

1 Title: Associations between regional blood-brain barrier disruption, aging, and
2 Alzheimer's disease biomarkers in cognitively normal older adults
3

4 Author information: Marisa Denkinger^{1*}, Suzanne Baker², Ben Inglis³, Sarah
5 Kobayashi¹, Alexis Juarez¹, Suzanne Mason¹, William Jagust^{1,2}
6

7 ¹ Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA,
8 United States
9

² Lawrence Berkeley National Laboratory, Berkeley, CA, United States

10 ³ Henry H. Wheeler Jr. Brain Imaging Center, University of California, Berkeley,
11 Berkeley, CA, United States
12
13
14

15 * Corresponding author

16 Email: marisa_becerra@berkeley.edu

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41 **Abstract**

42
43

Background

44 Blood-brain barrier disruption (BBBd) has been hypothesized as a feature of aging that
45 may lead to the development of Alzheimer's disease (AD). We sought to identify the
46 brain regions most vulnerable to BBBd during aging and examine their regional
47 relationship with neuroimaging biomarkers of AD.

48 **Methods**

49 We studied 31 cognitively normal older adults (OA) and 10 young adults (YA) from the
50 Berkeley Aging Cohort Study (BACS). Both OA and YA received dynamic contrast-
51 enhanced MRI (DCE-MRI) to quantify K_{trans} values, as a measure of BBBd, in 37 brain
52 regions across the cortex. The OA also received Pittsburgh compound B (PiB)-PET to
53 create distribution volume ratios (DVR) images and flortaucipir (FTP)- PET to create
54 partial volume corrected standardized uptake volume ratios (SUVR) images. Repeated
55 measures ANOVA assessed the brain regions where OA showed greater BBBd than
56 YA. In OA, K_{trans} values were compared based on sex, A β positivity status, and APOE4
57 carrier status within a composite region across the areas susceptible to aging. We used
58 linear models and sparse canonical correlation analysis (SCCA) to examine the
59 relationship between K_{trans} and AD biomarkers.

60 **Results**

61 OA showed greater BBBd than YA predominately in the temporal lobe, with some
62 involvement of parietal, occipital and frontal lobes. Within an averaged ROI of affected
63 regions, there was no difference in K_{trans} values based on sex or A β positivity, but OA
64 who were APOE4 carriers had significantly higher K_{trans} values. There was no direct

65 relationship between averaged K_{trans} and global A β pathology, but there was a trend for
66 an A β status by tau interaction on K_{trans} in this region. SCCA showed increased K_{trans}
67 was associated with increased PiB DVR, mainly in temporal and parietal brain regions.
68 There was not a significant relationship between K_{trans} and FTP SUVR.

69 **Discussion**

70 Our findings indicate that the BBB shows regional vulnerability during normal aging that
71 overlaps considerably with the pattern of AD pathology. Greater BBBd in brain regions
72 affected in aging is related to APOE genotype and may also be related to the
73 pathological accumulation of A β .

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90 **Introduction**

91 Brain aging is accompanied by the aggregation of pathological proteins and the
92 increasing prevalence of cerebrovascular disease. Recent research has shown that
93 blood brain barrier disruption (BBBd) is an important feature of both brain aging and
94 Alzheimer's disease (AD). BBBd in human aging and AD has been documented through
95 the detection of blood-derived proteins in the hippocampus (HC) and cortex of AD
96 patients and increases in the cerebrospinal fluid (CSF) of the plasma albumin protein
97 ratio (Qalb) in both aging and AD [1–4]. More recent evidence of BBBd in humans
98 comes from studies using the high spatial and temporal resolution imaging technique,
99 dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), which allows
100 measurement of subtle BBB changes [5]. A number of studies using DCE MRI have
101 shown BBBd in both aging and AD with particular vulnerability of the hippocampus to
102 this process [6–12]. Major questions remain, however, regarding the overall spatial
103 distribution of BBBd, whether abnormalities are limited to the medial temporal lobe
104 (MTL) and most importantly, whether or how BBBd is related to the development of AD.

105 Studies that explore the relationship between BBBd and AD benefit from the
106 availability of fluid and PET biomarkers of the two protein aggregates associated with
107 the disease – β -amyloid (A β) and pathological forms of tau. BBBd measured with DCE-
108 MRI in the HC and parahippocampal cortex (PHC) is evident before CSF measures of
109 AD pathology, or cognitive decline [8]. Some evidence also suggests a lack of
110 association between BBBd, measured using Qalb, and global A β PET in non demented
111 older adults [1]. A recent study using DCE-MRI in cognitively normal and impaired
112 individuals reported a lack of association of BBBd with A β or tau positivity, but a

113 relationship with cognitive impairment and APOE4 genotype [13]. The discordance
114 between in vivo measurement of BBBd and evidence of AD pathology suggests that
115 BBBd may either be a very early precursor of AD, or lead to dementia symptoms
116 through a mechanism independent of amyloid and tau pathology [14].

117 In this study, we investigated the relationship between BBBd and AD through 2
118 lines of evidence. First, we examined the full spatial distribution of BBBd which offers an
119 ability to draw inferences about causal mechanisms and to help establish the role of
120 BBBd in dementia. To do this, we compared BBB function in a group of cognitively
121 normal older adults (OA) to young adults (YA) and mapped the whole brain distribution
122 of BBBd. Second, we investigated whether BBBd in OA was associated with APOE4
123 genotype and regional A β and tau, measured using PET imaging.

124

125 **Methods**

126 **Participants**

127 We recruited 31 cognitively normal OA and 10 YA enrolled through the Berkeley Aging
128 Cohort Study (BACS). OA participants were part of an ongoing longitudinal study of
129 aging and received neuropsychological testing, DCE-MRI, and both A β and tau PET.
130 We acquired PET scans an average of 2.4 months (SD=5.3) before or after the DCE-
131 MRI. YA participants received neuropsychological testing and DCE-MRI only. Inclusion
132 criteria included a baseline Mini Mental State Examination (MMSE) score of >26, scores
133 on all neuropsychological tests within 1.5 SD of age, sex and education adjusted norms,
134 no neurological, psychiatric, or major medical illness, and no medications affecting
135 cognitive ability.

136 **Standard Protocol Approvals, Registrations, and Participant Consents**

137 The project was approved by the institutional review board (IRB) at the University of
138 California, Berkeley, and written informed consent was collected from each
139 participant. The recruitment period for this study was 12/16/2019 – 6/23/2023.

140

141 **MRI Acquisition**

142 1.5T MRI data were collected for standard PET processing at the Lawrence Berkeley
143 National Laboratory (LBNL) on a Siemens Magnetom Avanto scanner. A whole-brain
144 high resolution sagittal T1-weighted MPRAGE scan was acquired for each participant
145 (TR= 2110 ms, TE=3.58 ms, voxel size= 1mm isotropic, flip angle= 15°).

146 3T MRI data were collected at the UC Berkeley Henry H. Wheeler, Jr. Brain
147 Imaging Center with a 3T Siemens Trio scanner and 32-channel head coil. High
148 resolution sagittal T1-weighted magnetization prepared rapid gradient echo (MPRAGE)
149 scans were acquired for each participant (repetition time (TR)=2300 ms, inversion time
150 (TI)=900 ms, echo time (TE)=2.96 ms, flip angle=9°, voxel size=1 mm isotropic, field of
151 view (FOV)=256 x 240 x 176 mm).

152 Baseline coronal T1-weighted maps were acquired using a T1-weighted three-
153 dimensional (3D) spoiled gradient echo pulse sequence and variable flip angle method
154 (TR=3.8 ms, TE=1.64 ms, voxel size=2.5 x 1.3 x 2.5 mm, FOV=240 x 180 x 220 mm,
155 flip angles=2, 5,10,12,15°) with full brain coverage. Coronal DCE-MRI were acquired
156 with the same sequence and a flip angle of 5°. The sequence was repeated for a total of
157 21.3 minutes with a time resolution of 18 seconds [15]. The macrocyclic gadolinium-

158 based contrast agent Gadobutrol (gadavist, 1 mmol/ml, 0.1ml/kg body weight) was
159 administered intravenously over 30 seconds following the first 7 DCE repetitions.

160

161 **PET Acquisition**

162 Methods for PET acquisition and analysis have been described previously, but are
163 summarized here [16]. All PET scans were acquired at LBNL on a Siemens Biograph
164 PET/CT scanner with the radiotracers [¹¹C]PiB for A β and [¹⁸F]Flortaucipir (FTP) for tau
165 synthesized at LBNL's Biomedical Isotope Facility. Following acquisition of a CT scan,
166 PiB-PET data were collected across 35 dynamic acquisition frames for 90 minutes after
167 injection and FTP-PET data were binned into 4 x 5 minute frames from 80-100 minutes
168 after injection. All PET images were reconstructed using an ordered subset expectation
169 maximization algorithm, with attenuation correction, scatter correction, and smoothing
170 with a 4 mm Gaussian kernel.

171

172 **Structural MRI Processing**

173 The 3T T1-weighted images were segmented using FreeSurfer v7.1.1
174 (<http://surfer.nmr.mgh.harvard.edu/>) to derive anatomical ROIs in native space for the
175 measurement of BBBd. Segmentations and parcellations were visually checked to
176 ensure accuracy. FS Desikan-Killiany atlas ROIs were extracted and used to calculate
177 region-specific BBBd. The 1.5T MRIs were used only for PET coregistration and were
178 segmented in our standard processing pipeline to derive native space FS ROIs for PiB
179 and FTP quantification.

180

181 **DCE-MRI Processing**

182 DCE-MRI scans were realigned to the first image for motion correction using Statistical
183 Parametric Mapping 12 (SPM12) prior to analysis. Analysis was completed using the
184 DCE-MRI analysis software, ROCKETSHIP, running with Matlab [17]. The arterial input
185 function (AIF) was manually labeled in each participant at the common carotid artery
186 and was fitted with a bi-exponential function prior to kinetic modeling. A modified version
187 of the Patlak linearized regression mathematical analysis was used to generate BBB
188 permeability volume transfer constant (K_{trans}) maps [18]. This model provides high
189 accuracy and precision for small permeability values [19, 20]. The total contrast agent
190 concentration in the brain tissue, $C_{tissue}(t)$, can be described as a function of the
191 contrast agent concentration in plasma, CAIF(t), the volume fraction of plasma, v_p , and
192 the blood-to-brain volume transfer constant, K_{trans} , using the following equation:

193

194
$$C_{tissue}(t) = K_{trans} \int CAIF(\tau) d\tau + v_p CAIF(t)$$

195

196 K_{trans} thus represents the transport from the intravascular space to the extravascular
197 extracellular space, with a higher K_{trans} indicating greater BBBd. K_{trans} was calculated at
198 a voxelwise level for each subject and was averaged within FS Desikan-Killiany atlas
199 ROIs.

200

201 **PET Processing**

202 FTP images were realigned, averaged, and coregistered to the participant's 1.5T MRI
203 using SPM12. Standardized uptake value ratio (SUVR) images were calculated by

204 using the mean tracer uptake from 80-100 minutes post-injection and were normalized
205 with an inferior cerebellar gray reference region [21]. The average SUVR values were
206 calculated in FS Desikan-Killiany atlas ROIs derived from segmentation of the
207 participant's MRI. This ROI data was partial volume corrected (PVC) using a modified
208 Geometric Transfer Matrix approach and these values were used for analyses [21, 22].

209 PiB images were also realigned using SPM12. The frames from the first 20
210 minutes of acquisition were used for coregistration to the participant's 1.5T MRI.

211 Distribution volume ratio (DVR) images for the PiB frames 35-90 minutes post injection
212 were calculated using Logan Graphical analysis [23] and using whole cerebellar gray as
213 a reference region. Global A β uptake was calculated using FS cortical ROIs [24]. A
214 DVR of greater than 1.065 was used to classify participants as A β + [25]. We also
215 calculated the mean DVR within a set of FS Desikan-Killiany atlas ROIs that reflect the
216 typical pattern of A β deposition.

217

218 **Statistical Analyses**

219 K_{trans} values were not normally distributed, as indicated by the Shapiro-Wilk's test and
220 were therefore log transformed. Statistical analyses were conducted using jamovi
221 (<https://www.jamovi.org/>) and RStudio version 4.2.3 (<https://www.rstudio.com/>). To
222 investigate regional differences in K_{trans} values between OA and YA, we ran a repeated
223 measures analysis of variance (ANOVA) (group, region, and group X region), followed
224 by post-hoc independent sample *t*-tests. S1 Table lists the 37 ROIs used in this
225 analysis. We ran the analysis using K_{trans} values averaged across hemispheres,
226 followed by right and left hemispheres comparisons in the OA. Subsequent analyses

227 examining relationships between K_{trans} and AD biomarkers used only those regions
228 where OA showed significantly larger K_{trans} values than YA. First, we created an
229 averaged K_{trans} variable using these 20 regions and reported comparisons between sex,
230 A β status, and APOE4 carrier status. We also ran a linear model predicting averaged
231 K_{trans} from EC FTP and an EC FTP by A β status interaction, controlling for age and sex.
232 We also ran the same model using FTP in a temporal meta-ROI [26].

233 Sparse Canonical Correlation Analysis (SCCA) was used to examine the
234 multivariate regional relationships between BBBd and AD biomarkers, including PiB and
235 FTP. SCCA is a variant of the traditional Canonical Correlation Analysis (CCA), which
236 finds the optimal linear combinations of variables from two different modalities that are
237 highly correlated with each other by weighting each variable to determine its
238 significance in the correlation [27, 28]. The original variables are multiplied by these
239 weights to form a multivariate projection. The canonical correlation is the correlation
240 between these multivariate projections and multiple canonical correlations can be
241 derived by using the residual data of the canonical variates to compute the subsequent
242 canonical correlation. The first canonical correlation is usually the highest, capturing the
243 maximum possible correlation between the two sets of variables. SCCA enhances CCA
244 by incorporating sparsity constraints into the canonical vectors, often through penalties
245 like the Lasso penalty. This process ensures that many weights in the canonical vectors
246 are zero, highlighting the most significant variables in each modality contributing to the
247 correlation.

248 We performed SCCA using the using the Penalized Multivariate Analysis (PMA)
249 R package [29]. Bilateral K_{trans} , FTP and PiB ROIs were chosen for analysis to reduce

250 redundancy in the model. We used the 20 ROIs that were most affected by aging in our
251 sample. The effects of age and sex were removed from the data by calculating the
252 residuals, which were used for analyses. A lasso penalty of 0.5 was used to extract the
253 most meaningful ROIs and we did not constrain any of the weights in the model to be
254 positive or negative. The data were also mean centered and scaled. SCCA was
255 performed separately for K_{trans} and PiB and K_{trans} and FTP. Significance was determined
256 by correlating the multivariate projections of K_{trans} and AD biomarkers (PiB, FTP), which
257 produces a correlation coefficient in each dimension. An F-approximation of Wilk's
258 lambda was used as a test statistic and p-values < 0.05 were considered significant.

259

260 **Data Availability**

261 Data will be made publicly available to qualified investigators following publication of this
262 study.

263

264 **Results**

265 **Participant Characteristics**

266 The sample consisted of 31 OA (68-85 years old, mean 77.5, SD 5.2) and 10 YA (22-28
267 years old, mean 24.3, SD 2.3). Table 1 shows the sample characteristics for OA and
268 YA. Groups did not differ on years of education or sex. Within the OA group, 14
269 participants were classified as A β +, 4 as *APOE4* carriers, and 8 had treated
270 hypertension (HTN). The range of partial volume corrected FTP values in the entorhinal
271 cortex was 0.8-1.9 and in the temporal meta-ROI was 1.0-2.4.

272

273 **Table 1. Participant Demographics.**

274
275 Abbreviations: MMSE = Mini-Mental State Examination; APOE4 = Apolipoprotein ε4;
276 HTN = Hypertension. DVR = Distribution volume ratio; EC = Entorhinal cortex; PVC =
277 Partial volume corrected; SUVR = Standardized uptake value ratio Data shown as mean
278 \pm SD for continuous variables or n (%) for categorical variables. Group comparisons
279 were run using independent sample *t*-tests or χ^2 tests. * $p < 0.05$ ** $p < 0.001$

	Old (n = 31)	Young (n = 10)
Age, y^{**}	77.5 \pm 5.2	24.3 \pm 2.3
Female	16 (52%)	3 (30%)
Years of education	17.6 \pm 1.7	18.6 \pm 2.1
MMSE[*]	28.4 \pm 1.4	29.6 \pm 0.9
APOE4 carriers	4 (14%); n = 28	n/a
Aβ+	14 (45%)	n/a
Global PiB (DVR)	1.1 \pm 0.2	n/a
EC FTP (PVC SUVR)	1.4 \pm 0.3	n/a
Temporal meta-ROI FTP (PVC SUVR)	1.4 \pm 0.2	n/a

280

281 **Generation of K_{trans} Maps**

282 Fig 1 shows example whole brain K_{trans} maps in 2 OA and 2 YA participants with high
283 and low BBBd (defined as the highest and lowest average K_{trans} from each group in
284 averaged temporal, parietal, and occipital lobes). The 2 OA participants demonstrated
285 larger K_{trans} values distributed throughout the cortex than the YA, compared to limited
286 and more localized BBBd.

287 **Fig 1. Voxelwise K_{trans} Maps.** Representative voxelwise BBB K_{trans} maps in 2 OA (top)
288 and 2 YA (bottom) participants classified as having high and low BBBd. These are the
289 raw K_{trans} values with units of min^{-1} .

290

291 **Differences in BBBd Between OA and YA in Cortical Regions**

292 A repeated measures ANOVA (age group, region, age group X region) across the BBBd
293 average calculated in 37 bilateral FS-defined cortical ROIs showed a significant main
294 effect of region and an age group by region interaction ($F = 2.1$, $p < 0.001$). Post-hoc
295 independent sample *t*-tests showed that OA had larger K_{trans} than YA in 20 regions
296 bilaterally, that were largely in temporal and parietal cortex: (amygdala (Amyg), banks of
297 the superior temporal sulcus (BanksSTS), entorhinal cortex (EC), fusiform gyrus (Fu),
298 hippocampus (HC), insula (Ins), inferior temporal (IT), middle temporal (MT),
299 parahippocampus (PHC), transverse temporal (TrT)), parietal (inferior parietal (IP),
300 isthmus of the cingulate gyrus (IstCg), posterior cingulate (PCC), precuneus (PreCu)),
301 and occipital lobes (cuneus (Cu), lateral occipital (LO), lingual (Lg), pericalcarine
302 (PerCa)). There were also two regions in the frontal lobe where OA had larger K_{trans}
303 (pars opercularis (Op), paracentral (PaC)) (S1 Fig, all $p < 0.05$). Only the PHC and
304 IstCg survived corrections for multiple comparisons ($p < 0.001$). We did not find any
305 other regions with significant K_{trans} differences between groups, including white matter,
306 nor were there any ROIs where YA had higher K_{trans} than OA. Effect sizes for the left
307 and right hemisphere separately are shown in Fig 2. We used a paired samples *t*-test to
308 compare left and right hemisphere K_{trans} values in the OA and found significantly larger
309 K_{trans} in the left bankssts, Fu, HC, Ins, IP, IstCg, Lg, MT, PerCa, PHC, and TrT, with the

310 bankssts, Fu, IstCg, IP, and PHC surviving corrections for multiple comparisons ($p <$
311 0.001). The overall pattern of increased BBBd was similar across hemispheres, so we
312 used averaged bilateral data for the rest of the analyses to reduce the number of ROIs.

313

314 **Fig 2. K_{trans} Differences Between OA and YA.** Results from independent sample t -test
315 comparing log transformed K_{trans} values in 74 FS ROIs between OA and YA. Brain plots
316 show the Cohen's d effect size for each ROI. Effect sizes were overall larger in the left
317 hemisphere than the right hemisphere.

318

319 **Averaged BBBd Comparisons and Correlations**

320 We created an averaged K_{trans} ROI consisting of the 20 regions where OA showed
321 significantly larger K_{trans} than YA. Within the OA participants, there was no significant
322 correlation between age and the averaged K_{trans} ROI ($R = 0.22, p = 0.34$). There were
323 no significant averaged K_{trans} differences by sex ($t = -0.75, p = 0.46$) or A β status ($t = -$
324 1.27, $p = 0.21$). There was also no significant relationship between averaged K_{trans} and
325 global PiB index ($R = 0.32, p = 0.22$). We did find a significant difference by APOE4
326 status ($t = -2.50, p = 0.02$), where APOE4 carriers had greater K_{trans} . There was no
327 significant main effect of EC FTP or temporal meta-ROI FTP on predicting averaged
328 K_{trans} , but there was trend level interaction for EC FTP and A β status ($R = 0.41, p =$
329 0.08), as well as meta-ROI FTP and A β status ($R = 0.42, p = 0.08$).

330

331 **Regional relationships between BBBd and AD biomarkers**

332 Figs 3 and 4 show visual representations of the relationships between K_{trans} and AD
333 biomarkers for the first three canonical correlation dimensions, and S2 and S3 Table
334 show the weights of each region that contributed to the dimension.

335 The first two canonical correlations between K_{trans} and PiB were significant.
336 Dimension 1 was represented by positive K_{trans} weights primarily in the temporal lobe
337 and positive PiB weights in temporal and parietal cortices (Fig 3A, $r = 0.39$, $F (9, 61) =$
338 2.8 , $p = 0.009$), indicating brain regions where higher PIB DVR was associated with
339 higher K_{trans} . Dimension 2 was represented by both positive and negative K_{trans} weights
340 in parietal, occipital, and temporal cortices and mainly negative PiB weights in the
341 temporal lobe (Fig 3B, $r = 0.67$, $F (4, 52) = 5.2$, $p = 0.001$). The dimension 3 correlation
342 was not statistically significant (Fig 3C, $r = 0.26$, $F (1, 27) = 2.0$, $p = 0.17$).

343 Next, we looked at the associations between K_{trans} and partial volume corrected
344 FTP in 20 regions. The correlation between K_{trans} and FTP in dimension 1 was not
345 statistically significant (Fig 4A, $r = 0.42$, $F (9, 61) = 1.5$, $p = 0.16$). Dimension 2 showed
346 a trend level correlation represented by positive K_{trans} weights mainly in the temporal
347 lobe and positive FTP weights in the temporal and parietal cortices (Fig 4B, $r = 0.30$, F
348 $(4, 52) = 2.1$, $p = 0.09$). Dimension 3 was represented by positive K_{trans} weights in lateral
349 temporal and medial parietal regions and positive FTP weights in similar regions (Fig
350 4C, $r = 0.43$, $F (1, 27) = 6.3$, $p = 0.02$).

351

352 **Fig 3. Associations Between BBBd and A β .** Brain plots show the first three
353 dimensions from the sparse canonical correlation analysis between K_{trans} and PiB ROIs
354 controlled for the effects of age and sex (A-C). (A) Dimension 1, $r = 0.39$, $F (9, 61) =$

355 2.8, $p = 0.009$ (B) Dimension 2, $r = 0.67$, $F(4, 52) = 5.2$, $p = 0.001$ (C) Dimension 3, $r =$
356 0.26, $F(1, 27) = 2.0$, $p = 0.17$. Dimensions represent K_{trans} changes (increase or
357 decrease) aligned with corresponding PiB changes. Increases in a variable are signified
358 by positive weights and decreases with negative weights. Regions are colored based on
359 their weight and bilateral ROIs are depicted on a left hemisphere template brain.
360 Weights reduced to zero due to sparsity constraints are not included in the color scale.

361
362 **Fig 4. Associations Between BBBd and Tau.** Brain plots show the first three
363 dimensions from the sparse canonical correlation analysis between K_{trans} and partial
364 volume corrected FTP ROIs controlled for the effects of age and sex (A-C). (A)
365 Dimension 1, $r = 0.42$, $F(9, 61) = 1.5$, $p = 0.16$ (B) Dimension 2, $r = 0.30$, $F(4, 52) =$
366 2.1, $p = 0.09$ (C) Dimension 3, $r = 0.43$, $F(1, 27) = 6.3$, $p = 0.02$. Dimensions represent
367 K_{trans} changes (increase or decrease) aligned with corresponding FTP changes.
368 Increases in a variable are signified by positive weights and decreases with negative
369 weights. Regions are colored based on their weight and bilateral ROIs are depicted on a
370 left hemisphere template brain. Weights reduced to zero due to sparsity constraints are
371 not included in the color scale.

372
373 **Discussion**

374 Better characterization of BBBd during aging and its relationship, if any, to AD
375 biomarkers is critical in understanding the role of neurovascular dysfunction in the AD
376 pathological cascade. Using DCE-MRI in cognitively normal OA and YA, we showed
377 that BBBd does not occur globally, but rather occurred predominately in the temporal

378 lobe, with involvement of the parietal, and less involvement of occipital and frontal
379 lobes. In these regions we also found that APOE4 carriers had greater BBBd than non-
380 carriers. PET imaging showed that BBBd has weak and inconsistent relationships with
381 AD pathology. Although the large group of brain regions with elevated BBBd did not
382 show any relationship to A β , there was a trend for an A β by tau interaction on K_{trans} in
383 this region, and the SCCA showed a pattern of regional relationships between K_{trans} and
384 PiB DVR that recapitulated the known topography of AD pathology. Overall, these
385 findings indicate that BBBd during aging occurs in overlapping regions affected in AD, is
386 related to APOE genotype, and that it may be related to A β pathology.

387 The regional BBBd we found strikingly reflects the pattern of brain vulnerability to
388 AD pathology, particularly in regions that are affected early. Tau accumulation in normal
389 aging begins in the medial temporal lobe and spreads to neighboring regions in the
390 inferolateral temporal and medial parietal lobes in the presence of A β [16, 30]. The
391 pattern of brain A β accumulation overlaps with the spatial location of tau best in later
392 disease stages, covering regions in prefrontal, parietal, lateral temporal, and cingulate
393 cortices. In line with previous studies [6–9, 12, 13], we saw greater BBBd in the MTL,
394 particularly the EC, PHC, and HC, which accumulate tau pathology and undergo
395 atrophy in normal aging, but do not typically accumulate A β at early stages of AD [31].
396 We also saw that in our sample the frontal lobe is relatively spared from BBBd, which is
397 interesting because this brain region is associated with early A β accumulation [31], but
398 late tau accumulation [32]. These differences suggest that BBBd follows a distribution
399 pattern more like tau accumulation than A β , with involvement of the MTL, temporal,
400 parietal, and occipital lobes.

401 We next aimed to untangle the relationships between BBBd and neuroimaging
402 measures of AD biomarkers. We found no significant difference in BBBd based on A β
403 status in the prespecified ROIs, although there was a significant APOE4 effect. We did
404 not find any main effects of global A β , or regional tau in EC or temporal meta-ROI in
405 predicting averaged K_{trans} . However, we did find trend level interactions between A β
406 status and tau, which suggests the possibility that the combined pathologies, which
407 reflect the presence of AD, are related to BBBd. To further investigate the regional
408 relationship between BBBd and AD biomarkers, we used a data driven SCCA approach.
409 This method has the advantage of not requiring prespecified ROIs, and therefore may
410 be able to detect subtle regional relationships. We observed that increased BBBd was
411 associated with increased A β in temporal and parietal cortex, brain regions typically
412 affected by A β pathology. However, the spatial relationships between tau pathology and
413 BBBd revealed through this statistical approach were weak. Altogether, we interpret our
414 results as pointing towards complex relationships between A β , tau and BBBd such that
415 A β and BBBd could promote tau deposition over time, or A β and tau together could
416 promote BBBd. Larger samples and longitudinal data will be necessary to establish
417 these relationships.

418 The current evidence for a relationship between AD pathology and BBBd is
419 conflicting. Existing studies use different methods for defining BBBd, and different ways
420 of measuring AD pathology. Our findings of an effect of APOE4 genotype on BBBd
421 replicate results of one study; this study did not find any consistent or trend level
422 relationships between DCE-measured BBBd and A β or tau pathology measured with
423 PET, but did find an APOE effect [13]. A previous study using MRI measures of water

424 exchange to characterize BBBd showed an association between greater BBB
425 permeability in frontal, parietal, and temporal regions, and evidence of A β accumulation,
426 measured as reduced CSF A β 42 levels [33]. In a sample of patients with dementia,
427 greater BBBd, measured using Q_{alb} , was associated with less CSF A β 42 and A β 40, but
428 was not associated with CSF pTau181 or tTau [34]. However, another study using MRI
429 measures of water exchange, found that greater BBB permeability was associated with
430 increased CSF pTau [35]. These studies are difficult to compare to one another
431 because of the methodological differences but suggest the possibility of relationships
432 between AD pathology and alterations in BBB function.

433 Associations between BBBd and AD pathology have also been probed with
434 animal models, which also can assess temporal relationships. Previous research found
435 that BBBd leads to the deposition of A β by increasing its production and preventing its
436 normal transport across the BBB [36, 37]. Studies in animal models have also shown
437 that BBB permeability is increased before the presence of A β pathology in an AD
438 mouse model [38] and that loss of pericytes increased brain A β 40 and A β 42 levels [39].
439 In contrast, another study found that excessive A β generation and deposition disrupts
440 the BBB [40]. In the rTg4510 mouse model, BBBd emerged at the same time that
441 perivascular tau emerged around major HC blood vessels and tau depletion eliminated
442 BBBd [41]. Other research using human induced pluripotent stem cell-derived 3D
443 organoids found that exposure to human serum, as a model of BBBd, increased tau
444 phosphorylation [42]. Future longitudinal animal model studies examining relationships
445 between these pathological proteins and BBBd have the potential for explaining
446 relationships between these processes and revealing underlying mechanisms.

447 Although we used a technique for measuring BBBd that has high spatial and
448 temporal resolution, along with state-of-the-art measures of AD pathology, our study
449 does have limitations. The sample was small, especially in view of the number of
450 brain regions investigated. Our statistical approach required multiple post-hoc tests,
451 however this was justified by the significant group by region interaction. We also
452 attempted to minimize this problem by using the multivariate method of sparse
453 canonical correlation. Even though we investigated relationships between BBBd and AD
454 biomarkers in many brain regions, the sparsity constraint ensured that only the most
455 meaningful regions contributing to the canonical correlation were selected. The study of
456 normal older participants, as opposed to those with AD, may also result in smaller effect
457 sizes, although this is offset by the importance of finding results in cognitively normal
458 individuals. Importantly, even though we focused on cognitively normal older adults, the
459 range of global PiB and FTP values in our sample has been enough to see biological
460 effects in other studies [43, 44]. In this sample we only had 4 subjects who were APOE4
461 carriers, so future studies are needed to investigate the APOE effect further. Our
462 sample also lacked diversity in terms of race/ethnicity and socioeconomic status, which
463 limits the generalizability of these findings.

464 Taken together, our findings provide good evidence in support of previous work
465 showing that aging is associated with BBBd. Furthermore, these alterations are not
466 limited to MTL but include temporal and parietal cortical areas characteristically
467 associated with AD pathology, especially tau. APOE4 appears to facilitate BBBd, but
468 whether this occurs through a pathway related to AD pathology or independent of it is
469 unclear. Consistent with previously reported data, relationships between AD pathology

470 and BBBd are inconsistent and could reflect temporal lags between these processes, or
471 an interaction between A β and tau pathology on BBBd that we cannot detect with our
472 sample size. Nevertheless, these data point to important associations between aging,
473 the spatial pattern of BBBd, and possible associations with AD pathology that require
474 further investigation.

475

476 **Study Funding**

477 Research reported in this publication was supported by the National Institute On Aging
478 of the National Institutes of Health under Award Number F31AG072872 and R01
479 AG080043.

480

481 **Disclosures**

482 Dr. Jagust has served as a consultant to Clario, Lilly and Eisai. Dr. Baker consults for
483 Genentech. There are no other disclosures.

484

485 **Supporting Information**

486 **S1 Figure. Regional BBBd in OA and YA.** Repeated measures ANOVA revealed a
487 significant age group by region interaction ($F= 2.1, p < 0.001$). The boxplot shows the
488 regions where OA had significantly greater K_{trans} values following a post hoc
489 independent sample t -test. Regions are ordered by largest to smallest effect size.
490 Significance was defined as $p < 0.05$.

491

492 **S1 Table. Regions of Interest.** Table listing the 37 FS Desikan-Killiany atlas ROIs
493 used for analysis and their abbreviations.

494

495 **S2 Table. K_{trans} and PiB DVR Weights for Each Region of Interest in the SCCA.** ROI
496 = region of interest. See S1 Table for a ROI abbreviation key.

497

498 **S3 Table. K_{trans} and FTP Weights for Each Region of Interest in the SCCA.** PVC= partial volume corrected; ROI = region of interest. See S1 Table for a ROI abbreviation
499
500 key.

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521 References

523 1. Janelidze S, Hertze J, Nägga K, Nilsson K, Nilsson C, Wennström M, van Westen D, Blennow
524 K, Zetterberg H, Hansson O (2017) Increased blood-brain barrier permeability is associated
525 with dementia and diabetes but not amyloid pathology or APOE genotype. *Neurobiol
526 Aging* 51:104–112

527 2. Blennow K (1990) Blood-brain barrier disturbance in patients with Alzheimer's disease is
528 related to vascular factors. *Acta Neurol Scand* 81:323–326

529 3. Erickson MA, Banks WA (2013) Blood–Brain Barrier Dysfunction as a Cause and
530 Consequence of Alzheimer's Disease. *J Cereb Blood Flow Metab* 33:1500–1513

531 4. Sengillo JD, Winkler EA, Walker CT, Sullivan JS, Johnson M, Zlokovic BV (2013) Deficiency in
532 Mural Vascular Cells Coincides with Blood-Brain Barrier Disruption in Alzheimer's Disease:
533 Pericytes in Alzheimer's Disease. *Brain Pathol* 23:303–310

534 5. Heye AK, Culling RD, Valdés Hernández M del C, Thriplleton MJ, Wardlaw JM (2014)
535 Assessment of blood–brain barrier disruption using dynamic contrast-enhanced MRI. A
536 systematic review. *NeuroImage Clin* 6:262–274

537 6. Montagne A, Barnes SR, Sweeney MD, et al (2015) Blood-Brain Barrier Breakdown in the
538 Aging Human Hippocampus. *Neuron* 85:296–302

539 7. Moon W-J, Lim C, Ha IH, Kim Y, Moon Y, Kim H-J, Han S-H (2021) Hippocampal blood–brain
540 barrier permeability is related to the APOE4 mutation status of elderly individuals without
541 dementia. *J Cereb Blood Flow Metab* 41:1351–1361

542 8. Nation DA, Sweeney MD, Montagne A, et al (2019) Blood–brain barrier breakdown is an
543 early biomarker of human cognitive dysfunction. *Nat Med* 25:270–276

544 9. Senatorov Jr. VVS, Friedman AR, Milikovsky DZ, et al (2019) Blood-brain barrier dysfunction
545 in aging induces hyperactivation of TGF β signaling and chronic yet reversible neural
546 dysfunction. *Sci Transl Med* 15

547 10. Starr JM, Farrall AJ, Armitage P, McGurn B, Wardlaw J (2009) Blood–brain barrier
548 permeability in Alzheimer’s disease: a case–control MRI study. *Psychiatry Res*
549 *Neuroimaging* 171:232–241

550 11. van de Haar HJ, Burgmans S, Jansen JFA, van Osch MJP, van Buchem MA, Muller M, Hofman
551 PAM, Verhey FRJ, Backes WH (2016) Blood-Brain Barrier Leakage in Patients with Early
552 Alzheimer Disease. *Radiology* 281:527–535

553 12. Verheggen ICM, de Jong JJA, van Boxtel MPJ, Gronenschild EHBM, Palm WM, Postma AA,
554 Jansen JFA, Verhey FRJ, Backes WH (2020) Increase in blood–brain barrier leakage in
555 healthy, older adults. *GeroScience* 42:1183–1193

556 13. Montagne A, Nation DA, Sagare AP, et al (2020) APOE4 leads to blood–brain barrier
557 dysfunction predicting cognitive decline. *Nature* 581:71–76

558 14. Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood–brain barrier breakdown in Alzheimer
559 disease and other neurodegenerative disorders. *Nat Rev Neurol* 14:133–150

560 15. Thriplleton MJ, Backes WH, Sourbron S, et al (2019) Quantifying blood-brain barrier
561 leakage in small vessel disease: Review and consensus recommendations. Alzheimers
562 Dement 15:840–858

563 16. Schöll M, Lockhart SN, Schonhaut DR, et al (2016) PET Imaging of Tau Deposition in the
564 Aging Human Brain. Neuron 89:971–982

565 17. Barnes SR, Ng TSC, Santa-Maria N, Montagne A, Zlokovic BV, Jacobs RE (2015) ROCKETSHIP:
566 a flexible and modular software tool for the planning, processing and analysis of dynamic
567 MRI studies. BMC Med Imaging 15:19

568 18. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical Evaluation of Blood-to-Brain
569 Transfer Constants from Multiple-Time Uptake Data. J Cereb Blood Flow Metab 3:1–7

570 19. Cramer SP, Larsson HB (2014) Accurate Determination of Blood–Brain Barrier Permeability
571 Using Dynamic Contrast-Enhanced T1-Weighted MRI: A Simulation and *in vivo* Study on
572 Healthy Subjects and Multiple Sclerosis Patients. J Cereb Blood Flow Metab 34:1655–1665

573 20. Heye AK, Thriplleton MJ, Armitage PA, Valdés Hernández M del C, Makin SD, Glatz A, Sakka
574 E, Wardlaw JM (2016) Tracer kinetic modelling for DCE-MRI quantification of subtle blood–
575 brain barrier permeability. NeuroImage 125:446–455

576 21. Baker SL, Maass A, Jagust WJ (2017) Considerations and code for partial volume correcting [
577 ¹⁸F]-AV-1451 tau PET data. Data Brief 15:648–657

578 22. Rousset OG, Ma Y, Evans AC (1997) Correction for Partial Volume Effects in PET: Principle
579 and Validation. *J Nucl Med* 39:904–911

580 23. Logan J, Fowler JS, Volkow ND, Wang G-J, Ding Y-S, Alexoff DL (1996) Distribution Volume
581 Ratios without Blood Sampling from Graphical Analysis of PET Data. *J Cereb Blood Flow
582 Metab* 16:834–840

583 24. Mormino EC, Brandel MG, Madison CM, Rabinovici GD, Marks S, Baker SL, Jagust WJ (2012)
584 Not quite PIB-positive, not quite PIB-negative: Slight PIB elevations in elderly normal
585 control subjects are biologically relevant. *NeuroImage* 59:1152–1160

586 25. Villeneuve S, Rabinovici GD, Cohn-Sheehy BI, et al (2015) Existing Pittsburgh Compound-B
587 positron emission tomography thresholds are too high: statistical and pathological
588 evaluation. *Brain* 138:2020–2033

589 26. Jack CR, Wiste HJ, Weigand SD, et al (2017) Defining imaging biomarker cut points for brain
590 aging and Alzheimer's disease. *Alzheimers Dement* 13:205–216

591 27. Härdle WK, Simar L (2015) Applied Multivariate Statistical Analysis.
592 <https://doi.org/10.1007/978-3-662-45171-7>

593 28. Hotelling, Harold (1936) Relations Between Two Sets of Variates. *Biometrika* 28:321–377

594 29. Witten DM, Tibshirani R, Hastie T (2009) A penalized matrix decomposition, with
595 applications to sparse principal components and canonical correlation analysis.
596 *Biostatistics* 10:515–534

597 30. Sanchez JS, Becker JA, Jacobs HIL, et al (2021) The cortical origin and initial spread of medial
598 temporal tauopathy in Alzheimer's disease assessed with positron emission tomography.
599 *Sci Transl Med* 13:eabc0655

600 31. LaPoint MR, Baker SL, Landau SM, Harrison TM, Jagust WJ (2022) Rates of β -amyloid
601 deposition indicate widespread simultaneous accumulation throughout the brain.
602 *Neurobiol Aging* 115:1–11

603 32. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. *Acta*
604 *Neuropathol (Berl)* 82:239–259

605 33. Gold BT, Shao X, Sudduth TL, Jicha GA, Wilcock DM, Seago ER, Wang DJJ (2021) Water
606 exchange rate across the blood-brain barrier is associated with CSF amyloid- β 42 in
607 healthy older adults. *Alzheimers Dement* 17:2020–2029

608 34. Gan J, Yang X, Zhang G, Li X, Liu S, Zhang W, Ji Y (2023) Alzheimer's disease pathology:
609 pathways between chronic vascular risk factors and blood-brain barrier dysfunction in a
610 cohort of patients with different types of dementia. *Front Aging Neurosci* 15:1088140

611 35. Lin Z, Sur S, Liu P, et al (2021) Blood–Brain Barrier Breakdown in Relationship to Alzheimer
612 and Vascular Disease. *Ann Neurol* 90:227–238

613 36. Ridler C (2018) BACE1 inhibitors block new A β plaque formation. *Nat Rev Neurol* 14:126–
614 126

615 37. Wang H, Chen F, Du Y-F, Long Y, Reed MN, Hu M, Suppiramaniam V, Hong H, Tang S-S
616 (2018) Targeted inhibition of RAGE reduces amyloid- β influx across the blood-brain barrier
617 and improves cognitive deficits in db/db mice. *Neuropharmacology* 131:143–153

618 38. Ujiie M, Dickstein DL, Carlow DA, Jefferies WA (2003) Blood-Brain Barrier Permeability
619 Precedes Senile Plaque Formation in an Alzheimer Disease Model. *Microcirculation*
620 10:463–470

621 39. Sagare AP, Bell RD, Zhao Z, Ma Q, Winkler EA, Ramanathan A, Zlokovic BV (2013) Pericyte
622 loss influences Alzheimer-like neurodegeneration in mice. *Nat Commun* 4:2932

623 40. Montagne A, Zhao Z, Zlokovic BV (2017) Alzheimer’s disease: A matter of blood–brain
624 barrier dysfunction? *J Exp Med* 214:3151–3169

625 41. Blair LJ, Frauen HD, Zhang B, et al (2015) Tau depletion prevents progressive blood-brain
626 barrier damage in a mouse model of tauopathy. *Acta Neuropathol Commun* 3:8

627 42. Chen X, Sun G, Tian E, Zhang M, Davtyan H, Beach TG, Reiman EM, Blurton-Jones M,
628 Holtzman DM, Shi Y (2021) Modeling Sporadic Alzheimer’s Disease in Human Brain
629 Organoids under Serum Exposure. *Adv Sci* 8:2101462

630 43. Giorgio J, Adams JN, Maass A, Jagust WJ, Breakspear M (2023) Amyloid induced
631 hyperexcitability in default mode network drives medial temporal hyperactivity and early
632 tau accumulation. *Neuron* S0896627323008887

633 44. Cassady KE, Chen X, Adams JN, Harrison TM, Zhuang K, Maass A, Baker S, Jagust W (2023)
634 Effect of Alzheimer's Pathology on Task-Related Brain Network Reconfiguration in Aging. *J*
635 *Neurosci* 43:6553–6563

636

637

638

639

640

641

642

643

644

645

646

647

648

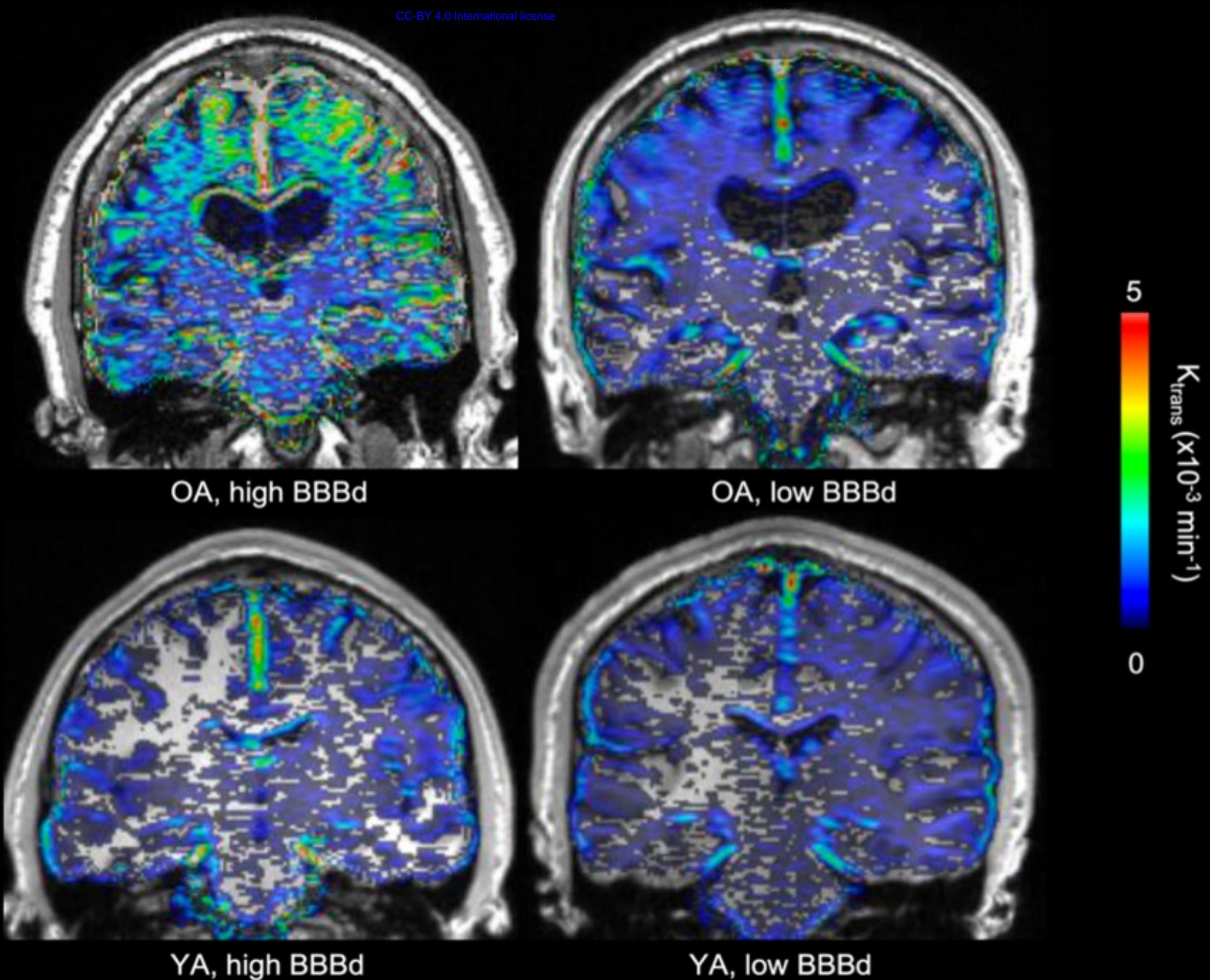
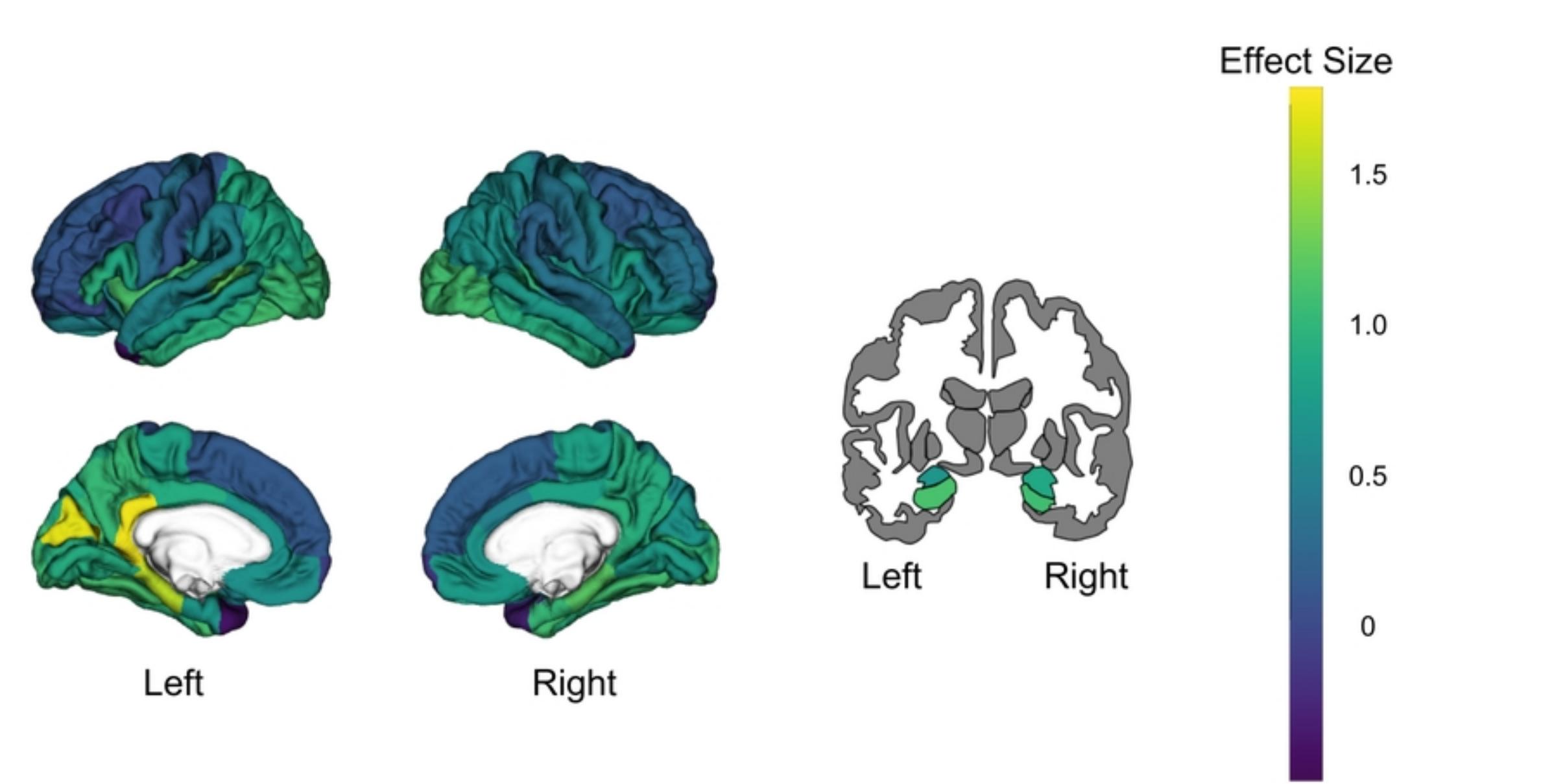
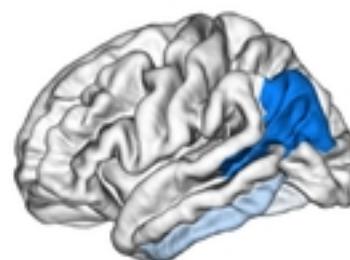
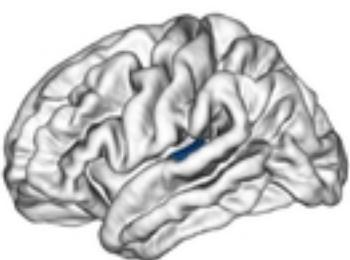
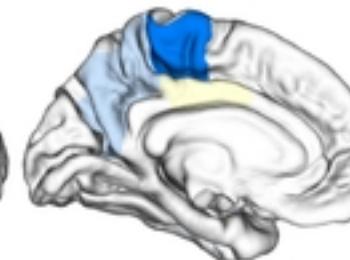
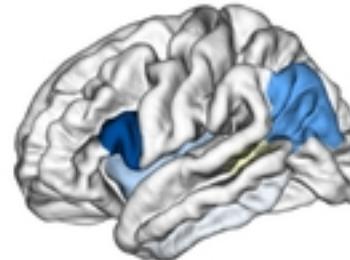
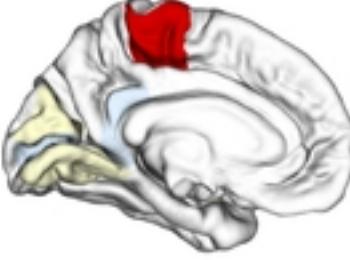
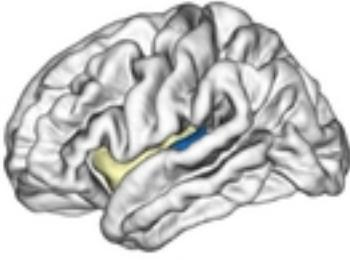
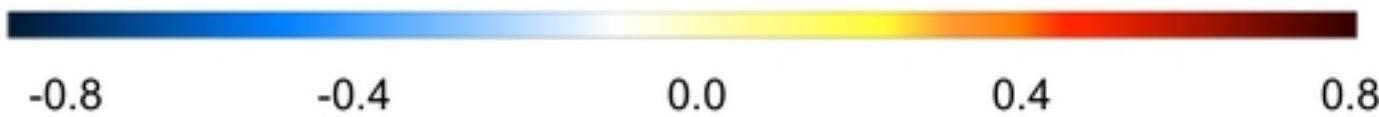


Fig 1


Fig 2

A**Dimension 1****B****Dimension 2****C****Dimension 3** K_{trans}

PiB DVR

ROI Weight

Fig 3

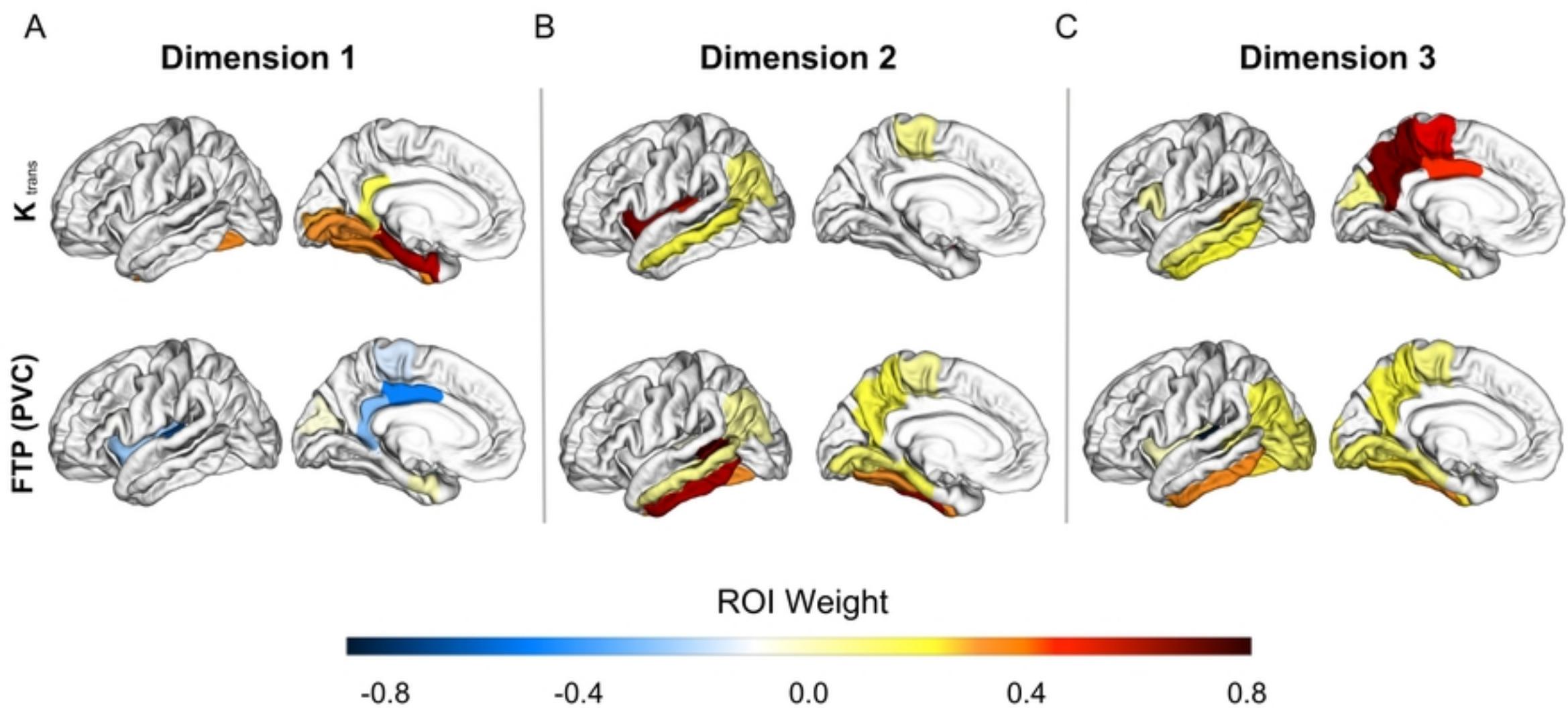


Fig 4