

1 **A deep learning-based toolkit for 3D nuclei segmentation and**
2 **quantitative analysis in cellular and tissue context**

3

4 Athul Vijayan^{1,7,8}, Tejasvinee Atul Mody^{1,8}, Qin Yu^{2,6,8}, Adrian Wolny², Lorenzo
5 Cerrone³, Soeren Strauss⁴, Miltos Tsiantis⁴, Richard S. Smith^{4,5}, Fred A. Hamprecht³,
6 Anna Kreshuk², and Kay Schneitz^{1,9}

7

8 ¹Plant Developmental Biology, TUM School of Life Sciences, Technical University
9 of Munich, Freising, Germany

10 ²European Molecular Biology Laboratory, Heidelberg, Germany

11 ³IWR, Heidelberg University, Heidelberg, Germany

12 ⁴Department of Comparative Developmental and Genetics, Max Planck Institute for
13 Plant Breeding Research, Cologne, Germany

14 ⁵The John Innes Centre, Norwich Research Park, Norwich, UK

15 ⁶Collaboration for joint PhD degree between European Molecular Biology Laboratory
16 and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany

17 ⁷Present address

18 Department of Comparative Developmental and Genetics, Max Planck Institute for
19 Plant Breeding Research, Cologne, Germany

20 ⁸Authors contributed equally

21

22 ⁹Corresponding author

23 Plant Developmental Biology

24 TUM School of Life Sciences

25 Technical University of Munich

26 Emil-Ramann-Str. 4

27 D-85354 Freising

28 Email: kay.schneitz@tum.de

29 Tel: +49 8161 715438

30

31 Running title: 3D segmentation of nuclei

32

33 Key words: 3D digital organ, StarDist, PlantSeg, 3D nuclear segmentation, plant cells,

34 *Arabidopsis*, ovule

35

36 **Summary Statement**

37 We present computational tools that allow versatile and accurate 3D nuclear

38 segmentation in plant organs, enable the analysis of cell-nucleus geometric

39 relationships, and improve the accuracy of 3D cell segmentation.

40

41

42

43 **Abstract**

44 We present a new set of computational tools that enable accurate and widely
45 applicable 3D segmentation of nuclei in various 3D digital organs. We developed a
46 novel approach for ground truth generation and iterative training of 3D nuclear
47 segmentation models, which we applied to popular CellPose, PlantSeg, and StarDist
48 algorithms. We provide two high-quality models trained on plant nuclei that enable
49 3D segmentation of nuclei in datasets obtained from fixed or live samples, acquired
50 from different plant and animal tissues, and stained with various nuclear stains or
51 fluorescent protein-based nuclear reporters. We also share a diverse high-quality
52 training dataset of about 10,000 nuclei. Furthermore, we advanced the
53 MorphoGraphX analysis and visualization software by, among other things, providing
54 a method for linking 3D segmented nuclei to their surrounding cells in 3D digital
55 organs. We found that the nuclear-to-cell volume ratio varies between different ovule
56 tissues and during the development of a tissue. Finally, we extended the PlantSeg 3D
57 segmentation pipeline with a proofreading script that uses 3D segmented nuclei as
58 seeds to correct cell segmentation errors in difficult-to-segment tissues.

59 **Introduction**

60 Tissue morphogenesis is a complex, multi-scale process that ultimately results in an
61 organ or tissue of a specific size and shape and characteristic 3D cellular architecture.
62 Advances in imaging increasingly allow generation of 3D digital organs with cellular
63 resolution, which are useful tools for unraveling the integration and feedback
64 processes between molecular regulatory circuits and the cellular architecture of
65 developing tissues and organs. Plants are excellent systems for generating 3D digital
66 organs because their cells are immobile and the cellular architecture of plant organs
67 can be easily observed using various types of microscopy.

68 Over the years, and partly through the application of artificial intelligence, powerful
69 open-source software packages have been developed for 3D cell segmentation of
70 confocal microscopy images (Barbier de Reuille et al., 2015; Eschweiler et al., 2019;
71 Fernandez et al., 2010; Schmidt et al., 2014; Sommer et al., 2011; Stegmaier et al.,
72 2016). Machine learning based software, including CellPose, PlantSeg and StarDist,
73 represents a recent advance in this area, providing improved 3D segmentation of
74 tissues at cellular resolution (Eschweiler et al., 2019; Stringer et al., 2021; Weigert et
75 al., 2020; Wolny et al., 2020). The output of such pipelines can then be quantitatively
76 analyzed in image analysis software like MorphoGraphX (Barbier de Reuille et al.,
77 2015; Strauss et al., 2022). The advances in these computational resources have
78 enabled the generation of a number of digital 3D models of a variety of plant organs,
79 which have allowed single-cell analysis in 3D and have been instrumental in gaining
80 fundamental insights into various processes in plants, including embryo, root, and
81 ovule development (Bassel et al., 2014; Fridman et al., 2021; Graeff et al., 2021;
82 Hernandez-Lagana et al., 2021; Lora et al., 2017; Montenegro-Johnson et al., 2015;

83 Ouedraogo et al., 2023; Pasternak et al., 2017; Schmidt et al., 2014; Vijayan et al.,
84 2021; Yoshida et al., 2014).
85 An important feature that is presently missing from these 3D digital models is the
86 integration of the size and shape of the nuclei into the cellular framework. The ability
87 to not only robustly segment nuclei in 3D, even in deeper tissues, but also to link the
88 3D architectures of nuclei and their surrounding cells in a tissue-specific context
89 enables the study of central biological processes such as nuclear size control
90 (Cantwell and Nurse, 2019c). Another key process is the control of gene expression.
91 Spatial gene expression patterns as well as expression levels can be assessed with
92 cellular resolution, for example, using ratiometric nuclear reporters driven by gene-
93 specific promoters (Federici et al., 2012).
94 ClearSee-based protocols for cleared whole-mount preparations of plant organs allow
95 staining of cell walls and nuclei with various cytological dyes without the need for
96 transgenic plants carrying the appropriate reporter constructs and maintain
97 compatibility with reporters based on fluorescent proteins (Kurihara et al., 2015;
98 Musielak et al., 2015; Tofanelli et al., 2019; Ursache et al., 2018). The establishment
99 of the 3D digital reference atlas of *Arabidopsis* ovule development represents a recent
100 example that used this approach (Vijayan et al., 2021). During the preparation of the
101 atlas, ovules were fixed and cleared with ClearSee (Kurihara et al., 2015). Cell
102 outlines were stained with the cell wall stain SCRI Renaissance (SR2200) (Harris et
103 al., 2002; Musielak et al., 2015), while the nuclei were stained with TO-PRO-3 (Bink
104 et al., 2001; Van Hooijdonk et al., 1994). The digital ovule atlas provided detailed
105 insight into the 3D cellular architecture of the ovule but lacked information on the size
106 and shape of the nuclei. TO-PRO-3 stains double-stranded nucleic acids and can
107 therefore be a useful tool for 3D volumetric nuclear extraction. However, the signal

108 intensity of any typical nuclear stain can exhibit variable intensities, scatter, and
109 photobleaching when imaging deeper tissue layers, rendering accurate 3D nuclear
110 segmentation extremely difficult.

111 Therefore, our overall goal is to accurately segment plant nuclei in 3D images with
112 weakly stained nuclei. Several deep learning-based segmentation algorithms have
113 recently been proposed for this task: PlantSeg (Wolny et al., 2020), Cellpose (Stringer
114 et al., 2021), and StarDist (Weigert et al., 2020). However, none of them can be used
115 out of the box. PlantSeg and CellPose pre-trained models have not been exposed to
116 weakly stained plant nuclei while 3D StarDist does not provide trained models and
117 requires retraining. The main bottleneck for model training is the lack of publicly
118 available 3D ground truth with correctly delineated nuclei. This step is famously
119 labor-intensive even for high-contrast, high signal-to-noise ratio (SNR) image
120 volumes.

121 In this study, we combine different staining strategies to quickly achieve 3D
122 segmentation ground truth for model training. Together with human-in-the-loop
123 correction, we use this approach to acquire fully annotated volumes of weakly stained
124 nuclei. On this basis, we train highly accurate segmentation networks, which we show
125 to be generalizable to other datasets obtained by various imaging methods and from a
126 variety of plant and animal tissues labeled with different staining methods. In
127 addition, we introduce a combination of processes in MorphoGraphX that associates
128 each nucleus with the cell in which it resides, and that provides the nucleus with the
129 cells' respective tissue labels. It allows the investigation of various cell-nucleus
130 relationships, such as the nucleus-to-cell volume (N/C) ratio. We demonstrate the

131 general value and broad applicability of these technical advances in proof-of-concept
132 analyses.

133

134 **Results**

135 **A novel iterative approach to ground truth generation and 3D nuclear model**

136 **training**

137 In a first attempt at 3D nuclear segmentation of TO-PRO-3-stained ovule nuclei in 3D
138 image stacks, we found that the available plant nuclei segmentation model in PlantSeg
139 did not yield segmented nuclei of sufficient quality for ground truth generation. Thus,
140 we employed Cellpose (Pachitariu and Stringer, 2022; Stringer et al., 2021) as it had
141 an existing nuclei model used for 3D nuclear segmentation. However, we still
142 observed improper segmentation with errors in detecting and separating nuclear
143 borders (Fig. 1A-D). This is probably due to the TO-PRO-3 nuclear staining being
144 variable and often quite weak and diffuse, particularly in deeper layers. In addition,
145 the signal was absent in the nucleolus, resulting in an uneven nuclear surface and
146 segmentation that looked like a hole extruded from the nuclear surface (Fig. 1C).

147 To address these issues, we developed a novel strategy based on samples that
148 simultaneously show strong and faint signals in the nuclei that can be collected in
149 separate channels. We first generated a transgenic line expressing a translational
150 fusion of the fluorescent protein tdTomato to histone H2B driven by the
151 *UBIQUITIN10 (UBQ)* promoter (pUBQ::H2B:tdTomato). Ovules of this reporter line
152 were fixed, cleared, and stained with the cell wall stain SR2200 and the nuclear stain
153 TO-PRO-3. Ovules were imaged and the SR2200, TO-PRO-3, and H2B:tdTomato
154 signals were collected in three separate channels (Fig. 1F,G,I). The broadly expressing

155 nuclear pUBQ::H2B:tdTomato reporter provided a strong and uniform nuclear signal
156 that could be segmented into nuclei using the standard Cellpose nuclear model (Fig.
157 1D,E,G,H). We then used the results of human proofread instance nuclear
158 segmentation of the strong H2B:tdTomato reporter channel as the “initial ground
159 truth” for training three sets of initial 3D models: PlantSeg_3Dnuc_initial, StarDist-
160 ResNet_3Dnuc_initial, and Cellpose-Finetune-nuclei_3Dnuc_initial. The PlantSeg
161 and StarDist initial models were trained on the weak TO-PRO-3 nuclear stain channel
162 using the neural networks implemented in the respective pipelines. The Cellpose
163 initial models were trained on the TO-PRO-3 channel by fine-tuning the pretrained
164 Cellpose “nuclei” model. The segmentation results using the initial models turned out
165 to be still imperfect and required several corrections by an expert.

166 To obtain further model improvements we applied an iterative training strategy (Fig.
167 1J). We used the StarDist-ResNet_3Dnuc_initial model to segment the original weak
168 TO-PRO-3-based nuclear stain channel as it provided the best qualitative results,
169 resulting in a modified ground truth. This modified ground truth was then human
170 proofread, resulting in the “gold ground truth”. In a next step, the “gold ground truth”
171 and the original weak TO-PRO-3-based nuclei stain were used to train six sets of 3D
172 “gold models” using one or multiple neural networks implemented in PlantSeg,
173 Cellpose, and StarDist (Table 2), probing for the best parameter settings.

174 We tested how much model performance improved when human-in-the-loop (HITL)
175 was involved, i.e., initial vs gold model. To this end we employed a quantitative
176 comparison of initial and gold PlantSeg, StarDist-ResNet and Cellpose-Finetune-
177 nuclei models. We made use of the imperfect initial models to generate modified and
178 better ground truth by involving a HITL proofreading before using them for the

179 training that resulted in the “gold models”. (Fig. 1J). The detailed description of model
180 training including the datasets used for training and testing are provided in the “Model
181 training and score quantification” section of Materials and Methods. Comparison of
182 model performance between initial and gold PlantSeg, Cellpose-Finetune-nuclei and
183 StarDist-ResNet models was performed by 5-fold average precision (AP) score
184 quantification (Table 1). Results indicate that all methods demonstrate increased
185 performance after gold training. PlantSeg and StarDist-ResNet gold models turned out
186 to be superior to the Cellpose-Finetune-nuclei gold models and demonstrated high
187 precision segmentation compared to the respective initial models.

188 **Comparisons of the different gold models**

189 Quantitative and qualitative performance comparisons of the different gold models
190 were performed and results are presented in Table 2, Fig. 2, and Fig. S1. With the
191 exception of the Cellpose-derived models, all other gold models performed
192 excellently on the raw images of nuclei stains as can be seen with qualitative
193 comparison (Fig. 2, Fig. S1). The weak nuclei signals were strongly detected
194 especially with the proposed new PlantSeg_3Dnuc_gold, StarDist-
195 ResNet_3Dnuc_gold and Stardist-UNet_3Dnuc_gold models. Segmented nuclei
196 surfaces were devoid of any artifacts like an extruded hole as in the raw nuclei image
197 segmentation prior to developing this method. The AP scores obtained in these cases
198 were very high when compared to the proposed new Cellpose nuclei gold models
199 (Table 2). Average precision graphs also clearly indicate high precision of the
200 PlantSeg, StarDist-ResNet, and StarDist-UNet gold models and how little they vary
201 compared to the Cellpose gold models (Fig. S1I-N).

202 **StarDist-ResNet and PlantSeg gold models are two highly reliable models**

203 The PlantSeg model was trained to produce a nuclear center probability map and a
204 nuclear envelope probability map (Fig. 2E). The nuclear envelope probability was
205 processed by Generalized Algorithm for Signed Graph Partitioning (GASP) (Bailoni
206 et al., 2019) to obtain an initial instance segmentation, which is then filtered according
207 to the probability of the nuclei center (Fig. 2D,F). Data volumes for both training and
208 inference do not need any changes in terms of isotropy or intensity, and can be fed
209 into PlantSeg as it is. Increasing patch size does not improve accuracy. The downside
210 of PlantSeg is that the post-processing algorithms were designed for dense
211 segmentation and therefore tend to over-segment the background, which can be easily
212 fixed by applying a foreground mask or even manually. PlantSeg results in the
213 assignment of very accurate instance masks to most objects, because it finds
214 boundaries of the biological structure of interest and provides a nuclear envelope
215 probability map (Fig. 2D-F). The minor imperfections caused by PlantSeg GASP and
216 final thresholding in PlantSeg segmentation can be very easily improved by removing
217 a few false positives and relabeling a few false negatives.

218 StarDist-ResNet and StarDist-UNet models output a nuclei probability map (Fig.
219 2H,K) and nuclei instance segmentation (Fig 2G,I,J,L). Both the StarDist models
220 resulted in very smooth and uniform instance masks of all objects, because it fits star-
221 convex shapes to objects (Fig 2G-L). StarDist is sensitive to object shapes; elongated
222 objects are predicted accurately in its probability maps, but are then sometimes fitted
223 into small and wrong instance masks. The segmentation always looked clean and
224 smooth. Isotropy of data volumes matters, one could specify a grid parameter that
225 downsamples the input to fit instances into the network's field of view. A bigger patch
226 size can help in terms of object detection but not mean average precision. The

227 imperfection caused by size and shape prior in StarDist segmentation can be improved
228 by merging a few oversegmented instances.

229 For Cellpose, we fine tuned two pretrained models (Nuclei, Cyto2) and in addition,
230 trained a new model from scratch (Fig. S1). Due to the 2D nature of Cellpose, it is
231 recommended that data for either training or future inference be transformed into
232 isotropic volumes for best results. Cellpose is very sensitive to its diameter parameter.
233 In this study, the fixed default object diameter parameters for pretrained models were
234 set to be 30 for non-nucleus models and 17 for nucleus models, and that for scratch-
235 trained models is inferred from our data. Cellpose results in good instance masks (Fig.
236 S1) but overall less accurate segmentations compared to proposed StarDist and
237 PlantSeg models (Table 2). Overall, while final Cellpose output turned out to be
238 worse than StarDist and PlantSeg even after retraining, it's important to remember
239 that it was the best method (Table S2) to provide a starting point in absence of human-
240 annotated ground truth in the first step of our experiments.

241 **Wide applicability of the PlantSeg_3Dnuc and StarDist-ResNet platinum models**

242 So far, the results indicated that PlantSeg_3Dnuc_gold and StarDist-
243 ResNet_3Dnuc_gold emerged as the preferred models for accurately segmenting 3D
244 plant nuclei. Therefore, we trained two final platinum models based on PlantSeg and
245 StarDist-ResNet, respectively, using all available training datasets (Fig. S2). This
246 resulted in the two 3D platinum models, PlantSeg_3Dnuc_platinum and StarDist-
247 ResNet_3Dnuc_platinum. For nuclei segmentation using the two platinum models, we
248 made available the GoNuclear repository (<https://github.com/kreshuklab/go-nuclear>)
249 that hosts the pipelines used in this study.

250 To test the broad applicability of the trained platinum models in 3D nuclear
251 segmentation, we used both platinum models to segment nuclei from diverse and
252 challenging datasets, including a variety of tissues from different plant species as well
253 as early mouse embryos, stained with nuclear stains or expressing nuclear reporters.
254 Our diverse 3D nuclei datasets included a fixed, cleared, TO-PRO-3-stained
255 *Antirrhinum majus* ovule; a fixed, cleared, DAPI-stained *Arabidopsis thaliana* ovule;
256 live *Arabidopsis* sepal nuclei expressing the pATML1::mCitrine-ATML1 reporter
257 (Meyer et al., 2017); live *Cardamine hirsuta* leaf expressing the ChCUC2g::VENUS
258 reporter (Rast-Somssich et al., 2015); and fixed and cleared *Arabidopsis* shoot apical
259 meristem nuclei expressing the pFD:3xHA-mCHERRY-FD reporter (Cerise et al.,
260 2023; Martignago et al., 2023). In addition, we segmented nuclei of the BlastoSPIM
261 data set obtained by live 3D imaging of blastocyst stage mouse embryos expressing
262 the nuclear marker H2B-miRFP720 using Selective Plane Illumination Microscopy
263 (SPIM) (Nunley et al., 2023).
264 Both the PlantSeg_3Dnuc_platinum and StarDist-ResNet_3Dnuc_platinum models
265 resulted in comparable high quality segmentations. The results of segmentation using
266 StarDist-ResNet_3Dnuc_platinum are presented here, as its use is less involved
267 compared to PlantSeg_3Dnuc_platinum (Fig. 3, Fig. S3).
268 We segmented the above-mentioned datasets using the StarDist-ResNet and PlantSeg
269 platinum models after image preprocessing (Table 3). The preprocessing was required
270 to ensure the datasets to be segmented matched the training datasets in nuclear size
271 and quality. We observe that the nuclei of all mentioned datasets could be properly 3D
272 segmented using the proposed models (Fig. 3). Further, even though the models were
273 trained on cleared, high-resolution datasets, they are capable of segmenting nuclei

274 from low resolution datasets as well, for instance the Cardamine leaf nuclei and
275 mouse embryo nuclei from live samples. A precise segmentation of the
276 pChCUC2g::Venus nuclear signal further allows for quantification of the number of
277 pChCUC2g::Venus expressing nuclei along with signal quantification if required. The
278 StarDist-ResNet platinum model could also segment extremely challenging datasets
279 with high variation in intensities after applying some preprocessing (Fig. S3). The
280 results demonstrate the broad applicability of the platinum models in 3D segmentation
281 of nuclei of different tissues and species.

282 **MorphoGraphX as a platform for mapping 3D nuclei to whole organ cell atlas
283 with single cell and tissue resolution**

284 Multichannel 3D confocal imaging allowed simultaneous imaging of both the cell and
285 nuclear stain channels. MorphoGraphX enables 3D visualization and allows complex
286 annotations and quantifications (Fig. S2F-I, Fig. S3H). We reasoned that it should be
287 possible to combine 3D cell segmentation and 3D nuclear segmentation of the imaged
288 3D stack. 3D cell segmentation assigns cells their cell IDs and 3D nuclear
289 segmentation assigns nuclei their nuclei IDs; however, they are not directly linked. In
290 MorphoGraphX, these 3D cell and nuclei segmentation images are converted to 3D
291 meshes representing individual objects. To address the issue of linking nuclei and
292 corresponding cell IDs, we developed a novel process in MorphoGraphX that
293 automatically annotates and links nuclei IDs with their corresponding cell IDs (Fig.
294 4A-H) (see Materials and Methods). The 3D cell meshes can then be assigned tissue
295 labels via manual or semi-automated cell-type labeling (Strauss et al., 2022) (Fig. 4A-
296 B).

297 In addition to linking nuclear and cell IDs, we also added MorphoGraphX tools to
298 quantify the Euclidean distance between 3D cell and 3D nuclear centroids or map
299 2.5D cells to underlying 3D nuclei (Fig. S4) (Materials and Methods). 3D cell
300 segmentation can be challenging especially when working with live images. In such
301 cases, one may have to resort to 2.5D cell segmentation. We present a
302 MorphoGraphX method for associating 2.5D surface cells with 3D nuclei.
303 MorphoGraphX achieves this link by projecting 3D segmented nuclei stacks onto the
304 2.5D segmented cell mesh (Fig. S4A-C). Additionally, the process “Select Duplicated
305 Nuclei” is a useful tool to identify cell segmentation errors as it detects cells with
306 more than one nucleus. This entire collection of processes are included in
307 MorphoGraphX version 2.0.2. and higher and can be found in the process folder
308 “Mesh/Nucleus” (see Materials and Methods). The development of these new
309 MorphoGraphX processes opens up new possibilities to integrate cell features with
310 nuclei features and to study quantitative parameters of nuclei in their cellular context.

311 **Developmental regulation of the nucleus-to-cell volume ratio in Arabidopsis**
312 **ovules**

313 For more than a century it has been noticed that the N/C ratio is a constant parameter
314 of a given cell type that can vary between cell types in multicellular organisms
315 (Cantwell and Nurse, 2019c; Wilson, 1925). Most of these studies involved selecting
316 a few cells of embryos or single cells, such as yeast, and measurements based on
317 diameter or area values derived from 2D sections. Here, we investigated the N/C ratio
318 in Arabidopsis ovules of different stages and in full 3D tissue context. We measured
319 the nuclear volumes, cell volumes, N/C ratios and their trends in five stage 2-I ovule
320 primordia and in two more differentiated stage 3-II ovules. In addition, we assessed

321 these parameters during the development of an integumentary cell layer using two
322 ovules per stage (Fig. 4I-N) (Fig. S5).

323 The dome-shaped *Arabidopsis* ovule primordium, like the shoot apical meristem, has
324 a layered organization, such that the L1, L2, and L3 are the outer to inner layers,
325 respectively (Jenik and Irish, 2000; Satina et al., 1940; Schneitz et al., 1995). At stage
326 2-I the primordium is further characterized by the presence of an enlarged L2-derived
327 megasporocyte mother cell (MMC) at the tip that will undergo meiosis and eventually
328 produce the haploid female gametophyte (Schneitz et al., 1995; Vijayan et al., 2021).
329 We investigated if nuclear and cell volumes, as well as N/C ratios differ in a layer-
330 specific manner in the ovule primordium. We observed that the L1 layer can be
331 distinguished from the L2 and L3 layers by its different N/C ratio, as the N/C ratio of
332 L1 cells was statistically different from the N/C ratio of L2 or L3 cells. The L2 and L3
333 N/C ratios were not noticeably different (Fig. 4I, Fig. S5A,B). Cells of the outermost
334 L1 layer have the highest N/C ratio (0.30 ± 0.08 (mean \pm SD), followed by the cells of
335 the inner L2 (0.24 ± 0.07) and L3 (0.23 ± 0.09) layers (Fig. 4I). For all three layers,
336 we obtained a positive Pearson correlation coefficient, r , between nuclear and cell
337 volumes; the correlation is strongest in the L2 layer, followed by the L1 and L3
338 layers, respectively (Fig. 4J-L). When analyzing the average cell and nuclear volumes
339 for each layer, we found that the average cell volumes of the L2 ($128.10 \pm 47.73 \mu\text{m}^3$,
340 excluding MMCs) and L3 ($132.70 \pm 54.53 \mu\text{m}^3$) layers were similar and markedly
341 larger than the average cell volume of the L1 ($98.86 \pm 38.06 \mu\text{m}^3$) layer (Fig. S5A). In
342 contrast, the average nuclear volume between the three cell layers remained
343 comparable with values of $27.88 \pm 9.14 \mu\text{m}^3$ (L1), $28.92 \pm 8.87 \mu\text{m}^3$ (L2, excluding
344 MMCs), and $27.44 \pm 10.53 \mu\text{m}^3$ (L3) (Fig. S5B). Thus, the difference in the N/C

345 values between the L1 and L2/L3 layers relates to the smaller average cell volume in
346 the L1 compared to the L2 and L3 layers.

347 Current evidence suggests that nuclear size scales with cell size and not with the
348 amount of nuclear DNA (Cantwell and Nurse, 2019c). We tested if the scaling rule
349 holds true for the MMCs (Fig. S5C,D). We found that the average nuclear and cell
350 volumes of the tested MMCs ($147.9 \pm 27.85 \mu\text{m}^3$ for the nuclear volume and $845.4 \pm$
351 $101.5 \mu\text{m}^3$ for the cell volume) both exceeded the respective values of the other much
352 smaller L2 cells by approximately a factor of 5. As a result, the N/C ratio values of the
353 MMCs and the other L2 cells were indistinguishable, and thus the MMCs conform to
354 this rule.

355 To confirm the finding of cell type-specific N/C ratios in the ovule primordium we
356 explored the more differentiated stage 3-II ovules exhibiting a clear multi-tissue
357 organization. By this stage the *Arabidopsis* ovule is composed of the distal nucellus,
358 which contains the developing female gametophyte, the central chalaza with two
359 lateral determinate structures, the integuments, and the proximal funiculus, the stalk
360 that connects the ovule to the placenta (Schneitz et al., 1995; Vijayan et al., 2021). In
361 addition, the chalaza can be divided into an anterior and posterior chalaza based on
362 morphological criteria such as different cell shapes and sizes of its constituent cells. In
363 addition, each integument consists of two cell layers, each one cell thick. The analysis
364 of the average N/C values across different tissues revealed that the nucellus and
365 funiculus exhibited comparable values. In contrast, we found the posterior chalaza to
366 show a higher N/C ratio than the anterior chalaza (Fig. 4M). We also observed that the
367 inner layers of both the outer and inner integuments exhibited a higher N/C ratio than
368 the corresponding outer layers.

369 To address the question if the N/C ratio changes during development of a specific
370 tissue layer, we focussed on the outer layer of the inner integument (ii2). We analyzed
371 the ii2 nuclear and cell volumes, and the N/C ratios for stages 2-IV, 2-V, 3-I, 3-II, 3-
372 IV and 3-V. We observed that from stage 2-IV to stage 3-IV, there was a decline in
373 the ii2 N/C ratio (0.29 ± 0.08 towards 0.15 ± 0.07), followed by an increase from
374 stage 3-IV to 3-V (0.14 ± 0.06 versus 0.17 ± 0.07) (Fig. 4N). To assess the basis for
375 this decrease in the N/C ratio during development of the ii2 layer we analyzed the
376 average nuclear and cell volumes between successive stages (Fig. S5C-D). We found
377 that the average cell volume of ii2 cells increased noticeably with a value of $129.8 \pm$
378 $58.06 \mu\text{m}^3$ at stage 2-IV and $220.50 \pm 130.0 \mu\text{m}^3$ at stage 3-IV (Fig. S5C). In
379 comparison, the average nuclear volume experienced only minor alterations ($35.46 \pm$
380 $13.73 \mu\text{m}^3$, stage 2-IV; $27.03 \pm 10.36 \mu\text{m}^3$, stage 3-II; $31.93 \pm 9.91 \mu\text{m}^3$, stage 3-V)
381 (Fig. S5C). Thus, we find that the change in the N/C ratio during development of the
382 ii2 cell layer is related to a marked increase in cell volume accompanied by a largely
383 constant nuclear volume. Further estimation of the stagewise Pearson correlation
384 coefficient, r , for ii2 revealed that there is a positive correlation between cell volumes
385 and corresponding nuclear volumes of ii2 across development up to stage 3-IV. By
386 stage 3-V, however, this correlation is noticeably reduced (Fig. S5E-J).

387 In summary, the results suggest that the N/C ratio is specific to a cell type and its
388 developmental stage in the *Arabidopsis* ovule.

389 **Automatic proofreading of 3D cell segmentation based on reliable 3D nuclear**
390 **segmentation**
391 Despite the significant improvement in cell boundary prediction provided by the
392 PlantSeg segmentation pipeline, the final image segmentation may still contain some

393 errors in certain regions of the images where cell wall staining is poor. An example is
394 the faint walls around the megasporangium mother cell (MMC) in young *Arabidopsis* ovules
395 (Vijayan et al., 2021) (Fig. 5A-D). From the raw cell wall stain images, it is almost
396 impossible to identify the presence of these faint walls. A similar scenario sometimes
397 applies to cells in the interior chalaza (Fig. 5E-H). The processed raw images
398 (brightened) along with the nuclei stain clearly display the faint wall and the presence
399 of multiple nuclei in this region confirming the cell segmentation error in this region.

400 We developed a python script called “proofreading” to automatically correct the
401 instance 3D cell segmentation using a trusted and proofread 3D nuclear segmentation
402 and added it to the growing collection of helper tools for the PlantSeg pipeline
403 (<https://github.com/hci-unihd/plant-seg-tools>). The script takes the cell boundary
404 prediction, cell segmentation and nuclei segmentation as input images. It
405 automatically finds the erroneous cell segmentation by first quantifying the number of
406 nuclei within a cell. When it finds a cell with more than one nucleus, a bounding box
407 is approximated in 3D around this cell. Further corrections are only made within the
408 bounding box. Corrections are made by resegmenting the erroneous 3D cell using
409 watershed segmentation with nuclei as seeds. The t-merge parameter can be altered to
410 improve the segmentation further if the default value does not seem to improve the
411 result. The method does not apply to a scenario where the segmentation error relates
412 to a missing cell instead of an under segmented cell. The detailed method is described
413 in the Materials and Methods section.

414 This method now corrects the segmentation error in most cases and leaves other cells
415 without segmentation errors untouched (Fig. 5C,D and G,H). We performed another
416 test by assessing *Cardamine parviflora* (*C. parviflora*) ovule primordia (Fig. 5I-L).

417 This species harbors weakly crassinucellate ovule primordia (Endress, 2011), i.e., it
418 develops an additional hypodermal cell layer, with an initial archesporial cell in the
419 L2 undergoing periclinal division resulting in an upper parietal cell and a lower MMC
420 (Harvey and Smith, 2013; Mody et al., 2023). The ability to visualize this is usually
421 lost after standard PlantSeg-based 3D cell segmentation (Fig. 5I,J), but the
422 proofreading script can correct this error (Fig. 5K,L). The proofreading thus
423 minimizes 3D cell segmentation errors and enables the examination of 3D cell
424 volumes for cells that are challenging to segment accurately.

425 **Discussion**

426 We present a collection of computational tools and datasets that extend the
427 capabilities for quantitative analysis of 3D digital organs. We have developed a deep-
428 learning based computational toolkit for 3D nuclear segmentation that enables
429 accurate 3D segmentation of nuclei in a variety of 3D digital organs labeled with a
430 range of nuclear markers or stains, even in faintly stained and noisy images.
431 Importantly, we not only provide a valuable plant nuclear dataset for training 3D
432 nuclear segmentation algorithms but also two accurate platinum models for 3D
433 nuclear segmentation with broad applicability. In addition, we outline novel and
434 processes that we have added to MorphoGraphX to enable the analysis of various cell-
435 nucleus geometric parameters in 3D, including the N/C ratio. Finally, we have created
436 a proofreading script that significantly improves the fidelity of 3D cell segmentation.
437 All tools are open source and readily available to the community via public software
438 repositories.
439 A particular value of the 3D nuclear segmentation toolkit lies in its broad
440 applicability. The method can be successfully used with various nuclear staining

441 methods, ranging from different nuclear stains with variable staining intensities, such
442 as TO-PRO-3 or DAPI, to nuclear reporters based on fluorescent reporters. In
443 addition, nuclei can be segmented in data sets obtained from cleared or live tissue, not
444 only from a range of different plant tissues, but also from animal tissues such as
445 mouse embryos. An optimized workflow from imaging to 3D segmentation of nuclei
446 dataset can be found in the Materials and Methods section.

447 We used PlantSeg (Wolny et al., 2020), Cellpose (Stringer et al., 2021) and StarDist
448 (Schmidt et al., 2018; Weigert et al., 2020) as three strong baselines for 3D nuclear
449 segmentation and performed a comparative analysis of the performance of the models
450 obtained from each platform. Cellpose was the only tool that provided a pre-trained
451 model which could perform the initial segmentation. However, in the presence of
452 ground truth, it was demonstrated to be less stable, with more variability in the results
453 depending on the training/test split of the data. Re-trained PlantSeg and StarDist both
454 demonstrated excellent, stable performance. The advantage of PlantSeg is its ability to
455 also perform cell segmentation from membrane staining and the general absence of
456 explicit star-convexity prior which can be harmful for segmentation of irregular
457 nuclei. However, in very noisy conditions StarDist is preferred as the shape prior
458 helps it overcome the low SNR. It also needs to be noted that our ground truth
459 annotations are produced through iterative improvement using a StarDist model, so
460 the resulting shapes might be biased towards being more regular and star-convex.

461 An important feature of MorphoGraphX is the projection of secondary signals onto
462 the cell surfaces, which enables the quantification of nuclei, cell wall or cytoplasmic
463 signal intensities based on the cellular segmentation (Barbier de Reuille et al., 2015;
464 Montenegro-Johnson et al., 2015). What up to now was missing, however, was the
465 integration of the size and shape of the nuclei into the cellular framework. We present

466 an extension to MorphoGraphX that includes the ability to assign individual nuclei to
467 their corresponding 3D cells in digital 3D organs. To this end, we have developed a
468 number of processes that are part of the latest versions of MorphoGraphX from
469 version 2.0.2. This improvement allows the analysis of various relationships between
470 the nucleus and the cell it is located in, in 3D, including determination of the
471 Euclidean distance between cell and nuclear centroids, mapping 2.5D cells to
472 underlying 3D nuclei, or identification of more than one nucleus in a cell. For
473 example, quantification of the Euclidean distance between cell centroids and nuclear
474 centroids was instrumental in developing the notion that positioning the plane of cell
475 division in cells of the early *Arabidopsis* embryo does not depend on the precise
476 position of the nucleus (Vaddepalli et al., 2021).

477 The “Kernplasma-Relation” (nucleus-cytoplasm relation) has fascinated cell
478 biologists since its discovery around the turn of the last century (Conklin, 1912;
479 Hertwig, 1903; Strasburger, 1893; Wilson, 1925). The currently favored model states
480 that nuclear size scales with cell size and that the N/C ratio is cell-type specific
481 (Cantwell and Nurse, 2019c). Our findings in the *Arabidopsis* ovule support this
482 notion. For example, we noticed that the outermost L1 layer has a larger N/C ratio
483 compared to the L2 and L3 layers in the ovule primordium. This change is largely due
484 to alterations in cell not nuclear size. Thus, we find that similarly sized nuclei can
485 populate cells with significant size differences, supporting the notion that this scaling
486 rule is valid in the context of a specific cell type. Interestingly, this result differs from
487 the scenario in the L1, L2, and L3 layers of the *Arabidopsis* shoot apical meristem
488 (SAM), where cells of the three layers have similar N/C ratios (Wenzl and Lohmann,
489 2023), further highlighting the tissue specificity of N/C ratios. The observed changes
490 in the N/C ratio during ii2 development may indicate early changes in the

491 differentiation status. For example, threshold values of N/C ratios in *Xenopus* oocytes
492 have been shown to be critical for transcriptional initiation associated with
493 developmental stage transition (Jevtić and Levy, 2015).

494 How nuclear size is regulated is poorly understood (Cantwell and Nurse, 2019c).
495 Current evidence indicates that nuclear size in yeast is controlled by several processes,
496 including osmotic forces, bulk nucleocytoplasmic transport, transcription and RNA
497 processing, linker of nucleoskeleton and cytoskeleton (LINC) complexes, and
498 membrane expansion (Cantwell and Nurse, 2019a; Cantwell and Nurse, 2019b; Deviri
499 and Safran, 2022; Lemière et al., 2022). In *Arabidopsis*, two nuclear envelope proteins
500 were described to function redundantly in the control of nuclear size and shape in
501 response to hyperosmotic stress in root tip cells (Goswami et al., 2020). The
502 straightforward tools presented for the quantitative study of nuclear volume will
503 facilitate the functional dissection of the control of nuclear size and shape in
504 multicellular organisms such as seed plants.

505 Finally, the PlantSeg-based cell segmentation proofreading script provides a useful
506 tool to correct 3D cell segmentation errors due to weak cell wall staining. The method
507 uses the successfully 3D segmented nuclei as seeds and thus its success critically
508 depends on precise 3D nuclear segmentation. Our results indicate that it can
509 dramatically improve the fidelity of 3D cell segmentation, as indicated by the
510 observed corrections of the notoriously difficult to segment cells surrounding the
511 MMC in *A. thaliana* and *C. parviflora* ovule primordia.

512 In conclusion, the novel computational toolkit we present here augments the growing
513 suite of tools that enable the generation and detailed quantitative analysis of 3D digital
514 organs at single cell resolution.

515

516 **Materials and Methods**

517 **Plant work and transformation**

518 *Arabidopsis thaliana* (L.) Heynh. var. Columbia (Col-0), *Cardamine parviflora*, and
519 *Antirrhinum majus* were used as the wild-type strains. Plants were grown as
520 previously described (Fulton et al., 2009). *Arabidopsis* Col-0 plants were transformed
521 with the pUBQ::H2B:tdTomato construct using *Agrobacterium* strain
522 GV3101/pMP90 (Koncz and Schell, 1986) and the floral dip method (Clough and
523 Bent, 1998). Transgenic T1 plants were selected on Hygromycin (20 mg/ml) or
524 Sulfadiazine (5 µg/ml) plates according to the selection.

525 **Recombinant DNA work**

526 For DNA work, standard molecular biology techniques were used. PCR fragments
527 used for cloning were obtained using Q5 high-fidelity DNA polymerase (New
528 England Biolabs, Frankfurt, Germany). All PCR-based constructs were sequenced.
529 Constructs were generated using the GreenGate system (Lampropoulos et al., 2013).
530 pUBQ::H2B:tdTomato: a dual reporter for cell membrane and H2B nuclei was
531 designed and constructed using GreenGate. pUBQ::H2B:tdTomato and
532 pSUB::gSUB:mTurquoise2 were assembled into the intermediate vectors and then
533 combined into the pGGZ0001 destination vector with a standard GreenGate reaction.
534 The pSUB::gSUB:mTurquoise2 expression was weak or absent and we only imaged
535 H2B nuclei in this study. Half MS plate containing Sulfadiazine (5 µg/ml) was used
536 for plant resistance selection.

537 **Clearing and staining of ovules**

538 Fixing, clearing, and staining of dissected ovules was performed as described earlier
539 (Tofanelli et al., 2019).

540 **Microscopy and data acquisition**

541 Confocal laser scanning microscopy of ovules of *Arabidopsis thaliana*, *Cardamine*
542 *parviflora*, and *Antirrhinum majus* stained with SR2200 and TO-PRO-3 iodide or
543 DAPI was performed on an upright Leica TCS SP8 X WLL2 Hyvolution 2 (Leica
544 Microsystems) equipped with GaAsP (HyD) detectors and a 63x glycerol objective
545 (HC PL APO CS2 63 \times /1.30 GLYC, CORR CS2). Laser power or gain was adjusted
546 for z compensation to obtain an optimal z-stack. SR2200 fluorescence was excited
547 with a 405 nm diode laser (50 mW) with a laser power ranging from 0.1 to 1.5%
548 intensity and detected at 420 to 500 nm with the gain of the HyD detector set to 20.
549 TO-PRO-3 iodide fluorescence excitation was done at 642 nm with the white-light
550 laser with a laser power ranging from 2 to 3.5% and detected at 655 to 720 nm with
551 the gain of the HyD detector set to 200. For z-stacks 8, 12 or 16-bit images were
552 captured at a slice interval of 0.28 μ m or 0.33 μ m with optimized system resolution of
553 0.126 μ m \times 0.126 μ m \times c μ m (c=0.280 or 0.330) as final pixel size according to the
554 Nyquist criterion. Scan speed was set to 400 Hz, the pinhole was set to 0.6 to 1.0 Airy
555 units, line average was between 2 and 4, and the digital zoom was set between 0.75
556 and 2, as required. Laser power or gain was adjusted for z compensation to obtain an
557 optimal z-stack. Image acquisition parameters for the pUBQ::H2B:tdTomato reporter
558 line: SR2200; 405 diode laser 0.10%, HyD 420–480 nm, detector gain 10. tdTomato;
559 554 White laser 4%, HyD 570–630 nm, detector gain 80. TO-PRO-3; 642 nm White
560 Laser 2%, HyD 660–720 nm, detector gain 100. In each case sequential scanning was
561 performed to avoid crosstalk between the spectra. DAPI stained ovules were excited
562 with a 405 diode laser 3 %, HyD 420–480 nm, detector gain 100.

563 Confocal images of live *Cardamine hirsuta* Oxford leaf were performed on an upright
564 Leica TCS SP8 equipped with a 16x 0.6NA multi immersion objective (HC
565 FLUOTAR L 16x/0,60 IMM CORR VISIR). Sample was mounted on a glass slide
566 under a coverslip, stained with 1% Propidium iodide in water for cell wall
567 fluorescence along with ChCUC2g::Venus signal. Venus was excited using a 514
568 diode laser 2.5%, detected using the HyD 520-560, detector gain 100.

569 The dataset of pATML1::mCitrine-ATML1 expressing nuclei in the Arabidopsis
570 flower (pATML1mCitrine-ATML1_flower1_t08.tif) has been obtained from (Meyer
571 et al., 2017). The dataset of Arabidopsis shoot apical meristem nuclei expressing the
572 pFD:3xHA-mCHERRY-FD reporter(Cerise et al., 2023; Martignago et al., 2023). The
573 dataset of mouse embryo nuclei (F49_149) has been obtained from (Nunley et al.,
574 2023). 2D, 3D or 2.5D rendered snapshots were taken using MorphoGraphX. Images
575 were adjusted for color and contrast using Adobe Photoshop (Adobe, San José, USA)
576 or MorphoGraphX software (<https://www.morphographx.org>) (Barbier de Reuille et
577 al., 2015; Strauss et al., 2022).

578 **Model training and score quantification**

579 The new training dataset (N1-N5) is composed of three image channels: SR2200 cell
580 wall stain, H2B:tdTomato nuclear reporter, and TO-PRO-3 nuclear stain. The SR2200
581 cell wall stain was processed with the PlantSeg pipeline to generate a 3D cell
582 boundary prediction and segmentation. 3D segmentation of the strong tdTomato
583 nuclei reporter signal was performed using the default Cellpose nuclei model. It was
584 then proofread and used as the “initial ground truth”. This study provides five initial
585 ground truth segmentation datasets (Table 4) for model training. Initial model training
586 was performed using the initial ground truths and trained on the weak TO-PRO-3

587 channel. The StarDist-ResNet_3Dnuc_initial model was then used to segment the
588 original weak TO-PRO-3-based nuclear stain channel resulting in a modified ground
589 truth which was then human proofread, resulting in the “gold ground truth”. Gold
590 model training was performed using the gold ground truths and trained on the weak
591 TO-PRO-3 channel.

592 For quantitative evaluation of the models, we trained five different models during
593 both “initial” and “gold” training of each of the PlantSeg, StarDist, and Cellpose
594 neural networks. Cross-validation with one datasets kept out for testing was used (Fig
595 S2A), i.e. for model 1, N1-N4 data was used for model training while N5 was the
596 testing dataset. Each model training and testing involved three training datasets, one
597 validation dataset, and one testing dataset. For example, one PlantSeg model was
598 trained on N1, N2, N3 datasets, validated on N4 dataset, and tested on N5 dataset; the
599 next was trained on N2, N3, N4 datasets, validated on N5 dataset, and tested on N1
600 dataset and so on. Therefore, the trained models from the initial and gold training
601 include 15 (3 X 5) initial models and 30 (6 X 5) gold models (Table 5).

602 To evaluate and compare models and settings, mean Average Precision was chosen
603 for scoring (Caicedo et al., 2019). To make clear the exact metric used among many
604 variants (Hirling et al., 2023), the code for evaluation is publicly available to
605 complement the following formulae. Intersection over Union (IoU), or the Jaccard
606 index, measures the overlap between a predicted mask and a ground-truth mask for
607 the testing dataset. It is represented on a scale from 0 to 1, where a value of 1 signifies
608 a perfect match at the pixel level, and a value of 0.5 indicates that the number of
609 correctly matched pixels is equal to the combined number of missed and false positive
610 pixels. We define the precision of the segmentation for an image as $precision(t) =$

611 $\frac{TP(t)}{TP(t)+FP(t)+FN(t)}$, where t is the threshold, TP the number of objects that match true
612 objects with IoU value above t , FP the number of objects that have no true object
613 associated with, and FN the number of true objects that are not present in the
614 segmentation. The average precision (AP) over a range of IoU is defined as
615 $AP^{t_1:\Delta t:t_M} = \frac{1}{M} \sum_{i=1}^M precision(t_i)$, where M is the number of IoU thresholds that
616 range from t_1 to t_M with a step size of Δt . As a break from tradition, for each setting,
617 five models were evaluated, each with one image, and the scores were averaged, thus
618 the mean AP in our study is $mAP = \frac{1}{N} \sum_{i=1}^N AP^{t_1:\Delta t:t_M}$, where N is the number of
619 images and models. A five-fold average precision at 50% IoU across 5 models,
620 denoted as mAP^{50} , is used as a detection score, and a five-fold average precision over
621 $\{50\%, 55\%, \dots, 95\%\}$ IoU and across 5 models, denoted as $mAP^{50:95}$ or simply
622 mAP , is used as the instance segmentation score. The initial and gold models have
623 been quantified using the AP scores and reported along with standard deviation. The
624 initial models trained on PlantSeg, StarDist-ResNet, and Cellpose-Finetune-Nuclei
625 and the gold models trained on PlantSeg, StarDist-ResNet, StarDist-UNet, Cellpose-
626 Finetune-Cyto2, Cellpose-Finetune-Nuclei, and Cellpose trained from scratch were
627 evaluated with five-fold AP scoring (Tables 1 and 2). Detailed quantification of AP
628 scores for evaluation of segmentation can be found in the Supplementary File 1.
629 Finally, two robust and widely applicable platinum models are proposed where all
630 five datasets (N1-N5) were used for training final robust models:
631 PlantSeg_3Dnuc_platinum and StarDist-ResNet_3Dnuc_platinum (Fig S2, Fig 3, Fig
632 4). We provide the two platinum models through the BioImage Model Zoo for FAIR
633 use through different client tools of our community. For the sake of reproducibility,

634 we also provide the full bundle of models we trained: initial, gold and platinum, to be
635 downloaded from Biostudies repository S-BIAD1026 (Table 5).

636 **Data preprocessing for performing segmentation using the proposed StarDist,
637 Cellpose and PlantSeg models.**

638 For the best performance, StarDist requires the raw data to be rescaled so that the
639 median diameter of nuclei fits into the field of view of the model. We recommend
640 resampling the dataset to a voxel size of $0.25 \times 0.25 \times 0.25 \mu\text{m}^3$ (xyz) for the StarDist-
641 ResNet platinum model proposed by this study. The grid parameter in the config is a
642 StarDist model parameter that specifies the downsampling factor in each dimension;
643 [2, 4, 4] downsamples the image by 2 in z and by 4 in x and y. Cellpose models need
644 to know the diameter or an estimate of that to match the testing datasets' objects to
645 original datasets' object diameter (30 for cell models and 17 for the nuclei model);
646 PlantSeg model does not require rescaling to match object size, but it is recommended
647 to match the voxel size to $0.25 \times 0.25 \times 0.25 \mu\text{m}^3$ (xyz) so that the membrane has
648 similar thickness. This paper comes with data, code, models and configuration files.

649 **Mapping cell labels to nuclei labels in MorphoGraphX**

650 3D cell and nuclei meshes were generated from segmented stacks using the Marching
651 cubes 3D process with a cube size of $0.5 \mu\text{m}$ for fine details. Cell-type labeling
652 assigns parent (tissue) labels to the cell IDs. Cell-type labeling was done as described
653 in (Vijayan et al., 2021). The cell and nuclear volumes were obtained using the
654 “Mesh/Heat Map/Analysis/Cell Analysis 3D” process in MorphoGraphX. Initially,
655 the cells in the 3D cell mesh (Mesh 1) have their unique cell IDs and the nuclei in the
656 3D nuclear mesh (Mesh 2) have their unique nuclei IDs. Both the IDs are mapped
657 using the MorphoGraphX process “Mesh/Nucleus/ Label Nuclei”. In detail, this

658 process identifies the cells in which nuclei are located. It is run on the active 3D cell
659 mesh in MorphoGraphX mesh 1, while the 3D nuclei mesh is loaded in the
660 MorphoGraphX Mesh 2. The process assigns cell IDs as “parents” annotation to the
661 nuclei labels, thereby linking cells IDs to nuclei IDs. On the 3D nuclei mesh (active),
662 the “Mesh/Lineage tracking/Save parents” process was used to save the nuclei IDs
663 and their corresponding parent cell IDs in a csv file, followed by the “Mesh/Lineage
664 tracking/Copy parents to labels” process to rewrite the nuclei labels IDs to that of
665 cells. These processes in combination with “Mesh/Heat map” and “Mesh/Heat
666 map/Operators/Export heat to Attr Map” processes were used to generate csv files
667 containing cell IDs, their corresponding nuclei IDs, parent (tissue) labels, and cell and
668 nuclei geometric attributes.

669 Further, we created a process (“Mesh/Nucleus/Select Duplicated Nuclei”) to detect
670 and automatically select nuclei in cells where multiple nuclei were detected. This
671 process was used to detect segmentation errors. Another process
672 (“Mesh/Nucleus/Distance Nuclei”) was implemented to quantify the Euclidean
673 distance between cell centroids and nuclei centroids. We also included a process
674 (“Mesh/Nucleus/Label Nuclei Surface”) to associate 3D segmented nuclei IDs with
675 the cells of curved surface meshes. All these processes are documented within
676 MorphoGraphX (Help/Process Docs). Specific application and minimal guide on the
677 process can be viewed by hovering the mouse over the process.

678 **Proofreading cell segmentation using nuclear segmentation**

679 PlantSeg-tools offers this script for proofreading cell segmentation based on nuclei
680 knowledge (<https://github.com/hci-unihd/plant-seg-tools>). The method is first
681 described in this manuscript and is part of this study. The cell segmentation will be

682 adjusted to resolve any conflict with the respective nuclear segmentation, thus the
683 accuracy of the nuclei is extremely important. Errors in nuclear segmentation are
684 propagated to cell segmentation. The script is composed of two different subroutines.
685 One for correcting the split errors in cell segmentation and one for fixing the merge
686 mistakes. The split routine checks for each cell whether two or more nuclei (measured
687 as a percentage of the total cell volume) overlap with the cell segmentation by more
688 than a user-defined “threshold-split (t-split)”. If the overlap is above the threshold, the
689 script will use the nuclear segmentation as seed and split the cell using the seeded
690 watershed algorithm. The merge routine checks for each nucleus whether two or more
691 cells (measured as a percentage of the total nucleus volume) overlap a single nucleus
692 segmentation by more than a user-defined “threshold-merge (t-merge)”. If the overlap
693 is above the threshold, the script will merge the cells. The default thresholds provided
694 are 66% for "t-split" and 33% for "t-merge".

695 **Optimized workflow from imaging to segmentation of nuclei dataset**

696 Obtaining confocal Z slices is achievable with a recommended xyz voxel size ranging
697 from $0.12 \times 0.12 \times 0.25 \mu\text{m}^3$ to $0.25 \times 0.25 \times 0.25 \mu\text{m}^3$, ensuring visually identifiable
698 non-oversaturated nuclei signals. For optimal results, we propose imaging with line
699 average ranging from 2 to 5 whenever feasible. Employing microscope objectives
700 with a high numerical aperture (ideally around 1.2 NA or higher) is advised.
701 Nevertheless, both the PlantSeg and the StarDist-ResNet platinum models are quite
702 flexible to the imaging conditions as they were able to process a range of image
703 quality (Table. 3). For nuclei segmentation using the two platinum models, we present
704 GoNuclear (<https://github.com/kreshuklab/go-nuclear>). GoNuclear comes with the
705 PlantSeg and StarDist-ResNet platinum models. Although the results are comparable,
706 we recommend trying StarDist with the StarDist-ResNet platinum model first, as it is

707 a bit less involved compared to the PlantSeg 3D nuclei segmentation pipeline.
708 GoNuclear can batch process nuclei images and output segmentation can be saved as
709 a tiff/HDF5 file which can be imported into MorphoGraphX. As an alternative, the
710 PlantSeg_3Dnuc_platinum model has been integrated into MorphoGraphX, allowing
711 3D nuclear predictions to be generated, which can then be 3D segmented using the
712 ITK watershed algorithm, all within MorphoGraphX. MorphoGraphX enables
713 multiple 3D stacks and segmented images to be superimposed on each other, allowing
714 the data sets to be proofread as needed. A 3D nuclei mesh can be created in
715 MorphoGraphX and quantifications can be performed. Numerical results can be
716 exported as a csv file for further processing.

717 **Acknowledgements**

718 We acknowledge support by EMBL IT Services and the Center for Advanced Light
719 Microscopy (CALM) of the TUM School of Life Sciences.

720 **Competing interests**

721 No competing interests declared.

722 **Funding**

723 This work was funded by the German Research Council (DFG) through grant
724 FOR2581 (TP3) FAH, (TP7) to KS, (TP8) RSS, (TP9) MT, and (TPZ2) to AK.

725 **Data availability**

726 Information and code for training and inference using PlantSeg, Cellpose, or StarDist,
727 including how to segment new 3D nuclei volumes as mentioned in this study, can be
728 found in the GoNuclear repository: <https://github.com/kreshuklab/go-nuclear>. Other
729 software can be downloaded at the following links: MorphoGraphX:

730 <https://morphographx.org>. PlantSeg: <https://github.com/hci-unihd/plant-seg>. Plant-
731 seg-tools: <https://github.com/hci-unihd/plant-seg-tools>. StarDist:
732 <https://github.com/stardist>. Cellpose: <https://github.com/mouseland/cellpose>. We
733 provide the 2 platinum models through the BioImage Model Zoo (<https://bioimage.io>)
734 for FAIR use through different client tools of our community.
735 PlantSeg_3Dnuc_platinum: Zenodo ID 0.5281/zenodo.8401064; Zoo name: efficient-
736 chipmunk. StarDist3DResnet_3Dnuc_platinum: Zenodo ID:
737 10.5281/zenodo.8421755; Zoo name: modest-octopus. All datasets used for the
738 figures and the entire bundle of models we trained can be downloaded from BioImage
739 Archive (BIA) (<https://www.ebi.ac.uk/bioimage-archive/>) (Hartley et al.,
740 2022)/BioStudies (<https://www.ebi.ac.uk/biostudies/>) (Sarkans et al., 2018), accession
741 S-BIAD1026. The MorphoGraphX Process “Mesh/Nucleus” is available with version
742 2.0.2.and above <https://morphographx.org>. The data used for quantification of the
743 Arabidopsis ovule N/C ratios include the training datasets generated in this study
744 (Biostudies accession S-BIAD1026) and were also obtained from (Vijayan et al.,
745 2021) (BioStudies, accession S-BSST475). The mouse embryo BlastoSPIM data set
746 (Nunley et al., 2023) can be downloaded from the respective website
747 (<https://blastospim.flatironinstitute.org/html/series.html>).

748 **References**

749 **Bailoni, A., Pape, C., Hütsch, N., Wolf, S., Beier, T., Kreshuk, A. and**
750 **Hamprecht, F. A.** (2019). GASP, a generalized framework for agglomerative
751 clustering of signed graphs and its application to Instance Segmentation. *arXiv*
752 [*cs.CV*].

753 **Barbier de Reuille, P., Routier-Kierzkowska, A.-L., Kierzkowski, D., Bassel,**
754 **G. W., Schüpbach, T., Tauriello, G., Bajpai, N., Strauss, S., Weber, A., Kiss,**
755 **A., et al.** (2015). MorphoGraphX: A platform for quantifying morphogenesis in
756 4D. *Elife* **4**, 05864.

757 **Bassel, G. W., Stamm, P., Mosca, G., Barbier de Reuille, P., Gibbs, D. J.,**

758 **Winter, R., Janka, A., Holdsworth, M. J. and Smith, R. S.** (2014).
759 Mechanical constraints imposed by 3D cellular geometry and arrangement
760 modulate growth patterns in the *Arabidopsis* embryo. *Proc. Natl. Acad. Sci. U. S.*
761 A. **111**, 8685–8690.

762 **Bink, K., Walch, A., Feuchtinger, A., Eisenmann, H., Hutzler, P., Höfler, H.**
763 **and Werner, M.** (2001). TO-PRO-3 is an optimal fluorescent dye for nuclear
764 counterstaining in dual-colour FISH on paraffin sections. *Histochem. Cell Biol.*
765 **115**, 292–299.

766 **Caicedo, J. C., Goodman, A., Karhohs, K. W., Cimini, B. A., Ackerman, J.,**
767 **Haghghi, M., Heng, C., Becker, T., Doan, M., McQuin, C., et al.** (2019).
768 Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl.
769 *Nat. Methods* **16**, 1247–1253.

770 **Cantwell, H. and Nurse, P.** (2019a). A systematic genetic screen identifies
771 essential factors involved in nuclear size control. *PLoS Genet.* **15**, e1007929.

772 **Cantwell, H. and Nurse, P.** (2019b). A homeostatic mechanism rapidly corrects
773 aberrant nucleocytoplasmic ratios maintaining nuclear size in fission yeast. *J.*
774 *Cell Sci.* **132**,.

775 **Cantwell, H. and Nurse, P.** (2019c). Unravelling nuclear size control. *Curr.*
776 *Genet.* **65**, 1281–1285.

777 **Cerise, M., da Silveira Falavigna, V., Rodríguez-Maroto, G., Signol, A.,**
778 **Severing, E., Gao, H., van Driel, A., Vincent, C., Wilkens, S., Iacobini, F. R.,**
779 **et al.** (2023). Two modes of gene regulation by TFL1 mediate its dual function
780 in flowering time and shoot determinacy of *Arabidopsis*. *Development* **150**,.

781 **Clough, S. J. and Bent, A. F.** (1998). Floral dip: a simplified method for
782 Agrobacterium-mediated transformation of *Arabidopsis thaliana*. *Plant J.* **16**,
783 735–743.

784 **Conklin, E. G.** (1912). Cell size and nuclear size. *J. Exp. Zool.* **12**, 1–98.

785 **Deviri, D. and Safran, S. A.** (2022). Balance of osmotic pressures determines
786 the nuclear-to-cytoplasmic volume ratio of the cell. *Proc. Natl. Acad. Sci. U. S.*
787 A. **119**, e2118301119.

788 **Endress, P. K.** (2011). Angiosperm ovules: diversity, development, evolution.
789 *Ann. Bot.* **107**, 1465–1489.

790 **Eschweiler, D., Spina, T. V., Choudhury, R. C., Meyerowitz, E., Cunha, A.**
791 **and Stegmaier, J.** (2019). CNN-based preprocessing to optimize watershed-
792 based cell segmentation in 3D confocal microscopy images. In *2019 IEEE 16th*
793 *International Symposium on Biomedical Imaging (ISBI 2019)*, pp. 223–227.

794 **Federici, F., Dupuy, L., Laplaze, L., Heisler, M. and Haseloff, J.** (2012).
795 Integrated genetic and computation methods for in planta cytometry. *Nat.*
796 *Methods* **9**, 483–485.

797 **Fernandez, R., Das, P., Mirabet, V., Moscardi, E., Traas, J., Verdeil, J.-L.,**
798 **Malandain, G. and Godin, C.** (2010). Imaging plant growth in 4D: robust tissue
799 reconstruction and lineaging at cell resolution. *Nat. Methods* **7**, 547–553.

800 **Fridman, Y., Strauss, S., Horev, G., Ackerman-Lavert, M., Reiner-Benaim,**
801 **A., Lane, B., Smith, R. S. and Savaldi-Goldstein, S.** (2021). The root meristem
802 is shaped by brassinosteroid control of cell geometry. *Nat Plants* **7**, 1475–1484.

803 **Fulton, L., Batoux, M., Vaddepalli, P., Yadav, R. K., Busch, W., Andersen,**
804 **S. U., Jeong, S., Lohmann, J. U. and Schnitz, K.** (2009). *DETORQUEO*,
805 *QUIRKY*, and *ZERZAUST* represent novel components involved in organ
806 development mediated by the receptor-like kinase *STRUBBELIG* in *Arabidopsis*
807 *thaliana*. *PLoS Genet.* **5**, e1000355.

808 **Goswami, R., Asnacios, A., Milani, P., Grindorge, S., Houlné, G., Mutterer,**
809 **J., Hamant, O. and Chabouté, M.-E.** (2020). Mechanical shielding in plant
810 nuclei. *Curr. Biol.* **30**, 2013–2025.e3.

811 **Graeff, M., Rana, S., Wendrich, J. R., Dorier, J., Ekhout, T., Aliaga**
812 **Fandino, A. C., Guex, N., Bassel, G. W., De Rybel, B. and Hardtke, C. S.**
813 (2021). A single-cell morpho-transcriptomic map of brassinosteroid action in the
814 *Arabidopsis* root. *Mol. Plant* **14**, 1985–1999.

815 **Harris, K., Crabb, D., Young, I. M., Weaver, H., Gilligan, C. A., Otten, W.**
816 **and Ritz, K.** (2002). In situ visualisation of fungi in soil thin sections: problems
817 with crystallisation of the fluorochrome FB 28 (Calcofluor M2R) and improved
818 staining by SCRI Renaissance 2200. *Mycol. Res.* **106**, 293–297.

819 **Hartley, M., Kleywegt, G. J., Patwardhan, A., Sarkans, U., Swedlow, J. R.**
820 **and Brazma, A.** (2022). The BioImage Archive - building a home for life-
821 sciences microscopy data. *J. Mol. Biol.* **434**, 167505.

822 **Harvey, R. and Smith, B. I.** (2013). Megasporogenesis and megagametogenesis
823 of *Cardamine parviflora* L. (Brassicaceae). *J. Pa. Acad. Sci.* **87**, 120–124.

824 **Hernandez-Lagana, E., Mosca, G., Mendocilla-Sato, E., Pires, N., Frey, A.,**
825 **Giraldo-Fonseca, A., Michaud, C., Grossniklaus, U., Hamant, O., Godin, C.,**
826 **et al.** (2021). Organ geometry channels reproductive cell fate in the *Arabidopsis*
827 ovule primordium. *Elife* **10**.

828 **Hertwig, R.** (1903). Ueber die Korrelation von Zell- und Kerngrösse und ihre
829 Bedeutung für die geschlechtliche Differenzierung und die Teilung der Zelle.
830 *Biol Centralbl* **23**, 49–62.

831 **Hirling, D., Tasnadi, E., Caicedo, J., Caroprese, M. V., Sjögren, R.,**
832 **Aubreville, M., Koos, K. and Horvath, P.** (2023). Segmentation metric
833 misinterpretations in bioimage analysis. *Nat. Methods*.

834 **Jenik, P. D. and Irish, V. F.** (2000). Regulation of cell proliferation patterns by
835 homeotic genes during. *Development* **127**, 1267–1276.

836 **Jevtić, P. and Levy, D. L.** (2015). Nuclear size scaling during *Xenopus* early

837 development contributes to midblastula transition timing. *Curr. Biol.* **25**, 45–52.

838 **Koncz, C. and Schell, J.** (1986). The promoter of TL-DNA gene 5 controls the
839 tissue-specific expression of chimaeric genes carried by a novel *Agrobacterium*
840 binary vector. *Mol. Gen. Genet.* **204**, 383–396.

841 **Kurihara, D., Mizuta, Y., Sato, Y. and Higashiyama, T.** (2015). ClearSee: a
842 rapid optical clearing reagent for whole-plant fluorescence imaging.
843 *Development* **142**, 4168–4179.

844 **Lampropoulos, A., Sutikovic, Z., Wenzl, C., Maegele, I., Lohmann, J. U. and
845 Forner, J.** (2013). GreenGate---a novel, versatile, and efficient cloning system
846 for plant transgenesis. *PLoS One* **8**, e83043.

847 **Lemière, J., Real-Calderon, P., Holt, L. J., Fai, T. G. and Chang, F.** (2022).
848 Control of nuclear size by osmotic forces in *Schizosaccharomyces pombe*. *Elife*
849 **11**.

850 **Lora, J., Herrero, M., Tucker, M. R. and Hormaza, J. I.** (2017). The
851 transition from somatic to germline identity shows conserved and specialized
852 features during angiosperm evolution. *New Phytol.* **216**, 495–509.

853 **Martignago, D., da Silveira Falavigna, V., Lombardi, A., Gao, H., Korwin
854 Krukowski, P., Galbiati, M., Tonelli, C., Coupland, G. and Conti, L.** (2023).
855 The bZIP transcription factor AREB3 mediates FT signalling and floral
856 transition at the *Arabidopsis* shoot apical meristem. *PLoS Genet.* **19**, e1010766.

857 **Meyer, H. M., Teles, J., Formosa-Jordan, P., Refahi, Y., San-Bento, R.,
858 Ingram, G., Jönsson, H., Locke, J. C. W. and Roeder, A. H. K.** (2017).
859 Fluctuations of the transcription factor ATML1 generate the pattern of giant cells
860 in the *Arabidopsis* sepal. *Elife* **6**.

861 **Mody TA, Rolle A, Stucki N, Roll F, Bauer U, Schneitz K** (2023). Diverse 3D
862 cellular patterns underlie the development of *Cardamine hirsuta* and *Arabidopsis*
863 *thaliana* ovules. *bioRxiv*.

864 **Montenegro-Johnson, T. D., Stamm, P., Strauss, S., Topham, A. T., Tsagris,
865 M., Wood, A. T. A., Smith, R. S. and Bassel, G. W.** (2015). Digital single-cell
866 analysis of plant organ development using 3DCellAtlas. *Plant Cell* **27**, 1018–
867 1033.

868 **Musielak, T. J., Schenkel, L., Kolb, M., Henschen, A. and Bayer, M.** (2015).
869 A simple and versatile cell wall staining protocol to study plant reproduction.
870 *Plant Reprod.* **28**, 161–169.

871 **Nunley, H., Shao, B., Grover, P., Singh, J., Joyce, B., Kim-Yip, R.,
872 Kohrman, A., Watters, A., Gal, Z., Kickuth, A., et al.** (2023). A novel ground
873 truth dataset enables robust 3D nuclear instance segmentation in early mouse
874 embryos. *bioRxiv*.

875 **Ouedraogo, I., Lartaud, M., Baroux, C., Mosca, G., Delgado, L., Leblanc,
876 O., Verdeil, J.-L., Conéjero, G. and Autran, D.** (2023). 3D cellular

877 morphometrics of ovule primordium development in *Zea mays* reveal differential
878 division and growth dynamics specifying megasporangium mother cell singleness.
879 *Front. Plant Sci.* **14**, 1174171.

880 **Pachitariu, M. and Stringer, C.** (2022). Cellpose 2.0: how to train your own
881 model. *Nat. Methods* **19**, 1634–1641.

882 **Pasternak, T., Haser, T., Falk, T., Ronneberger, O., Palme, K. and Otten, L.**
883 (2017). A 3D digital atlas of the *Nicotiana tabacum* root tip and its use to
884 investigate changes in the root apical meristem induced by the *Agrobacterium 6b*
885 oncogene. *Plant J.* **92**, 31–42.

886 **Sarkans, U., Gostev, M., Athar, A., Behrang, E., Melnichuk, O., Ali, A.,**
887 **Minguet, J., Rada, J. C., Snow, C., Tikhonov, A., et al.** (2018). The
888 BioStudies database—one stop shop for all data supporting a life sciences study.
889 *Nucleic Acids Res.* **46**, D1266–D1270.

890 **Satina, S., Blakeslee, A. F. and Avery, A. G.** (1940). Demonstration of the
891 three germ layers in the shoot apex of *Datura* by means of induced polyploidy in
892 periclinal chimeras. *Am. J. Bot.* **27**, 895–905.

893 **Schmidt, T., Pasternak, T., Liu, K., Blein, T., Aubry-Hivet, D., Dovzhenko,**
894 **A., Duerr, J., Teale, W., Ditengou, F. A., Burkhardt, H., et al.** (2014). The
895 iRoCS Toolbox—3D analysis of the plant root apical meristem at cellular
896 resolution. *Plant J.* **77**, 806–814.

897 **Schmidt, U., Weigert, M., Broaddus, C. and Myers, G.** (2018). Cell detection
898 with star-convex polygons. In *Medical Image Computing and Computer Assisted*
899 *Intervention – MICCAI 2018*, pp. 265–273. Cham: Springer International
900 Publishing.

901 **Schneitz, K., Hülkamp, M. and Pruitt, R. E.** (1995). Wild-type ovule
902 development in *Arabidopsis thaliana*: a light microscope study of cleared whole-
903 mount tissue. *Plant J.* **7**, 731–749.

904 **Sommer, C., Straehle, C., Kothe, U. and Hamprecht, F. A.** (2011). Ilastik:
905 Interactive learning and segmentation toolkit. pp. 230–233. IEEE.

906 **Stegmaier, J., Amat, F., Lemon, W. C., McDole, K., Wan, Y., Teodoro, G.,**
907 **Mikut, R. and Keller, P. J.** (2016). Real-time three-dimensional cell
908 segmentation in large-scale microscopy data of developing embryos. *Dev. Cell*
909 **36**, 225–240.

910 **Strasburger, E.** (1893). Ueber die Wirkungssphäre der Kerne und die
911 Zellgrösse. *Histolog. Beiträge* **5**.

912 **Strauss, S., Runions, A., Lane, B., Eschweiler, D., Bajpai, N., Trozzi, N.,**
913 **Routier-Kierzkowska, A.-L., Yoshida, S., Rodrigues da Silveira, S., Vijayan,**
914 **A., et al.** (2022). Using positional information to provide context for biological
915 image analysis with MorphoGraphX 2.0. *Elife* **11**.

916 **Stringer, C., Wang, T., Michaelos, M. and Pachitariu, M.** (2021). Cellpose: a

917 generalist algorithm for cellular segmentation. *Nat. Methods* **18**, 100–106.

918 **Tofanelli, R., Vijayan, A., Scholz, S. and Schneitz, K.** (2019). Protocol for
919 rapid clearing and staining of fixed *Arabidopsis* ovules for improved imaging by
920 confocal laser scanning microscopy. *Plant Methods* **15**, 120.

921 **Ursache, R., Andersen, T. G., Marhavý, P. and Geldner, N.** (2018). A
922 protocol for combining fluorescent proteins with histological stains for diverse
923 cell wall components. *Plant J.* **93**, 399–412.

924 **Vaddepalli, P., de Zeeuw, T., Strauss, S., Bürstenbinder, K., Liao, C.-Y.,**
925 **Ramalho, J. J., Smith, R. S. and Weijers, D.** (2021). Auxin-dependent control
926 of cytoskeleton and cell shape regulates division orientation in the *Arabidopsis*
927 embryo. *Curr. Biol.*

928 **Van Hooijdonk, C. A., Glade, C. P. and Van Erp, P. E.** (1994). TO-PRO-3
929 iodide: a novel HeNe laser-excitable DNA stain as an alternative for propidium
930 iodide in multiparameter flow cytometry. *Cytometry* **17**, 185–189.

931 **Vijayan, A., Tofanelli, R., Strauss, S., Cerrone, L., Wolny, A., Strohmeier,**
932 **J., Kreshuk, A., Hamprecht, F. A., Smith, R. S. and Schneitz, K.** (2021). A
933 digital 3D reference atlas reveals cellular growth patterns shaping the
934 *Arabidopsis* ovule. *Elife* **10**.

935 **Weigert, M., Schmidt, U., Haase, R., Sugawara, K. and Myers, G.** (2020).
936 Star-convex polyhedra for 3D object detection and segmentation in microscopy.
937 In *2020 IEEE Winter Conference on Applications of Computer Vision (WACV)*,
938 pp. 3655–3662.

939 **Wenzl, C. and Lohmann, J. U.** (2023). 3D imaging reveals apical stem cell
940 responses to ambient temperature. *Cells Dev* **175**, 203850.

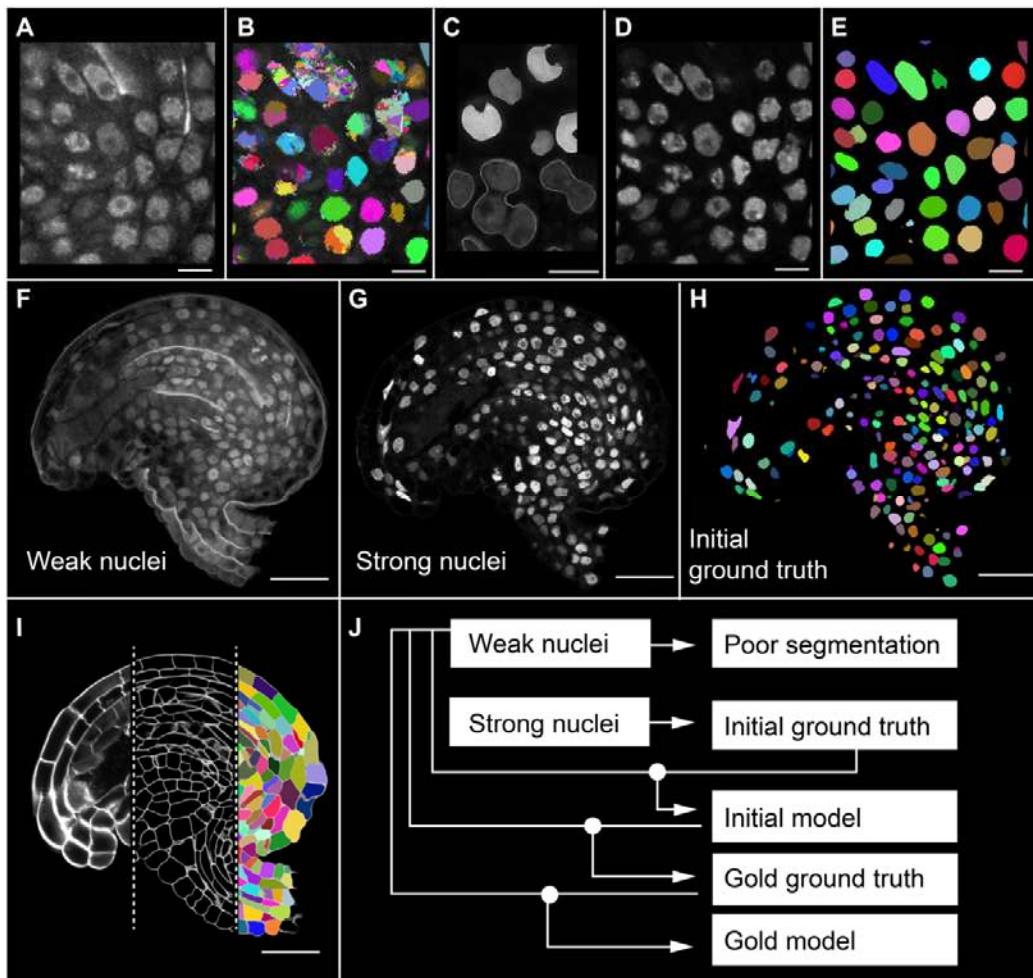
941 **Wilson, E. B.** (1925). The karyoplasmic ratio. In *The Cell in Development and*
942 *Heredity*, pp. 727–733. The Macmillan Company.

943 **Wolny, A., Cerrone, L., Vijayan, A., Tofanelli, R., Barro, A. V., Louveaux,**
944 **M., Wenzl, C., Strauss, S., Wilson-Sánchez, D., Lymbouridou, R., et al.**
945 (2020). Accurate and versatile 3D segmentation of plant tissues at cellular
946 resolution. *Elife* **9**, e57613.

947 **Yoshida, S., Barbier de Reuille, P., Lane, B., Bassel, G. W., Prusinkiewicz,**
948 **P., Smith, R. S. and Weijers, D.** (2014). Genetic control of plant development
949 by overriding a geometric division rule. *Dev. Cell* **29**, 75–87.

950

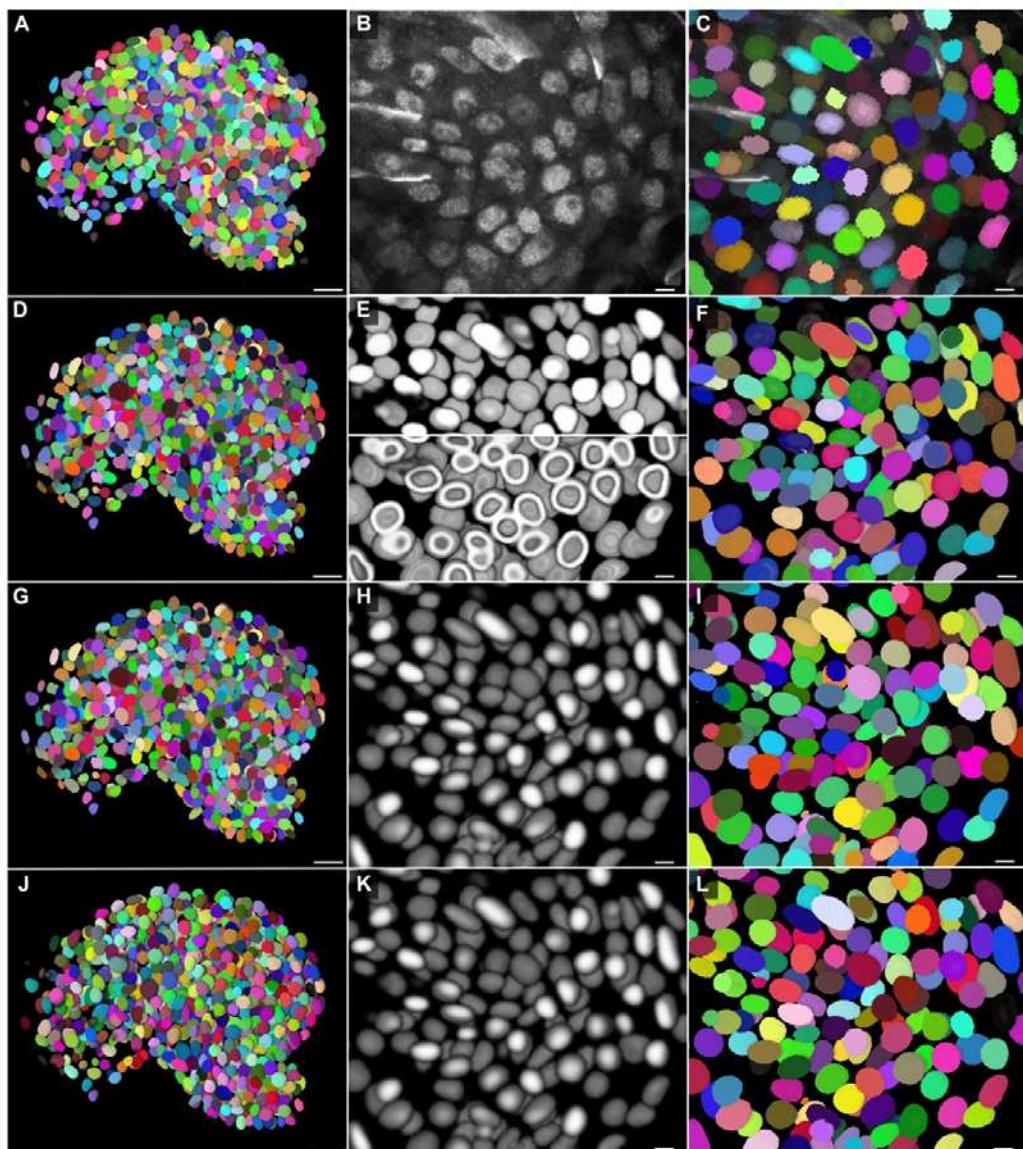
951 **Figures and figure legends**



952

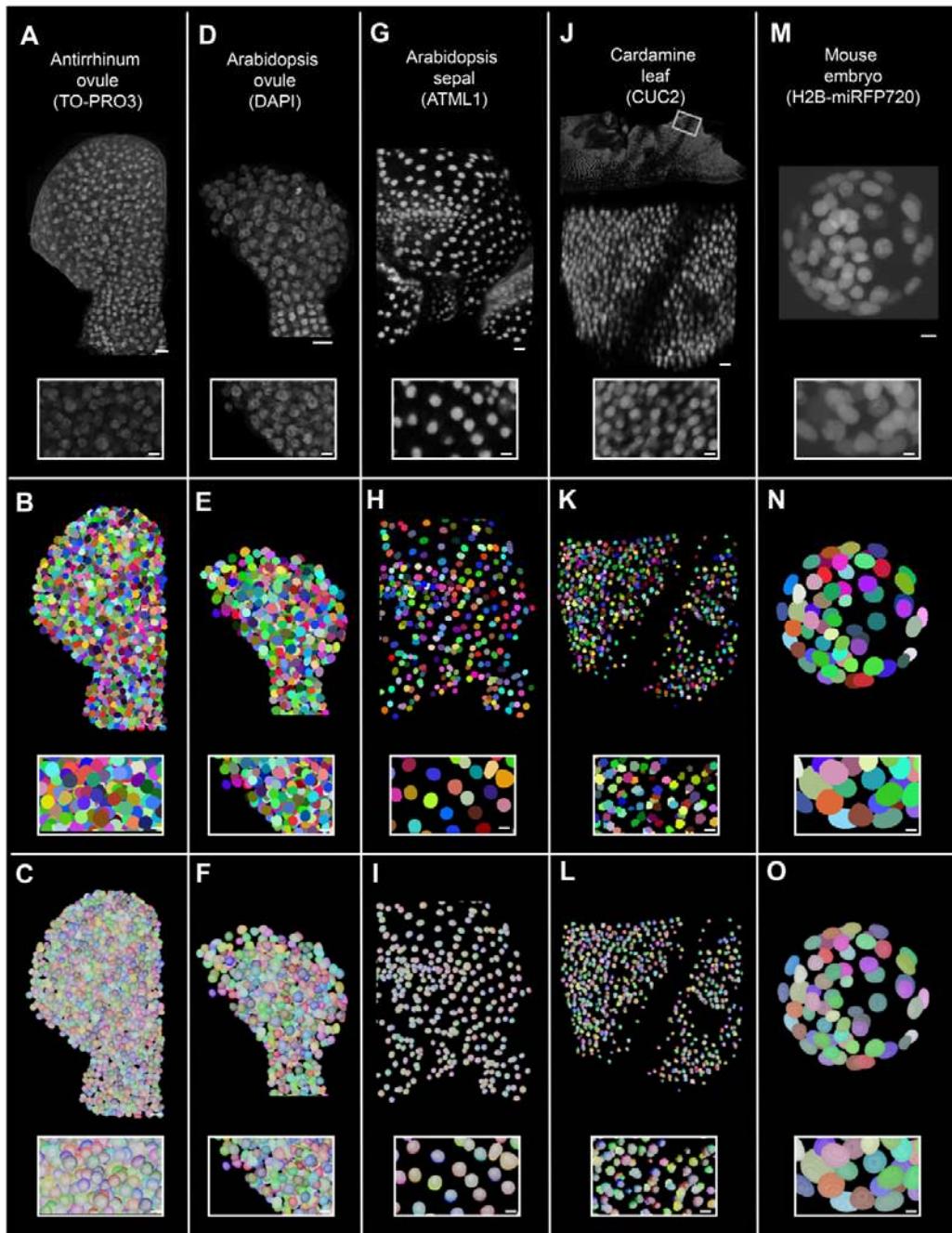
953 **Fig. 1. 3D dataset for model training.** (A) 2D section view of TO-PRO-3-stained
954 nuclei in *Arabidopsis* ovules. (B) 3D nuclear segmentation of weak nuclei stain
955 performed using Cellpose nuclei model. (C) A zoomed-in view displaying the
956 erroneous segmentation. Typical segmentation errors in the nuclei stains segmentation
957 resulting in improper size, shape and number of nuclei. (D) Fluorescent nuclei
958 reporter H2B: tdTomato raw image. (E) 3D Cellpose nuclei model segmentation of
959 the bright tdTomato nuclei fluorescence. (F-I) 2D section view from one of the five
960 training dataset. (F) Weak nuclei channel (TO-PRO-3-stained) used for training. (G)
961 Strong nuclei channel (nuclei reporter H2B: tdTomato) used for generating ground
962 truths. (H) Initial ground truth used for training initial model. 3D nuclear

963 segmentation of the strong nuclei channel performed using the Cellpose nuclei model.
964 (I) Raw cell wall stain, PlantSeg cell boundary predictions and cell segmentation
965 available with the training dataset (from left to right) (J) Illustration of model training
966 strategy. Scale bars: 5µm (A-E); 20 µm (F-I).



967
968 **Fig. 2. Qualitative comparison of segmentation results using different trained**
969 **models.** Qualitative comparison displaying the Arabidopsis ovule testing dataset 1135
970 (N5 dataset) with trained model (Model-5) using four other training datasets. (A) 3D
971 view of ground truth nuclear segmentation. (B) Zoomed 2D section view of raw weak

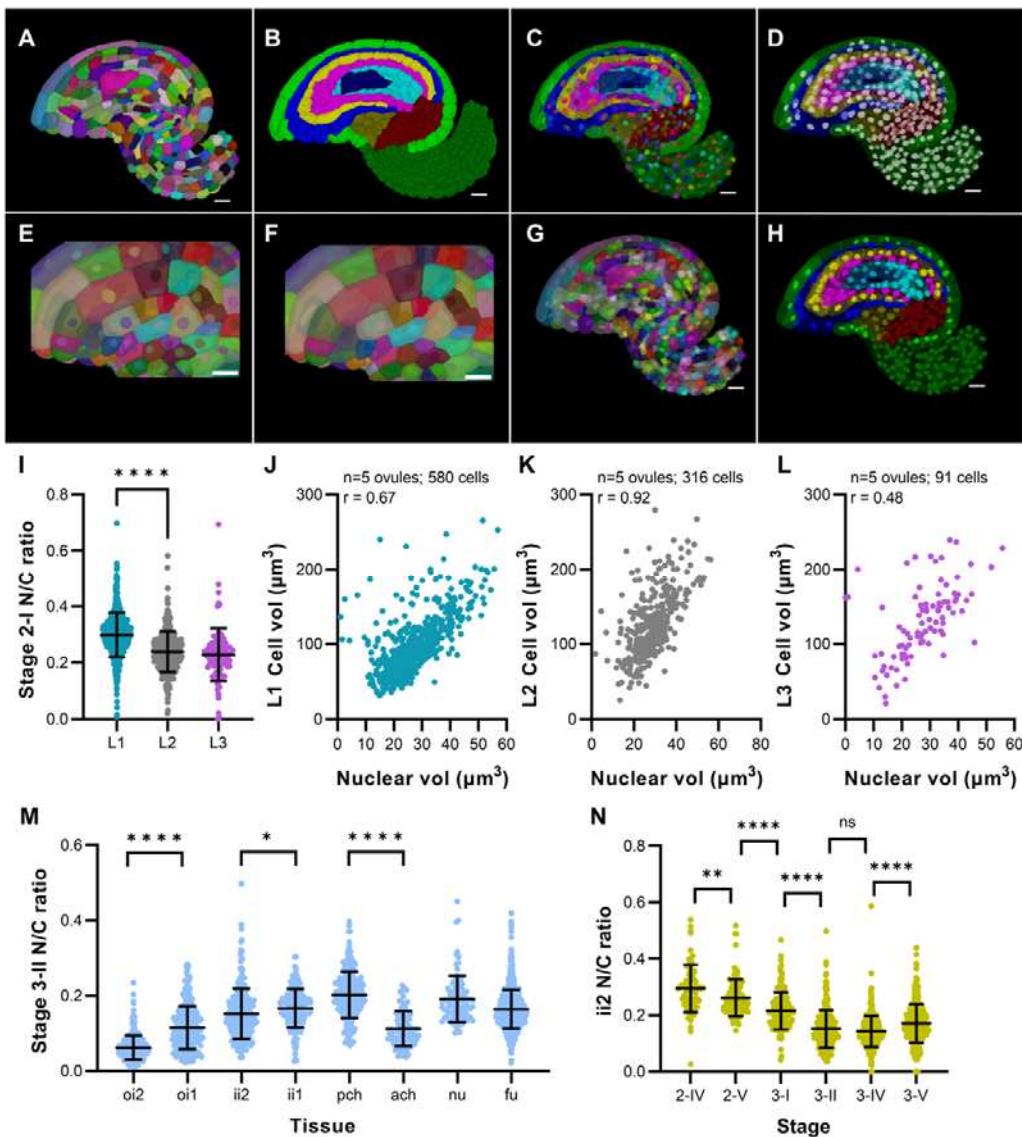
972 TO-PRO-3 iodide nuclei stain. (C) Ground truth nuclear segmentation corresponding
973 to the zoomed view in (B). (D-E) PlantSeg predictions and segmentation using the
974 proposed PlantSeg model. (D) 3D PlantSeg GASP segmentation performed using the
975 proposed PlantSeg model. (E) View corresponding to (B) showing PlantSeg nuclei
976 predictions. Top panel: PlantSeg nuclei center predictions. Bottom panel: PlantSeg
977 nuclei envelope prediction from raw data. (F) PlantSeg GASP segmentation of the
978 corresponding section in (B). (G-I) StarDist ResNet nuclei predictions and
979 segmentation using the proposed ResNet model. (G) StarDist ResNet 3D nuclear
980 segmentation performed using the proposed StarDist model. (H) View corresponding
981 to (B) showing StarDist ResNet nuclei predictions. (I) StarDist ResNet nuclear
982 segmentation of the corresponding section in (B). (J-L) StarDist UNet nuclei
983 predictions and segmentation using the proposed UNet model. (J) StarDist UNet 3D
984 nuclear segmentation performed using the proposed StarDist model. (K) View
985 corresponding to (B) showing StarDist UNet nuclei predictions. (I) StarDist UNet
986 nuclear segmentation of the corresponding section in (B). Scale bars: 10 μ m.



987

988 **Fig. 3. Wide applicability of trained nuclei segmentation models in segmenting**
989 **stained or nuclear reporter-expressing different plant organ nuclei imaged under**
990 **different conditions. (A-C) *Antirrhinum majus* ovule nuclei stained with TO-PRO-3**
991 **iodide, (D-F) *Arabidopsis thaliana* ovule nuclei stained with DAPI, (G-I) *Arabidopsis***
992 **sepal nuclei expressing the pATML1::mCitrine-ATML1 reporter, (J-L) *Cardamine***

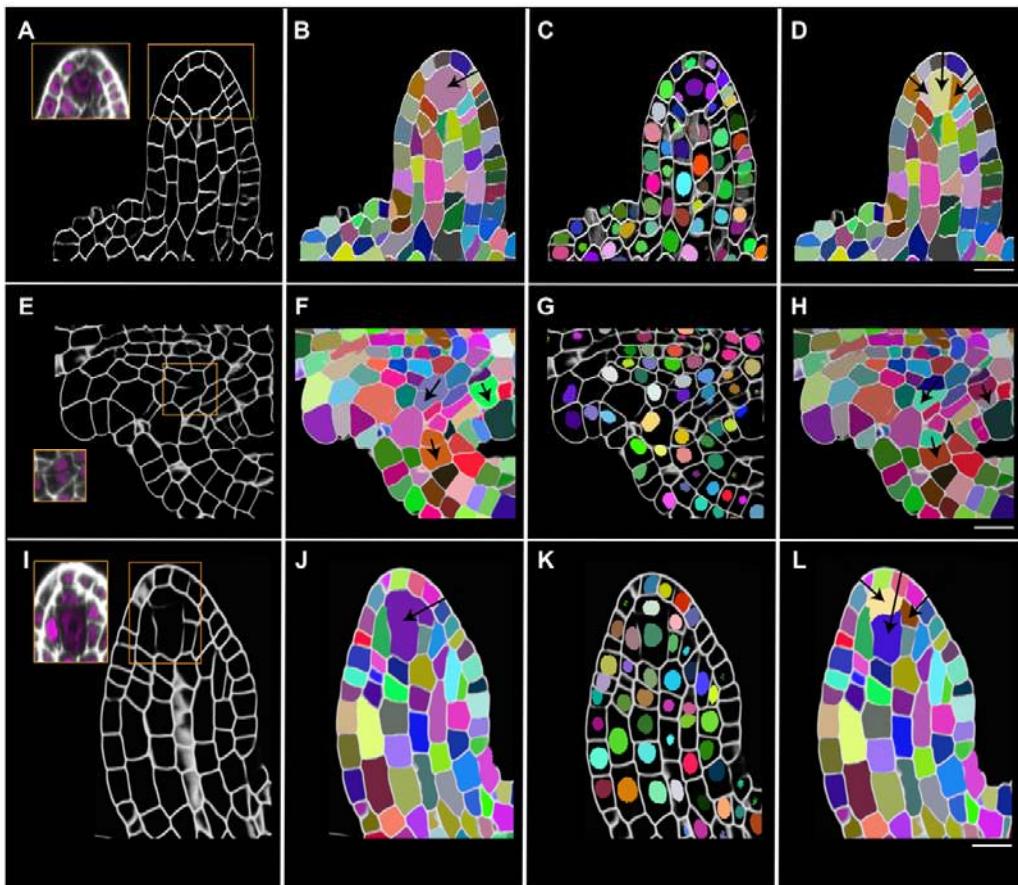
993 *hirsuta* leaf nuclei expressing the pChCUC2g::Venus reporter, (M-O) Mouse embryo
994 nuclei expressing the H2B-miRFP720 reporter. (A,D,G,J,M) 3D confocal images of
995 raw nuclei stained with a nuclear stain or expressing nuclear reporter. Raw images
996 have been adjusted for brightness and contrast for depiction. (B,E,H,K,N) 3D nuclear
997 segmented stacks, segmented using the StarDist-ResNet model generated from this
998 study. Nuclei IDs are represented in different colors. (C,F,I,L,O) Overlay of 3D
999 segmented stack with the corresponding MorphoGraphX-generated 3D nuclear mesh.
1000 (A-O) Insets with white outline show the zoomed-in view of 3D nuclei. Scale Bars: 10
1001 μm (organs) and 5 μm (insets).



1002

1003 **Fig. 4. MorphoGraphX as a platform for mapping 3D nuclei to whole organ cell**
1004 **atlas at single cell and tissue resolution.** (A-H) Stage 3-II 3D cell and nuclei meshes
1005 for the same ovule sample generated from corresponding segmented stacks. (A) Mid-
1006 sagittal section of 3D mesh showing cell IDs in different colors. (B) Mid-sagittal
1007 section of 3D mesh showing cell parent (tissue) labels. (C) Cell-type labeled 3D mesh
1008 overlaid with nuclei mesh showing nuclei IDs in different colors. (D) Cell-type
1009 labeled 3D mesh overlaid with nuclei mesh showing nuclei lacking parent labels. (E)
1010 Cropped section of 3D mesh showing that initially cell IDs are initially independent of

1011 nuclei IDs (cells and their corresponding nuclei in different colors). (F) Cropped
1012 section and (G) mid-sagittal section of 3D mesh showing cell IDs mapped onto their
1013 corresponding nuclei using MorphoGraphX processes, resulting in the same color for
1014 cells and their corresponding nuclei. (H) In the final step parent tissue labels of cells
1015 are mapped onto the corresponding nuclei in MorphoGraphX. (I) Plot showing N/C
1016 ratio of the radial layers, L1, L2, and L3 of stage 2-I ovule primordia. (J-L) Plots
1017 showing correlation between nuclear and cell volumes in different layers of stage 2-I
1018 primordia along with the respective Pearson correlation coefficients, r . (J) L1, (K) L2,
1019 (L) L3. (M) Plot showing nuclear to cell volume ratio (N/C) of different tissues and
1020 tissue layers of stage 3-II ovules. (N) Plot showing N/C ratio of the outer layer of the
1021 inner integument (ii2) for different stages of ovule development from 2-IV up to 3-V.
1022 Asterisks represent statistical significance (ns, $p \geq 0.5$; *, $p < 0.05$; **, $p < 0.01$, ***,
1023 $p < 0.001$; ****, $p < 0.0001$; Student's t-test). Scale bars: 10 μm .



1024

1025 **Fig. 5. PlantSeg proofreading tools to correct 3D cell segmentation errors. (A-D)**

1026 Mid-sagittal section *Arabidopsis thaliana* ovule primordium (dataset 598A, (Vijayan

1027 et al., 2021)). (E-H) Cropped section of an *Arabidopsis thaliana* 3-II ovule (dataset

1028 527, (Vijayan et al., 2021)). (I-L) Mid-sagittal section of a *Cardamine parviflora*

1029 ovule primordium (dataset 1598B, Mody et al., 2023). (A,E,I) 3D cell boundary

1030 predictions along with insets showing raw SR2200 (white) and TO-PRO-3 channel

1031 (magenta) signals after adjusting for brightness and contrast to show the weak cell

1032 wall staining in specific regions (outlined in orange boxes) and resulting in missing or

1033 incomplete walls in the cell boundary predictions. (B,F,J) Plant-seg cell segmentations

1034 overlaid with cell boundary prediction. Black arrows point to undersegmented cells.

1035 (C,G,K) StarDist-segmented nuclei overlaid with cell boundary prediction, showing

1036 multiple nuclei in the undersegmented cells in the MMC region (B,J) and in cells of

1037 funiculus and chalaza (F). (D,H,L) 3D cell segmentations corrected with PlantSeg
1038 proofreading tools (black arrows) and overlaid with the cell boundary prediction.
1039 *Cardamine parviflora* ovule primordia are crassinucellate (K,L); the ability to
1040 visualize this is lost after cell segmentation (I,J). PlantSeg proofreading tools enable
1041 re-distinguishing the primary parietal cell from the MMC. Scale Bars: 10 μm .
1042

1043 **Tables**

1044 **Table 1. Comparative analysis of different model performance when involving**
1045 **human in the loop to train a gold model.**

Tool used	Model	Version	5-fold AP ± STD
PlantSeg	UNet GASP	Initial	57.40% ± 7.7%
PlantSeg	UNet GASP	gold	78.80% ± 1.98%
StarDist	ResNet	Initial	67.61% ± 6.5%
StarDist	ResNet	gold	78.33% ± 1.73%
Cellpose	Finetune nuclei	initial	43.64% ± 12.88%
Cellpose	Finetune nuclei	gold	51.96% ± 12.51%

1046 Segmentation of the test dataset was performed using each of the listed initial and
1047 gold models and the mean average precision is scored for different methods compared
1048 to gold ground truth.

1049

1050 **Table 2. Comparative analysis of different gold model training**
1051 **performance.**

Tool used	Model	5-fold AP ± STD
PlantSeg	UNet GASP	78.80% ± 1.98%
StarDist	ResNet	78.33% ± 1.73%
StarDist	UNet	78.25% ± 1.84%
Cellpose	Finetune nuclei	51.96% ± 12.51%
Cellpose	Finetune cyto2	51.05% ± 12.93%
Cellpose	Trained from scratch	51.26% ± 13.75%

1052 Segmentation of the test dataset was performed using each of the listed methods and
1053 the mean average precision is scored for different methods compared to a human
1054 proofread ground truth. The configuration files used for training can be found along
1055 with the model.

1056

1057

1058

1059

1060

1061

1062

1063 **Table 3. Datasets used for wide applicability of the proposed method in**
1064 **segmenting different organs and different fluorescent signal types acquired at**
1065 **different resolutions.**

Organism	Organ	Nuclear stain/fluorescent reporter signal	Microscopy	Raw data voxel size (xyz μm^3)	Post processing
<i>Arabidopsis thaliana</i>	Shoot apical meristem	pFD:3xHA-mCHERRY-FD	CLSM, 40x 1.25NA Gly objective, cleared sample	0.242 x 0.242 x 0.4	Median filtering
<i>Cardamine hirsuta</i>	Leaf	pChCUC2g::Venus	CLSM, 16x 0.6NA water dipping objective, live sample	0.498 x 0.498 x 0.5	Upsampled to 0.125 x 0.125 x 0.25
<i>Antirrhinum majus</i>	Ovule	TO-PRO-3 iodide	CLSM, 63x 1.3NA Gly objective, cleared sample	0.126 x 0.126 x 0.33	Downsampled to 0.25 x 0.25 x 0.33; smooth 2x
<i>Arabidopsis thaliana</i>	Ovule	DAPI	CLSM, 63x 1.3NA Gly objective, cleared sample	0.063 x 0.063 x 0.27	Downsampled to 0.25 x 0.25 x 0.28; smooth 2x
<i>Arabidopsis thaliana</i>	Sepal	pATML1::mCitrine-ATML1	CLSM, 20x 1.0NA Water objective	0.276 x 0.276 x 0.8	Autobright; smooth 3x
Mouse	Early embryo	H2B-miRFP720	SPIM	0.208 x 0.208 x 2	Downsampled in x, y and unchanged in z to 0.6 x 0.6 x 2

1066 The table summarizes the organism, organ, type of signal, microscopic method, image
1067 voxel size and any preprocessing applied to optimize the segmentation of the wide
1068 applicability dataset.
1069

1070

1071

1072

1073

1074 **Table 4. Training and testing dataset for five fold training and for the platinum**
 1075 **trained model.**

Dataset Nr	Ovule ID	Stage	Number of cells/nuclei in the image	Raw image voxel size (xyz, μm^3)
N1	1135	3-V	1118	0.126 x 0.126 x 0.284
N2	1136	3-IV	1487	0.127 x 0.127 x 0.284
N3	1137	3-V	1849	0.126 x 0.126 x 0.284
N4	1139	3-III	1536	0.126 x 0.126 x 0.279
N5	1170	2-II	3961	0.126 x 0.126 x 0.279

1076 Datasets represent a confocal 3D z stack of *Arabidopsis* ovules of different stages.

1077 Each dataset is given an ID and a dataset Nr to refer to its use on model training as
 1078 mentioned in Fig S2A.

1079

1080 **Table 5. List of all models**

Sl	Model name	Tool used	Model	Version	Number of trained models
1	PlantSeg_3Dnuc_initial	PlantSeg	UNet GASP	Initial	5
2	StarDist-ResNet_3Dnuc_initial	StarDist	ResNet	Initial	5
3	Cellpose-Finetune-nuclei_3Dnuc_initial	Cellpose	Finetune nuclei	initial	5
4	PlantSeg_3Dnuc_gold	PlantSeg	UNet GASP	gold	5
5	StarDist-ResNet_3Dnuc_gold	StarDist	ResNet	gold	5
6	StarDist-UNet_3Dnuc_gold	StarDist	Unet	gold	5
7	Cellpose-Finetune-nuclei_3Dnuc_gold	Cellpose	Finetune nuclei	gold	5
8	Cellpose-Cyto2_3Dnuc_gold	Cellpose	Finetune cyto2	gold	5
9	Cellpose-Scratch_3Dnuc_gold	Cellpose	Train from scratch	gold	5
10	PlantSeg_3Dnuc_platinum	PlantSeg	UNet GASP	Platinum	1
11	StarDist-ResNet_3Dnuc_platinum	StarDist	ResNet	Platinum	1

1081 One each of the initial, gold, and platinum models can be downloaded from the
1082 Biostudies repository S-BIAD1026.
1083
1084

1085 **Supplementary Materials**

1086 Attached as a separate file.

1087 1. Supplementary Results

1088 2. Supplementary File