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Summary Statement 36 

We present computational tools that allow versatile and accurate 3D nuclear 37 

segmentation in plant organs, enable the analysis of cell-nucleus geometric 38 

relationships, and improve the accuracy of 3D cell segmentation. 39 
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Abstract 43 

We present a new set of computational tools that enable accurate and widely 44 

applicable 3D segmentation of nuclei in various 3D digital organs. We developed a 45 

novel approach for ground truth generation and iterative training of 3D nuclear 46 

segmentation models, which we applied to popular CellPose, PlantSeg, and StarDist 47 

algorithms. We provide two high-quality models trained on plant nuclei that enable 48 

3D segmentation of nuclei in datasets obtained from fixed or live samples, acquired 49 

from different plant and animal tissues, and stained with various nuclear stains or 50 

fluorescent protein-based nuclear reporters. We also share a diverse high-quality 51 

training dataset of about 10,000 nuclei. Furthermore, we advanced the 52 

MorphoGraphX analysis and visualization software by, among other things, providing 53 

a method for linking 3D segmented nuclei to their surrounding cells in 3D digital 54 

organs. We found that the nuclear-to-cell volume ratio varies between different ovule 55 

tissues and during the development of a tissue. Finally, we extended the PlantSeg 3D 56 

segmentation pipeline with a proofreading script that uses 3D segmented nuclei as 57 

seeds to correct cell segmentation errors in difficult-to-segment tissues.  58 
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Introduction 59 

Tissue morphogenesis is a complex, multi-scale process that ultimately results in an 60 

organ or tissue of a specific size and shape and characteristic 3D cellular architecture. 61 

Advances in imaging increasingly allow generation of 3D digital organs with cellular 62 

resolution, which are useful tools for unraveling the integration and feedback 63 

processes between molecular regulatory circuits and the cellular architecture of 64 

developing tissues and organs. Plants are excellent systems for generating 3D digital 65 

organs because their cells are immobile and the cellular architecture of plant organs 66 

can be easily observed using various types of microscopy. 67 

Over the years, and partly through the application of artificial intelligence, powerful 68 

open-source software packages have been developed for 3D cell segmentation of 69 

confocal microscopy images (Barbier de Reuille et al., 2015; Eschweiler et al., 2019; 70 

Fernandez et al., 2010; Schmidt et al., 2014; Sommer et al., 2011; Stegmaier et al., 71 

2016). Machine learning based software, including CellPose, PlantSeg and StarDist, 72 

represents a recent advance in this area, providing improved 3D segmentation of 73 

tissues at cellular resolution (Eschweiler et al., 2019; Stringer et al., 2021; Weigert et 74 

al., 2020; Wolny et al., 2020). The output of such pipelines can then be quantitatively 75 

analyzed in image analysis software like MorphoGraphX (Barbier de Reuille et al., 76 

2015; Strauss et al., 2022). The advances in these computational resources have 77 

enabled the generation of a number of digital 3D models of a variety of plant organs, 78 

which have allowed single-cell analysis in 3D and have been instrumental in gaining 79 

fundamental insights into various processes in plants, including embryo, root, and 80 

ovule development (Bassel et al., 2014; Fridman et al., 2021; Graeff et al., 2021; 81 

Hernandez-Lagana et al., 2021; Lora et al., 2017; Montenegro-Johnson et al., 2015; 82 
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Ouedraogo et al., 2023; Pasternak et al., 2017; Schmidt et al., 2014; Vijayan et al., 83 

2021; Yoshida et al., 2014). 84 

An important feature that is presently missing from these 3D digital models is the 85 

integration of the size and shape of the nuclei into the cellular framework. The ability 86 

to not only robustly segment nuclei in 3D, even in deeper tissues, but also to link the 87 

3D architectures of nuclei and their surrounding cells in a tissue-specific context 88 

enables the study of central biological processes such as nuclear size control 89 

(Cantwell and Nurse, 2019c). Another key process is the control of gene expression. 90 

Spatial gene expression patterns as well as expression levels can be assessed with 91 

cellular resolution, for example, using ratiometric nuclear reporters driven by gene-92 

specific promoters (Federici et al., 2012).  93 

ClearSee-based protocols for cleared whole-mount preparations of plant organs allow 94 

staining of cell walls and nuclei with various cytological dyes without the need for 95 

transgenic plants carrying the appropriate reporter constructs and maintain 96 

compatibility with reporters based on fluorescent proteins (Kurihara et al., 2015; 97 

Musielak et al., 2015; Tofanelli et al., 2019; Ursache et al., 2018). The establishment 98 

of the 3D digital reference atlas of Arabidopsis ovule development represents a recent 99 

example that used this approach (Vijayan et al., 2021). During the preparation of the 100 

atlas, ovules were fixed and cleared with ClearSee (Kurihara et al., 2015). Cell 101 

outlines were stained with the cell wall stain SCRI Renaissance (SR2200) (Harris et 102 

al., 2002; Musielak et al., 2015), while the nuclei were stained with TO-PRO-3 (Bink 103 

et al., 2001; Van Hooijdonk et al., 1994). The digital ovule atlas provided detailed 104 

insight into the 3D cellular architecture of the ovule but lacked information on the size 105 

and shape of the nuclei. TO-PRO-3 stains double-stranded nucleic acids and can 106 

therefore be a useful tool for 3D volumetric nuclear extraction. However, the signal 107 
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intensity of any typical nuclear stain can exhibit variable intensities, scatter, and 108 

photobleaching when imaging deeper tissue layers, rendering accurate 3D nuclear 109 

segmentation extremely difficult. 110 

Therefore, our overall goal is to accurately segment plant nuclei in 3D images with 111 

weakly stained nuclei. Several deep learning-based segmentation algorithms have 112 

recently been proposed for this task: PlantSeg (Wolny et al., 2020), Cellpose (Stringer 113 

et al., 2021), and StarDist (Weigert et al., 2020). However, none of them can be used 114 

out of the box. PlantSeg and CellPose pre-trained models have not been exposed to 115 

weakly stained plant nuclei while 3D StarDist does not provide trained models and 116 

requires retraining. The main bottleneck for model training is the lack of publicly 117 

available 3D ground truth with correctly delineated nuclei. This step is famously 118 

labor-intensive even for high-contrast, high signal-to-noise ratio (SNR) image 119 

volumes. 120 

In this study, we combine different staining strategies to quickly achieve 3D 121 

segmentation ground truth for model training. Together with human-in-the-loop 122 

correction, we use this approach to acquire fully annotated volumes of weakly stained 123 

nuclei. On this basis, we train highly accurate segmentation networks, which we show 124 

to be generalizable to other datasets obtained by various imaging methods and from a 125 

variety of plant and animal tissues labeled with different staining methods. In 126 

addition, we introduce a combination of processes in MorphoGraphX that associates 127 

each nucleus with the cell in which it resides, and that provides the nucleus with the 128 

cells' respective tissue labels. It allows the investigation of various cell-nucleus 129 

relationships, such as the nucleus-to-cell volume (N/C) ratio. We demonstrate the 130 
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general value and broad applicability of these technical advances in proof-of-concept 131 

analyses. 132 

 133 

Results 134 

A novel iterative approach to ground truth generation and 3D nuclear model 135 

training 136 

In a first attempt at 3D nuclear segmentation of TO-PRO-3-stained ovule nuclei in 3D 137 

image stacks, we found that the available plant nuclei segmentation model in PlantSeg 138 

did not yield segmented nuclei of sufficient quality for ground truth generation. Thus, 139 

we employed Cellpose (Pachitariu and Stringer, 2022; Stringer et al., 2021) as it had 140 

an existing nuclei model used for 3D nuclear segmentation. However, we still 141 

observed improper segmentation with errors in detecting and separating nuclear 142 

borders (Fig. 1A-D). This is probably due to the TO-PRO-3 nuclear staining being 143 

variable and often quite weak and diffuse, particularly in deeper layers. In addition, 144 

the signal was absent in the nucleolus, resulting in an uneven nuclear surface and 145 

segmentation that looked like a hole extruded from the nuclear surface (Fig. 1C). 146 

To address these issues, we developed a novel strategy based on samples that 147 

simultaneously show strong and faint signals in the nuclei that can be collected in 148 

separate channels. We first generated a transgenic line expressing a translational 149 

fusion of the fluorescent protein tdTomato to histone H2B driven by the 150 

UBIQUITIN10 (UBQ) promoter (pUBQ::H2B:tdTomato). Ovules of this reporter line 151 

were fixed, cleared, and stained with the cell wall stain SR2200 and the nuclear stain 152 

TO-PRO-3. Ovules were imaged and the SR2200, TO-PRO-3, and H2B:tdTomato 153 

signals were collected in three separate channels (Fig. 1F,G,I). The broadly expressing 154 
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nuclear pUBQ::H2B:tdTomato reporter provided a strong and uniform nuclear signal 155 

that could be segmented into nuclei using the standard Cellpose nuclear model (Fig. 156 

1D,E,G,H). We then used the results of human proofread instance nuclear 157 

segmentation of the strong H2B:tdTomato reporter channel as the “initial ground 158 

truth” for training three sets of initial 3D models: PlantSeg_3Dnuc_initial, StarDist-159 

ResNet_3Dnuc_initial, and Cellpose-Finetune-nuclei_3Dnuc_initial. The PlantSeg 160 

and StarDist initial models were trained on the weak TO-PRO-3 nuclear stain channel 161 

using the neural networks implemented in the respective pipelines. The Cellpose 162 

initial models were trained on the TO-PRO-3 channel by fine-tuning the pretrained 163 

Cellpose “nuclei'' model. The segmentation results using the initial models turned out 164 

to be still imperfect and required several corrections by an expert. 165 

To obtain further model improvements we applied an iterative training strategy (Fig. 166 

1J). We used the StarDist-ResNet_3Dnuc_initial model to segment the original weak 167 

TO-PRO-3-based nuclear stain channel as it provided the best qualitative results, 168 

resulting in a modified ground truth. This modified ground truth was then human 169 

proofread, resulting in the “gold ground truth”. In a next step, the "gold ground truth" 170 

and the original weak TO-PRO-3-based nuclei stain were used to train six sets of 3D 171 

“gold models'' using one or multiple neural networks implemented in PlantSeg, 172 

Cellpose, and StarDist (Table 2), probing for the best parameter settings.  173 

We tested how much model performance improved when human-in-the-loop (HITL) 174 

was involved, i.e., initial vs gold model. To this end we employed a quantitative 175 

comparison of initial and gold PlantSeg, StarDist-ResNet and Cellpose-Finetune-176 

nuclei models. We made use of the imperfect initial models to generate modified and 177 

better ground truth by involving a HITL proofreading before using them for the 178 
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training that resulted in the “gold models''. (Fig. 1J). The detailed description of model 179 

training including the datasets used for training and testing are provided in the “Model 180 

training and score quantification” section of Materials and Methods. Comparison of 181 

model performance between initial and gold PlantSeg, Cellpose-Finetune-nuclei and 182 

StarDist-ResNet models was performed by 5-fold average precision (AP) score 183 

quantification (Table 1). Results indicate that all methods demonstrate increased 184 

performance after gold training. PlantSeg and StarDist-ResNet gold models turned out 185 

to be superior to the Cellpose-Finetune-nuclei gold models and demonstrated high 186 

precision segmentation compared to the respective initial models. 187 

Comparisons of the different gold models 188 

Quantitative and qualitative performance comparisons of the different gold models 189 

were performed and results are presented in Table 2, Fig. 2, and Fig. S1. With the 190 

exception of the Cellpose-derived models, all other gold models performed 191 

excellently on the raw images of nuclei stains as can be seen with qualitative 192 

comparison (Fig. 2, Fig. S1). The weak nuclei signals were strongly detected 193 

especially with the proposed new PlantSeg_3Dnuc_gold, StarDist-194 

ResNet_3Dnuc_gold and Stardist-UNet_3Dnuc_gold models. Segmented nuclei 195 

surfaces were devoid of any artifacts like an extruded hole as in the raw nuclei image 196 

segmentation prior to developing this method. The AP scores obtained in these cases 197 

were very high when compared to the proposed new Cellpose nuclei gold models 198 

(Table 2). Average precision graphs also clearly indicate high precision of the 199 

PlantSeg, StarDist-ResNet, and StarDist-UNet gold models and how little they vary 200 

compared to the Cellpose gold models (Fig. S1I-N). 201 

StarDist-ResNet and PlantSeg gold models are two highly reliable models 202 
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The PlantSeg model was trained to produce a nuclear center probability map and a 203 

nuclear envelope probability map (Fig. 2E). The nuclear envelope probability was 204 

processed by Generalized Algorithm for Signed Graph Partitioning (GASP) (Bailoni 205 

et al., 2019) to obtain an initial instance segmentation, which is then filtered according 206 

to the probability of the nuclei center (Fig. 2D,F). Data volumes for both training and 207 

inference do not need any changes in terms of isotropy or intensity, and can be fed 208 

into PlantSeg as it is. Increasing patch size does not improve accuracy. The downside 209 

of PlantSeg is that the post-processing algorithms were designed for dense 210 

segmentation and therefore tend to over-segment the background, which can be easily 211 

fixed by applying a foreground mask or even manually. PlantSeg results in the 212 

assignment of very accurate instance masks to most objects, because it finds 213 

boundaries of the biological structure of interest and provides a nuclear envelope 214 

probability map (Fig. 2D-F). The minor imperfections caused by PlantSeg GASP and 215 

final thresholding in PlantSeg segmentation can be very easily improved by removing 216 

a few false positives and relabeling a few false negatives. 217 

StarDist-ResNet and StarDist-UNet models output a nuclei probability map (Fig. 218 

2H,K) and nuclei instance segmentation (Fig 2G,I,J,L). Both the StarDist models 219 

resulted in very smooth and uniform instance masks of all objects, because it fits star-220 

convex shapes to objects (Fig 2G-L). StarDist is sensitive to object shapes; elongated 221 

objects are predicted accurately in its probability maps, but are then sometimes fitted 222 

into small and wrong instance masks. The segmentation always looked clean and 223 

smooth. Isotropy of data volumes matters, one could specify a grid parameter that 224 

downsamples the input to fit instances into the network’s field of view. A bigger patch 225 

size can help in terms of object detection but not mean average precision. The 226 
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imperfection caused by size and shape prior in StarDist segmentation can be improved 227 

by merging a few oversegmented instances.  228 

For Cellpose, we fine tuned two pretrained models (Nuclei, Cyto2) and in addition, 229 

trained a new model from scratch (Fig. S1). Due to the 2D nature of Cellpose, it is 230 

recommended that data for either training or future inference be transformed into 231 

isotropic volumes for best results. Cellpose is very sensitive to its diameter parameter. 232 

In this study, the fixed default object diameter parameters for pretrained models were 233 

set to be 30 for non-nucleus models and 17 for nucleus models, and that for scratch-234 

trained models is inferred from our data. Cellpose results in good instance masks (Fig. 235 

S1) but overall less accurate segmentations compared to proposed StarDist and 236 

PlantSeg models (Table 2). Overall, while final Cellpose output turned out to be 237 

worse than StarDist and PlantSeg even after retraining, it’s important to remember 238 

that it was the best method (Table S2) to provide a starting point in absence of human-239 

annotated ground truth in the first step of our experiments.  240 

Wide applicability of the PlantSeg_3Dnuc and StarDist-ResNet platinum models 241 

So far, the results indicated that PlantSeg_3Dnuc_gold and StarDist-242 

ResNet_3Dnuc_gold emerged as the preferred models for accurately segmenting 3D 243 

plant nuclei. Therefore, we trained two final platinum models based on PlantSeg and 244 

StarDist-ResNet, respectively, using all available training datasets (Fig. S2). This 245 

resulted in the two 3D platinum models, PlantSeg_3Dnuc_platinum and StarDist-246 

ResNet_3Dnuc_platinum. For nuclei segmentation using the two platinum models, we 247 

made available the GoNuclear repository (https://github.com/kreshuklab/go-nuclear) 248 

that hosts the pipelines used in this study. 249 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.19.580954doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.580954
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

12 

To test the broad applicability of the trained platinum models in 3D nuclear 250 

segmentation, we used both platinum models to segment nuclei from diverse and 251 

challenging datasets, including a variety of tissues from different plant species as well 252 

as early mouse embryos, stained with nuclear stains or expressing nuclear reporters. 253 

Our diverse 3D nuclei datasets included a fixed, cleared, TO-PRO-3-stained 254 

Antirrhinum majus ovule; a fixed, cleared, DAPI-stained Arabidopsis thaliana ovule; 255 

live Arabidopsis sepal nuclei expressing the pATML1::mCitrine-ATML1 reporter 256 

(Meyer et al., 2017); live Cardamine hirsuta leaf expressing the ChCUC2g::VENUS 257 

reporter (Rast-Somssich et al., 2015); and fixed and cleared Arabidopsis shoot apical 258 

meristem nuclei expressing the pFD:3xHA-mCHERRY-FD reporter (Cerise et al., 259 

2023; Martignago et al., 2023). In addition, we segmented nuclei of the BlastoSPIM 260 

data set obtained by live 3D imaging of blastocyst stage mouse embryos expressing 261 

the nuclear marker H2B-miRFP720 using Selective Plane Illumination Microscopy 262 

(SPIM) (Nunley et al., 2023). 263 

Both the PlantSeg_3Dnuc_platinum and StarDist-ResNet_3Dnuc_platinum models 264 

resulted in comparable high quality segmentations. The results of segmentation using 265 

StarDist-ResNet_3Dnuc_platinum are presented here, as its use is less involved 266 

compared to PlantSeg_3Dnuc_platinum (Fig. 3, Fig. S3). 267 

We segmented the above-mentioned datasets using the StarDist-ResNet and PlantSeg 268 

platinum models after image preprocessing (Table 3). The preprocessing was required 269 

to ensure the datasets to be segmented matched the training datasets in nuclear size 270 

and quality. We observe that the nuclei of all mentioned datasets could be properly 3D 271 

segmented using the proposed models (Fig. 3). Further, even though the models were 272 

trained on cleared, high-resolution datasets, they are capable of segmenting nuclei 273 
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from low resolution datasets as well, for instance the Cardamine leaf nuclei and 274 

mouse embryo nuclei from live samples. A precise segmentation of the 275 

pChCUC2g::Venus nuclear signal further allows for quantification of the number of 276 

pChCUC2g::Venus expressing nuclei along with signal quantification if required. The 277 

StarDist-ResNet platinum model could also segment extremely challenging datasets 278 

with high variation in intensities after applying some preprocessing (Fig. S3). The 279 

results demonstrate the broad applicability of the platinum models in 3D segmentation 280 

of nuclei of different tissues and species.  281 

MorphoGraphX as a platform for mapping 3D nuclei to whole organ cell atlas 282 

with single cell and tissue resolution 283 

Multichannel 3D confocal imaging allowed simultaneous imaging of both the cell and 284 

nuclear stain channels. MorphoGraphX enables 3D visualization and allows complex 285 

annotations and quantifications (Fig. S2F-I, Fig. S3H). We reasoned that it should be 286 

possible to combine 3D cell segmentation and 3D nuclear segmentation of the imaged 287 

3D stack. 3D cell segmentation assigns cells their cell IDs and 3D nuclear 288 

segmentation assigns nuclei their nuclei IDs; however, they are not directly linked. In 289 

MorphoGraphX, these 3D cell and nuclei segmentation images are converted to 3D 290 

meshes representing individual objects. To address the issue of linking nuclei and 291 

corresponding cell IDs, we developed a novel process in MorphoGraphX that 292 

automatically annotates and links nuclei IDs with their corresponding cell IDs (Fig. 293 

4A-H) (see Materials and Methods). The 3D cell meshes can then be assigned tissue 294 

labels via manual or semi-automated cell-type labeling (Strauss et al., 2022) (Fig. 4A-295 

B).  296 
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In addition to linking nuclear and cell IDs, we also added MorphoGraphX tools to 297 

quantify the Euclidean distance between 3D cell and 3D nuclear centroids or map 298 

2.5D cells to underlying 3D nuclei (Fig. S4) (Materials and Methods). 3D cell 299 

segmentation can be challenging especially when working with live images. In such 300 

cases, one may have to resort to 2.5D cell segmentation. We present a 301 

MorphoGraphX method for associating 2.5D surface cells with 3D nuclei. 302 

MorphoGraphX achieves this link by projecting 3D segmented nuclei stacks onto the 303 

2.5D segmented cell mesh (Fig. S4A-C). Additionally, the process “Select Duplicated 304 

Nuclei” is a useful tool to identify cell segmentation errors as it detects cells with 305 

more than one nucleus. This entire collection of processes are included in 306 

MorphoGraphX version 2.0.2. and higher and can be found in the process folder 307 

“Mesh/Nucleus” (see Materials and Methods). The development of these new 308 

MorphoGraphX processes opens up new possibilities to integrate cell features with 309 

nuclei features and to study quantitative parameters of nuclei in their cellular context.  310 

Developmental regulation of the nucleus-to-cell volume ratio in Arabidopsis 311 

ovules 312 

For more than a century it has been noticed that the N/C ratio is a constant parameter 313 

of a given cell type that can vary between cell types in multicellular organisms 314 

(Cantwell and Nurse, 2019c; Wilson, 1925). Most of these studies involved selecting 315 

a few cells of embryos or single cells, such as yeast, and measurements based on 316 

diameter or area values derived from 2D sections. Here, we investigated the N/C ratio 317 

in Arabidopsis ovules of different stages and in full 3D tissue context. We measured 318 

the nuclear volumes, cell volumes, N/C ratios and their trends in five stage 2-I ovule 319 

primordia and in two more differentiated stage 3-II ovules. In addition, we assessed 320 
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these parameters during the development of an integumentary cell layer using two 321 

ovules per stage (Fig. 4I-N) (Fig. S5).  322 

The dome-shaped Arabidopsis ovule primordium, like the shoot apical meristem, has 323 

a layered organization, such that the L1, L2, and L3 are the outer to inner layers, 324 

respectively (Jenik and Irish, 2000; Satina et al., 1940; Schneitz et al., 1995). At stage 325 

2-I the primordium is further characterized by the presence of an enlarged L2-derived 326 

megaspore mother cell (MMC) at the tip that will undergo meiosis and eventually 327 

produce the haploid female gametophyte (Schneitz et al., 1995; Vijayan et al., 2021). 328 

We investigated if nuclear and cell volumes, as well as N/C ratios differ in a layer-329 

specific manner in the ovule primordium. We observed that the L1 layer can be 330 

distinguished from the L2 and L3 layers by its different N/C ratio, as the N/C ratio of 331 

L1 cells was statistically different from the N/C ratio of L2 or L3 cells. The L2 and L3 332 

N/C ratios were not noticeably different (Fig. 4I, Fig. S5A,B). Cells of the outermost 333 

L1 layer have the highest N/C ratio (0.30 ± 0.08 (mean ± SD), followed by the cells of 334 

the inner L2 (0.24 ± 0.07) and L3 (0.23 ± 0.09) layers (Fig. 4I). For all three layers, 335 

we obtained a positive Pearson correlation coefficient, r, between nuclear and cell 336 

volumes; the correlation is strongest in the L2 layer, followed by the L1 and L3 337 

layers, respectively (Fig. 4J-L). When analyzing the average cell and nuclear volumes 338 

for each layer, we found that the average cell volumes of the L2 (128.10 ± 47.73 µm3, 339 

excluding MMCs) and L3 (132.70 ± 54.53 µm3) layers were similar and markedly 340 

larger than the average cell volume of the L1 (98.86 ± 38.06 µm3) layer (Fig. S5A). In 341 

contrast, the average nuclear volume between the three cell layers remained 342 

comparable with values of 27.88 ± 9.14 µm3 (L1), 28.92 ± 8.87 µm3 (L2, excluding 343 

MMCs), and 27.44 ± 10.53 µm3 (L3) (Fig. S5B). Thus, the difference in the N/C 344 
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values between the L1 and L2/L3 layers relates to the smaller average cell volume in 345 

the L1 compared to the L2 and L3 layers. 346 

Current evidence suggests that nuclear size scales with cell size and not with the 347 

amount of nuclear DNA (Cantwell and Nurse, 2019c). We tested if the scaling rule 348 

holds true for the MMCs (Fig. S5C,D). We found that the average nuclear and cell 349 

volumes of the tested MMCs (147.9 ± 27.85 µm3 for the nuclear volume and 845.4 ± 350 

101.5 µm3 for the cell volume) both exceeded the respective values of the other much 351 

smaller L2 cells by approximately a factor of 5. As a result, the N/C ratio values of the 352 

MMCs and the other L2 cells were indistinguishable, and thus the MMCs conform to 353 

this rule. 354 

To confirm the finding of cell type-specific N/C ratios in the ovule primordium we 355 

explored the more differentiated stage 3-II ovules exhibiting a clear multi-tissue 356 

organization. By this stage the Arabidopsis ovule is composed of the distal nucellus, 357 

which contains the developing female gametophyte, the central chalaza with two 358 

lateral determinate structures, the integuments, and the proximal funiculus, the stalk 359 

that connects the ovule to the placenta (Schneitz et al., 1995; Vijayan et al., 2021). In 360 

addition, the chalaza can be divided into an anterior and posterior chalaza based on 361 

morphological criteria such as different cell shapes and sizes of its constituent cells. In 362 

addition, each integument consists of two cell layers, each one cell thick. The analysis 363 

of the average N/C values across different tissues revealed that the nucellus and 364 

funiculus exhibited comparable values. In contrast, we found the posterior chalaza to 365 

show a higher N/C ratio than the anterior chalaza (Fig. 4M). We also observed that the 366 

inner layers of both the outer and inner integuments exhibited a higher N/C ratio than 367 

the corresponding outer layers. 368 
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To address the question if the N/C ratio changes during development of a specific 369 

tissue layer, we focussed on the outer layer of the inner integument (ii2). We analyzed 370 

the ii2 nuclear and cell volumes, and the N/C ratios for stages 2-IV, 2-V, 3-I, 3-II, 3-371 

IV and 3-V. We observed that from stage 2-IV to stage 3-IV, there was a decline in 372 

the ii2 N/C ratio (0.29 ± 0.08 towards 0.15 ± 0.07), followed by an increase from 373 

stage 3-IV to 3-V (0.14 ± 0.06 versus 0.17 ± 0.07) (Fig. 4N). To assess the basis for 374 

this decrease in the N/C ratio during development of the ii2 layer we analyzed the 375 

average nuclear and cell volumes between successive stages (Fig. S5C-D). We found 376 

that the average cell volume of ii2 cells increased noticeably with a value of 129.8 ± 377 

58.06 µm3 at stage 2-IV and 220.50 ± 130.0 µm3 at stage 3-IV (Fig. S5C). In 378 

comparison, the average nuclear volume experienced only minor alterations (35.46 ± 379 

13.73 µm3, stage 2-IV; 27.03 ± 10.36 µm3, stage 3-II; 31.93 ± 9.91 µm3, stage 3-V) 380 

(Fig. S5C). Thus, we find that the change in the N/C ratio during development of the 381 

ii2 cell layer is related to a marked increase in cell volume accompanied by a largely 382 

constant nuclear volume. Further estimation of the stagewise Pearson correlation 383 

coefficient, r, for ii2 revealed that there is a positive correlation between cell volumes 384 

and corresponding nuclear volumes of ii2 across development up to stage 3-IV. By 385 

stage 3-V, however, this correlation is noticeably reduced (Fig. S5E-J). 386 

In summary, the results suggest that the N/C ratio is specific to a cell type and its 387 

developmental stage in the Arabidopsis ovule. 388 

Automatic proofreading of 3D cell segmentation based on reliable 3D nuclear 389 

segmentation 390 

Despite the significant improvement in cell boundary prediction provided by the 391 

PlantSeg segmentation pipeline, the final image segmentation may still contain some 392 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.19.580954doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.580954
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

18 

errors in certain regions of the images where cell wall staining is poor. An example is 393 

the faint walls around the megaspore mother cell (MMC) in young Arabidopsis ovules 394 

(Vijayan et al., 2021) (Fig. 5A-D). From the raw cell wall stain images, it is almost 395 

impossible to identify the presence of these faint walls. A similar scenario sometimes 396 

applies to cells in the interior chalaza (Fig. 5E-H). The processed raw images 397 

(brightened) along with the nuclei stain clearly display the faint wall and the presence 398 

of multiple nuclei in this region confirming the cell segmentation error in this region.  399 

We developed a python script called “proofreading” to automatically correct the 400 

instance 3D cell segmentation using a trusted and proofread 3D nuclear segmentation 401 

and added it to the growing collection of helper tools for the PlantSeg pipeline 402 

(https://github.com/hci-unihd/plant-seg-tools). The script takes the cell boundary 403 

prediction, cell segmentation and nuclei segmentation as input images. It 404 

automatically finds the erroneous cell segmentation by first quantifying the number of 405 

nuclei within a cell. When it finds a cell with more than one nucleus, a bounding box 406 

is approximated in 3D around this cell. Further corrections are only made within the 407 

bounding box. Corrections are made by resegmenting the erroneous 3D cell using 408 

watershed segmentation with nuclei as seeds. The t-merge parameter can be altered to 409 

improve the segmentation further if the default value does not seem to improve the 410 

result. The method does not apply to a scenario where the segmentation error relates 411 

to a missing cell instead of an under segmented cell. The detailed method is described 412 

in the Materials and Methods section. 413 

This method now corrects the segmentation error in most cases and leaves other cells 414 

without segmentation errors untouched (Fig. 5C,D and G,H). We performed another 415 

test by assessing Cardamine parviflora (C. parviflora) ovule primordia (Fig. 5I-L). 416 
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This species harbors weakly crassinucellate ovule primordia (Endress, 2011), i.e., it 417 

develops an additional hypodermal cell layer, with an initial archesporial cell in the 418 

L2 undergoing periclinal division resulting in an upper parietal cell and a lower MMC 419 

(Harvey and Smith, 2013; Mody et al., 2023). The ability to visualize this is usually 420 

lost after standard PlantSeg-based 3D cell segmentation (Fig. 5I,J), but the 421 

proofreading script can correct this error (Fig. 5K,L). The proofreading thus 422 

minimizes 3D cell segmentation errors and enables the examination of 3D cell 423 

volumes for cells that are challenging to segment accurately. 424 

Discussion 425 

We present a collection of computational tools and datasets that extend the 426 

capabilities for quantitative analysis of 3D digital organs. We have developed a deep-427 

learning based computational toolkit for 3D nuclear segmentation that enables 428 

accurate 3D segmentation of nuclei in a variety of 3D digital organs labeled with a 429 

range of nuclear markers or stains, even in faintly stained and noisy images. 430 

Importantly, we not only provide a valuable plant nuclear dataset for training 3D 431 

nuclear segmentation algorithms but also two accurate platinum models for 3D 432 

nuclear segmentation with broad applicability. In addition, we outline novel and 433 

processes that we have added to MorphoGraphX to enable the analysis of various cell-434 

nucleus geometric parameters in 3D, including the N/C ratio. Finally, we have created 435 

a proofreading script that significantly improves the fidelity of 3D cell segmentation. 436 

All tools are open source and readily available to the community via public software 437 

repositories. 438 

A particular value of the 3D nuclear segmentation toolkit lies in its broad 439 

applicability. The method can be successfully used with various nuclear staining 440 
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methods, ranging from different nuclear stains with variable staining intensities, such 441 

as TO-PRO-3 or DAPI, to nuclear reporters based on fluorescent reporters. In 442 

addition, nuclei can be segmented in data sets obtained from cleared or live tissue, not 443 

only from a range of different plant tissues, but also from animal tissues such as 444 

mouse embryos. An optimized workflow from imaging to 3D segmentation of nuclei 445 

dataset can be found in the Materials and Methods section. 446 

We used PlantSeg (Wolny et al., 2020), Cellpose (Stringer et al., 2021) and StarDist 447 

(Schmidt et al., 2018; Weigert et al., 2020) as three strong baselines for 3D nuclear 448 

segmentation and performed a comparative analysis of the performance of the models 449 

obtained from each platform. Cellpose was the only tool that provided a pre-trained 450 

model which could perform the initial segmentation. However, in the presence of 451 

ground truth, it was demonstrated to be less stable, with more variability in the results 452 

depending on the training/test split of the data. Re-trained PlantSeg and StarDist both 453 

demonstrated excellent, stable performance. The advantage of PlantSeg is its ability to 454 

also perform cell segmentation from membrane staining and the general absence of 455 

explicit star-convexity prior which can be harmful for segmentation of irregular 456 

nuclei. However, in very noisy conditions StarDist is preferred as the shape prior 457 

helps it overcome the low SNR. It also needs to be noted that our ground truth 458 

annotations are produced through iterative improvement using a StarDist model, so 459 

the resulting shapes might be biased towards being more regular and star-convex. 460 

An important feature of MorphoGraphX is the projection of secondary signals onto 461 

the cell surfaces, which enables the quantification of nuclei, cell wall or cytoplasmic 462 

signal intensities based on the cellular segmentation (Barbier de Reuille et al., 2015; 463 

Montenegro-Johnson et al., 2015). What up to now was missing, however, was the 464 

integration of the size and shape of the nuclei into the cellular framework. We present 465 
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an extension to MorphoGraphX that includes the ability to assign individual nuclei to 466 

their corresponding 3D cells in digital 3D organs. To this end, we have developed a 467 

number of processes that are part of the latest versions of MorphoGraphX from 468 

version 2.0.2. This improvement allows the analysis of various relationships between 469 

the nucleus and the cell it is located in, in 3D, including determination of the 470 

Euclidean distance between cell and nuclear centroids, mapping 2.5D cells to 471 

underlying 3D nuclei, or identification of more than one nucleus in a cell. For 472 

example, quantification of the Euclidean distance between cell centroids and nuclear 473 

centroids was instrumental in developing the notion that positioning the plane of cell 474 

division in cells of the early Arabidopsis embryo does not depend on the precise 475 

position of the nucleus (Vaddepalli et al., 2021). 476 

The “Kernplasma-Relation” (nucleus-cytoplasm relation) has fascinated cell 477 

biologists since its discovery around the turn of the last century (Conklin, 1912; 478 

Hertwig, 1903; Strasburger, 1893; Wilson, 1925). The currently favored model states 479 

that nuclear size scales with cell size and that the N/C ratio is cell-type specific 480 

(Cantwell and Nurse, 2019c). Our findings in the Arabidopsis ovule support this 481 

notion. For example, we noticed that the outermost L1 layer has a larger N/C ratio 482 

compared to the L2 and L3 layers in the ovule primordium. This change is largely due 483 

to alterations in cell not nuclear size. Thus, we find that similarly sized nuclei can 484 

populate cells with significant size differences, supporting the notion that this scaling 485 

rule is valid in the context of a specific cell type. Interestingly, this result differs from 486 

the scenario in the L1, L2, and L3 layers of the Arabidopsis shoot apical meristem 487 

(SAM), where cells of the three layers have similar N/C ratios (Wenzl and Lohmann, 488 

2023), further highlighting the tissue specificity of N/C ratios. The observed changes 489 

in the N/C ratio during ii2 development may indicate early changes in the 490 
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differentiation status. For example, threshold values of N/C ratios in Xenopus oocytes 491 

have been shown to be critical for transcriptional initiation associated with 492 

developmental stage transition (Jevtić and Levy, 2015). 493 

How nuclear size is regulated is poorly understood (Cantwell and Nurse, 2019c). 494 

Current evidence indicates that nuclear size in yeast is controlled by several processes, 495 

including osmotic forces, bulk nucleocytoplasmic transport, transcription and RNA 496 

processing, linker of nucleoskeleton and cytoskeleton (LINC) complexes, and 497 

membrane expansion (Cantwell and Nurse, 2019a; Cantwell and Nurse, 2019b; Deviri 498 

and Safran, 2022; Lemière et al., 2022). In Arabidopsis, two nuclear envelope proteins 499 

were described to function redundantly in the control of nuclear size and shape in 500 

response to hyperosmotic stress in root tip cells (Goswami et al., 2020). The 501 

straightforward tools presented for the quantitative study of nuclear volume will 502 

facilitate the functional dissection of the control of nuclear size and shape in 503 

multicellular organisms such as seed plants. 504 

Finally, the PlantSeg-based cell segmentation proofreading script provides a useful 505 

tool to correct 3D cell segmentation errors due to weak cell wall staining. The method 506 

uses the successfully 3D segmented nuclei as seeds and thus its success critically 507 

depends on precise 3D nuclear segmentation. Our results indicate that it can 508 

dramatically improve the fidelity of 3D cell segmentation, as indicated by the 509 

observed corrections of the notoriously difficult to segment cells surrounding the 510 

MMC in A. thaliana and C. parviflora ovule primordia. 511 

In conclusion, the novel computational toolkit we present here augments the growing 512 

suite of tools that enable the generation and detailed quantitative analysis of 3D digital 513 

organs at single cell resolution. 514 
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 515 

Materials and Methods 516 

Plant work and transformation 517 

Arabidopsis thaliana (L.) Heynh. var. Columbia (Col-0), Cardamine parviflora, and 518 

Antirrhinum majus were used as the wild-type strains. Plants were grown as 519 

previously described (Fulton et al., 2009). Arabidopsis Col-0 plants were transformed 520 

with the pUBQ::H2B:tdTomato construct using Agrobacterium strain 521 

GV3101/pMP90 (Koncz and Schell, 1986) and the floral dip method (Clough and 522 

Bent, 1998). Transgenic T1 plants were selected on Hygromycin (20 mg/ml) or 523 

Sulfadiazine (5 µg/ml) plates according to the selection. 524 

Recombinant DNA work 525 

For DNA work, standard molecular biology techniques were used. PCR fragments 526 

used for cloning were obtained using Q5 high-fidelity DNA polymerase (New 527 

England Biolabs, Frankfurt, Germany). All PCR-based constructs were sequenced. 528 

Constructs were generated using the GreenGate system (Lampropoulos et al., 2013). 529 

pUBQ::H2B:tdTomato: a dual reporter for cell membrane and H2B nuclei was 530 

designed and constructed using GreenGate. pUBQ::H2B:tdTomato and 531 

pSUB::gSUB:mTurquoise2 were assembled into the intermediate vectors and then 532 

combined into the pGGZ0001 destination vector with a standard GreenGate reaction. 533 

The pSUB::gSUB:mTurquoise2 expression was weak or absent and we only imaged 534 

H2B nuclei in this study. Half MS plate containing Sulfadiazine (5 µg/ml) was used 535 

for plant resistance selection.  536 

Clearing and staining of ovules 537 
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Fixing, clearing, and staining of dissected ovules was performed as described earlier 538 

(Tofanelli et al., 2019). 539 

Microscopy and data acquisition 540 

Confocal laser scanning microscopy of ovules of Arabidopsis thaliana, Cardamine 541 

parviflora, and Antirrhinum majus stained with SR2200 and TO-PRO-3 iodide or 542 

DAPI was performed on an upright Leica TCS SP8 X WLL2 HyVolution 2 (Leica 543 

Microsystems) equipped with GaAsP (HyD) detectors and a 63x glycerol objective 544 

(HC PL APO CS2 63×/1.30 GLYC, CORR CS2). Laser power or gain was adjusted 545 

for z compensation to obtain an optimal z-stack. SR2200 fluorescence was excited 546 

with a 405 nm diode laser (50 mW) with a laser power ranging from 0.1 to 1.5% 547 

intensity and detected at 420 to 500 nm with the gain of the HyD detector set to 20. 548 

TO-PRO-3 iodide fluorescence excitation was done at 642 nm with the white-light 549 

laser with a laser power ranging from 2 to 3.5% and detected at 655 to 720 nm with 550 

the gain of the HyD detector set to 200. For z-stacks 8, 12 or 16-bit images were 551 

captured at a slice interval of 0.28 μm or 0.33 μm with optimized system resolution of 552 

0.126 μm × 0.126 μm × c μm (c=0.280 or 0.330) as final pixel size according to the 553 

Nyquist criterion. Scan speed was set to 400 Hz, the pinhole was set to 0.6 to 1.0 Airy 554 

units, line average was between 2 and 4, and the digital zoom was set between 0.75 555 

and 2, as required. Laser power or gain was adjusted for z compensation to obtain an 556 

optimal z-stack. Image acquisition parameters for the pUBQ::H2B:tdTomato reporter 557 

line: SR2200; 405 diode laser 0.10%, HyD 420–480 nm, detector gain 10. tdTomato; 558 

554 White laser 4%, HyD 570–630 nm, detector gain 80. TO-PRO-3; 642 nm White 559 

Laser 2%, HyD 660–720 nm, detector gain 100. In each case sequential scanning was 560 

performed to avoid crosstalk between the spectra. DAPI stained ovules were excited 561 

with a 405 diode laser 3 %, HyD 420–480 nm, detector gain 100. 562 
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Confocal images of live Cardamine hirsuta Oxford leaf were performed on an upright 563 

Leica TCS SP8 equipped with a 16x 0.6NA multi immersion objective (HC 564 

FLUOTAR L 16x/0,60 IMM CORR VISIR). Sample was mounted on a glass slide 565 

under a coverslip, stained with 1% Propidium iodide in water for cell wall 566 

fluorescence along with ChCUC2g::Venus signal. Venus was excited using a 514 567 

diode laser 2.5%, detected using the HyD 520-560, detector gain 100.  568 

The dataset of pATML1::mCitrine-ATML1 expressing nuclei in the Arabidopsis 569 

flower (pATML1mCitrine-ATML1_flower1_t08.tif) has been obtained from (Meyer 570 

et al., 2017). The dataset of Arabidopsis shoot apical meristem nuclei expressing the 571 

pFD:3xHA-mCHERRY-FD reporter(Cerise et al., 2023; Martignago et al., 2023). The 572 

dataset of mouse embryo nuclei (F49_149) has been obtained from (Nunley et al., 573 

2023). 2D, 3D or 2.5D rendered snapshots were taken using MorphoGraphX. Images 574 

were adjusted for color and contrast using Adobe Photoshop (Adobe, San José, USA) 575 

or MorphoGraphX software (https://www.morphographx.org) (Barbier de Reuille et 576 

al., 2015; Strauss et al., 2022). 577 

Model training and score quantification  578 

The new training dataset (N1-N5) is composed of three image channels: SR2200 cell 579 

wall stain, H2B:tdTomato nuclear reporter, and TO-PRO-3 nuclear stain. The SR2200 580 

cell wall stain was processed with the PlantSeg pipeline to generate a 3D cell 581 

boundary prediction and segmentation. 3D segmentation of the strong tdTomato 582 

nuclei reporter signal was performed using the default Cellpose nuclei model. It was 583 

then proofread and used as the “initial ground truth”. This study provides five initial 584 

ground truth segmentation datasets (Table 4) for model training. Initial model training 585 

was performed using the initial ground truths and trained on the weak TO-PRO-3 586 
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channel. The StarDist-ResNet_3Dnuc_initial model was then used to segment the 587 

original weak TO-PRO-3-based nuclear stain channel resulting in a modified ground 588 

truth which was then human proofread, resulting in the “gold ground truth”. Gold 589 

model training was performed using the gold ground truths and trained on the weak 590 

TO-PRO-3 channel. 591 

For quantitative evaluation of the models, we trained five different models during 592 

both “initial” and “gold” training of each of the PlantSeg, StarDist, and Cellpose 593 

neural networks. Cross-validation with one datasets kept out for testing was used (Fig 594 

S2A), i.e. for model 1, N1-N4 data was used for model training while N5 was the 595 

testing dataset. Each model training and testing involved three training datasets, one 596 

validation dataset, and one testing dataset. For example, one PlantSeg model was 597 

trained on N1, N2, N3 datasets, validated on N4 dataset, and tested on N5 dataset; the 598 

next was trained on N2, N3, N4 datasets, validated on N5 dataset, and tested on N1 599 

dataset and so on. Therefore, the trained models from the initial and gold training 600 

include 15 (3 X 5) initial models and 30 (6 X 5) gold models (Table 5). 601 

To evaluate and compare models and settings, mean Average Precision was chosen 602 

for scoring (Caicedo et al., 2019). To make clear the exact metric used among many 603 

variants (Hirling et al., 2023), the code for evaluation is publicly available to 604 

complement the following formulae. Intersection over Union (IoU), or the Jaccard 605 

index, measures the overlap between a predicted mask and a ground-truth mask for 606 

the testing dataset. It is represented on a scale from 0 to 1, where a value of 1 signifies 607 

a perfect match at the pixel level, and a value of 0.5 indicates that the number of 608 

correctly matched pixels is equal to the combined number of missed and false positive 609 

pixels. We define the precision of the segmentation for an image as ���������	
� �610 
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�����

�����������������
, where 
 is the threshold, TP the number of objects that match true 611 

objects with IoU value above t, FP the number of objects that have no true object 612 

associated with, and FN the number of true objects that are not present in the 613 

segmentation. The average precision (AP) over a range of IoU is defined as 614 


���:
�:�� �
�

�
∑�

�� ���������	

�, where M is the number of IoU thresholds that 615 

range from 
� to 
� with a step size of �
. As a break from tradition, for each setting, 616 

five models were evaluated, each with one image, and the scores were averaged, thus 617 

the mean AP in our study is �
� �
�

�
∑�

�� 
���:
�:��, where N is the number of 618 

images and models. A five-fold average precision at 50% IoU across 5 models, 619 

denoted as �
���, is used as a detection score, and a five-fold average precision over 620 

{50%, 55%, …, 95%} IoU and across 5 models, denoted as �
���:�:�� or simply 621 

�
�, is used as the instance segmentation score. The initial and gold models have 622 

been quantified using the AP scores and reported along with standard deviation. The 623 

initial models trained on PlantSeg, StarDist-ResNet, and Cellpose-Finetune-Nuclei 624 

and the gold models trained on PlantSeg, StarDist-ResNet, StarDist-UNet, Cellpose-625 

Finetune-Cyto2, Cellpose-Finetune-Nuclei, and Cellpose trained from scratch were 626 

evaluated with five-fold AP scoring (Tables 1 and 2). Detailed quantification of AP 627 

scores for evaluation of segmentation can be found in the Supplementary File 1. 628 

Finally, two robust and widely applicable platinum models are proposed where all 629 

five datasets (N1-N5) were used for training final robust models: 630 

PlantSeg_3Dnuc_platinum and StarDist-ResNet_3Dnuc_platinum (Fig S2, Fig 3, Fig 631 

4). We provide the two platinum models through the BioImage Model Zoo for FAIR 632 

use through different client tools of our community. For the sake of reproducibility, 633 
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we also provide the full bundle of models we trained: initial, gold and platinum, to be 634 

downloaded from Biostudies repository S-BIAD1026 (Table 5).  635 

Data preprocessing for performing segmentation using the proposed StarDist, 636 

Cellpose and PlantSeg models. 637 

For the best performance, StarDist requires the raw data to be rescaled so that the 638 

median diameter of nuclei fits into the field of view of the model. We recommend 639 

resampling the dataset to a voxel size of 0.25 x 0.25 x 0.25 µm³ (xyz) for the StarDist-640 

ResNet platinum model proposed by this study. The grid parameter in the config is a 641 

StarDist model parameter that specifies the downsampling factor in each dimension; 642 

[2, 4, 4] downsamples the image by 2 in z and by 4 in x and y. Cellpose models need 643 

to know the diameter or an estimate of that to match the testing datasets’ objects to 644 

original datasets’ object diameter (30 for cell models and 17 for the nuclei model); 645 

PlantSeg model does not require rescaling to match object size, but it is recommended 646 

to match the voxel size to 0.25x 0.25 x 0.25 µm³ (xyz) so that the membrane has 647 

similar thickness. This paper comes with data, code, models and configuration files. 648 

Mapping cell labels to nuclei labels in MorphoGraphX 649 

3D cell and nuclei meshes were generated from segmented stacks using the Marching 650 

cubes 3D process with a cube size of 0.5 μm for fine details. Cell-type labeling 651 

assigns parent (tissue) labels to the cell IDs. Cell-type labeling was done as described 652 

in (Vijayan et al., 2021). The cell and nuclear volumes were obtained using the 653 

“Mesh/Heat Map/Analysis/Cell Analysis 3D” process in MorphoGraphX. Initially, 654 

the cells in the 3D cell mesh (Mesh 1) have their unique cell IDs and the nuclei in the 655 

3D nuclear mesh (Mesh 2) have their unique nuclei IDs. Both the IDs are mapped 656 

using the MorphoGraphX process “Mesh/Nucleus/ Label Nuclei”. In detail, this 657 
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process identifies the cells in which nuclei are located. It is run on the active 3D cell 658 

mesh in MorphoGraphX mesh 1, while the 3D nuclei mesh is loaded in the 659 

MorphoGraphX Mesh 2. The process assigns cell IDs as “parents” annotation to the 660 

nuclei labels, thereby linking cells IDs to nuclei IDs. On the 3D nuclei mesh (active), 661 

the “Mesh/Lineage tracking/Save parents” process was used to save the nuclei IDs 662 

and their corresponding parent cell IDs in a csv file, followed by the “Mesh/Lineage 663 

tracking/Copy parents to labels” process to rewrite the nuclei labels IDs to that of 664 

cells. These processes in combination with “Mesh/Heat map” and “Mesh/Heat 665 

map/Operators/Export heat to Attr Map” processes were used to generate csv files 666 

containing cell IDs, their corresponding nuclei IDs, parent (tissue) labels, and cell and 667 

nuclei geometric attributes.  668 

Further, we created a process (“Mesh/Nucleus/Select Duplicated Nuclei”) to detect 669 

and automatically select nuclei in cells where multiple nuclei were detected. This 670 

process was used to detect segmentation errors. Another process 671 

(”Mesh/Nucleus/Distance Nuclei”) was implemented to quantify the Euclidean 672 

distance between cell centroids and nuclei centroids. We also included a process 673 

(“Mesh/Nucleus/Label Nuclei Surface”) to associate 3D segmented nuclei IDs with 674 

the cells of curved surface meshes. All these processes are documented within 675 

MorphoGraphX (Help/Process Docs). Specific application and minimal guide on the 676 

process can be viewed by hovering the mouse over the process.  677 

Proofreading cell segmentation using nuclear segmentation 678 

PlantSeg-tools offers this script for proofreading cell segmentation based on nuclei 679 

knowledge (https://github.com/hci-unihd/plant-seg-tools). The method is first 680 

described in this manuscript and is part of this study. The cell segmentation will be 681 
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adjusted to resolve any conflict with the respective nuclear segmentation, thus the 682 

accuracy of the nuclei is extremely important. Errors in nuclear segmentation are 683 

propagated to cell segmentation. The script is composed of two different subroutines. 684 

One for correcting the split errors in cell segmentation and one for fixing the merge 685 

mistakes. The split routine checks for each cell whether two or more nuclei (measured 686 

as a percentage of the total cell volume) overlap with the cell segmentation by more 687 

than a user-defined “threshold-split (t-split)”. If the overlap is above the threshold, the 688 

script will use the nuclear segmentation as seed and split the cell using the seeded 689 

watershed algorithm. The merge routine checks for each nucleus whether two or more 690 

cells (measured as a percentage of the total nucleus volume) overlap a single nucleus 691 

segmentation by more than a user-defined “threshold-merge (t-merge)”. If the overlap 692 

is above the threshold, the script will merge the cells. The default thresholds provided 693 

are 66% for "t-split" and 33% for "t-merge". 694 

Optimized workflow from imaging to segmentation of nuclei dataset 695 

Obtaining confocal Z slices is achievable with a recommended xyz voxel size ranging 696 

from 0.12 x 0.12 x 0.25µm³ to 0.25 x 0.25 x 0.25 µm³, ensuring visually identifiable 697 

non-oversaturated nuclei signals. For optimal results, we propose imaging with line 698 

average ranging from 2 to 5 whenever feasible. Employing microscope objectives 699 

with a high numerical aperture (ideally around 1.2 NA or higher) is advised. 700 

Nevertheless, both the PlantSeg and the StarDist-ResNet platinum models are quite 701 

flexible to the imaging conditions as they were able to process a range of image 702 

quality (Table. 3). For nuclei segmentation using the two platinum models, we present 703 

GoNuclear (https://github.com/kreshuklab/go-nuclear). GoNuclear comes with the 704 

PlantSeg and StarDist-ResNet platinum models. Although the results are comparable, 705 

we recommend trying StarDist with the StarDist-ResNet platinum model first, as it is 706 
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a bit less involved compared to the PlantSeg 3D nuclei segmentation pipeline. 707 

GoNuclear can batch process nuclei images and output segmentation can be saved as 708 

a tiff/HDF5 file which can be imported into MorphoGraphX. As an alternative, the 709 

PlantSeg_3Dnuc_platinum model has been integrated into MorphoGraphX, allowing 710 

3D nuclear predictions to be generated, which can then be 3D segmented using the 711 

ITK watershed algorithm, all within MorphoGraphX. MorphoGraphX enables 712 

multiple 3D stacks and segmented images to be superimposed on each other, allowing 713 

the data sets to be proofread as needed. A 3D nuclei mesh can be created in 714 

MorphoGraphX and quantifications can be performed. Numerical results can be 715 

exported as a csv file for further processing. 716 
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found in the GoNuclear repository: https://github.com/kreshuklab/go-nuclear. Other 728 

software can be downloaded at the following links: MorphoGraphX: 729 
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https://morphographx.org. PlantSeg: https://github.com/hci-unihd/plant-seg. Plant-730 

seg-tools: https://github.com/hci-unihd/plant-seg-tools. StarDist: 731 

https://github.com/stardist. Cellpose: https://github.com/mouseland/cellpose. We 732 

provide the 2 platinum models through the BioImage Model Zoo (https://bioimage.io) 733 

for FAIR use through different client tools of our community. 734 

PlantSeg_3Dnuc_platinum: Zenodo ID 0.5281/zenodo.8401064; Zoo name: efficient-735 

chipmunk. StarDist3DResnet_3Dnuc_platinum: Zenodo ID: 736 

10.5281/zenodo.8421755; Zoo name: modest-octopus. All datasets used for the 737 

figures and the entire bundle of models we trained can be downloaded from BioImage 738 

Archive (BIA) (https://www.ebi.ac.uk/bioimage-archive/) (Hartley et al., 739 

2022)/BioStudies (https://www.ebi.ac.uk/biostudies/) (Sarkans et al., 2018), accession 740 

S-BIAD1026. The MorphoGraphX Process “Mesh/Nucleus” is available with version 741 

2.0.2.and above https://morphographx.org. The data used for quantification of the 742 

Arabidopsis ovule N/C ratios include the training datasets generated in this study 743 

(Biostudies accession S-BIAD1026) and were also obtained from (Vijayan et al., 744 

2021) (BioStudies, accession S-BSST475). The mouse embryo BlastoSPIM data set 745 

(Nunley et al., 2023) can be downloaded from the respective website 746 

(https://blastospim.flatironinstitute.org/html/series.html). 747 
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 952 

Fig. 1. 3D dataset for model training. (A) 2D section view of TO-PRO-3-stained 953 

nuclei in Arabidopsis ovules. (B) 3D nuclear segmentation of weak nuclei stain 954 

performed using Cellpose nuclei model. (C) A zoomed-in view displaying the 955 

erroneous segmentation. Typical segmentation errors in the nuclei stains segmentation 956 

resulting in improper size, shape and number of nuclei. (D) Fluorescent nuclei 957 

reporter H2B: tdTomato raw image. (E) 3D Cellpose nuclei model segmentation of 958 

the bright tdTomato nuclei fluorescence. (F-I) 2D section view from one of the five 959 

training dataset. (F) Weak nuclei channel (TO-PRO-3-stained) used for training. (G) 960 

Strong nuclei channel (nuclei reporter H2B: tdTomato) used for generating ground 961 

truths. (H) Initial ground truth used for training initial model. 3D nuclear 962 
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segmentation of the strong nuclei channel performed using the Cellpose nuclei model. 963 

(I) Raw cell wall stain, PlantSeg cell boundary predictions and cell segmentation 964 

available with the training dataset (from left to right) (J) Illustration of model training 965 

strategy. Scale bars: 5µm (A-E); 20 µm (F-I). 966 

 967 

Fig. 2. Qualitative comparison of segmentation results using different trained 968 

models. Qualitative comparison displaying the Arabidopsis ovule testing dataset 1135 969 

(N5 dataset) with trained model (Model-5) using four other training datasets. (A) 3D 970 

view of ground truth nuclear segmentation. (B) Zoomed 2D section view of raw weak 971 
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TO-PRO-3 iodide nuclei stain. (C) Ground truth nuclear segmentation corresponding 972 

to the zoomed view in (B). (D-E) PlantSeg predictions and segmentation using the 973 

proposed PlantSeg model. (D) 3D PlantSeg GASP segmentation performed using the 974 

proposed PlantSeg model. (E) View corresponding to (B) showing PlantSeg nuclei 975 

predictions. Top panel: PlantSeg nuclei center predictions. Bottom panel: PlantSeg 976 

nuclei envelope prediction from raw data. (F) PlantSeg GASP segmentation of the 977 

corresponding section in (B). (G-I) StarDist ResNet nuclei predictions and 978 

segmentation using the proposed ResNet model. (G) StarDist ResNet 3D nuclear 979 

segmentation performed using the proposed StarDist model. (H) View corresponding 980 

to (B) showing StarDist ResNet nuclei predictions. (I) StarDist ResNet nuclear 981 

segmentation of the corresponding section in (B). (J-L) StarDist UNet nuclei 982 

predictions and segmentation using the proposed UNet model. (J) StarDist UNet 3D 983 

nuclear segmentation performed using the proposed StarDist model. (K) View 984 

corresponding to (B) showing StarDist UNet nuclei predictions. (I) StarDist UNet 985 

nuclear segmentation of the corresponding section in (B). Scale bars: 10μm. 986 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.19.580954doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.580954
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

41 

 987 

Fig. 3. Wide applicability of trained nuclei segmentation models in segmenting 988 

stained or nuclear reporter-expressing different plant organ nuclei imaged under 989 

different conditions. (A-C) Antirrhinum majus ovule nuclei stained with TO-PRO-3 990 

iodide, (D-F) Arabidopsis thaliana ovule nuclei stained with DAPI, (G-I) Arabidopsis 991 

sepal nuclei expressing the pATML1::mCitrine-ATML1 reporter, (J-L) Cardamine 992 
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hirsuta leaf nuclei expressing the pChCUC2g::Venus reporter, (M-O) Mouse embryo 993 

nuclei expressing the H2B-miRFP720 reporter. (A,D,G,J,M) 3D confocal images of 994 

raw nuclei stained with a nuclear stain or expressing nuclear reporter. Raw images 995 

have been adjusted for brightness and contrast for depiction. (B,E,H,K,N) 3D nuclear 996 

segmented stacks, segmented using the StarDist-ResNet model generated from this 997 

study. Nuclei IDs are represented in different colors. (C,F,I,L,O) Overlay of 3D 998 

segmented stack with the corresponding MorphoGraphX-generated 3D nuclear mesh. 999 

(A-O) Insets with white outline show the zoomed-in view of 3D nuclei. Scale Bars: 10 1000 

μm (organs) and 5 μm (insets). 1001 
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 1002 

Fig. 4. MorphoGraphX as a platform for mapping 3D nuclei to whole organ cell 1003 

atlas at single cell and tissue resolution. (A-H) Stage 3-II 3D cell and nuclei meshes 1004 

for the same ovule sample generated from corresponding segmented stacks. (A) Mid-1005 

sagittal section of 3D mesh showing cell IDs in different colors. (B) Mid-sagittal 1006 

section of 3D mesh showing cell parent (tissue) labels. (C) Cell-type labeled 3D mesh 1007 

overlaid with nuclei mesh showing nuclei IDs in different colors. (D) Cell-type 1008 

labeled 3D mesh overlaid with nuclei mesh showing nuclei lacking parent labels. (E) 1009 

Cropped section of 3D mesh showing that initially cell IDs are initially independent of 1010 
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nuclei IDs (cells and their corresponding nuclei in different colors). (F) Cropped 1011 

section and (G) mid-sagittal section of 3D mesh showing cell IDs mapped onto their 1012 

corresponding nuclei using MorphoGraphX processes, resulting in the same color for 1013 

cells and their corresponding nuclei. (H) In the final step parent tissue labels of cells 1014 

are mapped onto the corresponding nuclei in MorphoGraphX. (I) Plot showing N/C 1015 

ratio of the radial layers, L1, L2, and L3 of stage 2-I ovule primordia. (J-L) Plots 1016 

showing correlation between nuclear and cell volumes in different layers of stage 2-I 1017 

primordia along with the respective Pearson correlation coefficients, r. (J) L1, (K) L2, 1018 

(L) L3. (M) Plot showing nuclear to cell volume ratio (N/C) of different tissues and 1019 

tissue layers of stage 3-II ovules. (N) Plot showing N/C ratio of the outer layer of the 1020 

inner integument (ii2) for different stages of ovule development from 2-IV up to 3-V. 1021 

Asterisks represent statistical significance (ns, p≥0.5; *, p<0.05; **, p<0.01, ***, 1022 

p<0.001; ****, p<0.0001; Student’s t-test). Scale bars: 10 μm. 1023 
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 1024 

Fig. 5. PlantSeg proofreading tools to correct 3D cell segmentation errors. (A-D) 1025 

Mid-sagittal section Arabidopsis thaliana ovule primordium (dataset 598A, (Vijayan 1026 

et al., 2021)). (E-H) Cropped section of an Arabidopsis thaliana 3-II ovule (dataset 1027 

527, (Vijayan et al., 2021)). (I-L) Mid-sagittal section of a Cardamine parviflora 1028 

ovule primordium (dataset 1598B, Mody et al., 2023). (A,E,I) 3D cell boundary 1029 

predictions along with insets showing raw SR2200 (white) and TO-PRO-3 channel 1030 

(magenta) signals after adjusting for brightness and contrast to show the weak cell 1031 

wall staining in specific regions (outlined in orange boxes) and resulting in missing or 1032 

incomplete walls in the cell boundary predictions. (B,F,J) Plant-seg cell segmentations 1033 

overlaid with cell boundary prediction. Black arrows point to undersegmented cells. 1034 

(C,G,K) StarDist-segmented nuclei overlaid with cell boundary prediction, showing 1035 

multiple nuclei in the undersegmented cells in the MMC region (B,J) and in cells of 1036 
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funiculus and chalaza (F). (D,H,L) 3D cell segmentations corrected with PlantSeg 1037 

proofreading tools (black arrows) and overlaid with the cell boundary prediction. 1038 

Cardamine parviflora ovule primordia are crassinucellate (K,L); the ability to 1039 

visualize this is lost after cell segmentation (I,J). PlantSeg proofreading tools enable 1040 

re-distinguishing the primary parietal cell from the MMC. Scale Bars: 10 μm.  1041 

  1042 
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Tables 1043 

Table 1. Comparative analysis of different model performance when involving 1044 
human in the loop to train a gold model.  1045 

Tool used Model Version 5-fold AP ± STD 

PlantSeg UNet GASP Initial 57.40% ± 7.7% 

PlantSeg UNet GASP gold 78.80% ± 1.98% 

StarDist ResNet Initial 67.61% ± 6.5% 

StarDist ResNet gold 78.33% ± 1.73% 

Cellpose Finetune nuclei initial 43.64% ± 12.88% 

Cellpose Finetune nuclei gold 51.96% ± 12.51% 

Segmentation of the test dataset was performed using each of the listed initial and 1046 
gold models and the mean average precision is scored for different methods compared 1047 
to gold ground truth. 1048 

 1049 

Table 2. Comparative analysis of different gold model training 1050 
performance. 1051 

Tool used Model 5-fold AP ± STD 

PlantSeg UNet GASP 78.80% ± 1.98% 

StarDist ResNet 78.33% ± 1.73% 

StarDist UNet 78.25% ± 1.84% 

Cellpose Finetune nuclei 51.96% ± 12.51% 

Cellpose Finetune cyto2 51.05% ± 12.93% 

Cellpose Trained from scratch 51.26% ± 13.75% 

Segmentation of the test dataset was performed using each of the listed methods and 1052 
the mean average precision is scored for different methods compared to a human 1053 
proofread ground truth. The configuration files used for training can be found along 1054 
with the model. 1055 
 1056 
 1057 
 1058 
 1059 
 1060 
  1061 
 1062 
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Table 3. Datasets used for wide applicability of the proposed method in 1063 
segmenting different organs and different fluorescent signal types acquired at 1064 
different resolutions.  1065 

Organism Organ Nuclear 
stain/fluorescent 
reporter signal 

Microscopy Raw data 
voxel size 
(xyz µm3) 

Post 
processing 

Arabidopsis 
thaliana 

Shoot 
apical 
meristem 

pFD:3xHA-
mCHERRY-FD 

CLSM, 40x 
1.25NA Gly 
objective, 
cleared sample 

0.242 x 
0.242 x 
0.4 

Median 
filtering 

Cardamine 
hirsuta 

Leaf pChCUC2g::Ven
us 

CLSM, 16x 
0.6NA water 
dipping 
objective, live 
sample 

0.498 x 
0.498 x 
0.5 

Upsampled to 
0.125 x 0.125 
x 0.25  

Antirrhinu
m majus 

Ovule TO-PRO-3 iodide  CLSM, 63x 
1.3NA Gly 
objective, 
cleared sample 

0.126 x 
0.126 x 
0.33 

Downsampled 
to 0.25 x 0.25 
x 0.33; smooth 
2x 

Arabidopsis 
thaliana 

Ovule DAPI CLSM, 63x 
1.3NA Gly 
objective, 
cleared sample 

0.063 x 
0.063 x 
0.27 

Downsampled 
to 0.25 x 0.25 
x 0.28; smooth 
2x 

Arabidopsis 
thaliana 

Sepal pATML1::mCitri
ne-ATML1 

CLSM, 20x 
1.0NA Water 
objective 

0.276 x 
0.276 x 
0.8 

Autobright; 
smooth 3x 

Mouse Early 
embryo 

H2B-miRFP720 SPIM 0.208 x 
0.208 x 2 

Downsampled 
in x, y and 
unchanged in z 
to 0.6 x 0.6 x 2 

The table summarizes the organism, organ, type of signal, microscopic method, image 1066 
voxel size and any preprocessing applied to optimize the segmentation of the wide 1067 
applicability dataset. 1068 
  1069 

 1070 

 1071 

 1072 
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 1073 

Table 4. Training and testing dataset for five fold training and for the platinum 1074 
trained model. 1075 

Dataset 
Nr 

Ovule 
ID 

Stage  Number of 
cells/nuclei in the 
image 

Raw image  
voxel size (xyz, μm3) 

N1 1135   3-V 1118 0.126 x 0.126 x 0.284 

N2 1136 3-IV 1487 0.127 x 0.127 x 0.284 

N3 1137  3-V 1849 0.126 x 0.126 x 0.284 

N4 1139  3-III 1536 0.126 x 0.126 x 0.279 

N5 1170  2-II   3961 0.126 x 0.126 x 0.279 

Datasets represent a confocal 3D z stack of Arabidopsis ovules of different stages. 1076 
Each dataset is given an ID and a dataset Nr to refer to its use on model training as 1077 
mentioned in Fig S2A. 1078 
 1079 

 Table 5. List of all models 1080 

Sl Model name Tool used Model Version 

Number of 
trained 
models 

1 PlantSeg_3Dnuc_initial PlantSeg UNet GASP Initial 5 

2 StarDist-ResNet_3Dnuc_initial StarDist ResNet Initial 5 

3 Cellpose-Finetune-nuclei_3Dnuc_initial Cellpose 
Finetune 
nuclei initial 5 

4 PlantSeg_3Dnuc_gold PlantSeg UNet GASP gold 5 

5 StarDist-ResNet_3Dnuc_gold StarDist ResNet gold 5 

6 StarDist-UNet_3Dnuc_gold StarDist Unet gold 5 

7 Cellpose-Finetune-nuclei_3Dnuc_gold Cellpose 
Finetune 
nuclei gold 5 

8 Cellpose-Cyto2_3Dnuc_gold Cellpose Finetune cyto2 gold 5 

9 Cellpose-Scratch_3Dnuc_gold Cellpose 
Train from 
scratch gold 5 

10 PlantSeg_3Dnuc_platinum PlantSeg UNet GASP Platinum 1 

11 StarDist-ResNet_3Dnuc_platinum StarDist ResNet Platinum 1 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.19.580954doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.19.580954
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

50 

One each of the initial, gold, and platinum models can be downloaded from the 1081 
Biostudies repository S-BIAD1026. 1082 
 1083 
 1084 

Supplementary Materials 1085 

Attached as a separate file.  1086 

1. Supplementary Results  1087 

2. Supplementary File 1088 
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