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Abstract 
Computational (generative) modelling of behaviour has considerable potential for clinical applications. 

In order to unlock the potential of generative models, reliable statistical inference is crucial. For this, 

Bayesian workflow has been suggested which, however, has rarely been applied in Translational 

Neuromodeling and Computational Psychiatry (TN/CP) so far. Here, we present a worked example of 

Bayesian workflow in the context of a typical application scenario for TN/CP. 

This application example uses Hierarchical Gaussian Filter (HGF) models, a family of computational 

models for hierarchical Bayesian belief updating. When equipped with a suitable response model, HGF 

models can be fit to behavioural data from cognitive tasks; these data frequently consist of binary 

responses and are typically univariate. This poses challenges for statistical inference due to the limited 

information contained in such data. We present a novel set of response models that allow for 

simultaneous inference from multivariate (here: two) behavioural data types. Using both simulations 

and empirical data from a speed-incentivised associative reward learning (SPIRL) task, we show that 

harnessing information from two different data streams (binary responses and continuous response 

times) improves the accuracy of inference (specifically, identifiability of parameters and models). 

Moreover, we find a linear relationship between log-transformed response times in the SPIRL task and 

participants9 uncertainty about the outcome.  

Our analysis illustrates the benefits of Bayesian workflow for a typical use case in TN/CP. We argue 

that adopting Bayesian workflow for generative modelling helps increase the transparency and 

robustness of results, which in turn is of fundamental importance for the long-term success of TN/CP.  
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Introduction 
Psychiatry suffers from a dearth of tests that are based on biological or cognitive mechanisms (Kapur 

et al., 2012). In response, computational approaches to psychiatry begun gaining attention a decade 

ago (Montague et al., 2012). A particular focus has been on generative models and their potential for 

inference on individual disease mechanisms, as a basis for overcoming the limitations of contemporary 

symptom-based diagnostic classifications (Stephan & Mathys, 2014).  

Computational approaches to psychiatry encompass two main branches: Translational Neuromodeling 

(TN) which is concerned with the development and validation of computational assays – i.e. generative 

models for inferring mechanisms underlying neurophysiology, behaviour, and cognition – and 

Computational Psychiatry (CP) which focuses on the application of these models to clinical questions 

such as differential diagnosis, stratification, and treatment prediction. Generative models represent a 

cornerstone of TN/CP because they (i) exploit the advantages of Bayesian approaches to inference, (ii) 

enforce mechanistic thinking, and (iii) provide estimates of system states and/or parameters that 

enable interpretable out-of-sample predictions by machine learning (an approach called generative 

embedding; for review, see Stephan et al., 2017).  

However, there are numerous practical challenges for generative modelling. These include – but are 

not limited to – the choice of sensible priors for model parameters, identifiability both at the level of 

parameters and models, validation of the inference algorithm, as well as questions regarding model 

evaluation. Successfully managing these challenges is essential in order to obtain robust statistical 

results from Bayesian data analysis (BDA), which in turn is paramount to the success of TN/CP.  

The motivation for this paper is twofold: First, we present a novel generative model in the framework 

of the Hierarchical Gaussian Filter (HGF; Mathys et al., 2011, 2014), a computational model for 

hierarchical Bayesian belief updating that has seen numerous applications in TN/CP (e.g. Hein et al., 

2021; Iglesias et al., 2013; Lawson et al., 2017, 2021; Marshall et al., 2016; Powers et al., 2017; Sapey-

Triomphe et al., 2023; Sporn et al., 2020). Our new generative model exploits two sources of 

information from behavioural responses, namely trial-wise predictions (binary responses) and 

associated response times (RTs). By exploiting two coupled streams of information for model inversion, 

we hoped to increase both parameter and model identifiability – issues which have proven challenging 

for some HGF applications (Bröker et al., 2018), particularly with binary response data (e.g. see 

Harrison et al., 2021; Iglesias et al., 2021). In order to acquire suitable data for this endeavour, we 

developed a novel speed-incentivised associative reward learning (SPIRL) task. In combination with a 

set of custom-built combined response models in the HGF framework, we demonstrate the utility of 

our dual-stream generative model, using both simulations and empirical data from the SPIRL task.  

Second, we provide a worked example of Bayesian workflow that may usefully guide application of 

generative models in TN/CP, beyond the particular examples studied in this paper. This example 

extends previous tutorials that discussed a workflow for modelling behavioural data, but were 

restricted to frequentist (maximum likelihood) estimation (Wilson & Collins, 2019). We emphasise that 

the Bayesian workflow presented in this paper was not invented by us. Instead, it was derived from 

earlier proposals by others (Betancourt, 2020; Gelman et al., 2020; Schad et al., 2020; van de Schoot 

et al., 2021) and enriched with additional components, e.g. Bayesian comparison of model families 

(Penny et al., 2010). We focused on those steps of BDA that – independent from the chosen inference 

scheme – are particularly relevant for robustness of results from generative models. 
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Methods 
The analysis methods of this study were specified in a preregistered analysis plan (see section below 

for details). For consistency, we reuse text from our analysis plan in this Methods section, in adapted 

and extended form. We start by describing the behavioural learning task which was developed for this 

study. In what follows, we give a detailed summary of our modelling approach, both the development 

of novel response models combining different data modalities in the framework of the HGF as well as 

their application within Bayesian workflow. Our analysis had the following two central aims:  

Aim 1: Provide a quantitative comparison of response models (for the HGF) that utilise binary and 

continuous-valued response data in different ways. 

Aim 2: Provide a quantitative assessment of whether (and how) parameters characterizing subject-

specific learning behaviour are associated with an individual9s measured response times. 

Analysis Plan, Data and Code Availability 

A version-controlled and time-stamped analysis plan was created, detailing the analysis pipeline ex 

ante. The analysis plan provides a more in-depth description of the analysis protocol and is provided 

at https://doi.org/10.5281/zenodo.10669944. For the analysis, a custom-built pipeline was 

implemented in MATLAB R2019b (The MathWorks, Natick, MA, USA; code available at 

https://gitlab.ethz.ch/tnu/code/hessetal_spirl_analysis). Various open-source software packages 

were used for the analysis such as the HGF Toolbox (v7.1) as part of the 8Translational Algorithms for 

Psychiatry-Advancing Science9 (TAPAS v6.0.1, commit 604c568) package (Frässle et al., 2021),  the 

Variational Bayesian Analysis Toolbox (VBA, commit aa46573; Daunizeau et al., 2014) and the 

RainCloudPlot library (commit d5085be, Allen et al., 2021). Note that we are using an updated version 

of TAPAS compared to what was stated in the analysis plan; this version already includes functionalities 

to use combined response models with the HGF. All of these packages are included as submodules in 

the analysis code repository. The entire analysis pipeline underwent an internal code review (by a 

researcher not involved in the initial data analysis) in order to identify errors and ensure reproducibility 

of results. The data set used for the analysis is available on Zenodo 

(https://doi.org/10.5281/zenodo.10663643) in a form adhering to the FAIR (Findable, Accessible, 

Interoperable, and Re-usable) data principles (Wilkinson et al., 2016). We used Psychtoolbox-3 (Kleiner 

et al., 2007) to program the task of this study. The code that we used to run the experiment in the lab 

is available at https://gitlab.ethz.ch/tnu/code/hessetal_spirl_task. 

Behavioural Study Procedure 

Participants 

In total, 91 right-handed healthy individuals (59 females, 32 males; age 24.7±4.3) completed the study. 

The data set consists of a pilot data set (� = 23) and a main data set (� = 68). For lack of a better 

term, we refer to the former as a 8pilot9 data set; however, we emphasise that from the beginning, the 

designated purpose of this data set was to inform the specification of priors by independent data. All 

participants gave written informed consent prior to data acquisition and were financially reimbursed 

for their participation. The study was approved by the Ethics Commission of ETH Zurich (ETH-EK-Nr. 

2021-N-05).  

Our study applied the following exclusion criteria for participation: known psychiatric or neurological 

diseases (past or present), regular intake of medication (except contraceptives), current participation 

in other studies using pharmacological interventions or stimulation of brain nerves, and alcohol or drug 

intake during three days prior to the measurement.  

Additionally, we excluded measured data sets from analysis according to quality criteria that had been 

pre-specified in the analysis plan. These criteria included: failure to complete the task, >10 ignored (no 
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response and feedback) or irregular (RT <0.1s) trials, and <65% correct responses (adjusted for the 

probabilistic nature of the task). Eleven of the participants were excluded because they did not meet 

our criteria for adequate data quality and one participant was excluded due to contradicting 

information regarding the exclusion criteria, leaving us with a data set of �āāāÿþ = 79 (pilot data set �Ă�þāā = 20, main data set �ÿÿ�Ā = 59; 52 females, 27 males; age 24.7±4.4). 

Behavioural paradigm 

Each participant attended one experimental session during which they performed the SPIRL task 

(Figure 1). In this task, participants were required to learn the probabilistic association between two 

fractals and a monetary reward over a period of 160 trials. In each trial, participants were asked to 

select one of the two displayed fractals during a response window of 1.7s. After 1.7s from the trial 

onset, the outcome of the trial was revealed to the participant, i.e. whether the selected fractal was 

associated with a monetary reward on the given trial. Subsequently, a new response window started, 

and participants were again able to choose between the two fractals. Participants received visual 

feedback about their response times on every trial via a time bar. A customised payoff structure served 

to incentivise fast responses while still emphasizing the importance of correct predictions (Heitz, 

2014). For details regarding the reward calculation, please refer to the analysis plan (Appendix A). 

Participants were informed about the payoff structure before the experiment. The trial structure is 

visualised in Figure 1a.  

The probability of reward for one of the two fractals in the SPIRL task is shown in Figure 1b. The black 

dots indicate whether the respective fractal was rewarded on a given trial (1=reward, 0=no reward). 

The reward probabilities of the two fractals were designed to be complementary (summing to 1 at any 

given point during the experiment). Thus, the reward probability of the second fractal was simply the 

mirrored trajectory of the displayed trajectory, and on every trial exactly one of the two fractals was 

rewarded. Critically, the underlying probabilistic associations were changing over time during the 

experiment. The probability sequence was designed to incorporate different phases during the task 

indicated by colour shadings: phases with high volatility (blue), i.e. rapid switches in probability; phases 

where the probability was stable over a prolonged period of time (white); a phase with high 

uncertainty, i.e. where the outcome is unpredictable (grey). The probability sequence was fixed across 

participants to ensure comparability of the induced learning process. The factors fractal position 

(which of the two fractals was presented left) and fractal reward probability (which fractal was 

associated with a high reward probability in the beginning of the task) were counterbalanced across 

participants in the sample. Participants were told that on each trial, one of the two fractals would be 

rewarded and were informed about the probabilistic nature of the association between the two 

fractals and the monetary reward. They were also informed about the reward probabilities of the two 

fractals being complementary and that these probabilities were subject to changes throughout the 

experiment. Importantly, a priori they had no information about the values these probabilities could 

take as well as the order and duration of different blocks with constant probabilities.  
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Figure 1 | The speed-incentivised reward learning (SPIRL) task. A shows the trial structure of the 

SPIRL task protocol. A yellow and a green fractal were presented on every trial together with a time 

bar indicating the remaining time of the 1.7s long response window. The participants had to predict 

on each trial, which fractal would be rewarded monetarily. After the response window, the trial 

outcome was revealed (reward/no reward) concurrently with the start of the new response window 

of the next trial. In B, the probability of reward for one of the two fractals over the entire 160 trials 

is displayed (black line). The individual trial outcomes for this fractal are indicated by black dots 

(1=reward, 0=no reward). The reward probabilities of the two fractals were complementary 

(summing to 1) across the entire task. The colour shadings represent different phases during the 

task (white: stable; blue: high volatility, grey: highly unpredictable). 
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Analysis 

Model-agnostic analyses 

The acquired behavioural data from the SPIRL task (binary responses and continuous response times) 

were subject to several descriptive analysis steps, mostly in the form of different visualisations of the 

data set. The goal of these steps was to perform a set of basic sanity checks and to identify particular 

characteristics of the data set. For the binary response data, adjusted correctness of the participants9 
predictions (adjusted in the sense that we account for the probabilistic structure of our experiment as 

in (Iglesias et al., 2021), meaning that out of the total 160 trials, 122 correct predictions amount to an 

adjusted correctness of 100% in this task) was calculated as part of the inclusion criteria for the 

analysis. The descriptive analysis of the response times included different visualisations of the log-

transformed response time trajectories as well as their empirical distribution in a histogram. 

Furthermore, we compared log RTs by task phase (stable, volatile and unpredictable according to the 

colour shadings in Figure 1). A one-way ANOVA of average log RTs over subjects including the factor 

phase was conducted as a quantitative assessment of the effect of task phase on log RTs. 

Computational modelling 

For the model-based analysis, we follow the general steps of Bayesian workflow outlined in previous 

work (Betancourt, 2020; Gelman et al., 2020; Schad et al., 2020; van de Schoot et al., 2021) and 

adjusted it to our specific application at hand. Our Bayesian workflow includes the specification of an 

initial model space, the choice of suitable prior configurations, the choice of model inversion technique 

and its validation, model inversion given the empirical data set, model comparison (hypothesis testing), 

and model evaluation. The general steps of Bayesian workflow as well as their implementation in the 

context of our application are visualised in Figure 2 and described in more detail below. 
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Figure 2 | Bayesian workflow for generative modelling in Computational Psychiatry. The general 

steps of Bayesian workflow are visualised. These include the specification of a model space, prior 

specification, model inversion and validation of computation, model comparison as well as model 

evaluation. For each step, the concrete implementation in the context of our application is shown. 

Above the dashed line are analysis steps that involve the pilot data set as well as synthetic data 

generated using parameter values sampled from the priors. Below the dashed line are analysis steps 

including the main data set and synthetic data generated using parameter values sampled from the 

posteriors. Filled red boxes are analysis steps involving synthetic data. The green boxes highlight 

analysis steps that specifically refer to our research aim 1 (comparison of RT model families) and 

research aim 2 (assessment of individual RT model parameters). 
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Model space 

The set of models was based on hierarchical Gaussian filtering (HGF), a generative modelling 

framework for hierarchical Bayesian belief updating, describing the evolution of (hidden) states and 

how these give rise to the sensory inputs (Ă) an agent receives (Mathys et al., 2011, 2014). We used a 

3-level enhanced HGF (eHGF) for binary inputs for the current application, where the states evolve as 

Gaussian random walks (GRW) at all but the first level and the step-size of the GRW at any given level 

depends on the next higher level (variance-coupling). The probability of the binary states at the lowest 

level originates from a sigmoid transformation of the quantity at the second level. The generative 

model of the eHGF is visualized as graphical model in the upper part of Figure 3 and described by the 

following set of equations � (þ3(ý)|þ3(ý21), �3) = � (þ3(ý); þ3(ý21), ÿ(�3)) � (þ2(ý)|þ2(ý21), þ3(ý)) = � (þ2(ý); þ2(ý21), ÿ(�2ý3(�)+�2)) 

� (þ1(ý)|þ2(ý)) = Ā (þ2(ý))ý1(�) (1 2 Ā (þ2(ý)))12ý1(�) , ýÿā/ Ā(þ) ≝ 11 + ÿ(2ý) 

� (Ă(ý)|þ1(ý)) = (Ă(ý))ý1(�)(1 2 Ă(ý))12ý1(�)
 

Further details and equations of the generative model can be found in Mathys et al. (2011). 

The 3-level eHGF for binary inputs represents a concrete implementation of the meta-Bayesian 

8observing the observer9 framework, where an observation or response model serves to specify a 

mapping from inferred beliefs of an agent to observed responses as recorded during our experiment 

(Daunizeau et al., 2010a; Daunizeau et al., 2010b). The response model uses the perceptual model 

indirectly via its inversion (Mathys et al., 2014). In this study, we augmented the perceptual model 

(eHGF) with a novel set of response models combining binary responses and continuous-valued 

response times.  

In the eHGF, variational inversion of the agent9s model of the world (perceptual model) using 

Variational Bayes (VB) under a mean-field approximation and a quadratic approximation to the 

variational energies give rise to a set of analytical trial-by-trial update equations that resemble the 

general structure of Reinforcement Learning (RL) models but explicitly represent inferential 

uncertainty. For example, the update of the belief at the second level of the eHGF about the cue-

outcome contingency takes the form of �2(ý) = �2(ý21) + �2(ý)�1(ý)
 

where superscripts refer to trial indices and subscripts to the level in the hierarchy of the model. In 

other words, the prediction (�2(ý)
) at trial k is equal to the sum of the prediction at the previous trial �2(ý21)

 and a learning rate �2(ý)
 multiplied with a prediction error term �1(ý)

. Here the prediction error �1(ý)
 describes the mismatch between the actual (Ă(ý)) and the predicted sensory input (�̂1(ý)

) �1(ý) ≝ Ă(ý) 2 �̂1(ý)
 

where the predicted sensory input is simply a sigmoid transformation of the belief at the second level �̂1(ý) ≝ 11 + ÿ2�2(�−1)  
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Notably, in the HGF, the learning rate �2(ý)
 is dynamic and corresponds to a function of the temporary 

evolving uncertainty of the agent9s belief about the cue-outcome contingency �2(ý)
. A full account of 

the update equations describing the evolution of beliefs at all levels of the 3-level eHGF for binary 

inputs can be found in the analysis plan (Appendix A3). 

  
 

Figure 3 | Graphical model representation of M1. In the left part of the figure, a schematic 

representation of the generative model of the 3-level eHGF for binary inputs (perceptual model) is 

presented above the dashed arrows. Below the dashed arrows, the response data modalities are 

visualised (response model). Shaded circles represent known quantities (inputs shaded black, 

response data shaded red). Unshaded circles represent estimated time-independent parameters 

(black circles) and time-varying states with trial indices as superscript. Dashed lines indicate the 

result of an inferential process, i.e. the response model builds on a perceptual model inference. Solid 

lines indicate generative processes. Dark turquoise lines indicate the probabilistic network on trial �. Light turquoise lines indicate the network at other points in time. On the right side of the figure, 

average belief trajectories of the perceptual model are shown in blue in the upper four panels. The 

four belief trajectories represent the average trajectory over participants (�ÿÿ�Ā = 59) of the states 

that enter the log RT GLM of M1. In the lower two panels, average response data over participants 

are shown. For the binary response modality, the red line represents average binary prediction 

(ÿ̅Ā�Ā), the blue line represents the average belief about the probability of the outcome (�̂1) 

according to M1. For the continuous response modality, the red line represents average log-

transformed RTs and the average predicted log RTs by M1 are shown in blue. 
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We defined a set of combined response models that are all paired with a 3-level eHGF for binary inputs 

(perceptual model). The combination of binary responses and continuous response times in these 

response models is accomplished by summing the log-likelihood of two individual response models, 

assuming independence of the two response data modalities conditional on the parameters of the 

perceptual model. All seven models in our model space are listed in Table 1. 

As binary part of the response model, we used a unit-square sigmoid function mapping from the belief �̂1(ý)
 at the lowest level of the eHGF that the next outcome will be 1 onto the probabilities � (ÿĀ�Ā(ý) = 1) 

and � (ÿĀ�Ā(ý) = 0) that the agent will choose response 1 or 0 (for simplicity, in the following equation 

we use �(ý) ≝ �̂1(ý)
 and we omit time indices on ÿ and �): 

�(ÿĀ�Ā|�, �) = ( ���� + (1 2 �)�)þ( (1 2 �)��� + (1 2 �)�)12þ 

Here, the parameter � determines the steepness of the sigmoid function and is referred to as inverse 

decision temperature or inverse decision noise. For reasons of comparability, the binary part was kept 

constant across all response models in our model space. 

For the continuous part of the response models, we used seven different variants of a general linear 

model (GLM) to predict the log-transformed RTs on a trial-by-trial basis. The regressors of models 1-4 

(M1-M4) are belief trajectories from the perceptual model (eHGF), e.g., an individual9s estimated 
uncertainty about the outcome (��1(ý)

) at trial �. This was inspired by the approaches used in previous 

work where reaction time data had been modelled using the HGF framework (Lawson et al., 2017, 

2021; Marshall et al., 2016). A set of alternative combined response models (M5-M7) predicted RTs 

independently of the perceptual model (eHGF); including these models allowed us to test whether 

informing RTs by inferred states from the eHGF would improve the models at all.  

Our model space can thus be divided into 2 families based on the continuous part of the response 

models (since the perceptual model and the binary part of the response models were held constant). 

M1-M4 are 8informed9 RT models and M5-M7 are 8uninformed9 RT models. Note that Bayesian model 

comparison is based on the (log) evidence and therefore requires the data to be the same across all 

models. In our case, it is thus not possible to include a model that does not model RT at all in the model 

comparison. 

The GLM equations of M1-M7 are listed in Table 1, and a graphical representation of M1 is presented 

in Figure 3. Concerning the first (informed) set of models, the GLM of M1 was adapted from a model 

used by Lawson et al. (2017) and tailored towards the specific properties of the SPIRL task. Models M2-

M4 are custom built response models with the following underlying motivation: Firstly, the goal was 

to reduce the number of regressors entering the GLM and hence the complexity of the models 

compared to M1. Secondly, the idea was to include different types of uncertainty from different levels 

of the hierarchy described by the perceptual model (eHGF). The eHGF accommodates various forms of 

uncertainty. Two sources of uncertainty, informational and environmental uncertainty, respectively, 

are represented in the update equations of the eHGF. M2 includes estimates of informational 

uncertainty (�2(ý)
) and phasic volatility (�̂3(ý)

). M3 includes estimates of informational uncertainty at 

the outcome level (��1(ý)
) and at the second level (�2(ý)

) as well as environmental (ÿ(�2�3(�−1)+�2)
) 

uncertainty whereas M4 only includes estimates about the two latter quantities. For a more detailed 

discussion of the different forms of uncertainty captured by the eHGF, please see Mathys et al. (2014).  

By contrast, the second (uninformed) set of models, M5-M7, have response time GLMs where the 

regressors are independent of the perceptual model. M5 is a null model, representing the assumption 
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that log RTs are simply noise around a constant intercept. M6 allows for a linear decay over time in the 

response times, and M7 corresponds to a null model with two different intercepts for correct and 

incorrect response trials (referring to the binary response data). 

 

Table 1 | Model Space. All seven models in our model space are composed of a perceptual (Prc) 

model and an observation (Obs) or response model. The perceptual model as well as the binary part 

of the response model is held constant across all seven models. The equations of the log RT GLMs 

(continuous part of the response model) of M1-M4 (family of informed RT models) contain belief 

trajectories of the perceptual model as regressors. The update equations for the perceptual model 

(eHGF) are listed in the analysis plan. M5-M7 (uninformed RT family) predict log RTs independent of 

the perceptual model. 

 

Model Prc model 
Obs model  

(continuous) 

Obs model  

(binary) 

M1 eHGF 

 log (ÿÿā(ý)) ~ � (�0 + �1�(ý21) + �2��1(ý) + �3��2(ý)+ �4ÿ��3(�) , �) ýÿā/  �(ý21) ≝ {2 log2( �̂1(ý21))              ÿĀ Ă(k21) = 12 log2( 1 2 �̂1(ý21))      ÿĀ Ă(k21) = 0 

 

Unit-square 

sigmoid 

M2 eHGF 

 log (ÿÿā(ý)) ~ �(�0 + �1�2(ý) + �2�̂3(ý), �) 

 

Unit-square 

sigmoid 

M3 eHGF 

 log (ÿÿā(ý)) ~ �(�0 + �1��1(ý) + �2�2(ý) + �3ÿ(�2�3(�−1)+�2), �) 

 

Unit-square 

sigmoid 

M4 eHGF 

 log (ÿÿā(ý)) ~ �(�0 + �1�2(ý) + �2ÿ(�2�3(�−1)+�2), �) 

 

Unit-square 

sigmoid 

M5 eHGF 

 log (ÿÿā(ý)) ~ �(�0, �) 

 

Unit-square 

sigmoid 

M6 eHGF 

 log (ÿÿā(ý)) ~ �(�0 + �1 �� , �) 

 

Unit-square 

sigmoid 

M7 eHGF 

 log (ÿÿā(ý)) ~ �(�0(ý), �) ýÿā/  �0(ý) ≝ { ÿ,          ÿĀ  ÿĀ�Ā(k21) = Ă(k21)Ā,          ÿĀ  ÿĀ�Ā(k21) b Ă(k21) 

 

Unit-square 

sigmoid 
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Prior specification 

Prior elicitation. Since the central questions of the present study are addressed by Bayesian model 

comparison (whose central quantity, the model evidence, takes into account the models' priors), the 

specification of priors is a critical step. We aim to specify priors that lay in the range of actual human 

behaviour for the present task, while at the same time minimising the subjectivity involved in the 

choice of priors. In order to avoid problems of double-dipping, we made use of an independent data 

set, i.e. the 20 participants from our pilot study, for the elicitation of prior densities. Recently, similar 

approaches have been used for comparable modelling endeavours (Harrison et al., 2021; Schöbi et al., 

2021). We used a two-step procedure for elicitation of prior densities that were subsequently used in 

the analysis of the main data set (for the results, see Supplementary Material S2). We estimated the 

sufficient statistics (mean and variance) of the prior densities as follows (all priors take the form of a 

normal distribution): 

1. Inversion of M1-M7 given the pilot data set (�Ă�þāā = 20) using initial prior means and 

variances. These initial prior means and variances represent the default prior configurations of 

the eHGF in the HGF Toolbox. 

2. For every model �, we defined:  

a. a new prior mean ��ÿ as the robust mean estimate over Maximum a posteriori (MAP) 

estimates obtained in step 1.  

b. a new prior variance ��ÿ as the robust variance estimate over MAP estimates 

obtained in step 1. 

For the robust estimation of mean and variance, we used a variant of the minimum covariance 

determinant (MCD) method, namely the FAST-MCD algorithm developed by (Rousseeuw & Van 

Driessen, 1999), as implemented in the 8robustcov9 function in MATLAB R2019b. We refer to this new 

set of priors, that we estimated via the above described procedure, as empirical priors (as informed by 

the pilot data set). Please note that our procedure is distinct from commonly employed 8empirical 

Bayesian9 procedures that estimate priors and parameter values from the same data set, using a 

hierarchical model. The advantage of our procedure is that the data which inform the choice of priors 

is fully independent from the data that inform parameter estimation. 

Prior predictive checking. In order to get an intuition for the range of behaviours which can be 

generated by our models under the initial and empirical priors, we looked at their prior predictive 

distributions. More specifically, we randomly sampled 100 parameter values from the respective prior 

densities and simulated belief trajectories and responses. Adequacy of our chosen prior distributions 

was determined in a qualitative manner (visualisations) as well as in a quantitative fashion in the form 

of different recovery analyses (see paragraph 8Validation of model inversion9). More detailed 

information describing our choice of priors and prior predictive checking can be found in the analysis 

plan. 

Model inversion 

We inverted the generative models using approximate Bayesian inference as implemented in the HGF 

Toolbox. MAP estimates are computed as the minimum of the negative log joint using gradient-based 

optimisation techniques. By default, the HGF Toolbox uses an optimisation algorithm from the quasi-

Newton methods family (Broyden-Fletcher-Goldfarb-Shanno algorithm; BFGS) (Broyden, 1970; 

Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). The covariance of the posterior was obtained under a 

Laplace approximation to the negative log joint at the MAP. This allowed for the specification of 

credible intervals on the obtained parameter estimates as well as the calculation of an approximate 

log model evidence (LME) as a measure of 8model goodness9. For the present analyses, a multi-start 

optimisation approach was used to alleviate issues with the optimisation algorithm getting stuck in 
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local extrema of the objective function. Specifically, 400 different starting points were used for the 

inversion of each subject and model. Of these 400 starting points, one always corresponded to the 

prior mean values of the different parameters (representing the default setting in the HGF Toolbox), 

whereas the other 399 starting points were randomly sampled values from the respective prior density 

of the parameters. 

It should be noted that this choice of inference technique means that we are dealing with a simplified 

case of BDA. That is, we only obtain a point estimate of the posterior and approximate the posterior 

uncertainty. An advantage of our model inversion procedure is the computational efficiency and the 

avoidance of concerns about convergence, as in the case of Markov Chain Monte Carlo (MCMC) 

procedures. Having said this, for the specific purpose of our paper, the choice of model inversion 

approach is not critical. 

Validation of model inversion 

To examine the identifiability of parameters from the models in our model space, we performed a set 

of and recovery analyses using synthetic data (for a tutorial introduction to recovery analyses, albeit 

in the context of maximum likelihood estimation, see Wilson and Collins (2019)). Examining the 

identifiability (or recoverability) of parameters and models can also be seen as a test of face validity, 

i.e. asking whether the models actually do what they are supposed to do: allowing for veridical 

parameter estimates and representing a distinct explanation of observed data that can be 

distinguished from other explanations. This step is an important part of Bayesian workflow because it 

establishes a boundary between the type of questions that can be addressed using the model space at 

hand, and those questions for which a meaningful answer cannot be expected. In other words, we 

assessed whether in principle (i.e., knowing the 8true9 data-generating models and parameter values), 

we would be able to identify the data-generating model as the model that explained the data best 

(model identifiability) and the parameter values of the data generating model (parameter recovery), 

respectively. In a second step, we assessed whether data-generating model families could be 

recovered using family-level comparisons. 

For each model, we generated a synthetic data set (�Ā�ÿ = 100) by randomly drawing 100 samples 

from the empirical prior densities and plugging these values into the likelihood function. We then fit 

the synthetic data sets by each of the models in our model space under the respective empirical priors. 

Parameter recovery was assessed by visually comparing simulated parameter values to MAP estimates 

obtained using the data-generating model and by calculating Pearson correlation coefficients ÿ. Model 

identifiability was quantified both as the proportion of correctly identified models according to 

approximate LME scores in a classification analysis, and calculating protected exceedance probabilities 

(PXP) as part of random-effects (RFX) Bayesian model selection (BMS) (Rigoux et al., 2014; Stephan et 

al., 2009). Moreover, we computed a balanced accuracy score for the LME winner classification and 

compared it to the upper bound of a 90%-CI when assuming each model to be selected with equal 

probability. Family level recovery was quantified using approximate LME scores obtained during the 

model identifiability analysis to create 59000 synthetic data sets of ��ÿÿĀ�ÿ = 60 subjects each, with 

different ratios of data generating families. We compared true family frequencies with expected 

posterior family frequency (Ef) and family exceedance probabilities (XP) resulting from family-level RFX 

BMS (Penny et al., 2010). More details on the background of BMS methods can be found in the next 

section (8Model comparison9) and in the referenced literature. 

Model comparison 

After careful investigation of our model space and validation of the chosen inference algorithm, we 

inverted the models given the main data set in order to address the following aims: 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 22, 2024. ; https://doi.org/10.1101/2024.02.19.581001doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.581001
http://creativecommons.org/licenses/by/4.0/


15 

 

Aim 1. Perform a quantitative comparison of response models that utilise binary and continuous-

valued response data in different ways. More specifically, we tested whether the family of informed 

RT models explained the collected data better than the uninformed RT model family, or vice-versa. To 

this and, we performed family-level RFX BMS as implemented in the VBA Toolbox. Family-level 

inference serves to reduce uncertainty about aspects of model structure other than the characteristic 

of interest (Penny et al., 2010). In the present study, we had no specific hypothesis about which of our 

candidate models explained the data best. Instead, we aimed to show that informing our response 

time models using quantities from the perceptual model (informed RT family) resulted in a better 

explanation of the data than using different variants of response time models that explain response 

times independent of the perceptual model (uninformed RT family). RFX BMS represents a hierarchical 

approach to model selection, treating the model as a random variable among subjects, allowing for 

inference on posterior family and model probabilities. RFX BMS accounts for group heterogeneity 

(different participants may be using different winning models/families) and provides robustness 

against outliers as opposed to fixed-effects (FFX) procedures (Stephan et al., 2009). 

For the family-level RFX BMS, we specified a uniform prior at the family level to avoid biasing our 

inference (Penny et al., 2010). We computed the posterior family probabilities which correspond to 

the posterior belief that family � generated the data. Additionally, we computed family XPs which 

correspond to the belief that family � is more likely than any other of the � families, given the data 

from all participants. 

Aim 2. A quantitative assessment of whether and how parameters characterising subject-specific 

learning behaviour were associated with an individual9s measured response times. To this end, we first 
needed to identify a single winning model – i.e. the model that best describes the measured data – by 

conducting a second RFX BMS analysis on the entire model space, this time at the level of individual 

models.  

Once this model had been identified and in case it belonged to the family of informed RT models, we 

analysed the influence of the individual regressors of its response time GLM in a second step by 

examining the posterior parameter estimates of the winning model. To quantify the importance of 

each free parameter, we tested its significance against the initial prior mean (i.e. 0) using one-sample 

t-tests at a significance threshold of � <  0.05, Bonferroni-corrected for the number of performed 

tests (i.e. free parameters). 

Model evaluation 

After we had fit our models to empirical data and performed a set of statistical tests to answer our 

research questions, it still remained to be evaluated whether our model(s) actually provided a good 

explanation of the data, i.e. an assessment of model quality in absolute terms, using posterior 

predictive checks (van de Schoot et al., 2021). This approach is distinct from the purpose of (Bayesian) 

model comparison which assesses the quality of candidate models in relative terms.  

Specifically,  we performed qualitative posterior predictive checks (van de Schoot et al., 2021) by 

simulating new data conditional on the obtained subject-specific posteriors. For this, we used the 

Hessian of the negative log joint at the MAP estimate obtained during the optimisation to determine 

the posterior covariance matrix. This allowed us to construct an approximate multi-dimensional 

posterior for each model and participant. We then sampled parameter values (�ĂĂā = 100) from the 

calculated approximate posterior densities of each participant and model and used the sampled 

parameter values to generate synthetic response data (binary and continuous). Subsequently, the 

generated data were compared to the empirical data at an individual subject level. In order to 

determine the quality of the posterior predictions of our model, we pre-specified the following criteria 

in our analysis plan which we deemed critical characteristics of the collected data set: Calculated 
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adjusted correctness of binary responses, and the plausibility of predicted log RT trajectories assessed 

in a qualitative fashion. 

Results 

Model-agnostic results 

Here, we report descriptive statistics of behavioural data from �ÿÿ�Ā = 59 participants in our main 

sample. In Figure 3, mean and standard deviation of trial-wise binary responses and log RTs across 

participants are visualised in red. Figure 4A displays a trial-wise summary of percentage of incorrect 

responses over all participants. A histogram of log-transformed RTs is presented in Figure 4B. 

Behavioural data of individual participants can be found in the Supplementary Material (S1). A one-

way ANOVA of log-transformed RTs did not reveal a significant main effect of factor phase (� = 0.15). 

 
 

Figure 4 | Binary responses and continuous log-transformed response times. In A, the red line 

represents a trial-wise summary of percentage of incorrect responses (inverted for true probabilities 

0.2 indicated by the black line) over all participants (�ÿÿ�Ā = 59) and the average absolute 

prediction error about the trial outcome (|�1̅|) of M1 in red. Black dots represent the reward of 

fractal A on each trial (1=reward, 0=no reward) and the black line shows the underlying probability 

structure of the task. B shows the histogram of log-transformed RTs over all participants in ms. The 

histogram of residuals of log RT model fits obtained by M1 are visualised in C. 

 

Computational Modelling  

Prior specification 

A detailed treatment of the initial priors including their sufficient statistics, prior predictive 

distributions, and a grid search for different parameter values of the eHGF is presented in the analysis 
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plan (Table 1, Figures 3 and A1). Here, we focus on the empirical priors which are used for the analysis 

of the main data set.  

In Figure 5A empirical prior densities for all free parameters of M1 are shown alongside the MAP 

estimates from model inversion on the pilot data set (�Ă�þāā = 20) as well as the initial prior densities. 

(Note that these reported empirical priors differ slightly from the specifications in the analysis plan, 

which is due to the fact that we are using a later version of TAPAS to run the analysis. However, 

qualitatively the empirical priors do not differ between the two versions.) It can be seen that the 

informativeness of the priors increased from the initial to the empirical priors. Again, it is worth 

emphasising that we avoided problems of circularity (i.e. informing the prior by the same data set in 

whose analysis the prior is applied), achieved by using an independent data set to estimate the 

sufficient statistics of the empirical priors. 

 

Prior predictive checks using the empirical priors are visualized in Figures 5B and 5C. Figure 5B shows 

the distribution of predicted belief trajectories �̂1 at the outcome level of the eHGF as well as the trial-

wise frequency of simulated binary responses of M1 (�Ā�ÿ = 100). Since we assume relatively little 

decision noise under the empirical priors, the frequency of binary responses is higher than the average 

predicted belief for trials where �̂1 > 0.5 and vice-versa for trials where �̂1 < 0.5. Figure 5C displays 

simulated log RT trajectories for M1 under the empirical priors. Visualisations of the empirical prior 

densities, the respective prior predictive distributions at all three levels of the perceptual model as 

well as simulated log RT data for all seven models in our model space are included in the 

Supplementary Material (S2). 

Across models, our prior predictive checks using the empirical priors showed that – as expected by the 

construction of the model space – all our models produce similar behaviour at the level of the 

perceptual model and how they predict binary response data. By contrast, they differ considerably in 

the way they predict log RT data (see Supplementary Material Figures S2O-S2P). Moreover, all of them 

allow for a wide range of behaviour indicating that the elicited empirical prior densities are flexible 

enough to account for inter-individual differences between participants. This serves as qualitative 

sanity check of our prior elicitation procedure. 
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Figure 5 | Prior configurations of M1. A shows the empirical prior densities for each free parameter 

of M1 (solid line) as estimated using MAP estimates (black dots) obtained from a separate pilot data 

set (�Ă�þāā = 20) using the initial priors (dashed lines). A detailed description of M1 can be found in 

Table 1 and in the main text. Prior predictive distributions under the empirical priors of M1 are 

displayed for both response data modalities. In B, belief trajectories about the outcome (�̂1) at the 
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lowest level of the eHGF is displayed in blue with the thick blue line representing the resulting belief 

trajectory using the empirical prior mean parameter values and the yellow line representing the 

average simulated binary response (�Ā�ÿ = 100). In C, simulated log RT data are shown in blue, the 

dashed black lines are the boundaries given by the length of the response window in each trial. The 

thick blue line represents the average simulated log RT trajectory (�Ā�ÿ = 100). 

 

Validation of computation 

Results from the family-level recovery analysis (Figure 6A) show good recoverability of true family 

frequencies for the 59000 synthetic data sets (��ÿÿĀ�ÿ = 60 simulated subjects per data set). 

Reassuringly, both Ef as well as XP values show little to no bias towards either of the two model 

families. 

Figure 6B shows the 7x7 confusion matrices resulting from Individual-level model recovery analysis. All 

models could be identified well above chance level both when evaluating approximate LME winner 

frequencies as well as PXP values resulting from RFX BMS on the synthetic data set (�Ā�ÿ  =  100). For 

the LME winner classification analysis, the balanced accuracy score is 0.66 which is clearly above 0.19 

(the upper bound of the 90%-CI when assuming chance across all 7 models). 

Parameter recovery analysis of M1 is visualised in Figure 6C. All of the nine free parameters of M1 (two 

perceptual and seven response model parameters) show good recoverability. All Pearson correlations 

between true and recovered parameter values are highly significant (� < 0.001). Recoverability of the 

meta-volatility parameter (�3) of the 3-level eHGF for binary inputs is the least robust among all free 

parameters of M1 (ÿ = 0.67). Detailed results from parameter recovery analysis of all models are listed 

in the Supplementary Material (S3). Most of the model parameters are well recoverable in all of the 

seven models. Notably, in all models, the meta-volatility parameter (�3) of the perceptual model is 

more challenging to recover than other parameters. However, Figure 6D shows that this depends on 

whether information about RTs is considered by the response model or not: models of the informed 

RT family (M1-M4) show much better �3 recoverability (with correlation coefficients in the range of 

0.67-0.81) compared to models of the uninformed RT family (M5-M7), where correlation coefficients 

are in the range of 0.3-0.54. This shows a clear benefit in terms of practical identifiability brought by 

the use of response models that combine different data modalities in a way that incorporates states 

from the perceptual model in both parts of the response model. 
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Figure 6 | Validation of Computation. A shows results from family-level recovery analysis comparing 

Ef (left) and XP (right) values with true family frequencies. B depicts results from individual model 

level recovery analysis. 7x7 confusion matrices for LME winner frequencies (left) and PXP scores 

(right) are shown with data generating models on the y-axis and recovered models on the x-axis. C 

visualizes simulated vs. estimated values of all free parameters of M1 (parameter recovery). 
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Correlation between simulated and estimated parameter values is indicated using Pearson 

correlation coefficients ÿ. In D, recoverability of the �3 parameter of the 3-level eHGF for binary 

inputs is visualised for all seven models in the model space including Pearson correlation coefficients ÿ. Models from the informed RT family (M1-M4) show consistently better �3 recovery compared to 

models of the uninformed RT family (M5-M7). 

 

Model comparison 

Aim 1. Figure 7A shows the results of the family level RFX BMS on the main data set. The family of 

informed RT models is identified as the winning family (�� = 1, �Ā = 0.79). In other words, we find 

clear evidence supporting the hypothesis that the family of informed RT models explains the collected 

data better (trading off accuracy and complexity) compared to models from the uninformed RT family. 

This demonstrates the practical utility of the family of informed RT models. 

 
 

Figure 7 | Hypothesis testing. A shows the results of the family level RFX BMS (Efs on the left, XPs 

on the right) with the informed RT family clearly outperforming the uninformed RT model family. B 

displays Efs (left) and PXPs (right) resulting from individual model level RFX BMS. M1 can be 

identified as the clear winning model. C shows raincloud plots of the MAP estimates of the M1 GLM 

regressors (generated using the RainCloudPlots library). Fine black vertical lines indicate the initial 

prior mean values (i.e. 0) and a black star indicates significantly different prior and posterior means 

of �2 which scales the influence of ��1(ý)
 on log RTs (one-sample t-test, � < 0.001). 

 

Aim 2. Figure 7B visualizes the results of the individual model level RFX BMS on the main data set. 

Here, M1 is identified as the winning model (��� = 1, �Ā = 0.65), which consists of a 3-level eHGF 

for binary inputs combined with the unit-square sigmoid model as binary part and the Lawson-inspired 

log RT GLM as continuous part of the response model. Figure 7C displays MAP estimates of the M1 log 

RT GLM regressors. Post-hoc one-sample t-tests on posterior means of the log RT GLM parameters of 

M1 reveal a highly significant (� < 0.001) difference between initial prior mean (i.e. 0) and posterior 

mean values of the parameter �2, which scales the influence of the informational uncertainty at the 

level of the outcome (Bernoulli variance ��1(ý)
) from the perceptual model on the log RTs. None of the 
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other GLM regressors shows a significant difference between prior and posterior mean values 

(Bonferroni-corrected). 

Model evaluation 

Figure 3 shows that the average binary predictions as well as the average predicted log RTs by M1 over 

all participants of the main data set capture the empirical data quite well. In Figure 4A, the trial-wise 

percentage of participants giving an incorrect response (inverted for true reward probabilities of 0.2 

to improve visual comparability) is compared to the averaged absolute prediction error at the outcome 

level (|�1̅|) of M1. This qualitative comparison serves as an example of how the low-level prediction 

error computed using the 3-level eHGF for binary inputs resembles participants9 performance during 
the SPIRL task. Figure 4C displays the residuals of log RT model fits obtained by M1 which are 

approximately normally distributed. This is in accordance with the assumption of Gaussian noise in the 

log RT GLMs. 

Examples of the best, average and worst fits of M1 to single-participant data in terms of the log 

likelihood are shown in the Supplementary Material (S1). Overall, belief trajectories at the outcome 

level of the eHGF seem to align well with the participants9 binary predictions. Regarding the RT fits, 
one can clearly see that individual log-transformed RT data is very noisy. However, a look at the 

averaged log RT data across participants and the averaged log RT model fits clearly shows that M1 is 

able to pick up the overarching structure in the log RT trajectories (Figure 3). Importantly, models from 

the informed RT family (M1-M4) and to some degree also M7 show a close correspondence between 

the average of the predicted and the average of the actual RT trajectories (see Supplementary Material 

S4). 

Results from posterior predictive checks of M1 are shown in Figure 8 and in the Supplementary 

Material (S5). These allow for a qualitative assessment of the obtained single-subject posteriors. 

Regarding the binary response data, we can clearly see that the adjusted correctness of empirical 

response data is within the ranges of values covered by the individual subjects9 posterior predictive 

densities for most of the participants (Figure 8A and Supplementary Figure S5A). Concerning the 

response time data, we can observe that predicted signal using posterior mean parameter values 

captures higher level fluctuations in individual empirical log-transformed RT trajectories (Figure 8B and 

Supplementary Figure S5B). Similar to our observations regarding the individual-level RT model fits, 

sampled log RT trajectories are very noisy. However, the range of simulated log RT trajectories from 

the obtained posteriors aligns well with the individual empirical log RT trajectories. Moreover, the 

histograms of simulated log RT data from single-subject posteriors show a higher dispersion for 

participants with worse model fits as measured by the log likelihood (Figure 8B). 
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Figure 8 | Posterior predictive checks for M1. Data from three participants of the main data set are 

shown. Participants were chosen according to goodness of model fit of M1, i.e. participant 21 with 

a high log likelihood value, participant 29 showing average goodness of fit and participant 5 showing 

the worst fit. A displays adjusted correctness of binary responses for these participants in red. Blue 

circles are the simulated adjusted correctness values resulting from sampled parameter values of 
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the subject-specific posteriors of M1. The blue probability densities are the estimated posterior 

predictive densities based on the samples drawn from the posteriors (�ĂĂā = 100) using kernel 

density estimation as implemented in the RainCloudPlots library. In B, we show empirical log RT 

trajectories of the three participants in red. Fine blue lines are simulated log RT trajectories resulting 

from sampled parameter values of the subject-specific posteriors and the thick blue line represents 

the predicted log RT when using the MAP estimates of M1 for each participant to generate synthetic 

RT data. The histograms on the right visualise the distribution of synthetic log RT data generated by 

simulating from the subject-specific posteriors. 
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Discussion 
The present study provides a first application of response models combining two different data 

modalities in the framework of the HGF. More specifically, we developed a novel set of response 

models simultaneously fitting binary responses and continuous response time data during inference. 

Additionally, we developed and implemented an associative learning task, the SPIRL task, in which fast 

responses were incentivised, allowing us to model reaction times and binary responses jointly. We 

performed extensive simulation analyses and applied our set of combined response models to 

behavioural data from the SPIRL task. Our computational approach highlighted the utility of Bayesian 

workflow, increasing transparency and interpretability of reported results. We demonstrated the 

advantage of combining different response data modalities in a single model for the robustness of 

inference. Finally, the analysis of the data from the SPIRL task resulted in a clearly superior model, 

providing the best explanation of the data. Inspection of individual parameter estimates of this model 

revealed a significant linear relationship between log RT data and informational uncertainty at the level 

of the outcome (��1(ý)
). 

Combining different response data modalities for robust inference in the HGF 

The first motivation for this paper was the development and application of a set of response models 

that combined multiple data modalities. In this way, we hoped to address issues related to parameter 

recovery and model identifiability in the context of the HGF, especially when dealing with applications 

to binary response data (Harrison et al., 2021; Iglesias et al., 2021). We hypothesised that the 

combination of different data modalities should increase identifiability, both at the level of parameters 

and models. Recoverability of parameters should benefit further from incorporation of perceptual 

model quantities in the response models. Indeed, our simulations demonstrated good to excellent 

recoverability at all different levels (model parameters, individual models, and model families). We 

also showed that recoverability of perceptual model parameters was superior in the family of informed 

RT models, which use quantities from the perceptual model as part of the log RT GLM, as opposed to 

the family of uninformed RT models.  

Comparing the performance of the two model families against empirical data and using family level 

RFX BMS, we demonstrated that the data from the SPIRL task were better explained by the family of 

informed RT compared to the family of uninformed RT models. Moreover, RFX BMS on the individual 

model level revealed M1 as the clearly winning model, providing the best explanation for the empirical 

data set.  

Our analysis of the regression weights of the log RT GLM of M1 revealed a significant influence of the 

parameter �2 which scales the contribution of the outcome uncertainty ��1(ý)
 in the eHGF. Here, we 

refer to outcome uncertainty as the informational uncertainty at the level of the outcome, which 

describes the irreducible uncertainty associated with any type of probabilistic prediction. This result is 

consistent with the findings of Lawson et al. (2017) who applied a very similar combination of an HGF 

perceptual model and a GLM as response model, mapping states of the perceptual model to log RT 

data in an associative learning task. In addition, other work that did not use the HGF framework also 

found evidence for a relationship between reaction times and the uncertainty of responses (Bonnet & 

Ars, 2008). 

Harnessing the information of an additional data modality during statistical inference is not a novel 

idea. First examples of similar approaches exist in the context of sequential sampling models such as 

drift-diffusion models (DDMs) (Kraemer et al., 2021; Pedersen et al., 2017; Shahar et al., 2019) which 

have been combined with RL models (Ballard & McClure, 2019; Clithero, 2018; Loeys et al., 2011; 

McDougle & Collins, 2021; Miletić et al., 2021 . However, in the literature, models combining binary 
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choices and continuous response times are far less common than simple binary observation models. 

Moreover, our study focuses on a specific generative modelling framework, the HGF, for which the 

present study, to the best of our knowledge, represents the first application of a response model 

combining different response data modalities to empirical data in combination with the HGF. 

There are some limitations to our modelling approach. First of all, for the specification of our model 

space we assumed independence between the two response data modalities (binary responses and 

response times) conditional on the parameters of the perceptual model. For future applications, one 

may consider finessing the current formulation. Second, MAP inference is a rather simplistic technique 

for Bayesian inference where the posterior uncertainty needs to be approximated post-hoc. 

Alternatives would be VB or MCMC methods which directly include an estimate of the posterior 

uncertainty. Moreover, the chosen inference method is based on a variant of gradient descent, which 

might not be optimal for dealing with multimodal posteriors. We tried to combat this shortcoming by 

adopting a multistart approach to prevent the optimisation from getting stuck at local extrema. The 

results from parameter recovery analysis suggested that the chosen inference scheme is appropriate 

for the application at hand. 

The presented combined response models for the HGF framework have potential for applications in a 

variety of tasks and domains. In principle, our modelling approach can be applied to any two different 

data modalities of interest, e.g. behavioural, physiological, neurophysiological data, etc. However, it is 

important that the data modalities of interest contain relevant information that can be picked up by 

the model. This can be demonstrated e.g. by comparing different models with a null model in a 

candidate application, similar to the comparison of different model families in this study.  

We hope that the use of combined response models can be particularly useful in TN/CP. Typical 

constraints for the design of clinically applicable paradigms include limited number of trials and 

complexity constraints for tasks, which limit the number of data points and ultimately constrain 

inference. Added information from a second data modality may compensate for these limitations and 

thus help improve the robustness of results.  

Bayesian workflow for generative modelling in TN/CP 

The second motivation for this paper was to highlight the key ingredients of Bayesian workflow and 

illustrate its application. In TN/CP, generative models not only represent central tools for inference on 

disease-relevant cognitive and neurophysiological mechanisms (Stephan & Mathys, 2014) but also 

frequently serve to provide low-dimensional and mechanistically interpretable features for machine 

learning (generative embedding; Stephan et al., 2017). The robustness of results from generative 

modelling is therefore of major importance in TN/CP and can benefit from incorporating general (field-

unspecific) methodological and conceptual developments concerning BDA.  

In BDA, the choice of priors plays an important role for identifiability, reliability and predictive validity 

of model-fitting results (Gershman, 2016). Yet, the importance of priors is easily overlooked and little 

attention is usually devoted to systematic description and analysis thereof. Similarly, validation of the 

chosen inference technique (including the effects of approximations and the choice of optimisation 

algorithms) as well as model evaluation are often neglected. This is especially critical in TN/CP, since 

the potential success of computational modelling endeavours for clinical applications is inextricably 

tied to the robustness of inference. Hence, transparency with regard to the hyperparameters of an 

analysis pipeline is important and requires a detailed description of individual analysis steps. 

Importantly, we did not invent the Bayesian workflow presented here; instead, it was derived from 

previous proposals (e.g. Betancourt, 2020; Gelman et al., 2020; Schad et al., 2020; van de Schoot et al., 

2021) and augmented by additional components, e.g. Bayesian model selection at the family level 
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(Penny et al., 2010). These steps are summarised visually in Figure 2 and include the specification of 

an initial model space, prior elicitation and prior predictive checking, the choice of a Bayesian inference 

algorithm and concurrent validation of computation, model comparison procedures, and model 

evaluation.  

Using the well-known Bayesian workflow by Gelman and colleagues (2020) for comparison, our 

approach introduces several extensions. First, our procedure for elicitation of prior distributions 

involves an independent data set, allowing us to obtain a set of data-informed priors representative of 

actual human behaviour while at the same time avoiding problems of double-dipping. Second, the 

analysis was pre-specified in its entirety, (the only change concerned using a more current version of 

TAPAS, a deviation which we explicitly mention above). This pre-specification is somewhat in 

contradiction to the iterative procedure proposed by Gelman and colleagues, but we consider this a 

strength of our approach. Given the many degrees of freedom and the numerous cognitive biases that 

scientists may inadvertently be affected by, pre-registration is an important and effective protection 

for researchers against fooling themselves (Nosek et al., 2018). Our point is not that iterative model 

building should not be part of Bayesian workflow; however, we believe that it is important to combine 

it with 8guard railings9 (such as a preregistered analysis plan). Additionally, whenever possible, 

independent data sets should be used, both for specifying priors and for evaluating the generalisability 

of the obtained results. We appreciate that this may not always be possible, for example, in situations 

where data sets result from rare, or even unique, events. 

We are aware that the proposed Bayesian workflow is not perfectly generalizable to every application 

of generative models in TN/CP. It should rather be seen as a blueprint that can be adapted and 

extended to specific cases of generative modelling. Furthermore, there are important elements of 

Bayesian workflow which we did not implement and discuss here in detail. For example, there are 

principled (but computationally expensive) approaches to validating Bayesian inference algorithms 

such as simulation-based calibration (SBC) (Talts et al., 2018). Also, when using sampling-based 

approximations to the posterior, additional diagnostics (e.g. concerning convergence) are required. 

Previous papers on BDA provide detailed discussions of these (and other) topics (Betancourt, 2020; 

Gelman et al., 2013, 2020; Schad et al., 2020; van de Schoot et al., 2021). 

In summary, this paper provided an illustrative application of Bayesian workflow in the context of an 

associative learning task that allowed for simultaneously modelling two behavioural readouts. We 

hope that this example will help pave the way towards standard adoption of Bayesian workflow and 

contributes to efforts of improving the transparency and robustness of results in TN/CP.  
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