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36 Summary Statement

37  We present computational tools that allow versatile and accurate 3D nuclear
38  segmentation in plant organs, enable the analysis of cell-nucleus geometric
39 relationships, and improve the accuracy of 3D cell segmentation.
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Abstract

We present anew set of computational tools that enable accurate and widely
applicable 3D segmentation of nuclei in various 3D digital organs. We developed a
novel approach for ground truth generation and iterative training of 3D nuclear
segmentation models, which we applied to popular CellPose, PlantSeg, and StarDist
algorithms. We provide two high-quality models trained on plant nuclei that enable
3D segmentation of nuclei in datasets obtained from fixed or live samples, acquired
from different plant and animal tissues, and stained with various nuclear stains or
fluorescent protein-based nuclear reporters. We also share a diverse high-quality
training dataset of about 10,000 nuclei. Furthermore, we advanced the
MorphoGraphX analysis and visualization software by, among other things, providing
amethod for linking 3D segmented nuclei to their surrounding cellsin 3D digital
organs. We found that the nuclear-to-cell volume ratio varies between different ovule
tissues and during the development of atissue. Finally, we extended the PlantSeg 3D
segmentation pipeline with a proofreading script that uses 3D segmented nuclei as

seeds to correct cell segmentation errors in difficult-to-segment tissues.
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59 Introduction

60  Tissue morphogenesisis acomplex, multi-scale process that ultimately resultsin an
61  organ or tissue of a specific size and shape and characteristic 3D cellular architecture.
62 Advancesinimaging increasingly allow generation of 3D digital organs with cellular
63  resolution, which are useful tools for unraveling the integration and feedback

64  processes between molecular regulatory circuits and the cellular architecture of

65 developing tissues and organs. Plants are excellent systems for generating 3D digital
66  organs because their cells are immobile and the cellular architecture of plant organs

67 can be easily observed using various types of microscopy.

68 Over the years, and partly through the application of artificial intelligence, powerful
69  open-source software packages have been developed for 3D cell segmentation of

70  confocal microscopy images (Barbier de Reuille et a., 2015; Eschweller et al., 2019;
71  Fernandez et al., 2010; Schmidt et a., 2014; Sommer et a., 2011; Stegmaier et al.,
72 2016). Machine learning based software, including CellPose, PlantSeg and StarDist,
73 represents arecent advance in this area, providing improved 3D segmentation of

74 tissuesat cellular resolution (Eschweiler et al., 2019; Stringer et al., 2021; Weigert et
75 a., 2020; Wolny et a., 2020). The output of such pipelines can then be quantitatively
76  analyzed in image analysis software like MorphoGraphX (Barbier de Reuilleet a.,
77  2015; Strauss et al., 2022). The advances in these computational resources have

78  enabled the generation of a number of digital 3D models of a variety of plant organs,
79  which have alowed single-cell analysisin 3D and have been instrumental in gaining
80 fundamental insights into various processes in plants, including embryo, root, and
81 ovule development (Bassel et al., 2014; Fridman et al., 2021; Graeff et al., 2021,

82 Hernandez-Laganaet a., 2021; Loraet a., 2017; Montenegro-Johnson et al., 2015;
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83  Ouedraogo et al., 2023; Pasternak et a., 2017; Schmidt et al., 2014; Vijayan et al.,
84 2021; Yoshidaet a., 2014).

85  Animportant feature that is presently missing from these 3D digital modelsis the

86 integration of the size and shape of the nuclei into the cellular framework. The ability
87  tonot only robustly segment nuclel in 3D, even in deeper tissues, but also to link the
88 3D architectures of nuclei and their surrounding cells in a tissue-specific context

89 enablesthe study of central biological processes such as nuclear size control

90 (Cantwell and Nurse, 2019c). Another key process is the control of gene expression.
91  Spatia gene expression patterns as well as expression levels can be assessed with

92  cellular resolution, for example, using ratiometric nuclear reporters driven by gene-

93  specific promoters (Federici et a., 2012).

94  ClearSee-based protocols for cleared whole-mount preparations of plant organs allow

95  staining of cell walls and nuclei with various cytological dyes without the need for

96 transgenic plants carrying the appropriate reporter constructs and maintain

97  compatibility with reporters based on fluorescent proteins (Kurihara et al., 2015;

98 Musielak et al., 2015; Tofanelli et al., 2019; Ursache et al., 2018). The establishment

99 of the 3D digital reference atlas of Arabidopsis ovule development represents a recent
100 examplethat used this approach (Vijayan et a., 2021). During the preparation of the
101  atlas, ovules were fixed and cleared with ClearSee (Kurihara et al., 2015). Cell
102  outlines were stained with the cell wall stain SCRI Renaissance (SR2200) (Harris et
103 4., 2002; Musielak et a., 2015), while the nuclei were stained with TO-PRO-3 (Bink
104 etd., 2001; Van Hooijdonk et al., 1994). The digital ovule atlas provided detailed
105 insight into the 3D cellular architecture of the ovule but lacked information on the size
106  and shape of the nuclei. TO-PRO-3 stains double-stranded nucleic acids and can

107  therefore be auseful tool for 3D volumetric nuclear extraction. However, the signal
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108 intensity of any typical nuclear stain can exhibit variable intensities, scatter, and
109  photobleaching when imaging deeper tissue layers, rendering accurate 3D nuclear

110  segmentation extremely difficult.

111  Therefore, our overall goal isto accurately segment plant nuclei in 3D images with
112  weakly stained nuclei. Several deep learning-based segmentation agorithms have
113  recently been proposed for this task: PlantSeg (Wolny et al., 2020), Cellpose (Stringer
114 etd., 2021), and StarDist (Weigert et a., 2020). However, none of them can be used
115  out of the box. PlantSeg and CellPose pre-trained models have not been exposed to
116  weakly stained plant nuclei while 3D StarDist does not provide trained models and
117  requiresretraining. The main bottleneck for model training is the lack of publicly

118 available 3D ground truth with correctly delineated nuclei. This step is famously

119 labor-intensive even for high-contrast, high signal-to-noise ratio (SNR) image

120  volumes.

121  Inthisstudy, we combine different staining strategies to quickly achieve 3D

122  segmentation ground truth for model training. Together with human-in-the-loop

123  correction, we use this approach to acquire fully annotated volumes of weakly stained
124 nuclei. Onthis basis, we train highly accurate segmentation networks, which we show
125 to be generalizable to other datasets obtained by various imaging methods and from a
126  variety of plant and animal tissues labeled with different staining methods. In

127  addition, we introduce a combination of processes in MorphoGraphX that associates
128  each nucleus with the cell in which it resides, and that provides the nucleus with the
129  cells respectivetissue labels. It allows the investigation of various cell-nucleus

130 relationships, such as the nucleus-to-cell volume (N/C) ratio. We demonstrate the
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131 genera vaue and broad applicability of these technical advancesin proof-of-concept

132  analyses.
133
134 Results

135 A novel iterative approach to ground truth generation and 3D nuclear model
136 training

137 Inafirst attempt at 3D nuclear segmentation of TO-PRO-3-stained ovule nuclei in 3D
138 image stacks, we found that the available plant nuclei segmentation model in PlantSeg
139 did not yield segmented nuclei of sufficient quality for ground truth generation. Thus,
140 we employed Cellpose (Pachitariu and Stringer, 2022; Stringer et a., 2021) asit had
141  anexisting nuclei model used for 3D nuclear segmentation. However, we still

142  observed improper segmentation with errorsin detecting and separating nuclear

143  borders (Fig. 1A-D). Thisis probably due to the TO-PRO-3 nuclear staining being
144  variable and often quite weak and diffuse, particularly in deeper layers. In addition,
145 thesignal was absent in the nucleolus, resulting in an uneven nuclear surface and

146  segmentation that looked like a hole extruded from the nuclear surface (Fig. 1C).

147  To address theseissues, we developed anovel strategy based on samples that

148 simultaneously show strong and faint signals in the nuclei that can be collected in
149  separate channels. We first generated a transgenic line expressing atranslational

150 fusion of the fluorescent protein tdTomato to histone H2B driven by the

151 UBIQUITIN10 (UBQ) promoter (pUBQ::H2B:tdTomato). Ovules of this reporter line
152  werefixed, cleared, and stained with the cell wall stain SR2200 and the nuclear stain
153 TO-PRO-3. Ovules wereimaged and the SR2200, TO-PRO-3, and H2B:tdTomato

154  signals were collected in three separate channels (Fig. 1F,G,l1). The broadly expressing
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155 nuclear pUBQ::H2B:tdTomato reporter provided a strong and uniform nuclear signal
156 that could be segmented into nuclel using the standard Cellpose nuclear model (Fig.
157 1D,E,G,H). We then used the results of human proofread instance nuclear

158  segmentation of the strong H2B:tdTomato reporter channel as the “initial ground

159  truth” for training three sets of initial 3D models: PlantSeg_3Dnuc _initial, StarDist-
160 ResNet_3Dnuc_initial, and Cellpose-Finetune-nuclei_3Dnuc _initial. The PlantSeg
161 and StarDist initial models were trained on the weak TO-PRO-3 nuclear stain channel
162  using the neural networks implemented in the respective pipelines. The Cellpose

163 initial models were trained on the TO-PRO-3 channel by fine-tuning the pretrained
164  Cellpose “nuclei” model. The segmentation results using the initial models turned out

165 tobestill imperfect and required several corrections by an expert.

166  To obtain further model improvements we applied an iterative training strategy (Fig.
167  1J). We used the StarDist-ResNet_3Dnuc _initial model to segment the original weak
168 TO-PRO-3-based nuclear stain channel asit provided the best qualitative results,

169 resulting in amodified ground truth. This modified ground truth was then human
170  proofread, resulting in the “gold ground truth”. In a next step, the "gold ground truth”
171  and the original weak TO-PRO-3-based nuclel stain were used to train six sets of 3D
172  “gold models" using one or multiple neural networks implemented in PlantSeg,

173  Cellpose, and StarDist (Table 2), probing for the best parameter settings.

174  We tested how much model performance improved when human-in-the-loop (HITL)
175 wasinvolved, i.e, initial vs gold model. To this end we employed a quantitative

176  comparison of initial and gold PlantSeg, StarDist-ResNet and Cellpose-Finetune-
177  nuclei models. We made use of the imperfect initial models to generate modified and

178  Dbetter ground truth by involving a HITL proofreading before using them for the
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179 training that resulted in the “gold models". (Fig. 1J). The detailed description of model
180 training including the datasets used for training and testing are provided in the “Model
181 training and score quantification” section of Materials and Methods. Comparison of
182  model performance between initial and gold PlantSeg, Cellpose-Finetune-nuclei and
183  StarDist-ResNet models was performed by 5-fold average precision (AP) score

184  quantification (Table 1). Results indicate that all methods demonstrate increased

185 performance after gold training. PlantSeg and StarDist-ResNet gold models turned out
186  to be superior to the Cellpose-Finetune-nuclei gold models and demonstrated high

187  precision segmentation compared to the respective initial models.

188 Comparisons of the different gold models

189  Quantitative and qualitative performance comparisons of the different gold models
190 were performed and results are presented in Table 2, Fig. 2, and Fig. S1. With the
191  exception of the Cellpose-derived models, all other gold models performed

192  excellently on the raw images of nuclei stains as can be seen with qualitative

193  comparison (Fig. 2, Fig. S1). The weak nuclei signals were strongly detected

194  especialy with the proposed new PlantSeg_3Dnuc_gold, StarDist-

195 ResNet_3Dnuc_gold and Stardist-UNet_3Dnuc_gold models. Segmented nuclei

196  surfaces were devoid of any artifacts like an extruded hole asin the raw nuclei image
197  segmentation prior to developing this method. The AP scores obtained in these cases
198  were very high when compared to the proposed new Cellpose nuclei gold models
199 (Table 2). Average precision graphs also clearly indicate high precision of the

200 PlantSeg, StarDist-ResNet, and StarDist-UNet gold models and how little they vary

201  compared to the Cellpose gold models (Fig. S1I-N).

202  StarDist-ResNet and PlantSeg gold models ar e two highly reliable models
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203  The PlantSeg model was trained to produce a nuclear center probability map and a
204 nuclear envelope probability map (Fig. 2E). The nuclear envelope probability was
205  processed by Generalized Algorithm for Signed Graph Partitioning (GASP) (Bailoni
206 etal., 2019) to obtain aninitial instance segmentation, which is then filtered according
207  tothe probability of the nuclei center (Fig. 2D,F). Data volumes for both training and
208 inference do not need any changes in terms of isotropy or intensity, and can be fed
209 into PlantSeg asit is. Increasing patch size does not improve accuracy. The downside
210 of PlantSeg is that the post-processing algorithms were designed for dense

211  segmentation and therefore tend to over-segment the background, which can be easily
212  fixed by applying aforeground mask or even manually. PlantSeg resultsin the

213  assignment of very accurate instance masks to most objects, because it finds

214 boundaries of the biological structure of interest and provides a nuclear envelope

215  probability map (Fig. 2D-F). The minor imperfections caused by PlantSeg GA SP and
216 final thresholding in PlantSeg segmentation can be very easily improved by removing

217  afew false positives and relabeling afew false negatives.

218  StarDist-ResNet and StarDist-UNet models output a nucle probability map (Fig.

219 2H,K) and nuclei instance segmentation (Fig 2G,l,J,L). Both the StarDist models

220  resulted in very smooth and uniform instance masks of all objects, because it fits star-
221  convex shapesto objects (Fig 2G-L). StarDist is sensitive to object shapes; elongated
222  objects are predicted accurately in its probability maps, but are then sometimes fitted
223  into small and wrong instance masks. The segmentation always looked clean and

224 smooth. Isotropy of data volumes matters, one could specify a grid parameter that

225 downsamplestheinput to fit instances into the network’s field of view. A bigger patch

226  sizecan help in terms of object detection but not mean average precision. The

10
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227  imperfection caused by size and shape prior in StarDist segmentation can be improved

228 by merging afew oversegmented instances.

229  For Cellpose, we fine tuned two pretrained models (Nuclei, Cyto2) and in addition,
230 trained anew model from scratch (Fig. S1). Due to the 2D nature of Cellposg, it is
231 recommended that data for either training or future inference be transformed into

232  isotropic volumes for best results. Cellpose is very sensitive to its diameter parameter.
233 Inthisstudy, the fixed default object diameter parameters for pretrained models were
234  setto be 30 for non-nucleus models and 17 for nucleus models, and that for scratch-
235 trained modelsis inferred from our data. Cellpose results in good instance masks (Fig.
236  Sl1) but overall less accurate segmentations compared to proposed StarDist and

237  PlantSeg models (Table 2). Overall, while final Cellpose output turned out to be

238 worsethan StarDist and PlantSeg even after retraining, it’'s important to remember
239  that it was the best method (Table S2) to provide a starting point in absence of human-

240  annotated ground truth in the first step of our experiments.

241  Wideapplicability of the PlantSeg_3Dnuc and Star Dist-ResNet platinum models
242  Sofar, the resultsindicated that PlantSeg_3Dnuc_gold and StarDist-

243 ResNet_3Dnuc_gold emerged as the preferred models for accurately segmenting 3D
244 plant nuclei. Therefore, we trained two final platinum models based on PlantSeg and
245  StarDist-ResNet, respectively, using al available training datasets (Fig. S2). This

246  resulted in the two 3D platinum models, PlantSeg_3Dnuc_platinum and StarDist-

247  ResNet_3Dnuc_platinum. For nuclei segmentation using the two platinum models, we

248  made available the GoNuclear repository (https://github.com/kreshukl ab/go-nucl ear)

249  that hosts the pipelines used in this study.

11
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250 Totest the broad applicability of the trained platinum models in 3D nuclear

251  segmentation, we used both platinum models to segment nuclei from diverse and
252  challenging datasets, including a variety of tissues from different plant species as well
253  asearly mouse embryos, stained with nuclear stains or expressing nuclear reporters.
254 Our diverse 3D nucle datasetsincluded afixed, cleared, TO-PRO-3-stained

255  Antirrhinum majus ovule; afixed, cleared, DAPI-stained Arabidopsis thaliana ovule;
256 live Arabidopsis sepal nuclel expressing the pATML1::mCitrine-ATML1 reporter
257 (Meyeretal., 2017); live Cardamine hirsuta leaf expressing the ChCUC2g::VENUS
258  reporter (Rast-Somssich et al., 2015); and fixed and cleared Arabidopsis shoot apical
259  meristem nuclel expressing the pFD:3xHA-mCHERRY -FD reporter (Ceriseet a.,
260 2023; Martignago et al., 2023). In addition, we segmented nuclei of the BlastoSPIM
261 dataset obtained by live 3D imaging of blastocyst stage mouse embryos expressing
262  the nuclear marker H2B-miRFP720 using Selective Plane Illumination Microscopy

263 (SPIM) (Nunley et a., 2023).

264  Boththe PlantSeg_3Dnuc_platinum and StarDist-ResNet_3Dnuc_platinum models
265 resulted in comparable high quality segmentations. The results of segmentation using
266  StarDist-ResNet_3Dnuc_platinum are presented here, asits use is less involved

267  compared to PlantSeg_3Dnuc_platinum (Fig. 3, Fig. S3).

268  We segmented the above-mentioned datasets using the StarDist-ResNet and PlantSeg
269  platinum models after image preprocessing (Table 3). The preprocessing was required
270  to ensure the datasets to be segmented matched the training datasets in nuclear size
271  and quality. We observe that the nuclei of all mentioned datasets could be properly 3D
272  segmented using the proposed models (Fig. 3). Further, even though the models were

273  trained on cleared, high-resolution datasets, they are capable of segmenting nuclei

12
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274 from low resolution datasets as well, for instance the Cardamine leaf nuclei and

275  mouse embryo nuclei from live samples. A precise segmentation of the

276  pChCUC2g::Venus nuclear signal further allows for quantification of the number of
277  pChCUC2g::Venus expressing nuclel along with signal quantification if required. The
278  StarDist-ResNet platinum model could also segment extremely challenging datasets
279  with high variation in intensities after applying some preprocessing (Fig. S3). The
280  results demonstrate the broad applicability of the platinum modelsin 3D segmentation

281 of nuclei of different tissues and species.

282 MorphoGraphX asa platform for mapping 3D nuclei to whole organ cell atlas
283  with single cell and tissue resolution

284  Multichannel 3D confocal imaging alowed simultaneous imaging of both the cell and
285  nuclear stain channels. MorphoGraphX enables 3D visualization and allows complex
286  annotations and quantifications (Fig. S2F-I, Fig. S3H). We reasoned that it should be
287  possible to combine 3D cell segmentation and 3D nuclear segmentation of the imaged
288 3D stack. 3D cell segmentation assigns cellstheir cell IDs and 3D nuclear

289  segmentation assigns nuclei their nuclei IDs; however, they are not directly linked. In
290 MorphoGraphX, these 3D cell and nuclei segmentation images are converted to 3D
291  meshes representing individual objects. To address the issue of linking nuclel and
292  corresponding cell IDs, we developed a novel process in MorphoGraphX that

293  automatically annotates and links nuclei 1Ds with their corresponding cell IDs (Fig.
294  4A-H) (see Materials and Methods). The 3D cell meshes can then be assigned tissue
295  labels viamanual or semi-automated cell-type labeling (Strauss et al., 2022) (Fig. 4A-

296 B).

13
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297  Inaddition to linking nuclear and cell IDs, we also added M orphoGraphX tools to
298 quantify the Euclidean distance between 3D cell and 3D nuclear centroids or map
299  2.5D cellsto underlying 3D nuclel (Fig. $4) (Materials and Methods). 3D cell

300 segmentation can be challenging especially when working with live images. In such
301 cases, one may haveto resort to 2.5D cell segmentation. We present a

302  MorphoGraphX method for associating 2.5D surface cells with 3D nucle.

303  MorphoGraphX achieves thislink by projecting 3D segmented nuclei stacks onto the
304  2.5D segmented cell mesh (Fig. S4A-C). Additionally, the process “ Select Duplicated
305 Nuclei” isauseful tool to identify cell segmentation errors as it detects cells with
306  more than one nucleus. This entire collection of processes areincluded in

307  MorphoGraphX version 2.0.2. and higher and can be found in the process folder

308 “Mesh/Nucleus’ (see Materials and Methods). The development of these new

309 MorphoGraphX processes opens up new possibilities to integrate cell features with

310 nucle features and to study quantitative parameters of nuclei in their cellular context.

311 Developmental regulation of the nucleus-to-cell volumeratio in Arabidopsis

312 ovules

313  For more than a century it has been noticed that the N/C ratio is a constant parameter
314  of agiven cell type that can vary between cell typesin multicellular organisms

315 (Cantwell and Nurse, 2019c; Wilson, 1925). Most of these studiesinvolved selecting
316 afew cells of embryos or single cells, such as yeast, and measurements based on

317 diameter or area values derived from 2D sections. Here, we investigated the N/C ratio
318 in Arabidopsis ovules of different stages and in full 3D tissue context. We measured
319 thenuclear volumes, cell volumes, N/C ratios and their trends in five stage 2-1 ovule

320 primordiaand in two more differentiated stage 3-11 ovules. In addition, we assessed
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321  these parameters during the development of an integumentary cell layer using two

322  ovules per stage (Fig. 41-N) (Fig. Sb).

323  The dome-shaped Arabidopsis ovule primordium, like the shoot apical meristem, has
324  alayered organization, such that the L1, L2, and L3 are the outer to inner layers,

325 respectively (Jenik and Irish, 2000; Satina et al., 1940; Schneitz et al., 1995). At stage
326  2-1 the primordium is further characterized by the presence of an enlarged L2-derived
327  megaspore mother cell (MMC) at thetip that will undergo meiosis and eventualy
328  produce the haploid female gametophyte (Schneitz et a., 1995; Vijayan et al., 2021).
329 Weinvestigated if nuclear and cell volumes, as well as N/C ratios differ in alayer-
330  specific manner in the ovule primordium. We observed that the L1 layer can be

331 digtinguished from the L2 and L3 layers by its different N/C ratio, as the N/C ratio of
332 L1 cedlswasstatistically different from the N/C ratio of L2 or L3 cells. TheL2 and L3
333  N/Cratios were not noticeably different (Fig. 41, Fig. S5A,B). Cells of the outermost
334 L1 layer have the highest N/C ratio (0.30 = 0.08 (mean = SD), followed by the cells of
335 theinner L2 (0.24 £ 0.07) and L3 (0.23 + 0.09) layers (Fig. 4l). For all three layers,
336  we obtained apositive Pearson correlation coefficient, r, between nuclear and cell

337  volumes; the correlation is strongest in the L2 layer, followed by the L1 and L3

338 layers, respectively (Fig. 4J-L). When analyzing the average cell and nuclear volumes
339 for each layer, we found that the average cell volumes of the L2 (128.10 + 47.73 um®,
340  excluding MMCs) and L3 (132.70 + 54.53 um®) layers were similar and markedly
341  larger than the average cell volume of the L1 (98.86 + 38.06 um®) layer (Fig. S5A). In
342  contrast, the average nuclear volume between the three cell layers remained

343  comparable with values of 27.88 + 9.14 pm? (L 1), 28.92 + 8.87 pm® (L2, excluding

344 MMCs), and 27.44 + 10.53 um?® (L3) (Fig. S5B). Thus, the differencein the N/C
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345  values between the L1 and L2/L3 layers relates to the smaller average cell volumein

346 the Ll comparedtothe L2 and L3 layers.

347  Current evidence suggests that nuclear size scales with cell size and not with the

348  amount of nuclear DNA (Cantwell and Nurse, 2019c). We tested if the scaling rule
349  holdstrue for the MMCs (Fig. S5C,D). We found that the average nuclear and cell

350  volumes of the tested MMCs (147.9 + 27.85 pm?® for the nuclear volume and 845.4 +
351  101.5 pm?®for the cell volume) both exceeded the respective values of the other much
352 smaller L2 cells by approximately a factor of 5. As aresult, the N/C ratio values of the
353 MMCsand the other L2 cells were indistinguishable, and thus the MM Cs conform to

354  thisrule.

355  To confirm the finding of cell type-specific N/C ratios in the ovule primordium we
356 explored the more differentiated stage 3-11 ovules exhibiting a clear multi-tissue

357  organization. By this stage the Arabidopsis ovule is composed of the distal nucellus,
358  which contains the developing female gametophyte, the central chalaza with two

359 lateral determinate structures, the integuments, and the proximal funiculus, the stalk
360 that connectsthe ovuleto the placenta (Schneitz et al., 1995; Vijayan et al., 2021). In
361 addition, the chalaza can be divided into an anterior and posterior chalaza based on
362 morphological criteria such as different cell shapes and sizes of its constituent cells. In
363  addition, each integument consists of two cell layers, each one cell thick. The analysis
364 of the average N/C values across different tissues revealed that the nucellus and

365  funiculus exhibited comparable values. In contrast, we found the posterior chalazato
366 show ahigher N/C ratio than the anterior chalaza (Fig. 4M). We also observed that the
367 inner layers of both the outer and inner integuments exhibited a higher N/C ratio than

368 the corresponding outer layers.
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369 To addressthe question if the N/C ratio changes during development of a specific
370 tissuelayer, we focussed on the outer layer of the inner integument (ii2). We analyzed
371  theii2 nuclear and cell volumes, and the N/C ratios for stages 2-1V, 2-V, 3-I, 3-I1, 3-
372 1V and 3-V. We observed that from stage 2-1V to stage 3-1V, there was adeclinein
373  theii2 N/Cratio (0.29 + 0.08 towards 0.15 + 0.07), followed by an increase from

374  stage 3-1V to 3-V (0.14 + 0.06 versus 0.17 + 0.07) (Fig. 4N). To assess the basis for
375 thisdecreasein the N/C ratio during development of theii2 layer we analyzed the
376  average nuclear and cell volumes between successive stages (Fig. S5C-D). We found
377  that the average cell volume of ii2 cellsincreased noticeably with avalue of 129.8 £
378  58.06 um® at stage 2-1V and 220.50 + 130.0 um® at stage 3-1V (Fig. S5C). In

379  comparison, the average nuclear volume experienced only minor alterations (35.46 +
380 13.73 um?® stage 2-1V; 27.03 + 10.36 pm®, stage 3-11; 31.93 + 9.91 pm?>, stage 3-V)
381 (Fig. S5C). Thus, we find that the change in the N/C ratio during development of the
382 ii2 cell layer isrelated to amarked increase in cell volume accompanied by alargely
383  constant nuclear volume. Further estimation of the stagewise Pearson correlation

384  coefficient, r, for ii2 revealed that there is a positive correlation between cell volumes
385  and corresponding nuclear volumes of ii2 across development up to stage 3-1V. By

386  stage 3-V, however, this correlation is noticeably reduced (Fig. S5E-J).

387  Insummary, the results suggest that the N/C ratio is specific to a cell type and its

388 developmental stagein the Arabidopsis ovule.

389  Automatic proofreading of 3D cell segmentation based on reliable 3D nuclear
390 segmentation
391  Despite the significant improvement in cell boundary prediction provided by the

392  PlantSeg segmentation pipeline, the final image segmentation may still contain some
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393 errorsin certain regions of the images where cell wall staining is poor. An exampleis
394  thefaint walls around the megaspore mother cell (MMC) in young Arabidopsis ovules
395 (Vijayanetad., 2021) (Fig. 5A-D). From the raw cell wall stain images, it is amost
396 impossible to identify the presence of these faint walls. A similar scenario sometimes
397 appliesto cellsin theinterior chalaza (Fig. 5E-H). The processed raw images

398  (brightened) along with the nuclei stain clearly display the faint wall and the presence

399  of multiple nuclei in this region confirming the cell segmentation error in this region.

400 Wedeveloped a python script called “proofreading” to automatically correct the

401 instance 3D cell segmentation using atrusted and proofread 3D nuclear segmentation
402  and added it to the growing collection of helper tools for the PlantSeg pipeline

403  (https://github.com/hci-unihd/plant-seg-tools). The script takes the cell boundary

404  prediction, cell segmentation and nuclei segmentation as input images. It

405  automatically finds the erroneous cell segmentation by first quantifying the number of
406 nuclel withinacell. When it finds a cell with more than one nucleus, a bounding box
407  isapproximated in 3D around this cell. Further corrections are only made within the
408  bounding box. Corrections are made by resegmenting the erroneous 3D cell using
409  watershed segmentation with nuclei as seeds. The t-merge parameter can be altered to
410 improve the segmentation further if the default value does not seem to improve the
411  result. The method does not apply to a scenario where the segmentation error relates
412 toamissing cell instead of an under segmented cell. The detailed method is described

413 inthe Materials and M ethods section.

414  This method now corrects the segmentation error in most cases and leaves other cells
415  without segmentation errors untouched (Fig. 5C,D and G,H). We performed another

416  test by assessing Cardamine parviflora (C. parviflora) ovule primordia (Fig. 5I-L).
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417  Thisspecies harbors weakly crassinucellate ovule primordia (Endress, 2011), i.e., it
418 develops an additional hypodermal cell layer, with an initial archesporial cell in the
419 L2 undergoing periclinal division resulting in an upper parietal cell and alower MMC
420 (Harvey and Smith, 2013; Mody et al., 2023). The ability to visualize thisis usually
421  lost after standard PlantSeg-based 3D cell segmentation (Fig. 51,J), but the

422  proofreading script can correct this error (Fig. 5K,L). The proofreading thus

423  minimizes 3D cell segmentation errors and enables the examination of 3D cell

424  volumesfor cells that are challenging to segment accurately.

425 Discussion

426  We present acollection of computational tools and datasets that extend the

427  capabilities for quantitative analysis of 3D digital organs. We have developed a deep-
428  learning based computational toolkit for 3D nuclear segmentation that enables

429  accurate 3D segmentation of nuclei in avariety of 3D digital organs labeled with a
430 range of nuclear markers or stains, even in faintly stained and noisy images.

431  Importantly, we not only provide a valuable plant nuclear dataset for training 3D

432  nuclear segmentation algorithms but also two accurate platinum models for 3D

433  nuclear segmentation with broad applicability. In addition, we outline novel and

434  processes that we have added to MorphoGraphX to enable the analysis of various cell-
435  nucleus geometric parametersin 3D, including the N/C ratio. Finally, we have created
436  aproofreading script that significantly improves the fidelity of 3D cell segmentation.
437  All tools are open source and readily available to the community via public software

438  repositories.

439 A particular value of the 3D nuclear segmentation toolkit liesin its broad

440  applicability. The method can be successfully used with various nuclear staining
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441  methods, ranging from different nuclear stains with variable staining intensities, such
442  as TO-PRO-3 or DAPI, to nuclear reporters based on fluorescent reporters. In

443  addition, nuclei can be segmented in data sets obtained from cleared or live tissue, not
444 only from arange of different plant tissues, but also from animal tissues such as

445  mouse embryos. An optimized workflow from imaging to 3D segmentation of nuclei

446  dataset can be found in the Materials and M ethods section.

447  Weused PlantSeg (Wolny et al., 2020), Cellpose (Stringer et a., 2021) and StarDist
448  (Schmidt et al., 2018; Weigert et al., 2020) as three strong baselines for 3D nuclear
449  segmentation and performed a comparative analysis of the performance of the models
450 obtained from each platform. Cellpose was the only tool that provided a pre-trained
451  model which could perform the initial segmentation. However, in the presence of

452  ground truth, it was demonstrated to be less stable, with more variability in the results
453  depending on the training/test split of the data. Re-trained PlantSeg and StarDist both
454  demonstrated excellent, stable performance. The advantage of PlantSeg is its ability to
455  aso perform cell segmentation from membrane staining and the general absence of
456  explicit star-convexity prior which can be harmful for segmentation of irregular

457 nuclei. However, in very noisy conditions StarDist is preferred as the shape prior

458 helpsit overcome the low SNR. It also needs to be noted that our ground truth

459  annotations are produced through iterative improvement using a StarDist model, so

460 the resulting shapes might be biased towards being more regular and star-convex.

461  Animportant feature of MorphoGraphX is the projection of secondary signals onto
462  the cell surfaces, which enables the quantification of nuclei, cell wall or cytoplasmic
463  signal intensities based on the cellular segmentation (Barbier de Reuille et al., 2015;
464  Montenegro-Johnson et a., 2015). What up to now was missing, however, was the

465 integration of the size and shape of the nuclei into the cellular framework. We present
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466 an extension to MorphoGraphX that includes the ability to assign individua nuclei to
467  their corresponding 3D cellsin digital 3D organs. To this end, we have developed a
468  number of processes that are part of the latest versions of MorphoGraphX from

469  version 2.0.2. Thisimprovement allows the analysis of various relationships between
470  thenucleus and thecell it islocated in, in 3D, including determination of the

471  Euclidean distance between cell and nuclear centroids, mapping 2.5D cellsto

472  underlying 3D nuclei, or identification of more than one nucleusin acell. For

473  example, quantification of the Euclidean distance between cell centroids and nuclear
474 centroids was instrumental in developing the notion that positioning the plane of cell
475  divisionin cells of the early Arabidopsis embryo does not depend on the precise

476  position of the nucleus (Vaddepalli et al., 2021).

477  The“Kernplasma-Relation” (nucleus-cytoplasm relation) has fascinated cell

478  biologists sinceits discovery around the turn of the last century (Conklin, 1912;

479  Hertwig, 1903; Strasburger, 1893; Wilson, 1925). The currently favored model states
480 that nuclear size scales with cell size and that the N/C ratio is cell-type specific

481  (Cantwell and Nurse, 2019c¢). Our findings in the Arabidopsis ovule support this

482  notion. For example, we noticed that the outermost L1 layer has alarger N/C ratio
483 compared tothe L2 and L3 layers in the ovule primordium. This changeis largely due
484  to dterationsin cell not nuclear size. Thus, we find that similarly sized nuclei can
485  populate cells with significant size differences, supporting the notion that this scaling
486 ruleisvalid in the context of aspecific cell type. Interestingly, this result differs from
487 thescenariointhelLl, L2, and L3 layers of the Arabidopsis shoot apical meristem
488 (SAM), where cells of the three layers have similar N/C ratios (Wenzl and Lohmann,
489  2023), further highlighting the tissue specificity of N/C ratios. The observed changes

490 inthe N/Cratio duringii2 development may indicate early changesin the
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491  differentiation status. For example, threshold values of N/C ratiosin Xenopus oocytes
492  have been shown to be critical for transcriptional initiation associated with

493  developmental stage transition (Jevti¢ and Levy, 2015).

494  How nuclear sizeisregulated is poorly understood (Cantwell and Nurse, 2019c).

495  Current evidence indicates that nuclear sizein yeast is controlled by several processes,
496 including osmoatic forces, bulk nucleocytoplasmic transport, transcription and RNA
497  processing, linker of nucleoskeleton and cytoskeleton (LINC) complexes, and

498 membrane expansion (Cantwell and Nurse, 2019a; Cantwell and Nurse, 2019b; Deviri
499  and Safran, 2022; Lemiére et al., 2022). In Arabidopsis, two nuclear envelope proteins
500  were described to function redundantly in the control of nuclear size and shapein

501 response to hyperosmotic stressin root tip cells (Goswami et al., 2020). The

502 straightforward tools presented for the quantitative study of nuclear volume will

503 facilitate the functional dissection of the control of nuclear size and shapein

504  multicellular organisms such as seed plants.

505 Finaly, the PlantSeg-based cell segmentation proofreading script provides a useful
506 tool to correct 3D cell segmentation errors due to weak cell wall staining. The method
507  usesthe successfully 3D segmented nuclel as seeds and thus its success critically

508 depends on precise 3D nuclear segmentation. Our resultsindicate that it can

509 dramatically improve the fidelity of 3D cell segmentation, as indicated by the

510 observed corrections of the notoriously difficult to segment cells surrounding the

511 MMCinA. thaliana and C. parviflora ovule primordia.

512  In conclusion, the novel computational toolkit we present here augments the growing
513  suite of tools that enable the generation and detailed quantitative analysis of 3D digital

514  organsat single cell resolution.
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515

516 Materialsand Methods

517  Plant work and transformation

518 Arabidopsisthaliana (L.) Heynh. var. Columbia (Col-0), Cardamine parviflora, and
519  Antirrhinum majus were used as the wild-type strains. Plants were grown as

520 previously described (Fulton et al., 2009). Arabidopsis Col-0 plants were transformed
521  with the pUBQ::H2B:tdTomato construct using Agrobacterium strain

522 GV3101/pMP0 (Koncz and Schell, 1986) and the floral dip method (Clough and
523  Bent, 1998). Transgenic T1 plants were selected on Hygromycin (20 mg/ml) or

524  Sulfadiazine (5 pg/ml) plates according to the selection.

525 Recombinant DNA work

526  For DNA work, standard molecular biology techniques were used. PCR fragments
527  used for cloning were obtained using Q5 high-fidelity DNA polymerase (New

528 England Biolabs, Frankfurt, Germany). All PCR-based constructs were sequenced.
529  Constructs were generated using the GreenGate system (Lampropoulos et a., 2013).
530 pUBQ::H2B:tdTomato: a dual reporter for cell membrane and H2B nuclei was

531 designed and constructed using GreenGate. pUBQ::H2B:tdTomato and

532 pSUB::gSUB:mTurquoise2 were assembled into the intermediate vectors and then
533 combined into the pPGGZ0001 destination vector with a standard GreenGate reaction.
534  The pSUB::gSUB:mTurquoise2 expression was weak or absent and we only imaged
535 H2B nuclei inthis study. Half M S plate containing Sulfadiazine (5 pg/ml) was used

536  for plant resistance selection.

537 Clearing and staining of ovules
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538  Fixing, clearing, and staining of dissected ovules was performed as described earlier

539  (Tofanelli et d., 2019).

540 Microscopy and data acquisition

541  Confocal laser scanning microscopy of ovules of Arabidopsis thaliana, Cardamine
542  parviflora, and Antirrhinum majus stained with SR2200 and TO-PRO-3 iodide or
543  DAPI was performed on an upright Leica TCS SP8 X WLL2 HyVolution 2 (Leica
544  Microsystems) equipped with GaAsP (HyD) detectors and a 63x glycerol objective
545 (HC PL APO CS2 63x%/1.30 GLYC, CORR CS2). Laser power or gain was adjusted
546  for z compensation to obtain an optimal z-stack. SR2200 fluorescence was excited
547  with a405 nm diode laser (50 mW) with alaser power ranging from 0.1 to 1.5%

548 intensity and detected at 420 to 500 nm with the gain of the HyD detector set to 20.
549  TO-PRO-3 iodide fluorescence excitation was done at 642 nm with the white-light
550 laser with alaser power ranging from 2 to 3.5% and detected at 655 to 720 nm with
551 thegain of the HyD detector set to 200. For z-stacks 8, 12 or 16-bit images were

552  captured at asliceinterval of 0.28 pm or 0.33 um with optimized system resol ution of
553  0.126 um x 0.126 um x ¢ um (¢c=0.280 or 0.330) as final pixel size according to the
554  Nyquist criterion. Scan speed was set to 400 Hz, the pinhole was set to 0.6 to 1.0 Airy
555  units, line average was between 2 and 4, and the digital zoom was set between 0.75
556 and 2, asrequired. Laser power or gain was adjusted for z compensation to obtain an
557  optimal z-stack. Image acquisition parameters for the pUBQ::H2B:tdTomato reporter
558 line: SR2200; 405 diode laser 0.10%, HyD 420-480 nm, detector gain 10. tdTomato;
559 554 White laser 4%, HyD 570-630 nm, detector gain 80. TO-PRO-3; 642 nm White
560 Laser 2%, HyD 660—720 nm, detector gain 100. In each case sequential scanning was
561 performed to avoid crosstalk between the spectra. DAPI stained ovules were excited

562  with a405 diode laser 3 %, HyD 420-480 nm, detector gain 100.
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563  Confocal images of live Cardamine hirsuta Oxford leaf were performed on an upright
564 Leica TCS SP8 equipped with a 16x 0.6NA multi immersion objective (HC

565 FLUOTARL 16x/0,60 IMM CORR VISIR). Sample was mounted on a glass slide
566  under acoverslip, stained with 1% Propidium iodide in water for cell wall

567  fluorescence along with ChCUC2g::Venus signal. Venus was excited using a 514

568 diode laser 2.5%, detected using the HyD 520-560, detector gain 100.

569 The dataset of pATML1::mCitrine-ATML1 expressing nuclei in the Arabidopsis

570 flower (PATML1IMCitrine-ATML1_flowerl t08.tif) has been obtained from (Meyer
571 etd., 2017). The dataset of Arabidopsis shoot apical meristem nuclei expressing the
572  pFD:3xHA-mCHERRY -FD reporter(Cerise et al., 2023; Martignago et al., 2023). The
573  dataset of mouse embryo nuclei (F49_149) has been obtained from (Nunley et al.,

574  2023). 2D, 3D or 2.5D rendered snapshots were taken using M orphoGraphX. Images

575 were adjusted for color and contrast using Adobe Photoshop (Adobe, San José, USA)

576  or MorphoGraphX software (https://www.morphographx.org) (Barbier de Reuille et

577 d., 2015; Strauss et al., 2022).

578 Modéd training and scor e quantification

579  The new training dataset (N1-N5) is composed of three image channels: SR2200 cell
580 wall stain, H2B:tdTomato nuclear reporter, and TO-PRO-3 nuclear stain. The SR2200
581  cell wall stain was processed with the PlantSeg pipeline to generate a 3D cell

582  boundary prediction and segmentation. 3D segmentation of the strong tdTomato

583  nucle reporter signal was performed using the default Cellpose nuclei model. It was
584  then proofread and used as the “initial ground truth”. This study providesfiveinitial
585  ground truth segmentation datasets (Table 4) for model training. Initial model training

586  was performed using theinitial ground truths and trained on the weak TO-PRO-3
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587  channel. The StarDist-ResNet_3Dnuc initial model was then used to segment the
588 original weak TO-PRO-3-based nuclear stain channel resulting in amodified ground
589  truth which was then human proofread, resulting in the “gold ground truth”. Gold
590 modé training was performed using the gold ground truths and trained on the weak

591 TO-PRO-3 channel.

592  For quantitative evaluation of the models, we trained five different models during
593  both “initial” and “gold” training of each of the PlantSeg, StarDist, and Cellpose

594  neural networks. Cross-validation with one datasets kept out for testing was used (Fig
595 S2A), i.e. for model 1, N1-N4 data was used for model training while N5 was the
596 testing dataset. Each model training and testing involved three training datasets, one
597  validation dataset, and one testing dataset. For example, one PlantSeg model was

598 trained on N1, N2, N3 datasets, validated on N4 dataset, and tested on N5 dataset; the
599  next wastrained on N2, N3, N4 datasets, validated on N5 dataset, and tested on N1
600 dataset and so on. Therefore, the trained models from the initial and gold training

601 include 15 (3 X 5) initial models and 30 (6 X 5) gold models (Table 5).

602 To evaluate and compare models and settings, mean Average Precision was chosen
603 for scoring (Caicedo et a., 2019). To make clear the exact metric used among many
604 variants (Hirling et a., 2023), the code for evaluation is publicly available to

605 complement the following formulae. Intersection over Union (loU), or the Jaccard
606 index, measures the overlap between a predicted mask and a ground-truth mask for
607 thetesting dataset. It is represented on a scale from O to 1, where avalue of 1 signifies
608 aperfect match at the pixel level, and a value of 0.5 indicates that the number of

609 correctly matched pixelsis equal to the combined number of missed and false positive

610 pixels. We define the precision of the segmentation for an image as precision(t) =
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TP(t)
TP(t)+FP(t)+FN(t)’

611

where t isthe threshold, TP the number of objects that match true

612 objectswith loU value abovet, FP the number of objects that have no true object
613  associated with, and FN the number of true objects that are not present in the

614  segmentation. The average precision (AP) over arange of 10U is defined as

615 AP'vAttM = % M, precision(t;), where M is the number of loU thresholds that

616 rangefrom t; to t,, with astep size of At. Asabreak from tradition, for each setting,

617 five models were evaluated, each with one image, and the scores were averaged, thus
618 the mean APinour study ismAP = %Z’i":l AP AttM where N is the number of

619 images and models. A five-fold average precision at 50% IoU across 5 models,

620 denoted asmAP>°, isused as a detection score, and afive-fold average precision over
621  {50%, 55%, ..., 95%} loU and across 5 models, denoted as mAP>%:>:95 or simply
622 mAP, isused as the instance segmentation score. The initial and gold models have
623  been quantified using the AP scores and reported along with standard deviation. The
624  initial models trained on PlantSeg, StarDist-ResNet, and Cellpose-Finetune-Nuclei
625 and the gold models trained on PlantSeg, StarDist-ResNet, StarDist-UNet, Cellpose-
626  Finetune-Cyto2, Cellpose-Finetune-Nuclei, and Cellpose trained from scratch were
627 evaluated with five-fold AP scoring (Tables 1 and 2). Detailed quantification of AP

628  scoresfor evaluation of segmentation can be found in the Supplementary File 1.

629  Finaly, two robust and widely applicable platinum models are proposed where all
630 five datasets (N1-N5) were used for training final robust models:

631 PlantSeg 3Dnuc_platinum and StarDist-ResNet_3Dnuc_platinum (Fig S2, Fig 3, Fig
632  4). We provide the two platinum models through the Biolmage Model Zoo for FAIR

633  usethrough different client tools of our community. For the sake of reproducibility,
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634  we also provide the full bundle of models we trained: initial, gold and platinum, to be

635 downloaded from Biostudies repository S-BIAD1026 (Table 5).

636 Data preprocessing for performing segmentation using the proposed Star Dist,
637 Cellpose and PlantSeg models.

638  For the best performance, StarDist requires the raw data to be rescaled so that the

639  median diameter of nuclei fitsinto the field of view of the model. We recommend
640 resampling the dataset to avoxel size of 0.25 x 0.25 x 0.25 pum? (xyz) for the StarDist-
641 ResNet platinum model proposed by this study. The grid parameter in the configisa
642  StarDist model parameter that specifies the downsampling factor in each dimension;
643 [2, 4, 4] downsamplestheimageby 2inz and by 4 in x and y. Cellpose models need
644  to know the diameter or an estimate of that to match the testing datasets' objectsto
645 original datasets’ object diameter (30 for cell models and 17 for the nuclel model);
646  PlantSeg model does not require rescaling to match object size, but it is recommended
647  to match the voxel sizeto 0.25x 0.25 x 0.25 um? (xyz) so that the membrane has

648  similar thickness. This paper comes with data, code, models and configuration files.

649 Mapping cell labelsto nuclei labelsin M or phoGraphX

650 3D cell and nuclei meshes were generated from segmented stacks using the Marching
651  cubes 3D process with a cube size of 0.5 um for fine details. Cell-type labeling

652 assigns parent (tissue) labels to the cell IDs. Cell-type labeling was done as described
653 in(Vijayan et a., 2021). The cell and nuclear volumes were obtained using the

654 “Mesh/Heat Map/Analysis/Cell Analysis 3D” processin MorphoGraphX. Initially,
655 thecellsinthe 3D cell mesh (Mesh 1) have their unique cell IDs and the nuclei in the
656 3D nuclear mesh (Mesh 2) have their unique nuclei 1Ds. Both the IDs are mapped

657  using the MorphoGraphX process “Mesh/Nucleus/ Label Nuclei”. In detail, this
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658  processidentifiesthe cellsin which nuclei are located. It is run on the active 3D cell
659  meshin MorphoGraphX mesh 1, while the 3D nuclei mesh is loaded in the

660 MorphoGraphX Mesh 2. The process assigns cell IDs as “ parents’ annotation to the
661 nuclei labels, thereby linking cells IDsto nuclei IDs. On the 3D nuclei mesh (active),
662 the“Mesh/Lineage tracking/Save parents’ process was used to save the nuclel IDs
663  and their corresponding parent cell IDsin acsv file, followed by the “Mesh/Lineage
664 tracking/Copy parentsto labels’ processto rewrite the nuclel |abels IDsto that of

665 cells. These processes in combination with “Mesh/Heat map” and “Mesh/Heat

666  map/Operators/Export heat to Attr Map” processes were used to generate csv files
667  containing cell IDs, their corresponding nucle 1Ds, parent (tissue) labels, and cell and

668 nuclel geometric attributes.

669  Further, we created aprocess (“Mesh/Nucleus/Select Duplicated Nuclei”) to detect
670 and automatically select nuclei in cells where multiple nuclei were detected. This
671  process was used to detect segmentation errors. Another process

672  ("Mesh/Nucleus/Distance Nuclei”) was implemented to quantify the Euclidean

673  distance between cell centroids and nuclei centroids. We also included a process
674  (*Mesh/Nucleus/Label Nuclei Surface”) to associate 3D segmented nuclei IDs with
675 thecells of curved surface meshes. All these processes are documented within

676  MorphoGraphX (Help/Process Docs). Specific application and minimal guide on the

677  process can be viewed by hovering the mouse over the process.

678  Proofreading cell ssgmentation using nuclear segmentation
679  PlantSeg-tools offers this script for proofreading cell segmentation based on nuclei

680 knowledge (https.//github.com/hci-unihd/plant-seg-tools). The method is first

681  described in this manuscript and is part of this study. The cell segmentation will be

29


https://doi.org/10.1101/2024.02.19.580954
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.19.580954; this version posted February 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

682 adjusted to resolve any conflict with the respective nuclear segmentation, thus the
683  accuracy of the nuclel is extremely important. Errors in nuclear segmentation are

684  propagated to cell segmentation. The script is composed of two different subroutines.
685 Onefor correcting the split errorsin cell segmentation and one for fixing the merge
686  mistakes. The split routine checks for each cell whether two or more nuclel (measured
687  asapercentage of the total cell volume) overlap with the cell segmentation by more
688 than auser-defined “threshold-split (t-split)”. If the overlap is above the threshold, the
689  script will use the nuclear segmentation as seed and split the cell using the seeded

690  watershed algorithm. The merge routine checks for each nucleus whether two or more
691 cells (measured as a percentage of the total nucleus volume) overlap asingle nucleus
692  segmentation by more than a user-defined “threshold-merge (t-merge)”. If the overlap
693 isabove the threshold, the script will merge the cells. The default thresholds provided

694  are66% for "t-split" and 33% for "t-merge".

695  Optimized workflow from imaging to segmentation of nuclei dataset

696  Obtaining confocal Z slicesis achievable with arecommended xyz voxel size ranging
697  from 0.12 x 0.12 x 0.25um? to 0.25 x 0.25 x 0.25 um?, ensuring visually identifiable
698 non-oversaturated nuclei signals. For optimal results, we propose imaging with line
699 average ranging from 2 to 5 whenever feasible. Employing microscope objectives
700  with ahigh numerical aperture (ideally around 1.2 NA or higher) is advised.

701  Nevertheless, both the PlantSeg and the StarDist-ResNet platinum models are quite
702 flexible to the imaging conditions as they were able to process a range of image

703 quality (Table. 3). For nuclei segmentation using the two platinum models, we present

704  GoNuclear (https://github.com/kreshuklab/go-nuclear). GoNuclear comes with the

705 PlantSeg and StarDist-ResNet platinum models. Although the results are comparable,

706  we recommend trying StarDist with the StarDist-ResNet platinum model first, asitis
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707  abit lessinvolved compared to the PlantSeg 3D nuclei segmentation pipeline.

708  GoNuclear can batch process nuclei images and output segmentation can be saved as
709  atiff/HDFS file which can beimported into MorphoGraphX. As an alternative, the
710 PlantSeg_3Dnuc_platinum model has been integrated into MorphoGraphX, allowing
711 3D nuclear predictions to be generated, which can then be 3D segmented using the
712  ITK watershed algorithm, al within MorphoGraphX. MorphoGraphX enables

713  multiple 3D stacks and segmented images to be superimposed on each other, alowing
714  thedata sets to be proofread as needed. A 3D nuclel mesh can be created in

715  MorphoGraphX and quantifications can be performed. Numerical results can be

716  exported as acsv file for further processing.
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728 found in the GoNuclear repository: https://github.com/kreshuklab/go-nuclear. Other

729  software can be downloaded at the following links: MorphoGraphX:
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730 https://morphographx.org. PlantSeg: https.//github.com/hci-unihd/plant-seg. Plant-

731  seg-tools: https://github.com/hci-unihd/plant-seg-tools. StarDist:

732  https://github.com/stardist. Cellpose: https://github.com/mouseland/cellpose. We

733  providethe 2 platinum models through the Biolmage Model Zoo (https://bicimage.io)

734  for FAIR use through different client tools of our community.

735 PlantSeg 3Dnuc_platinum: Zenodo ID 0.5281/zenodo.8401064; Zoo name: efficient-
736  chipmunk. StarDist3DResnet_3Dnuc_platinum: Zenodo ID:

737  10.5281/zen0do.8421755; Zoo name: modest-octopus. All datasets used for the

738  figures and the entire bundle of models we trained can be downloaded from Biolmage

739  Archive (BIA) (https://www.ebi.ac.uk/biocimage-archive/) (Hartley et al.,

740  2022)/BioStudies (https://www.ebi.ac.uk/biostudies/) (Sarkans et al., 2018), accession
741  S-BIAD1026. The MorphoGraphX Process “Mesh/Nucleus’ is available with version

742  2.0.2.and above https://morphographx.org. The data used for quantification of the

743  Arabidopsis ovule N/C ratios include the training datasets generated in this study
744  (Biostudies accession S-BIAD1026) and were also obtained from (Vijayan et al.,
745  2021) (BioStudies, accession S-BSST475). The mouse embryo BlastoSPIM data set
746  (Nunley et al., 2023) can be downloaded from the respective website

747  (https://blastospi m.flatironinstitute.org/html/series.html).
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Initial model

Gold ground truth

Gold model

952
953 Fig. 1. 3D dataset for model training. (A) 2D section view of TO-PRO-3-stained

954  nuclei in Arabidopsis ovules. (B) 3D nuclear segmentation of weak nuclel stain

955  performed using Cellpose nuclei model. (C) A zoomed-in view displaying the

956 erroneous segmentation. Typical segmentation errorsin the nuclel stains segmentation
957  resulting in improper size, shape and number of nucle. (D) Fluorescent nuclei

958  reporter H2B: tdTomato raw image. (E) 3D Cellpose nuclei model segmentation of
959  the bright tdTomato nuclei fluorescence. (F-1) 2D section view from one of the five
960 training dataset. (F) Weak nuclei channel (TO-PRO-3-stained) used for training. (G)
961 Strong nuclei channel (nuclei reporter H2B: tdTomato) used for generating ground

962 truths. (H) Initial ground truth used for training initial model. 3D nuclear
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963  segmentation of the strong nuclei channel performed using the Cellpose nuclei model.
964 () Raw cell wall stain, PlantSeg cell boundary predictions and cell segmentation
965 available with the training dataset (from left to right) (J) lllustration of model training

966  strategy. Scale bars: 5pum (A-E); 20 pum (F-I).

967

968 Fig. 2. Qualitative comparison of segmentation resultsusing different trained
969 models. Qualitative comparison displaying the Arabidopsis ovule testing dataset 1135
970 (N5 dataset) with trained model (Model-5) using four other training datasets. (A) 3D

971  view of ground truth nuclear segmentation. (B) Zoomed 2D section view of raw weak
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972 TO-PRO-3iodide nuclei stain. (C) Ground truth nuclear segmentation corresponding
973 tothezoomed view in (B). (D-E) PlantSeg predictions and segmentation using the
974  proposed PlantSeg model. (D) 3D PlantSeg GA SP segmentation performed using the
975  proposed PlantSeg model. (E) View corresponding to (B) showing PlantSeg nuclei
976 predictions. Top panel: PlantSeg nuclei center predictions. Bottom panel: PlantSeg
977  nuclei envelope prediction from raw data. (F) PlantSeg GA SP segmentation of the
978  corresponding section in (B). (G-1) StarDist ResNet nuclel predictions and

979  segmentation using the proposed ResNet model. (G) StarDist ResNet 3D nuclear
980  segmentation performed using the proposed StarDist model. (H) View corresponding
981 to (B) showing StarDist ResNet nuclei predictions. (1) StarDist ResNet nuclear

982  segmentation of the corresponding section in (B). (J-L) StarDist UNet nuclei

983  predictions and segmentation using the proposed UNet model. (J) StarDist UNet 3D
984  nuclear segmentation performed using the proposed StarDist model. (K) View

985  corresponding to (B) showing StarDist UNet nuclei predictions. (I) StarDist UNet

986  nuclear segmentation of the corresponding section in (B). Scale bars: 10um.
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A D G M
Antirrhinum Arabidopsis Arabidopsis Cardamine Mouse
ovule ovule sepal leaf embryo
(TO-PRO3) (DAP1) (ATML1) (Cucz) (H2B-miRFP720)

987

988 Fig. 3. Wide applicability of trained nuclei segmentation modelsin segmenting
989 stained or nuclear reporter-expressing different plant organ nuclei imaged under
990 different conditions. (A-C) Antirrhinum majus ovule nuclei stained with TO-PRO-3
991 iodide, (D-F) Arabidopsisthaliana ovule nuclei stained with DAPI, (G-l) Arabidopsis

992  sepa nucle expressing the pATML1::mCitrine-ATML1 reporter, (J-L) Cardamine
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993 hirsuta leaf nuclei expressing the pPChCUC2g::Venus reporter, (M-O) Mouse embryo
994  nuclei expressing the H2B-miRFP720 reporter. (A,D,G,J,M) 3D confocal images of
995 raw nuclei stained with anuclear stain or expressing nuclear reporter. Raw images
996 have been adjusted for brightness and contrast for depiction. (B,E,H,K,N) 3D nuclear
997  segmented stacks, segmented using the StarDist-ResNet model generated from this
998  study. Nuclei IDs are represented in different colors. (C,F,I,L,0) Overlay of 3D
999  segmented stack with the corresponding MorphoGraphX-generated 3D nuclear mesh.
1000 (A-O) Insets with white outline show the zoomed-in view of 3D nuclei. Scale Bars: 10

1001  um (organs) and 5 um (insets).
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1002
1003  Fig. 4. MorphoGraphX as a platform for mapping 3D nucle to whole organ cell
1004 atlasat singlecel and tissueresolution. (A-H) Stage 3-11 3D cell and nuclei meshes
1005 for the same ovule sample generated from corresponding segmented stacks. (A) Mid-
1006  sagittal section of 3D mesh showing cell IDs in different colors. (B) Mid-sagittal
1007  section of 3D mesh showing cell parent (tissue) labels. (C) Cell-type labeled 3D mesh
1008 overlaid with nuclei mesh showing nuclei IDs in different colors. (D) Cell-type
1009 labeled 3D mesh overlaid with nuclel mesh showing nuclei lacking parent labels. (E)
1010  Cropped section of 3D mesh showing that initially cell IDs areinitially independent of
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1011 nuclei IDs (cells and their corresponding nuclei in different colors). (F) Cropped
1012  section and (G) mid-sagittal section of 3D mesh showing cell IDs mapped onto their
1013  corresponding nuclei using MorphoGraphX processes, resulting in the same color for
1014  cellsand their corresponding nuclei. (H) In the final step parent tissue labels of cells
1015 are mapped onto the corresponding nuclei in MorphoGraphX. (1) Plot showing N/C
1016 ratio of theradial layers, L1, L2, and L3 of stage 2-1 ovule primordia. (J-L) Plots
1017  showing correlation between nuclear and cell volumesin different layers of stage 2-1
1018 primordiaalong with the respective Pearson correlation coefficients, r. (J) L1, (K) L2,
1019 (L) L3. (M) Piot showing nuclear to cell volume ratio (N/C) of different tissues and
1020 tissuelayers of stage 3-11 ovules. (N) Plot showing N/C ratio of the outer layer of the
1021  inner integument (ii2) for different stages of ovule development from 2-1V up to 3-V.
1022  Asterisks represent statistical significance (ns, p>0.5; *, p<0.05; **, p<0.01, ***,

1023  p<0.001; **** p<0.0001; Student’st-test). Scale bars: 10 um.
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1024
1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

Fig. 5. PlantSeg proofreading toolsto correct 3D cell ssgmentation errors. (A-D)
Mid-sagittal section Arabidopsis thaliana ovule primordium (dataset 598A, (Vijayan
et a., 2021)). (E-H) Cropped section of an Arabidopsis thaliana 3-11 ovule (dataset
527, (Vijayan et d., 2021)). (I-L) Mid-sagittal section of a Cardamine parviflora
ovule primordium (dataset 1598B, Mody et al., 2023). (A,E,I) 3D cell boundary
predictions along with insets showing raw SR2200 (white) and TO-PRO-3 channel
(magenta) signals after adjusting for brightness and contrast to show the weak cell
wall staining in specific regions (outlined in orange boxes) and resulting in missing or
incomplete walls in the cell boundary predictions. (B,F,J) Plant-seg cell segmentations
overlaid with cell boundary prediction. Black arrows point to undersegmented cells.
(C,G,K) StarDist-segmented nuclei overlaid with cell boundary prediction, showing

multiple nuclei in the undersegmented cellsin the MMC region (B,J) and in cells of
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1037  funiculus and chalaza (F). (D,H,L) 3D cell segmentations corrected with PlantSeg
1038  proofreading tools (black arrows) and overlaid with the cell boundary prediction.
1039  Cardamine parviflora ovule primordia are crassinucellate (K,L); the ability to

1040 visualizethisislost after cell segmentation (1,J). PlantSeg proofreading tools enable

1041  re-distinguishing the primary parietal cell from the MMC. Scale Bars: 10 um.

1042
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1043 Tables

1044 Tablel. Comparative analysis of different model performance when involving
1045 human in theloop totrain a gold model.

Tool used M odel Version |5-fold AP+STD
PlantSeg UNet GASP Initial 57.40% £ 7.7%
PlantSeg UNet GASP gold 78.80% * 1.98%
StarDist ResNet Initial 67.61% £ 6.5%
StarDist ResNet gold 78.33% = 1.73%
Cellpose Finetune nuclei |initial 43.64% + 12.88%
Cellpose Finetune nuclei |gold 51.96% + 12.51%

1046  Segmentation of the test dataset was performed using each of the listed initial and
1047  gold models and the mean average precision is scored for different methods compared
1048 togold ground truth.

1049

1050 Table2. Comparative analysis of different gold model training
1051 performance.

Tool used M odel 5-fold AP+ STD
PlantSeg UNet GASP 78.80% + 1.98%
StarDist ResNet 78.33% = 1.73%
StarDist UNet 78.25% + 1.84%
Cellpose Finetune nuclei 51.96% * 12.51%
Cellpose Finetune cyto2 51.05% * 12.93%
Cellpose Trained from scratch |51.26% + 13.75%

1052  Segmentation of the test dataset was performed using each of the listed methods and
1053 the mean average precision is scored for different methods compared to a human
1054  proofread ground truth. The configuration files used for training can be found along
1055  with the model.

1056

1057

1058

1059

1060

1061

1062

47


https://doi.org/10.1101/2024.02.19.580954
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.19.580954; this version posted February 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

1063 Table 3. Datasets used for wide applicability of the proposed method in
1064 segmenting different organs and different fluorescent signal types acquired at
1065 different resolutions.

Organism | Organ Nuclear Micr oscopy Raw data | Post
stain/fluor escent voxel size | processing
reporter signal (xyz pm?®)

Arabidopsis | Shoot pFD:3xHA- CLSM, 40x 0.242 x Median

thaliana apical MCHERRY-FD | 1.25NA Gly 0.242 x filtering

meristem objective, 04

cleared sample

Cardamine | Leaf pChCUC2g::Ven | CLSM, 16x 0.498 x Upsampled to

hirsuta us 0.6NA water 0.498 x 0.125x 0.125
dipping 0.5 x 0.25
objective, live
sample

Antirrhinu | Ovule TO-PRO-3 iodide | CLSM, 63x 0.126 x Downsampled

m majus 1.3NA Gly 0.126 x t00.25x 0.25
objective, 0.33 x 0.33; smooth
cleared sample 2X

Arabidopsis | Ovule DAPI CLSM, 63x 0.063 x Downsampled

thaliana 1.3NA Gly 0.063 x t00.25x 0.25

objective, 0.27 x 0.28; smooth
cleared sample 2X

Arabidopsis | Sepal PATML1:mCitri | CLSM, 20x 0.276 x Autobright;

thaliana ne-ATML1 1.0NA Water 0.276 x smooth 3x

objective 0.8
Mouse Early H2B-miRFP720 | SPIM 0.208 x Downsampled
embryo 0.208x2 |inx,yand

unchanged in z
t00.6x0.6x 2

1066  The table summarizes the organism, organ, type of signal, microscopic method, image

1067 voxel size and any preprocessing applied to optimize the segmentation of the wide

1068  applicability dataset.

1069

1070

1071

1072
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1073
1074 Table4. Training and testing dataset for fivefold training and for the platinum
1075 trained modd.
Dataset | Ovule Stage | Number of Raw image
Nr ID cells/nuclei in the voxel size (xyz, pm°)
image
N1 1135 3V 1118 0.126 x 0.126 x 0.284
N2 1136 31V 1487 0.127 x 0.127 x 0.284
N3 1137 3V 1849 0.126 x 0.126 x 0.284
N4 1139 3-111 | 1536 0.126 x 0.126 x 0.279
N5 1170 2-11 3961 0.126 x 0.126 x 0.279
1076  Datasets represent a confocal 3D z stack of Arabidopsis ovules of different stages.
1077 Each dataset is given an ID and a dataset Nr to refer to its use on model training as
1078 mentioned in Fig S2A.
1079
1080 Tableb. List of all models
Number of
trained
S |Mode name Tool used M odel Version models
1  |PlantSeg_3Dnuc_initial PlantSeg UNet GASP  |[nitial 5
2 StarDist-ResNet_3Dnuc initial StarDist ResNet Initial 5
Finetune
3 Cellpose-Finetune-nuclei_3Dnuc initial Cellpose nuclei initial 5
4 |PlantSeg_3Dnuc_gold PlantSeg UNet GASP  |gold 5
5 StarDist-ResNet_3Dnuc_gold StarDist ResNet gold 5
6 StarDist-UNet_3Dnuc_gold StarDist Unet gold 5
Finetune
Céllpose-Finetune-nuclei_3Dnuc_gold Cellpose nuclei gold 5
Cellpose-Cyto2 _3Dnuc_gold Cellpose Finetune cyto2|gold 5
Train from
9 Cellpose-Scratch_3Dnuc_gold Cellpose scratch gold 5
10 |PlantSeg _3Dnuc_platinum PlantSeg UNet GASP  |Platinum 1
11 |StarDist-ResNet_3Dnuc_platinum StarDist ResNet Platinum 1
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1081  Oneeach of theinitial, gold, and platinum models can be downloaded from the
1082  Biostudies repository S-BIAD1026.

1083

1084

1085 Supplementary Materials

1086 Attached as a separatefile.
1087 1. Supplementary Results

1088 2. Supplementary File
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