

Title: Characterisation and comparison of semen microbiota and sperm function in men with infertility, recurrent miscarriage, or proven fertility

Running title: Characterisation and comparison of semen microbiota and bacterial load in men with infertility, recurrent miscarriage, or proven fertility

Authors: Shahriar Mowla¹ †, Linda Farahani^{2,3} †, Tharu Tharakan^{3,4}, Rhianna Davies³, Gonçalo D S Correia^{1,5}, Yun S Lee^{1,5}, Samit Kundu^{1,5}, Shirin Khanjani⁶, Emad Sindi³, Raj Rai², Lesley Regan^{2,7}, Dalia Khalifa⁸, Ralf Henkel^{3,9,10}, Suks Minhas⁴, Waljit S Dhillon³, Jara Ben Nagi¹¹, Phillip R Bennett^{1,5,7}, David A. MacIntyre^{1,5,7#}, Channa N Jayasena^{3,8##*}

1. *Institute of Reproductive and Developmental Biology, Imperial College London, UK.*

2. *Wolfson Fertility Unit, Department of Gynaecology, St. Mary's Hospital, Imperial College NHS Trust, UK.*

3. *Section of Endocrinology & Investigative Medicine, Imperial College London, UK.*

4. *Department of Urology, Charing Cross Hospital, Imperial College NHS Trust, UK.*

5. *March of Dimes European Prematurity Research Centre, Imperial College London, UK.*

6. *Department of Gynaecology, University College London Hospital, UK.*

7. *Tommy's National Centre for Miscarriage Research, Imperial College London, London, UK*

8. *Department of Andrology, Hammersmith Hospital, Imperial College NHS Trust.*

9. *LogixX Pharma, Theale, Berkshire, UK*

10. *Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa*

11. *Centre for Reproductive and Genetic Health (CRGH), London, UK.*

† #These authors contributed equally.

* Channa Jayasena. 6th Floor Commonwealth building, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Rd, London. W12 0HS c.jayasena@imperial.ac.uk

1 **Abstract:**

2 Poor semen quality increase risks of infertility and recurrent pregnancy loss (RPL) in couples. Global,
3 reported sperm counts have more than halved since the 1970s. Canonical genitourinary microbes such as
4 gonorrhoea are known to impair semen quality. Furthermore, several recent, small studies have highlighted
5 trends in semen microbiome characteristics associated with semen quality in asymptomatic men. However,
6 the semen microbiota during recurrent pregnancy loss (RPL) has not been investigated. Herein we combine
7 metataxonomic profiling of semen microbiota by 16S rRNA amplicon sequencing, semen analysis, terminal-
8 deoxynucleotidyl-transferase-mediated-deoxyuridine-triphosphate-nick-end-labelling, Comet DNA
9 fragmentation and luminol ROS chemiluminescence to holistically describe the human seminal microbiome
10 in a total 223 men within a cross-sectional ethics-approved study (healthy men with proven paternity, n=63;
11 male partners of women with RPL, n=46; men with male factor infertility, n=58; men in couples
12 unexplained infertility, n=56). We describe seminal microbiome clusters which are common both healthy
13 men and those with infertility and RPL. Furthermore, specific microbiota perturbation is associated with
14 impaired semen quality irrespective of reproductive disorder.

15

16 **Keywords:** Semen, microbiota, male infertility, genitourinary infection, recurrent pregnancy loss

17 **Main text:**

18 **Introduction**

19 Sperm counts within published studies have reduced by 55% since the 1970s which may reflect rising health
20 burdens of obesity and / or environmental pollution (1). Male factor accounts for approximately half of all
21 cases of infertility yet there are limited available interventions to improve sperm quality. Understanding the
22 pathogenesis of male infertility may reveal novel therapeutic approaches for treating affected couples.

23

24 Symptomatic, genitourinary infection is an established cause of male infertility detected by semen culture
25 and treated with antibiotics (2, 3). Bacteria provoke seminal leukocytes to release bactericidal reactive
26 oxygen species (ROS), which may paradoxically damage sperm DNA and impair semen quality (4). Semen
27 culture has a limited scope for studying the seminal microbiota, but next generation sequencing (NGS)
28 analysis of the semen microbiome (5, 6, 7, 8, 9, 10, 11) has revealed associations between the microbiome
29 semen parameters in relatively small numbers of men with infertility. We and others have reported that
30 asymptomatic men affected by recurrent pregnancy loss (RPL) have increased risks of high seminal ROS
31 and sperm DNA fragmentation, which are also associated with male infertility (12, 13, 14, 15, 16, 17). It is
32 therefore plausible that asymptomatic seminal infection may predispose men to RPL in addition to
33 infertility. Furthermore, common seminal microbial signatures may encompass both male infertility and
34 RPL. . Elucidation of an association would have wide clinical application with therapeutic potential couple
35 with reproductive disorders.

36 We explored relationships between metataxonomic profiles of bacteria, bacterial copy number and key
37 parameters of sperm function and quality in semen samples prospective collected from 223 men, including
38 those diagnosed with male factor infertility, unexplained infertility, partners affected by recurrent
39 miscarriage, and paternity-proven controls.

40 **Methods**

41 *Ethical approval* was granted by the West London and Gene Therapy Advisory Committee (GTAC)
42 Research Ethics Committee (14/LO/1038) and by the Internal Review Board at the Centre for Reproductive
43 and Genetic Health (CRGH) (IRB-0003C07.10.19). Participants were recruited following informed consent
44 from clinics in Imperial College London NHS Trust and The Centre for Reproductive and Genetic Health
45 (CRGH). Further detailed information on methods used in this study are included in the Supplementary
46 Material.

47

48 *Semen samples* were produced by means of masturbation after 3-7 days abstinence. All semen samples were
49 collected into sterile containers after cleaning of the penis using a sterile wipe. Samples were incubated at
50 37°C for a minimum of 20 mins prior to analysis. An aliquot was collected in a sterile cryovial and stored at
51 -80°C.

52

53 *Diagnostic semen analysis* was carried out according to WHO 2010 guidelines and UK NEQAS
54 accreditation (18) (19). Seminal analysis was performed in the Andrology Departments of Hammersmith
55 Hospital and CRGH. Microscopic and macroscopic semen qualities were assessed within 60 mins of sample
56 production. Semen volume, sperm concentration, total sperm count, progressive motility and total motility
57 count, morphological assessment, anti-sperm antibodies and leucocyte count were established.

58

59 *ROS analysis* was performed using an in-house developed chemiluminescence assay validated by Vessey et
60 al (20). Results are therefore reported as 'relative light units per second per million sperm'. The upper limit
61 of optimal ROS was internally determined at 3.77 RLU/sec/ 10^6 sperm (95% CI) (21).

62

63 *Sperm DNA fragmentation assessment* performed by TUNEL (Terminal deoxynucleotidyl transferase biotin-
64 dUTP Nick End Labelling) assay defined elevated sperm DNA fragmentation as >20% (22). Samples for the

65 COMET assay were sent to the Examen Lab (Belfast, UK) for analysis with elevated sperm DNA
66 fragmentation defined as >27% (23).

67

68 *DNA extraction* was performed on 200uL of semen using enzymatic lysis and mechanical disruption.
69 Bacterial load was estimated by determining the total number of 16S rRNA gene copies per sample using
70 the BactQuant assay (24).

71

72 *Metataxonomic profiling of semen microbiota* was performed using MiSeq sequencing of bacterial V1-V2
73 hypervariable regions of 16S rRNA gene amplicons 16S rRNA genes using a mixed forward primerset 28F-
74 YM GAGTTTGATYMTGGCTCAG, 28F-Borrellia GAGTTTGATCCTGGCTTAG, 28F-Chloroflex
75 GAATTGATCTGGTCAG and 28F-Bifdo GGGTTCGATTCTGGCTCAG at a ratio of 4:1:1:1 with
76 388R reverse primers. Sequencing was performed on the Illumina MiSeq platform (Illumina, Inc. San
77 Diego, California). Following primer trimming and assessment of read quality, amplicon sequence variants
78 (ASV) counts per sample were calculated and denoised using the Qiime2 pipeline (25) and the DADA2
79 algorithm (26). ASVs were taxonomically classified to species level using a naive Bayes classifier trained on
80 all sequences from the V1-V2 region of the bacterial 16S rRNA gene present in the SILVA reference
81 database (release 138.1) (27) (28).

82

83 **Controls and contamination** 3 negative kit/environmental control swabs were included to identify and
84 eliminate potential sources of contamination and false positives in the 16S *metataxonomic profiles*. These
85 swabs were removed from the manufacturers packaging, waved in air, and then subjected to the same entire
86 DNA extraction protocol. Decontamination of data was done using the decontam package (v1.9.0) in R, at
87 ASV level, using both “frequency” and “prevalence” contaminant identification methods with *threshold* set
88 to 0.1 (28). The “frequency” filter was applied using the total 16S rRNA gene copies measured as the *conc*
89 parameter. For the “prevalence” filter all 3 blank swabs were used as negative controls and compared
90 against all semen samples. ASVs classified as a contaminant by either method (n = 94) were excluded.

91
92 *Statistical analysis.* Hierarchical clustering with Ward-linkage and Jensen-Shannon distance was used to
93 assign samples to putative community state types, with the number of clusters chosen to maximise the mean
94 silhouette score. Linear regression models used to regress microbiome features against semen quality
95 parameters and other clinical and demographic variables were fitted with the base R *lm* function (v4.2.0).
96 The Benjamini-Hochberg false discovery rate (FDR) correction was used to control the FDR of each
97 covariate signature independently (e.g., ROS, DNA Fragmentation, or Semen quality), with a $q < 0.05$, or
98 5%, cut-off, in both regression and Chi-squared analyses. Detailed information for statistical modelling is
99 presented Supplementary methods.

100

101 **Results**

102

103 *Study population:* Semen samples were collected from a total of 223 men; this included control (n=63) and a

104 study group (n=160) comprised of men diagnosed with male factor infertility (MFI) (n=58), male partners of

105 women with recurrent pregnancy loss (RPL) (n=46) and male partners of couples diagnosed with

106 unexplained infertility (UI) (n=26). The overall mean age of the total cohort was 38.1 ± 6 (mean \pm SD). The

107 mean age for controls was 40.1 ± 8 , and the mean age for patients undergoing various fertility investigations

108 was 37 ± 4.8 . Ethnicity representation amongst recruited cohorts were not significantly different ($p=0.38$,

109 Chi-square; Supplementary Table 1).

110

111 *Semen quality assessment:* Rates of high sperm DNA fragmentation, elevated ROS and oligospermia were

112 more prevalent in the study group compared with control (Table 1). The study group represented 85% of

113 samples with high sperm DNA fragmentation, 85% of samples with elevated ROS and 79% of samples with

114 oligospermia. Rates of abnormal seminal parameters including low sperm concentration, reduced

115 progressive motility and ROS concentrations were found to be highest in the MFI group (Supplementary

116 Figure 1).

117

118 *The seminal microbiota:* Following decontamination, a total of 7,998,565 high quality sequencing reads

119 were identified and analysed. Hierarchical clustering (Ward linkage) of relative abundance data resolved to

120 genera level identified three major clusters, as determined by average silhouette score, amongst all samples

121 (Figure 1, Supplementary Figure 2). These were compositionally characterised by high relative abundance

122 of 1. *Streptococcus*, 2. *Prevotella*, or 3. *Lactobacillus* and *Gardnerella*. Assessment of bacterial load using

123 qPCR showed Clusters 2 and 3 had significantly higher bacterial loads compared to Cluster 1. Similar

124 analyses were performed using sequencing data mapped to species level, however, examination of

125 individual sample Silhouette scores within resulting clusters highlighted poor fitting indicating a lack of

126 robust species-specific clusters (Supplementary Figure 3).

127

128 Bacterial richness, diversity and load were similar between all patient groups examined in the study
129 (Supplementary Figure 4). Similarly, no significant associations between bacterial clusters, richness,
130 diversity or load with seminal parameters, sperm DNA fragmentation or semen ROS were observed
131 (Supplementary Tables 2-3). Several organisms at genera level, identified variably in the literature as
132 responsible for genito-urinary infection, whilst ASVs in the data set did not reach the prevalence criteria
133 (present in at least 25% of the samples) to be carried forward to regression modelling (29) (30) (21). This
134 included *Chlamydia*, *Ureaplasma*, *Neisseria*, *Mycoplasma* and *Escherichia*. However, several associations
135 ($p<0.05$) between relative abundance of specific bacterial genera and key sperm parameters were observed
136 (Table 2). For example, increased sperm DNA fragmentation was positively associated with increased
137 relative abundance of *Porphyromonas* and *Varibaculum* and inversely correlated with *Cutibacterium* and
138 *Finegoldia*. ROS was positively associated with *Lactobacillus* species relative abundance, with analyses
139 performed at species level taxonomy indicating that this relationship was largely driven by *L. iners* ($p=0.04$;
140 Table 3). In contrast, *Corynebacterium* was inversely associated with ROS and positively associated with
141 semen volume. Of note, the genera *Flavobacterium* was positively associated with both abnormal semen
142 quality and sperm morphology and in both cases, withstood FDR correction for multiple testing ($q=0.02$ and
143 $q=0.01$, respectively) (Table 2) (Figure 2). Consistent with this, a positive association between an
144 unidentified species of *Flavobacterium* and semen quality was also observed ($q=0.01$, Table 3).
145

146 To focus analyses toward the most extreme phenotype of poor semen quality, a sub-analysis of controls
147 compared with MFI was performed (Table 4). Non-parametric differential abundance analysis again
148 identified a robust relationship between *Flavobacterium* and abnormal sperm morphology ($q=0.01$, Table 4).
149 At species level, this was mapped to an unidentified species of *Flavobacterium* ($q=0.01$, Table 5). Similar to
150 findings observed for all samples, sperm DNA fragmentation was inversely associated with relative
151 abundance of *Cutibacterium* and positively associated with *Porphyromonas* and *Varibaculum* was also
152 observed.
153

154

155

156 **Discussion**

157 To our knowledge, this is the largest study to date investigating the seminal microbiome in men. Herein we
158 comprehensively report relationships between semen microbial diversity, load, and compositional structure
159 with both molecular and classical seminal parameters, allowing us to describe seminal microbiome clusters
160 common both healthy men and those with infertility and RPL. We also suggest that microbiota perturbation
161 is a sign of poor semen quality irrespective of whether a man has yet been identified to have a reproductive
162 disorder.

163

164

165

166 Recent studies have characterised the semen microbiota in healthy men and those with infertility(5, 6, 8, 9,
167 10, 11, 31). We have extended these findings by analysing a larger sample of men subclassified into
168 different reproductive disorders likely to arise from poor semen quality. Unlike most prior studies, we were
169 able to phenotype men with molecular markers of reproductive function such as seminal ROS and sperm
170 DNA fragmentation, which are known to damage sperm (REF). classical seminal parameters, but also key
171 functional parameters. Furthermore, we incorporated stringent negative controls to permit removal of
172 sequences likely originating from extraction kits and reagents known to contaminate low biomass samples
173 such as semen (6, 8, 31). This is important since Molena et al report that 50%-70% of detected bacterial
174 reads may be contaminants in a sample from testicular spermatozoa (32); with the addition of accessory
175 gland secretions and passage along the urethra it is likely that contamination of ejaculated semen would be
176 much higher.

177

178 Mapping of genera level relative abundance data enabled semen samples to be categorised into 3 major
179 clusters characterised by differing relative abundance of *Streptococcus*, *Prevotella*, *Lactobacillus* and
180 *Gardnerella*. Unlike previous studies, we used an objective statistical approach (i.e. Silhouette methods) to
181 determine the optimal number of microbial clusters supported by the data. These findings are largely

182 consistent with earlier semen metataxonomic profiling studies reporting clusters enriched for *Streptococcus*,
183 *Lactobacillus* and *Prevotella* (5, 6, 8). Moreover, Baud *et al.*, reported increased bacterial richness in the
184 *Prevotella*-enriched cluster, which we also observed (8). This may suggest that certain compositional
185 characteristics of seminal microbiota are conserved across populations. However, similar modelling of
186 species level data, failed to identify statistically robust clusters. This contrasts with other niches such as the
187 vagina where reproducible clusters based on species level metataxonomic profiles have been demonstrated
188 reflecting mutualistic relationships between specific species and the host, which have coevolved over long
189 periods of time (33, 34). It is possible therefore that our findings indicate that microbiota detected in semen
190 are likely the result of transient colonisation events. Consistent with this, several species known to be
191 commensal to the penile skin including *Streptococcus*, *Corynebacterium* and *Staphylococcus*, or the female
192 genital tract including *Gardnerella* and *Lactobacillus*, were observed in semen samples (35). This is in
193 keeping with data suggesting microbiota transference during sexual intercourse (36). It remains possible that
194 a proportion of bacteria detected in semen reflects contamination of the sample acquired during the
195 collection procedure. Studies undertaking assessment of female partner microbiota profiles as well as
196 temporal profiling of semen microbiota would improve understanding of potential dynamic restructuring of
197 semen microbiota compositions. This has been done in part by Baud *et al* by studying the subfertile couple
198 as a unit to establish if there is a ‘couple microbiota’(37) . They took samples from 65 couples with a range
199 of pathologies including idiopathic infertility. From each woman they took vaginal swabs and follicular fluid
200 samples. From each man they took a semen samples and penile swabs. They undertook extensive negative
201 control series and stringent in silico elimination of possible contaminants. They found the male microbiota to
202 be much more diverse than the female, with 90% of female samples being *Lactobacillus*-dominant. Intra-
203 personal male samples i.e. semen and penile swabs from the same man bore more similarity to each other
204 than inter-personal samples of the same sample type ie semen *or* penile swab comparisons between men
205 (37). They identified that the male microbiota had very little impact of the microbiota of the female sexual
206 partner (37) . Lack of information regarding the sexual activity of the enrolled couples limits this study
207 somewhat.

208

209 Several previous studies have described semen microbiota composition to genera level and some have
210 reported associations between specific genera and parameters of semen quality and function (5, 6, 8, 9, 10,
211 11, 31). However, in many cases these studies have failed to consider multiple comparisons testing, likely
212 leading the reporting of spurious associations. We did not observe any significant associations between
213 bacterial clusters, richness, diversity or load with traditional seminal parameters, sperm DNA fragmentation
214 or semen ROS. This is in contrast with Veneruso *et al.*, who reported that in infertile patients, semen
215 bacterial diversity and richness was decreased whereas Lundy *et al.*, reported that diversity was increased in
216 infertile patients (9, 31). Further, Lundy *et al.*, reported *Prevotella* abundance to be inversely associated with
217 sperm concentration; this was not replicated in our study (9). There are several possible reasons accounting
218 for the high heterogeneity in results including differences in methodology used to assess the microbial
219 component of semen as well as differences in study design (38). For example, time of sexual abstinence
220 prior to sample production as well as sample processing time often differs between studies, which has been
221 shown to impact microbiological composition of semen (39).

222

223 The only association between bacterial taxa and semen parameters to withstand false detection rate
224 testing for multiple comparisons detected in our study was between *Flavobacterium* and abnormal semen
225 quality and sperm morphology ($q=0.02$). *Flavobacterium* are gram-negative physiologically diverse aerobes,
226 some of which are pathogenic (40). *Flavobacterium* was recently identified as a dominant genus in
227 immature sperm cells retrieved from testicular biopsies of infertile men in a study by Molina *et al* (32).
228 However, in contrast to these findings, a recent smaller study investigating semen collected from 14 sperm
229 donors and 42 infertile idiopathic patients reported an association between *Flavobacterium* and increased
230 sperm motility but a negative correlation with sperm DNA fragmentation (10). Though not notwithstanding
231 multiple correction, we did observe several other associations between specific bacterial taxa and semen
232 parameters. For example, samples enriched with *Lactobacillus* had lower incidence of elevated seminal

233 ROS, a relationship which could largely be accounted for by *Lactobacillus iners*, a common member of the
234 cervicovaginal niche (41). Various studies have also found *Lactobacillus* enrichment in semen to associate
235 with normal seminal parameters, especially morphology (6, 8). were *Lactobacillus*-predominant (6).
236 However, an association between samples enriched with *Lactobacillus* and asthenospermia or
237 oligoasthenospermia has also been described (11). We also observed an association between increased
238 sperm DNA fragmentation and samples enriched with *Varibaculum*, which is consistent with previous
239 reports of increased relative abundance of *Varibaculum* in semen infertile (31).

240

241 This and previous studies have used single sample collections, so temporal variations in semen microbiota
242 remain unknown. As with other studies, we sampled a single geographical population. Ethnic diversity and
243 potential geographical factors such as the environment or dietary habit may have affected our results. The
244 primers used in our study during NGS may not be universal, so may anneal variably to specific bacteria
245 resulting in over-detection, under-detection, or indeed non-detection of some taxa (42) (43). A further
246 limitation of this study, and others, is the lack of reciprocal genital tract microbiome testing of the female
247 partners.

248

249 In summary, our study reveals commonalities of microbial composition existing in all men, including those
250 with male infertility and RPL. Furthermore, we conclude that appearance of specific bacterial genera within
251 the semen may indicate poor semen quality in all men including those with RPL. This suggests that the
252 human seminal microbiome may broadly reflect sperm function in the male population, though the direction
253 or mechanisms underlying this relationship require further elucidation.

254 **Authors roles:**

255 Mowla, Farahani, Tharakan, Jayasena and MacIntyre made substantial contribution to the study design,
256 acquisition of data, analysis and interpretation of data and critical revision of the article for important
257 intellectual content. Davies and Goncalo made substantial contribution to the analysis and interpretation of
258 data and drafting the article. Lee, Kundu, Khanjani, Sindi and Khalifa made substantial contribution to the
259 acquisition of data and critical revision of the article for important intellectual content. Rai, Regan, Henkel,
260 Minhas Dhillon, Ben Nagi and Bennett made substantial contribution to the study design and critical revision
261 of the article for important intellectual content. All authors approved the final version to be published and
262 are in agreement to be accountable for all aspects of the work in ensuring that questions related to the
263 accuracy or integrity of any part of the work are appropriately investigated and resolved.

264

265 **Acknowledgements:** We would like to thank the patients and participants for their involvement in the study

266

267 **Funding:** The Section of Endocrinology and Investigative Medicine is funded by grants from the MRC,
268 NIHR and is supported by the NIHR Biomedical Research Centre Funding Scheme and the NIHR/Imperial
269 Clinical Research Facility. The views expressed are those of the author(s) and not necessarily those of the
270 Tommy's, the NHS, the NIHR or the Department of Health. The following authors are also funded as
271 follows: NIHR Research Professorship (WSD), NIHR Post-Doctoral Fellowship (CNJ). This project was
272 supported by a research grant from Charm Foundation UK as well as funding by Tommy's National Centre
273 for Miscarriage Research (grant P62774).

274

275 **Conflict of interest:** N/A

276

277

278 **Data Availability Statement:** The 16S rRNA metataxonomic dataset and the data analysis scripts are
279 publicly available at the European Nucleotide Archive (Project accession PRJEB57401) and GitHub
280 (repository link <https://github.com/Gsorreia89/semen-microbiota-infertility>), respectively.

281

282

283

284

References:

- Levine H, Jorgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, Mindlis I, et al. Temporal trends in sperm count: a systematic review and meta-regression analysis. *Hum Reprod Update*. 2017;23(6):646-59.
- Eini F, Kuteneai MA, Zareei F, Dastjerdi ZS, Shirzeyli MH, Salehi E. Effect of bacterial infection on sperm quality and DNA fragmentation in subfertile men with Leukocytospermia. *Bmc Mol Cell Biol*. 2021;22(1).
- Jung JH, Kim MH, Kim J, Baik SK, Koh SB, Park HJ, et al. Treatment of Leukocytospermia in Male Infertility: A Systematic Review. *World J Mens Health*. 2016;34(3):165-72.
- Aitken RJ, Drevet JR, Moazamian A, Gharagozloo P. Male Infertility and Oxidative Stress: A Focus on the Underlying Mechanisms. *Antioxidants-Basel*. 2022;11(2).
- Hou DS, Zhou X, Zhong X, Settles ML, Herring J, Wang L, et al. Microbiota of the seminal fluid from healthy and infertile men. *Fertil Steril*. 2013;100(5):1261-+.
- Weng SL, Chiu CM, Lin FM, Huang WC, Liang C, Yang T, et al. Bacterial Communities in Semen from Men of Infertile Couples: Metagenomic Sequencing Reveals Relationships of Seminal Microbiota to Semen Quality. *Plos One*. 2014;9(10).
- Monteiro C, Marques PI, Cavadas B, Damiao I, Almeida V, Barros N, et al. Characterization of microbiota in male infertility cases uncovers differences in seminal hyperviscosity and oligoasthenoteratozoospermia possibly correlated with increased prevalence of infectious bacteria. *Am J Reprod Immunol*. 2018;79(6).
- Baud D PC, Vulliemoz N, Castella V, Marsland BJ, Stojanov M. Sperm Microbiota and Its Impact on Semen Parameters. *Frontiers in Microbiology*. 2019;10:234.
- Lundy SD, Sangwan N, Parekh NV, Selvam MKP, Gupta S, McCaffrey P, et al. Functional and Taxonomic Dysbiosis of the Gut, Urine, and Semen Microbiomes in Male Infertility. *Eur Urol*. 2021;79(6):826-36.
- Garcia-Segura S DRJ, Closa L, Garcia-Martínez I, Hobeich C, Castel AB, Vidal F, Benet J, Ribas-Maynou J, Oliver-Bonet M. Seminal Microbiota of Idiopathic Infertile Patients and Its Relationship With Sperm DNA Integrity. *Front Cell Dev Biol*. 2022;28(10):937157.
- Yang H ZJ, Xue Z, Zhao C, Lei L, Wen Y, Dong Y, Yang J, Zhang L. Potential Pathogenic Bacteria in Seminal Microbiota of Patients with Different Types of Dysspermatism. *Sci Rep*. 2020;23(10):6876.
- Benchaib M, Lornage J, Mazoyer C, Lejeune H, Salle B, Guerin JF. Sperm deoxyribonucleic acid fragmentation as a prognostic indicator of assisted reproductive technology outcome. *Fertil Steril*. 2007;87(1):93-100.
- Jayasena CN, Radia UK, Figueiredo M, Revill LF, Dimakopoulou A, Osagie M, et al. Reduced Testicular Steroidogenesis and Increased Semen Oxidative Stress in Male Partners as Novel Markers of Recurrent Miscarriage. *Clin Chem*. 2019;65(1):161-9.
- Aitken RJ, Bakos HW. Should we be measuring DNA damage in human spermatozoa? New light on an old question. *Hum Reprod*. 2021;36(5):1175-85.
- De Iuliis GN, Thomson LK, Mitchell LA, Finnie JM, Koppers AJ, Hedges A, et al. DNA Damage in Human Spermatozoa Is Highly Correlated with the Efficiency of Chromatin Remodeling and the Formation of 8-Hydroxy-2'-Deoxyguanosine, a Marker of Oxidative Stress. *Biol Reprod*. 2009;81(3):517-24.
- Vorilhon S, Brugnon F, Kocer A, Dollet S, Bourgne C, Berger M, et al. Accuracy of human sperm DNA oxidation quantification and threshold determination using an 8-OHdG immuno-detection assay. *Hum Reprod*. 2018;33(4):553-62.
- Agarwal A, Sharma RK, Nallella KP, Thomas AJ, Alvarez JG, Sikka SC. Reactive oxygen species as an independent marker of male factor infertility. *Fertil Steril*. 2006;86(4):878-85.
- World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th ed. Geneva: WHO Press.
- Scheme UNRS. UK NEQAS Reproductive Science Scheme Department of Reproductive Medicine Old Saint Mary's Hospital Oxford Road Manchester, M13 9WL

336 United Kingdom2023 [Scheme Organiser – Ms. Annette Lloyd]. Available from: <https://mft.nhs.uk/saint-marys/services/gynaecology/reproductive-medicine/uknegasreproductive-science/>.

337 20. Vessey W, Perez-Miranda A, Macfarquhar R, Agarwal A, Homa S. Reactive oxygen species in
338 human semen: validation and qualification of a chemiluminescence assay. *Fertil Steril*. 2014;102(6):1576-
339 U389.

340 21. Sergerie M LG, Bujan L et al. Sperm DNA fragmentation: threshold value in male fertility. *Hum
341 Reprod*. 2005;20(12).

342 22. Sharma R IC, Agarwal A, Henkel R. TUNEL assay-Standardized method for testing sperm DNA
343 fragmentation. *Andrologia*. 2020;53(2):e13738.

344 23. Hughes CM LS, McKelvey-Martin VJ, Thompson W. A comparison of baseline and induced DNA
345 damage in human spermatozoa from fertile and infertile men, using a modified comet assay. *MHR: Basic
346 science of reproductive medicine*. 1996;2(8):613-9.

347 24. Liu CM, Aziz M, Kachur S, Hsueh P-R, Huang Y-T, Keim P, et al. BactQuant: An enhanced broad-
348 coverage bacterial quantitative real-time PCR assay. *BMC Microbiology*. 2012;12(1):56.

349 25. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghathith GA, et al. Reproducible,
350 interactive, scalable and extensible microbiome data science using QIIME 2. *Nat Biotechnol*.
351 2019;37(8):852-7.

352 26. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution
353 sample inference from Illumina amplicon data. *Nat Methods*. 2016;13(7):581-3.

354 27. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA
355 gene database project: improved data processing and web-based tools. *Nucleic Acids Res*.
356 2013;41(Database issue):D590-6.

357 28. Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and
358 removal of contaminant sequences in marker-gene and metagenomics data. *Microbiome*. 2018;6(1):226.

359 29. Nunez-Calonge R CP, Redondo C. Urealyticum Reduces Motility and Induces Membrane
360 Alterations in Human Spermatozoa. *Hum Reprod* 1998;13:2756-61.

361 30. Satta A SA, Garozzo A. Experimental Chlamydia Trachomatis Infection Causes Apoptosis in Human
362 Sperm. *Hum. Reprod* 2006;21:134-7.

363 31. Veneruso I CF, Alviggi C, Pastore L, Tomaiuolo R, D'Argenio V. Metagenomics Reveals Specific
364 Microbial Features in Males with Semen Alterations. *Genes (Basel)*. 2023;14(6):1228.

365 32. Molina NM, Plaza-Diaz J, Vilchez-Vargas R, Sola-Leyva A, Vargas E, Mendoza-Tesarik R, et al.
366 Assessing the testicular sperm microbiome: a low-biomass site with abundant contamination. *Reprod
367 Biomed Online*. 2021;43(3):523-31.

368 33. Pruski P, Correia GDS, Lewis HV, Capuccini K, Inglese P, Chan D, et al. Direct on-swab metabolic
369 profiling of vaginal microbiome host interactions during pregnancy and preterm birth. *Nature
370 Communications*. 2021;12(1):5967.

371 34. France MT, Ma B, Gajer P, Brown S, Humphrys MS, Holm JB, et al. VALENCIA: a nearest centroid
372 classification method for vaginal microbial communities based on composition. *Microbiome*. 2020;8(1):166.

373 35. Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. *Nature Reviews Microbiology*.
374 2018;16(3):143-55.

375 36. Ma Z. Microbiome Transmission During Sexual Intercourse Appears Stochastic and Supports the
376 Red Queen Hypothesis. *Frontiers in Microbiology*. 2022;12.

377 37. Baud D PA, Vidal JM et al Interaction of genital microbiota in infertile couples. *bioRxiv*
378 20230614544778; doi: <https://doi.org/10.1101/20230614544778>. 2023

379

380 .

381 38. Farahani L, Tharakan T, Yap T, Ramsay JW, Jayasena CN, Minhas S. The semen microbiome and
382 its impact on sperm function and male fertility: A systematic review and meta-analysis. *Andrology*.
383 2021;9(1):115-44.

384 39. Yao TH, X.; Guan, T.; Wang, Z.; Zhang, S.; Liu, C.; Liu, C.; Chen, L. Effect of indoor environmental
385 exposure on seminal microbiota and its application in body fluid identification. *Forensic Sci Int*.
386 2020;314:110417.

387 40. Waskiewicz A IL. *Flavobacterium* spp. – Characteristics, Occurrence, and Toxicity. In: Batt CA TM,
388 editor. *Encyclopedia of Food Microbiology* 2nd ed. Oxford: Oxford: Academic Press; 2014. p. 938-42.

389 41. MacIntyre DA, Sykes L, Bennett PR. The human female urogenital microbiome: complexity in
390 normality. *Emerging Topics in Life Sciences*. 2017;1(4):363-72.

391

392 42. Forney LJ, Zhou X, Brown CJ. Molecular microbial ecology: land of the one-eyed king. *Curr Opin*
393 *Microbiol.* 2004;7(3):210-20.

394 43. von Wintzingerode F, Gobel UB, Stackebrandt E. Determination of microbial diversity in
395 environmental samples: pitfalls of PCR-based rRNA analysis. *Fems Microbiol Rev.* 1997;21(3):213-29.

396

Tables:

Table I: Patient demographics and notable parameters of seminal quality and function for controls and study subjects. The prevalence of sperm DNA fragmentation and ROS were higher in patients undergoing fertility investigations compared to controls. Prevalence of oligospermia was also significantly higher in study subjects. Fisher's exact tests for all except age. Chi-square test for age. (n=223).

Factor	Categories	Controls	Study cases	p-value
DNA frag index	Low	45/114 (40%)	69/114 (60%)	0.0002***
	High	12/ 82 (15%)	70/82 (85%)	
ROS	<3.77 RLU/s	53/143 (37%)	90/143 (63%)	0.02*
	>3.77 RLU/s	5/33 (15%)	28/33 (85%)	
Semen volume	Optimal	55/208 (26%)	153/208 (84%)	0.03*
	Sub-optimal	8/15 (53%)	7/15 (47%)	
Age	<34	11/49 (22%)	38/49 (88%)	0.04*
	34-41	31/124 (25%)	93/124 (85%)	
	>41	21/50 (42%)	29/50 (58%)	
Ethnicity	Caucasian	39/156 (25%)	117/156 (75%)	0.10
	Non-Caucasian	24/67 (36%)	43/67 (64%)	
Concentration	>15 M/mL	58/182 (32%)	124/182 (68%)	0.01*
	<15 M/mL	5/41 (21%)	36/41 (79%)	
Progressive motility	>32%	60/207 (29%)	147/207 (71%)	0.56
	<32%	3/16 (19%)	13/16 (81%)	
Sperm morphology	>4%	22/74 (30%)	52/74 (70%)	0.87
	<4%	41/144 (28%)	103/144 (72%)	
Semen quality	Optimal	24/78 (31%)	54/78 (69%)	0.53
	Sub-optimal	39/145 (27%)	106/145 (73%)	

Table II: Differential abundance analysis for bacterial genera with seminal quality and functional parameters. Positive t-values indicate a positive relationship, and a negative t-value describes a negative relationship between relative abundance of taxa and seminal quality and function parameters. Significant relationships are indicated using p-values. q-values represent adjusted p-values for multiple comparisons.

Sperm quality and function parameters	Genera	Welch corrected t	p-value	q-value
Sperm DNA fragmentation	Finegoldia	-2.36	0.01*	0.27
	Cutibacterium	-2.20	0.02*	0.27
	Porphyromonas	2.16	0.03*	0.27
	Varibaculum	2.11	0.03*	0.27
ROS	Lactobacillus	2.18	0.02*	0.66
	Corynebacterium	-2.04	0.04*	0.66
Semen quality	Flavobacterium	3.39	0.0008***	0.02*
	Prevotella	2.26	0.02*	0.38
Sperm concentration	Porphyromonas	-2.08	0.03*	0.61
Sperm morphology	Flavobacterium	3.64	0.0003***	0.01*
	Prevotella	2.03	0.04*	0.67
Semen volume	Corynebacterium	2.27	0.02*	0.32
	Actinotigum	-2.20	0.02*	0.32
	Varibaculum	-2.16	0.03*	0.32

Table III: Differential abundance analysis for bacterial species with seminal quality and functional parameters. Positive t-values indicate a positive relationship and a negative t-value describes a negative relationship between relative abundance of taxa and seminal quality and function parameters. Significant relationships are indicated using p-values. q-values represent adjusted p-values for multiple comparisons.

Clinical factor	Species	Welch corrected t	p-value	q-value
Sperm DNA fragmentation	<i>Peptostreptococcaceae bacterium</i>	2.18	0.03*	0.91
ROS	<i>Lactobacillus iners</i>	2.24	0.02*	0.94
	Unidentified Anaerococcus	-2.03	0.04*	0.94
Semen quality	Unidentified Flavobacterium	3.76	0.0002***	0.01*
	<i>Corynebacterium tuberculostearicum</i>	-2.06	0.04*	0.82
Semen volume	<i>Corynebacterium tuberculostearicum</i>	2.64	0.008	0.24
	Unidentified Varibaculum	-2.48	0.01	0.24
	<i>Staphylococcus epidermidis</i>	2.35	0.01	0.24
	Unidentified Peptoniphilus	-2.32	0.02	0.24
	<i>Dialister propionicifaciens</i>	-2.24	0.02	0.24
	<i>Prevotella colorans</i>	-2.14	0.03	0.26
Cohorts	<i>Staphylococcus haemolyticus</i>	0.04	0.02	0.97

Table IV: Differential abundance analysis for specific taxa at genera level for controls and cases

with male factor infertility. Positive t-values indicate a relationship, and a negative t-value describes a negative relationship between relative abundance of taxa and seminal quality and function parameters. Significant relationships are indicated using p-values. q-values represent adjusted p-values for multiple comparisons.

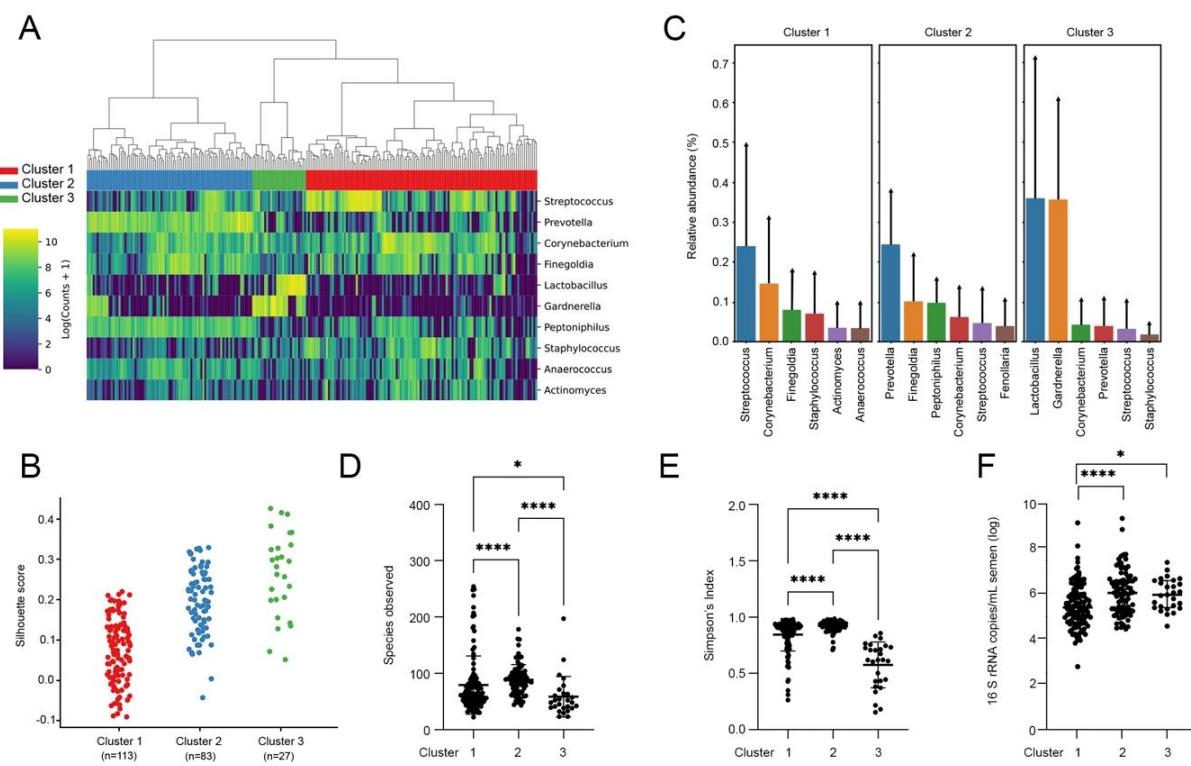
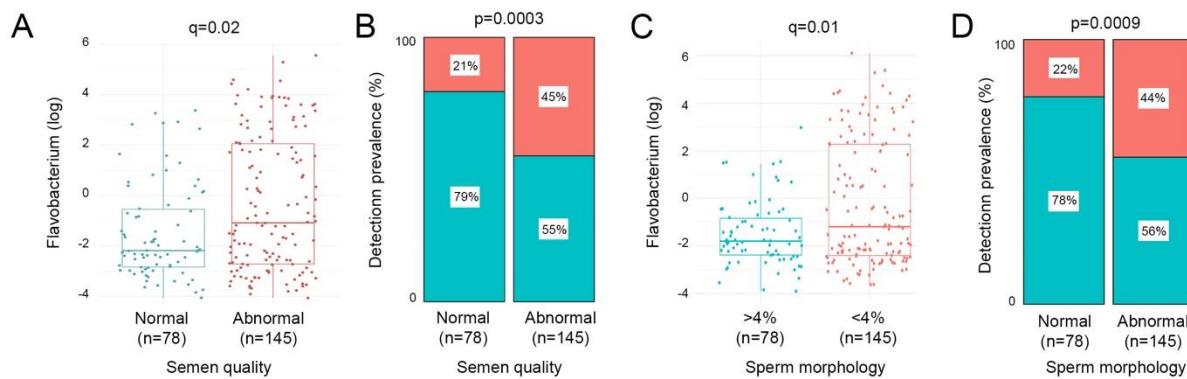

Clinical factor	Genera	Welch corrected t	p-value	q-value
Sperm DNA fragmentation	Cutibacterium	-2.56	0.01*	0.31
	Porphyromonas	2.34	0.02*	0.31
	Varibaculum	1.96	0.051	0.53
ROS	Finegoldia	-1.99	0.04*	0.77
Sperm concentration	Finegoldia	2.04	0.04*	0.71
Sperm morphology	Flavobacterium	3.64	0.0003***	0.01*
	Prevotella	2.03	0.04*	0.67
Semen volume	Facklamia	2.99	0.003**	0.10
	Actinotignum	-2.20	0.02*	0.36
	Dialister	-1.99	0.04*	0.36

Table V: Differential abundance analysis for specific taxa at species for controls and male factor infertility. Positive t-values indicate a positive relationship and a negative t-value describes a negative relationship between relative abundance of taxa and seminal quality and function parameters. Significant relationships are indicated using p-values. q-values represent adjusted p-values for multiple comparisons.


Clinical factor	Species	Welch corrected t	p-value	q-value
Sperm DNA fragmentation	<i>Staphylococcus hominis</i>	-2.32	0.02*	0.68
ROS	Unidentified Flavobacterium	2.42	0.01	0.54
	Unidentified Anaerococcus	-2.12	0.03	0.54
	<i>Schaalia radingae</i>	-2.12	0.03*	0.54
	<i>Haemophilus parainfluenza</i>	2.02	0.04*	0.54
Semen quality	Unidentified Flavobacterium	2.36	0.01*	0.91
Semen volume	<i>Dialister micraerophilus</i>	-2.66	0.008**	0.41
	<i>Corynebacterium tuberculostearicum</i>	2.27	0.02*	0.44
	<i>Staphylococcus epidermidis</i>	2.22	0.02*	0.44
	<i>Actinotignum schaalii</i>	-2.00	0.04*	0.45
Cohorts	<i>Staphylococcus haemolyticus</i>	0.04	0.01*	0.68

Figures

Figure I. Characterisation of semen microbiota composition at genera level. **A)** Heatmap of Log10 transformed read counts of top 10 most abundant genera identified in semen samples. Samples clustered into three major microbiota groups based mainly on dominance by *Streptococcus* (Cluster 1), *Prevotella* (Cluster 2), or *Lactobacillus* and *Gardnerella* (Cluster 3). (n=223, Ward's linkage). **B)** Silhouette scores of individual samples within each cluster. **C)** Relative abundance of the top 6 most abundant genera within each cluster. **D)** Species richness (p<0.0001; Kruskal-Wallis test) and **E)** alpha diversity (p<0.0001; Kruskal-Wallis test) significantly differed across clusters. **F)** Assessment of bacterial load using qPCR showed Clusters 2 and 3 have significantly higher bacterial loads compared to Cluster 1 Dunn's multiple comparison test was used as a post-hoc test for between group comparisons (*p<0.05, ***p<0.0001).

Figure 2. Relative abundance and prevalence matrices of Flavobacterium in relation to semen quality and morphology. **A)** Relative abundance of Flavobacterium was significantly higher in samples with abnormal semen ($p=0.0002$, $q=0.02$). **B)** Detection of flavobacterium was significantly more prevalent in abnormal semen quality samples ($p=0.0003$). **C)** Flavobacterium relative abundance was significantly higher in samples with $<4\%$ morphologically normal forms ($p=0.0002$, $q=0.01$). **D)** Flavobacterium was also significantly more prevalent in samples with low percentage of morphologically normal sperm ($p=0.0009$).