of the two model
families.

Figure 6B shows the 7x7 confusion matrices resulting from Individual-level model recovery analysis. All
models could be identified well above chance level both when evaluating approximate LME winner
frequencies as well as PXP values resulting from RFX BMS on the synthetic data set (Ny;;;, = 100). For
the LME winner classification analysis, the balanced accuracy score is 0.66 which is clearly above 0.19
(the upper bound of the 90%-Cl when assuming chance across all 7 models).

Parameter recovery analysis of M1 is visualised in Figure 6C. All of the nine free parameters of M1 (two
perceptual and seven response model parameters) show good recoverability. All Pearson correlations
between true and recovered parameter values are highly significant (p < 0.001). Recoverability of the
meta-volatility parameter (w3) of the 3-level eHGF for binary inputs is the least robust among all free
parameters of M1 (r = 0.67). Detailed results from parameter recovery analysis of all models are listed
in the Supplementary Material (S3). Most of the model parameters are well recoverable in all of the
seven models. Notably, in all models, the meta-volatility parameter (w3) of the perceptual model is
more challenging to recover than other parameters. However, Figure 6D shows that this depends on
whether information about RTs is considered by the response model or not: models of the informed
RT family (M1-M4) show much better w5 recoverability (with correlation coefficients in the range of
0.67-0.81) compared to models of the uninformed RT family (M5-M7), where correlation coefficients
are in the range of 0.3-0.54. This shows a clear benefit in terms of practical identifiability brought by
the use of response models that combine different data modalities in a way that incorporates states
from the perceptual model in both parts of the response model.
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Figure 6 | Validation of Computation. A shows results from family-level recovery analysis comparing
Ef (left) and XP (right) values with true family frequencies. B depicts results from individual model
level recovery analysis. 7x7 confusion matrices for LME winner frequencies (left) and PXP scores
(right) are shown with data generating models on the y-axis and recovered models on the x-axis. C
visualizes simulated vs. estimated values of all free parameters of M1 (parameter recovery).

20


https://doi.org/10.1101/2024.02.19.581001
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.19.581001; this version posted February 22, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Correlation between simulated and estimated parameter values is indicated using Pearson
correlation coefficients r. In D, recoverability of the w5 parameter of the 3-level eHGF for binary
inputs is visualised for all seven models in the model space including Pearson correlation coefficients
r. Models from the informed RT family (M1-M4) show consistently better w5 recovery compared to
models of the uninformed RT family (M5-M7).

Model comparison

Aim 1. Figure 7A shows the results of the family level RFX BMS on the main data set. The family of
informed RT models is identified as the winning family (XP = 1, Ef = 0.79). In other words, we find
clear evidence supporting the hypothesis that the family of informed RT models explains the collected
data better (trading off accuracy and complexity) compared to models from the uninformed RT family.
This demonstrates the practical utility of the family of informed RT models.

A family level RFX BMS B model level RFX BMS
1 1 1 1
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Figure 7 | Hypothesis testing. A shows the results of the family level RFX BMS (Efs on the left, XPs
on the right) with the informed RT family clearly outperforming the uninformed RT model family. B
displays Efs (left) and PXPs (right) resulting from individual model level RFX BMS. M1 can be
identified as the clear winning model. C shows raincloud plots of the MAP estimates of the M1 GLM
regressors (generated using the RainCloudPlots library). Fine black vertical lines indicate the initial
prior mean values (i.e. 0) and a black star indicates significantly different prior and posterior means

of B, which scales the influence of &1(k) on log RTs (one-sample t-test, p < 0.001).

Aim 2. Figure 7B visualizes the results of the individual model level RFX BMS on the main data set.
Here, M1 is identified as the winning model (PXP = 1, Ef = 0.65), which consists of a 3-level eHGF
for binary inputs combined with the unit-square sigmoid model as binary part and the Lawson-inspired
log RT GLM as continuous part of the response model. Figure 7C displays MAP estimates of the M1 log
RT GLM regressors. Post-hoc one-sample t-tests on posterior means of the log RT GLM parameters of
M1 reveal a highly significant (p < 0.001) difference between initial prior mean (i.e. 0) and posterior
mean values of the parameter f3,, which scales the influence of the informational uncertainty at the

level of the outcome (Bernoulli variance &1(")) from the perceptual model on the log RTs. None of the
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other GLM regressors shows a significant difference between prior and posterior mean values
(Bonferroni-corrected).

Model evaluation

Figure 3 shows that the average binary predictions as well as the average predicted log RTs by M1 over
all participants of the main data set capture the empirical data quite well. In Figure 4A, the trial-wise
percentage of participants giving an incorrect response (inverted for true reward probabilities of 0.2
to improve visual comparability) is compared to the averaged absolute prediction error at the outcome
level (|(§1|) of M1. This qualitative comparison serves as an example of how the low-level prediction
error computed using the 3-level eHGF for binary inputs resembles participants’ performance during
the SPIRL task. Figure 4C displays the residuals of log RT model fits obtained by M1 which are
approximately normally distributed. This is in accordance with the assumption of Gaussian noise in the
log RT GLMs.

Examples of the best, average and worst fits of M1 to single-participant data in terms of the log
likelihood are shown in the Supplementary Material (S1). Overall, belief trajectories at the outcome
level of the eHGF seem to align well with the participants’ binary predictions. Regarding the RT fits,
one can clearly see that individual log-transformed RT data is very noisy. However, a look at the
averaged log RT data across participants and the averaged log RT model fits clearly shows that M1 is
able to pick up the overarching structure in the log RT trajectories (Figure 3). Importantly, models from
the informed RT family (M1-M4) and to some degree also M7 show a close correspondence between
the average of the predicted and the average of the actual RT trajectories (see Supplementary Material
S4).

Results from posterior predictive checks of M1 are shown in Figure 8 and in the Supplementary
Material (S5). These allow for a qualitative assessment of the obtained single-subject posteriors.
Regarding the binary response data, we can clearly see that the adjusted correctness of empirical
response data is within the ranges of values covered by the individual subjects’ posterior predictive
densities for most of the participants (Figure 8A and Supplementary Figure S5A). Concerning the
response time data, we can observe that predicted signal using posterior mean parameter values
captures higher level fluctuations in individual empirical log-transformed RT trajectories (Figure 8B and
Supplementary Figure S5B). Similar to our observations regarding the individual-level RT model fits,
sampled log RT trajectories are very noisy. However, the range of simulated log RT trajectories from
the obtained posteriors aligns well with the individual empirical log RT trajectories. Moreover, the
histograms of simulated log RT data from single-subject posteriors show a higher dispersion for
participants with worse model fits as measured by the log likelihood (Figure 8B).
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Figure 8 | Posterior predictive checks for M1. Data from three participants of the main data set are
shown. Participants were chosen according to goodness of model fit of M1, i.e. participant 21 with
a high log likelihood value, participant 29 showing average goodness of fit and participant 5 showing
the worst fit. A displays adjusted correctness of binary responses for these participants in red. Blue
circles are the simulated adjusted correctness values resulting from sampled parameter values of
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the subject-specific posteriors of M1. The blue probability densities are the estimated posterior
predictive densities based on the samples drawn from the posteriors (N, = 100) using kernel
density estimation as implemented in the RainCloudPlots library. In B, we show empirical log RT
trajectories of the three participants in red. Fine blue lines are simulated log RT trajectories resulting
from sampled parameter values of the subject-specific posteriors and the thick blue line represents
the predicted log RT when using the MAP estimates of M1 for each participant to generate synthetic
RT data. The histograms on the right visualise the distribution of synthetic log RT data generated by
simulating from the subject-specific posteriors.
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Discussion

The present study provides a first application of response models combining two different data
modalities in the framework of the HGF. More specifically, we developed a novel set of response
models simultaneously fitting binary responses and continuous response time data during inference.
Additionally, we developed and implemented an associative learning task, the SPIRL task, in which fast
responses were incentivised, allowing us to model reaction times and binary responses jointly. We
performed extensive simulation analyses and applied our set of combined response models to
behavioural data from the SPIRL task. Our computational approach highlighted the utility of Bayesian
workflow, increasing transparency and interpretability of reported results. We demonstrated the
advantage of combining different response data modalities in a single model for the robustness of
inference. Finally, the analysis of the data from the SPIRL task resulted in a clearly superior model,
providing the best explanation of the data. Inspection of individual parameter estimates of this model
revealed a significant linear relationship between log RT data and informational uncertainty at the level
of the outcome (61(k)).

Combining different response data modalities for robust inference in the HGF

The first motivation for this paper was the development and application of a set of response models
that combined multiple data modalities. In this way, we hoped to address issues related to parameter
recovery and model identifiability in the context of the HGF, especially when dealing with applications
to binary response data (Harrison et al., 2021; Iglesias et al., 2021). We hypothesised that the
combination of different data modalities should increase identifiability, both at the level of parameters
and models. Recoverability of parameters should benefit further from incorporation of perceptual
model quantities in the response models. Indeed, our simulations demonstrated good to excellent
recoverability at all different levels (model parameters, individual models, and model families). We
also showed that recoverability of perceptual model parameters was superior in the family of informed
RT models, which use quantities from the perceptual model as part of the log RT GLM, as opposed to
the family of uninformed RT models.

Comparing the performance of the two model families against empirical data and using family level
RFX BMS, we demonstrated that the data from the SPIRL task were better explained by the family of
informed RT compared to the family of uninformed RT models. Moreover, RFX BMS on the individual
model level revealed M1 as the clearly winning model, providing the best explanation for the empirical
data set.

Our analysis of the regression weights of the log RT GLM of M1 revealed a significant influence of the
parameter [, which scales the contribution of the outcome uncertainty 61(k) in the eHGF. Here, we
refer to outcome uncertainty as the informational uncertainty at the level of the outcome, which
describes the irreducible uncertainty associated with any type of probabilistic prediction. This result is
consistent with the findings of Lawson et al. (2017) who applied a very similar combination of an HGF
perceptual model and a GLM as response model, mapping states of the perceptual model to log RT
data in an associative learning task. In addition, other work that did not use the HGF framework also
found evidence for a relationship between reaction times and the uncertainty of responses (Bonnet &
Ars, 2008).

Harnessing the information of an additional data modality during statistical inference is not a novel
idea. First examples of similar approaches exist in the context of sequential sampling models such as
drift-diffusion models (DDMs) (Kraemer et al., 2021; Pedersen et al., 2017; Shahar et al., 2019) which
have been combined with RL models (Ballard & McClure, 2019; Clithero, 2018; Loeys et al., 2011;
McDougle & Collins, 2021; Mileti¢ et al., 2021). However, in the literature, models combining binary
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choices and continuous response times are far less common than simple binary observation models.
Moreover, our study focuses on a specific generative modelling framework, the HGF, for which the
present study, to the best of our knowledge, represents the first application of a response model
combining different response data modalities to empirical data in combination with the HGF.

There are some limitations to our modelling approach. First of all, for the specification of our model
space we assumed independence between the two response data modalities (binary responses and
response times) conditional on the parameters of the perceptual model. For future applications, one
may consider finessing the current formulation. Second, MAP inference is a rather simplistic technique
for Bayesian inference where the posterior uncertainty needs to be approximated post-hoc.
Alternatives would be VB or MCMC methods which directly include an estimate of the posterior
uncertainty. Moreover, the chosen inference method is based on a variant of gradient descent, which
might not be optimal for dealing with multimodal posteriors. We tried to combat this shortcoming by
adopting a multistart approach to prevent the optimisation from getting stuck at local extrema. The
results from parameter recovery analysis suggested that the chosen inference scheme is appropriate
for the application at hand.

The presented combined response models for the HGF framework have potential for applications in a
variety of tasks and domains. In principle, our modelling approach can be applied to any two different
data modalities of interest, e.g. behavioural, physiological, neurophysiological data, etc. However, it is
important that the data modalities of interest contain relevant information that can be picked up by
the model. This can be demonstrated e.g. by comparing different models with a null model in a
candidate application, similar to the comparison of different model families in this study.

We hope that the use of combined response models can be particularly useful in TN/CP. Typical
constraints for the design of clinically applicable paradigms include limited number of trials and
complexity constraints for tasks, which limit the number of data points and ultimately constrain
inference. Added information from a second data modality may compensate for these limitations and
thus help improve the robustness of results.

Bayesian workflow for generative modelling in TN/CP

The second motivation for this paper was to highlight the key ingredients of Bayesian workflow and
illustrate its application. In TN/CP, generative models not only represent central tools for inference on
disease-relevant cognitive and neurophysiological mechanisms (Stephan & Mathys, 2014) but also
frequently serve to provide low-dimensional and mechanistically interpretable features for machine
learning (generative embedding; Stephan et al., 2017). The robustness of results from generative
modelling is therefore of major importance in TN/CP and can benefit from incorporating general (field-
unspecific) methodological and conceptual developments concerning BDA.

In BDA, the choice of priors plays an important role for identifiability, reliability and predictive validity
of model-fitting results (Gershman, 2016). Yet, the importance of priors is easily overlooked and little
attention is usually devoted to systematic description and analysis thereof. Similarly, validation of the
chosen inference technique (including the effects of approximations and the choice of optimisation
algorithms) as well as model evaluation are often neglected. This is especially critical in TN/CP, since
the potential success of computational modelling endeavours for clinical applications is inextricably
tied to the robustness of inference. Hence, transparency with regard to the hyperparameters of an
analysis pipeline is important and requires a detailed description of individual analysis steps.

Importantly, we did not invent the Bayesian workflow presented here; instead, it was derived from
previous proposals (e.g. Betancourt, 2020; Gelman et al., 2020; Schad et al., 2020; van de Schoot et al.,
2021) and augmented by additional components, e.g. Bayesian model selection at the family level
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(Penny et al., 2010). These steps are summarised visually in Figure 2 and include the specification of
aninitial model space, prior elicitation and prior predictive checking, the choice of a Bayesian inference
algorithm and concurrent validation of computation, model comparison procedures, and model
evaluation.

Using the well-known Bayesian workflow by Gelman and colleagues (2020) for comparison, our
approach introduces several extensions. First, our procedure for elicitation of prior distributions
involves an independent data set, allowing us to obtain a set of data-informed priors representative of
actual human behaviour while at the same time avoiding problems of double-dipping. Second, the
analysis was pre-specified in its entirety, (the only change concerned using a more current version of
TAPAS, a deviation which we explicitly mention above). This pre-specification is somewhat in
contradiction to the iterative procedure proposed by Gelman and colleagues, but we consider this a
strength of our approach. Given the many degrees of freedom and the numerous cognitive biases that
scientists may inadvertently be affected by, pre-registration is an important and effective protection
for researchers against fooling themselves (Nosek et al., 2018). Our point is not that iterative model
building should not be part of Bayesian workflow; however, we believe that it is important to combine
it with ‘guard railings’ (such as a preregistered analysis plan). Additionally, whenever possible,
independent data sets should be used, both for specifying priors and for evaluating the generalisability
of the obtained results. We appreciate that this may not always be possible, for example, in situations
where data sets result from rare, or even unique, events.

We are aware that the proposed Bayesian workflow is not perfectly generalizable to every application
of generative models in TN/CP. It should rather be seen as a blueprint that can be adapted and
extended to specific cases of generative modelling. Furthermore, there are important elements of
Bayesian workflow which we did not implement and discuss here in detail. For example, there are
principled (but computationally expensive) approaches to validating Bayesian inference algorithms
such as simulation-based calibration (SBC) (Talts et al., 2018). Also, when using sampling-based
approximations to the posterior, additional diagnostics (e.g. concerning convergence) are required.
Previous papers on BDA provide detailed discussions of these (and other) topics (Betancourt, 2020;
Gelman et al., 2013, 2020; Schad et al., 2020; van de Schoot et al., 2021).

In summary, this paper provided an illustrative application of Bayesian workflow in the context of an
associative learning task that allowed for simultaneously modelling two behavioural readouts. We
hope that this example will help pave the way towards standard adoption of Bayesian workflow and
contributes to efforts of improving the transparency and robustness of results in TN/CP.
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