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Abstract:

Poor semen quality increase risks of infertility and recurrent pregnancy loss (RPL) in couples. Global,
reported sperm counts have more than halved since the 1970s. Canonical genitourinary microbes such as
gonorrhoea are known to impair semen quality. Furthermore, several recent, small studies have highlighted
trends in semen microbiome characteristics associated with semen quality in asymptomatic men. However,
the semen microbiota during recurrent pregnancy loss (RPL) has not been investigated. Herein we combine
metataxonomic profiling of semen microbiota by16S rRNA amplicon sequencing, semen analysis, terminal-
deoxynucleotidyl-transferase-mediated-deoxyuridine-triphosphate-nick-end-labelling, Comet DNA
fragmentation and luminol ROS chemiluminescence to holistically describe the human seminal microbiome
in a total 223 men within a cross-sectional ethics-approved study (healthy men with proven paternity, n=63;
male partners of women with RPL, n=46; men with male factor infertility, n=58; men in couples
unexplained infertility, n=56). We describe seminal microbiome clusters which are common both healthy
men and those with infertility and RPL. Furthermore, specific microbiota perturbation is associated with

impaired semen quality irrespective of reproductive disorder.

Keywords: Semen, microbiota, male infertility, genitourinary infection, recurrent pregnancy loss
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Main text:

Introduction

Sperm counts within published studies have reduced by 55% since the 1970s which may reflect rising health
burdens of obesity and / or environmental pollution (1). Male factor accounts for approximately half of all
cases of infertility yet there are limited available interventions to improve sperm quality. Understanding the

pathogenesis of male infertility may reveal novel therapeutic approaches for treating affected couples.

Symptomatic, genitourinary infection is an established cause of male infertility detected by semen culture
and treated with antibiotics (2, 3). Bacteria provoke seminal leukocytes to release bactericidal reactive
oxygen species (ROS), which may paradoxically damage sperm DNA and impair semen quality (4). Semen
culture has a limited scope for studying the seminal microbiota, but next generation sequencing (NGS)
analysis of the semen microbiome (5, 6, 7, 8, 9, 10, 11) has revealed associations between the microbiome
semen parameters in relatively small numbers of men with infertility. We and others have reported that
asymptomatic men affected by recurrent pregnancy loss (RPL) have increased risks of high seminal ROS
and sperm DNA fragmentation, which are also associated with male infertility (12, 13, 14, 15, 16, 17). Itis
therefore plausible that asymptomatic seminal infection may predispose men to RPL in addition to
infertility. Furthermore, common seminal microbial signatures may encompass both male infertility and
RPL. . Elucidation of an association would have wide clinical application with therapeutic potential couple
with reproductive disorders.

We explored relationships between metataxonomic profiles of bacteria, bacterial copy number and key
parameters of sperm function and quality in semen samples prospective collected from 223 men, including
those diagnosed with male factor infertility, unexplained infertility, partners affected by recurrent

miscarriage, and paternity-proven controls.
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Methods

Ethical approval was granted by the West London and Gene Therapy Advisory Committee (GTAC)
Research Ethics Committee (14/L0O/1038) and by the Internal Review Board at the Centre for Reproductive
and Genetic Health (CRGH) (IRB-0003C07.10.19). Participants were recruited following informed consent
from clinics in Imperial College London NHS Trust and The Centre for Reproductive and Genetic Health
(CRGH). Further detailed information on methods used in this study are included in the Supplementary

Material.

Semen samples were produced by means of masturbation after 3-7 days abstinence. All semen samples were
collected into sterile containers after cleaning of the penis using a sterile wipe. Samples were incubated at
37°C for a minimum of 20 mins prior to analysis. An aliquot was collected in a sterile cryovial and stored at

-80°C.

Diagnostic semen analysis was carried out according to WHO 2010 guidelines and UK NEQAS
accreditation (18) (19). Seminal analysis was performed in the Andrology Departments of Hammersmith
Hospital and CRGH. Microscopic and macroscopic semen qualities were assessed within 60 mins of sample
production. Semen volume, sperm concentration, total sperm count, progressive motility and total motility

count, morphological assessment, anti-sperm antibodies and leucocyte count were established.

ROS analysis was performed using an in-house developed chemiluminescence assay validated by Vessey et
al (20). Results are therefore reported as ‘relative light units per second per million sperm’. The upper limit

of optimal ROS was internally determined at 3.77 RLU/sec/ 10° sperm (95% CI) (21).

Sperm DNA fragmentation assessment performed by TUNEL (Terminal deoxynucleotidyl transferase biotin-

dUTP Nick End Labelling) assay defined elevated sperm DNA fragmentation as >20% (22). Samples for the
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COMET assay were sent to the Examen Lab (Belfast, UK) for analysis with elevated sperm DNA

fragmentation defined as >27% (23).

DNA extraction was performed on 200ul. of semen using enzymatic lysis and mechanical disruption.
Bacterial load was estimated by determining the total number of 16S rRNA gene copies per sample using

the BactQuant assay (24).

Metataxonomic profiling of semen microbiota was performed using MiSeq sequencing of bacterial V1-V2
hypervariable regions of 16S rRNA gene amplicons 16S rRNA genes using a mixed forward primerset 28F-
YM GAGTTTGATYMTGGCTCAG, 28F-Borrellia GAGTTTGATCCTGGCTTAG, 28F-Chloroflex
GAATTTGATCTTGGTTCAG and 28F-Bifdo GGGTTCGATTCTGGCTCAG at a ratio of 4:1:1:1 with
388R reverse primers. Sequencing was performed on the Illumina MiSeq platform (Illumina, Inc. San
Diego, California). Following primer trimming and assessment of read quality, amplicon sequence variants
(ASV) counts per sample were calculated and denoised using the Qiime2 pipeline (25) and the DADA?2
algorithm (26). ASVs were taxonomically classified to species level using a naive Bayes classifier trained on
all sequences from the V1-V2 region of the bacterial 16S rRNA gene present in the SILVA reference

database (release 138.1) (27) (28).

Controls and contamination 3 negative kit/environmental control swabs were included to identify and
eliminate potential sources of contamination and false positives in the 16S metataxonomic profiles. These
swabs were removed from the manufacturers packaging, waved in air, and then subjected to the same entire
DNA extraction protocol. Decontamination of data was done using the decontam package (v1.9.0) in R, at
ASV level, using both “frequency” and “prevalence” contaminant identification methods with threshold set
to 0.1 (28). The “frequency” filter was applied using the total 16S rRNA gene copies measured as the conc
parameter. For the “prevalence” filter all 3 blank swabs were used as negative controls and compared

against all semen samples. ASVs classified as a contaminant by either method (n = 94) were excluded.
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Statistical analysis. Hierarchical clustering with Ward-linkage and Jensen-Shannon distance was used to
assign samples to putative community state types, with the number of clusters chosen to maximise the mean
silhouette score. Linear regression models used to regress microbiome features against semen quality
parameters and other clinical and demographic variables were fitted with the base R /m function (v4.2.0).
The Benjamini-Hochberg false discovery rate (FDR) correction was used to control the FDR of each
covariate signature independently (e.g., ROS, DNA Fragmentation, or Semen quality), with a q < 0.05, or
5%, cut-off, in both regression and Chi-squared analyses. Detailed information for statistical modelling is

presented Supplementary methods.
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Results

Study population: Semen samples were collected from a total of 223 men; this included control (n=63) and a
study group (n=160) comprised of men diagnosed with male factor infertility (MFI) (n=58), male partners of
women with recurrent pregnancy loss (RPL) (n=46) and male partners of couples diagnosed with
unexplained infertility (UI) (n=26). The overall mean age of the total cohort was 38.1 + 6 (mean + SD). The
mean age for controls was 40.1 + 8, and the mean age for patients undergoing various fertility investigations
was 37 = 4.8. Ethnicity representation amongst recruited cohorts were not significantly different (p=0.38,

Chi-square; Supplementary Table 1).

Semen quality assessment: Rates of high sperm DNA fragmentation, elevated ROS and oligospermia were
more prevalent in the study group compared with control (Table 1). The study group represented 85% of
samples with high sperm DNA fragmentation, 85% of samples with elevated ROS and 79% of samples with
oligospermia. Rates of abnormal seminal parameters including low sperm concentration, reduced
progressive motility and ROS concentrations were found to be highest in the MFI group (Supplementary

Figure 1).

The seminal microbiota: Following decontamination, a total of 7,998,565 high quality sequencing reads
were identified and analysed. Hierarchical clustering (Ward linkage) of relative abundance data resolved to
genera level identified three major clusters, as determined by average silhouette score, amongst all samples
(Figure 1, Supplementary Figure 2). These were compositionally characterised by high relative abundance
of 1. Streptococcus, 2. Prevotella, or 3. Lactobacillus and Gardnerella. Assessment of bacterial load using
gPCR showed Clusters 2 and 3 had significantly higher bacterial loads compared to Cluster 1. Similar
analyses were performed using sequencing data mapped to species level, however, examination of
individual sample Silhouette scores within resulting clusters highlighted poor fitting indicating a lack of

robust species-specific clusters (Supplementary Figure 3).
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Bacterial richness, diversity and load were similar between all patient groups examined in the study
(Supplementary Figure 4). Similarly, no significant associations between bacterial clusters, richness,
diversity or load with seminal parameters, sperm DNA fragmentation or semen ROS were observed
(Supplementary Tables 2-3). Several organisms at genera level, identified variably in the literature as
responsible for genito-urinary infection, whilst ASVs in the data set did not reach the prevalence criteria
(present in at last 25% of the samples) to be carried forward to regression modelling (29) (30) (21). This
included Chlamydia, Ureaplasma, Neisseria, Mycoplasma and Escherichia. However, several associations
(p<0.05) between relative abundance of specific bacterial genera and key sperm parameters were observed
(Table 2). For example, increased sperm DNA fragmentation was positively associated with increased
relative abundance of Porphyromonas and Varibaculum and inversely correlated with Cutibacterium and
Finegoldia. ROS was positively associated with Lactobacillus species relative abundance, with analyses
performed at species level taxonomy indicating that this relationship was largely driven by L. iners (p=0.04;
Table 3). In contrast, Corynebacterium was inversely associated with ROS and positively associated with
semen volume. Of note, the genera Flavobacterium was positively associated with both abnormal semen
quality and sperm morphology and in both cases, withstood FDR correction for multiple testing (q=0.02 and
g=0.01, respectively) (Table 2) (Figure 2). Consistent with this, a positive association between an

unidentified species of Flavobacterium and semen quality was also observed (q=0.01, Table 3).

To focus analyses toward the most extreme phenotype of poor semen quality, a sub-analysis of controls
compared with MFI was performed (Table 4). Non-parametric differential abundance analysis again
identified a robust relationship between Flavobacterium and abnormal sperm morphology (q=0.01, Table 4).
At species level, this was mapped to an unidentified species of Flavobacterium (q=0.01, Table 5). Similar to
findings observed for all samples, sperm DNA fragmentation was inversely associated with relative
abundance of Cutibacterium and positively associated with Porphyromonas and Varibaculum was also

observed.
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Discussion

To our knowledge, this is the largest study to date investigating the seminal microbiome in men. Herein we
comprehensively report relationships between semen microbial diversity, load, and compositional structure
with both molecular and classical seminal parameters, allowing us to describe seminal microbiome clusters
common both healthy men and those with infertility and RPL. We also suggest that microbiota perturbation
is a sign of poor semen quality irrespective of whether a man has yet been identified to have a reproductive

disorder.

Recent studies have characterised the semen microbiota in health men and those with infertility(5, 6, 8, 9,
10, 11, 31). We have extended these findings by analysing a larger sample of men subclassified into
different reproductive disorders likely to arise from poor semen quality. Unlike most prior studies, we were
able to phenotype men with molecular markers of reproductive function such as seminal ROS and sperm
DNA fragmentation, which are known to damage sperm (REF). classical seminal parameters, but also key
functional parameters. Furthermore, we incorporated stringent negative controls to permit removal of
sequences likely originating from extraction kits and reagents known to contaminant low biomass samples
such as semen (6, 8, 31). This is important since Molena et al report that 50%-70% of detected bacterial
reads may be contaminants in a sample from testicular spermatozoa (32); with the addition of accessory
gland secretions and passage along the urethra it is likely that contamination of ejaculated semen would be

much higher.

Mapping of genera level relative abundance data enabled semen samples to be categorised into 3 major
clusters characterised by differing relative abundance of Streptococcus, Prevotella, Lactobacillus and
Gardnerella. Unlike previous studies, we used an objective statistical approach (i.e. Silhouette methods) to

determine the optimal number of microbial clusters supported by the data. These findings are largely
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consistent with earlier semen metataxonomic profiling studies reporting clusters enriched for Streptococcus,
Lactobacillus and Prevotella (5, 6, 8). Moreover, Baud et al., reported increased bacterial richness in the
Prevotella-enriched cluster, which we also observed (8). This may suggest that certain compositional
characteristics of seminal microbiota are conserved across populations. However, similar modelling of
species level data, failed to identify statistically robust clusters. This contrasts with other niches such as the
vagina where reproducible clusters based on species level metataxonomic profiles have been demonstrated
reflecting mutualistic relationships between specific species and the host, which have coevolved over long
periods of time (33, 34). It is possible therefore that our findings indicate that microbiota detected in semen
are likely the result of transient colonisation events. Consistent with this, several species known to be
commensal to the penile skin including Streptococcus, Corynebacterium and Staphylococcus, or the female
genital tract including Gardnerella and Lactobacillus, were observed in semen samples (35). This is in
keeping with data suggesting microbiota transference during sexual intercourse (36). It remains possible that
a proportion of bacteria detected in semen reflects contamination of the sample acquired during the
collection procedure. Studies undertaking assessment of female partner microbiota profiles as well as
temporal profiling of semen microbiota would improve understanding of potential dynamic restructuring of
semen microbiota compositions. This has been done in part by Baud et al by studying the subfertile couple
as a unit to establish if there is a ‘couple microbiota’(37) . They took samples from 65 couples with a range
of pathologies including idiopathic infertility. From each woman they took vaginal swabs and follicular fluid
samples. From each man they took a semen samples and penile swabs. They undertook extensive negative
control series and stringent in silico elimination of possible contaminants. The found the male microbiota to
be much more diverse than the female, with 90% of female samples being Lactobacillus-dominant. Intra-
personal male samples i.e. semen and penile swabs from the same man bore more similarity to each other
than inter-personal samples of the same sample type ie semen or penile swab comparisons between men
(37). They identified that the male microbiota had very little impact of the microbiota of the female sexual
partner (37) . Lack of information regarding the sexual activity of the enrolled couples limits this study

somewhat.
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Several previous studies have described semen microbiota composition to genera level and some have
reported associations between specific genera and parameters of semen quality and function (5, 6, 8, 9, 10,
11, 31). However, in many cases these studies have failed to consider multiple comparisons testing, likely
leading the reporting of spurious associations. We did not observe any significant associations between
bacterial clusters, richness, diversity or load with traditional seminal parameters, sperm DNA fragmentation
or semen ROS. This is in contrast with Veneruso et al., who reported that in infertile patients, semen
bacterial diversity and richness was decreased whereas Lundy et al., reported that diversity was increased in
infertile patients (9, 31). Further, Lundy et al., reported Prevotella abundance to be inversely associated with
sperm concentration; this was not replicated in our study (9). There are several possible reasons accounting
for the high heterogeneity in results including differences in methodology used to assess the microbial
component of semen as well as differences in study design (38). For example, time of sexual abstinence
prior to sample production as well as sample processing time often differs between studies, which has been

shown to impact microbiological composition of semen (39).

The only association between bacterial taxa and semen parameters to withstand false detection rate
testing for multiple comparisons detected in our study was between Flavobacterium and abnormal semen
quality and sperm morphology (q=0.02). Flavobacterium are gram-negative physiologically diverse aerobes,
some of which are pathogenic (40). Flavobacterium was recently identified as a dominant genus in
immature sperm cells retrieved from testicular biopsies of infertile men in a study by Molina et al (32).
However, in contrast to these findings, a recent smaller study investigating semen collected from 14 sperm
donors and 42 infertile idiopathic patients reported an association between Flavobacterium and increased
sperm motility but a negative correlation with sperm DNA fragmentation (10). Though not withstanding

multiple correction, we did observe several other associations between specific bacterial taxa and semen

parameters. For example, samples enriched with Lactobacillus had lower incidence of elevated seminal
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ROS, a relationship which could largely be accounted for by Lactobacillus iners, a common member of the
cervicovaginal niche (41). Various studies have also found Lactobacillus enrichment in semen to associate
with normal seminal parameters, especially morphology (6, 8). were Lactobacillus-predominant (6).
However, an association between samples enriched with Lactobacillus and asthenospermia or
oligoasthenospermia has also been described (11). We also observed an association between increased
sperm DNA fragmentation and samples enriched with Varibaculum, which is consistent with previous

reports of increased relative abundance of Varibaculum in semen infertile (31).

This and previous studies have used single sample collections, so temporal variations in semen microbiota
remain unknown. As with other studies, we sampled a single geographical population. Ethnic diversity and
potential geographical factors such as the environment or dietary habit may have affected our results. The
primers used in our study during NGS may not be universal, so may anneal variably to specific bacteria
resulting in over-detection, under-detection, or indeed non-detection of some taxa (42) (43). A further
limitation of this study, and others, is the lack of reciprocal genital tract microbiome testing of the female

partners.

In summary, our study reveals commonalities of microbial composition existing in all men, including those
with male infertility and RPL. Furthermore, we conclude that appearance of specific bacterial genera within
the semen may indicate poor semen quality in all men including those with RPL. This suggests that the
human seminal microbiome may broadly reflect sperm function in the male population, though the direction

or mechanisms underlying this relationship require further elucidation.
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Table I: Patient demographics and notable parameters of seminal quality and function for controls

and study subjects. The prevalence of sperm DNA fragmentation and ROS were higher in patients

undergoing fertility investigations compared to controls. Prevalence of oligospermia was also significantly

higher in study subjects. Fisher’s exact tests for all except age. Chi-square test for age. (n=223).

Factor

DNA frag index

ROS

Semen volume

Age

Ethnicity

Concentration

Progressive motility

Sperm morphology

Semen quality

Categories

Low

High

<3.77 RLU/s
>3.77 RLU/s
Optimal
Sub-optimal
<34

34-41

>41
Caucasian
Non-Caucasian
>15 M/mL
<15 M/mL
>32%

<32%

>4%

<4%
Optimal

Sub-optimal

Controls

45/114 (40%)
12/ 82 (15%)
53/143 (37%)
5133 (15%)
55/208 (26%)
8/15 (53%)
11/49 (22%)
31/124 (25%)
21/50 (42%)
39/156 (25%)
24/67 (36%)
58/182 (32%)
5/41 (21%)
60/207 (29%)
3/16 (19%)

22/74 (30%)

41/144 (28%)
24/78 (31%)

39/145 (27%)

Study cases

69/114 (60%)
70/82 (85%)
90/143 (63%)
28/33 (85%)
153/208 (84%)
715 (47%)
38/49 (88%)
93/124 (85%)
29/50 (58%)
117/156 (75%)
43/67 (64%)
124/182 (68%)
36/41 (79%)
147/207 (71%)
13/16 (81%)

52/74 (70%)

103/144 (72%)
54/78 (69%)

106/145 (73%)

p-value

0.0002#*%*

0.02%*

0.03*

0.04*

0.10

0.01*

0.56

0.87

0.53
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Table II: Differential abundance analysis for bacterial genera with seminal quality and functional

parameters. Positive t-values indicate a positive relationship, and a negative t-value describes a

negative relationship between relative abundance of taxa and seminal quality and function parameters.

Significant relationships are indicated using p-values. g-values represent adjusted p-values for multiple

comparisons.

Sperm quality and

function parameters

Sperm DNA

fragmentation

ROS

Semen quality

Sperm concentration

Sperm morphology

Semen volume

Genera

Finegoldia
Cutibacterium
Porphyromonas
Varibaculum
Lactobacillus
Corynebacterium
Flavobacterium
Prevotella

Porphyromonas

Flavobacterium
Prevotella
Corynebacterium
Actinotigum

Varibaculum

Welch corrected t

-2.36

-2.20

2.16

2.11

2.18

-2.04

3.39

2.26

-2.08

3.64

2.03

2.27

-2.20

-2.16

p-value

0.01*
0.02*
0.03*
0.03*
0.02*
0.04*
0.0008*#*
0.02*

0.03*

0.0003%#*
0.04*
0.02*
0.02*

0.03*

q-value

0.27
0.27
0.27
0.27
0.66
0.66
0.02*
0.38

0.61

0.01*
0.67
0.32
0.32

0.32
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Table III: Differential abundance analysis for bacterial species with seminal quality and functional

parameters. Positive t-values indicate a positive relationship and a negative t-value describes a negative

relationship between relative abundance of taxa and seminal quality and function parameters. Significant

relationships are indicated using p-values. g-values represent adjusted p-values for multiple comparisons.

Clinical factor

Sperm DNA fragmentation

ROS

Semen quality

Semen volume

Cohorts

Species
Peptostreptococcaceae
bacterium

Lactobacillus iners
Unidentified Anaerococcus

Unidentified Flavobacterium

Corynebacterium
tuberculostearicum
Corynebacterium
tuberculostearicum
Unidentified Varibaculum
Staphylococcus epidermidis
Unidentified Peptoniphilus
Dialister propionicifaciens
Prevotella colorans

Staphylococcus haemolyticus

Welch corrected t

2.18

2.24

-2.03

3.76

-2.06

2.64

-2.48

2.35

-2.32

-2.24

-2.14

0.04

p-value

0.03*

0.02*
0.04*

0.0002%**

0.04*

0.008

0.01
0.01
0.02
0.02
0.03

0.02

q-value

0.91

0.94
0.94

0.01%*

0.82

0.24

0.24
0.24
0.24
0.24
0.26

0.97
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Table IV: Differential abundance analysis for specific taxa at genera level for controls and cases
with male factor infertility. Positive t-values indicate a relationship, and a negative t-value describes a
negative relationship between relative abundance of taxa and seminal quality and function parameters.

Significant relationships are indicated using p-values. g-values represent adjusted p-values for multiple

comparisons.
Clinical factor Genera Welch corrected t p-value q-value
Sperm DNA Cutibacterium -2.56 0.01%* 0.31
fragmentation Porphyromonas 2.34 0.02* 0.31
Varibaculum 1.96 0.051 0.53
ROS Finegoldia -1.99 0.04* 0.77
Sperm concentration Finegoldia 2.04 0.04%* 0.71
Sperm morphology Flavobacterium 3.64 0.0003**%* 0.01*
Prevotella 2.03 0.04* 0.67
Semen volume Facklamia 2.99 0.003** 0.10
Actinotignum -2.20 0.02* 0.36

Dialister -1.99 0.04* 0.36
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Table V: Differential abundance analysis for specific taxa at species for controls and male factor
infertility. Positive t-values indicate a positive relationship and a negative t-value describes a negative
relationship between relative abundance of taxa and seminal quality and function parameters. Significant

relationships are indicated using p-values. g-values represent adjusted p-values for multiple comparisons.

Clinical factor Species Welch corrected t p-value g-value
Sperm DNA fragmentation  Staphylococcus hominis -2.32 0.02* 0.68
ROS Unidentified Flavobacterium  2.42 0.01 0.54
Unidentified Anaerococcus -2.12 0.03 0.54
Schaalia radingae -2.12 0.03* 0.54
Haemophilus parainfluenza 2.02 0.04* 0.54
Semen quality Unidentified Flavobacterium  2.36 0.01* 0.91
Semen volume Dialister micraerophilus -2.66 0.008%** 0.41
Corynebacterium 2.27 0.02%* 0.44
tuberculostearicum
Staphylococcus epidermidis 2.22 0.02%* 0.44
Actinotignum schaalii -2.00 0.04* 0.45

Cohorts Staphylococcus haemolyticus ~ 0.04 0.01%* 0.68
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Figure I. Characterisation of semen microbiota composition at genera level. A) Heatmap
of LoglO transformed read counts of top 10 most abundant genera identified in semen
samples. Samples clustered into three major microbiota groups based mainly on dominance
by Streptococcus (Cluster 1), Prevotella (Cluster 2), or Lactobacillus and Gardnerella
(Cluster 3). (n=223, Ward’s linkage). B) Silhouette scores of individual samples within each
cluster. C) Relative abundance of the top 6 most abundant genera within each cluster. D)
Species richness (p<0.0001; Kruskal-Wallis test) and E) alpha diversity (p<0.0001; Kruskal-
Wallis test) significantly differed across clusters. F) Assessment of bacterial load using qPCR
showed Clusters 2 and 3 have significantly higher bacterial loads compared to Cluster 1
Dunn’s multiple comparison test was used as a post-hoc test for between group comparisons
(*p<0.05, *#%%p<0.0001).
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Figure 2. Relative abundance and prevalence matrices of Flavobacterium in relation to
semen quality and morphology. A) Relative abundance of Flavobacterium was significantly
higher in samples with abnormal semen (p=0.0002, q=0.02). B) Detection of flavobacterium
was significantly more prevalent in abnormal semen quality samples (p=0.0003). C)
Flavobacterium relative abundance was significantly higher in samples with <4%
morphologically normal forms (p=0.0002, g=0.01). D) Flavobacterium was also significantly
more prevalent in samples with low percentage of morphologically normal sperm (p=0.0009).
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