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41 Abstract
42

43 Background 

44 Blood-brain barrier disruption (BBBd) has been hypothesized as a feature of aging that 

45 may lead to the development of Alzheimer�s disease (AD). We sought to identify the 

46 brain regions most vulnerable to BBBd during aging and examine their regional 

47 relationship with neuroimaging biomarkers of AD. 

48 Methods

49 We studied 31 cognitively normal older adults (OA) and 10 young adults (YA) from the 

50 Berkeley Aging Cohort Study (BACS). Both OA and YA received dynamic contrast-

51 enhanced MRI (DCE-MRI) to quantify Ktrans values, as a measure of BBBd, in 37 brain 

52 regions across the cortex. The OA also received Pittsburgh compound B (PiB)-PET to 

53 create distribution volume ratios (DVR) images and flortaucipir (FTP)- PET to create 

54 partial volume corrected standardized uptake volume ratios (SUVR) images. Repeated 

55 measures ANOVA assessed the brain regions where OA showed greater BBBd than 

56 YA. In OA, Ktrans values were compared based on sex, A positivity status, and APOE4 

57 carrier status within a composite region across the areas susceptible to aging. We used 

58 linear models and sparse canonical correlation analysis (SCCA) to examine the 

59 relationship between Ktrans and AD biomarkers. 

60 Results

61 OA showed greater BBBd than YA predominately in the temporal lobe, with some 

62 involvement of parietal, occipital and frontal lobes. Within an averaged ROI of affected 

63 regions, there was no difference in Ktrans values based on sex or A positivity, but OA 

64 who were APOE4 carriers had significantly higher Ktrans values. There was no direct 
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65 relationship between averaged Ktrans and global Aβ pathology, but there was a trend for 

66 an A status by tau interaction on Ktrans in this region. SCCA showed increased Ktrans 

67 was associated with increased PiB DVR, mainly in temporal and parietal brain regions. 

68 There was not a significant relationship between Ktrans and FTP SUVR.

69 Discussion

70 Our findings indicate that the BBB shows regional vulnerability during normal aging that 

71 overlaps considerably with the pattern of AD pathology. Greater BBBd in brain regions 

72 affected in aging is related to APOE genotype and may also be related to the 

73 pathological accumulation of Aβ.
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90 Introduction

91 Brain aging is accompanied by the aggregation of pathological proteins and the 

92 increasing prevalence of cerebrovascular disease. Recent research has shown that 

93 blood brain barrier disruption (BBBd) is an important feature of both brain aging and 

94 Alzheimer�s disease (AD). BBBd in human aging and AD has been documented through 

95 the detection of blood-derived proteins in the hippocampus (HC) and cortex of AD 

96 patients and increases in the cerebrospinal fluid (CSF) of the plasma albumin protein 

97 ratio (Qalb) in both aging and AD [1�4]. More recent evidence of BBBd in humans 

98 comes from studies using the high spatial and temporal resolution imaging technique, 

99 dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), which allows 

100 measurement of subtle BBB changes [5]. A number of studies using DCE MRI have 

101 shown BBBd in both aging and AD with particular vulnerability of the hippocampus to 

102 this process [6�12]. Major questions remain, however, regarding the overall spatial 

103 distribution of BBBd, whether abnormalities are limited to the medial temporal lobe 

104 (MTL) and most importantly, whether or how BBBd is related to the development of AD. 

105 Studies that explore the relationship between BBBd and AD benefit from the 

106 availability of fluid and PET biomarkers of the two protein aggregates associated with 

107 the disease �-amyloid (A) and pathological forms of tau. BBBd measured with DCE-

108 MRI in the HC and parahippocampal cortex (PHC) is evident before CSF measures of 

109 AD pathology, or cognitive decline [8]. Some evidence also suggests a lack of 

110 association between BBBd, measured using Qalb, and global Aβ PET in non demented 

111 older adults [1]. A recent study using DCE-MRI in cognitively normal and impaired 

112 individuals reported a lack of association of BBBd with A or tau positivity, but a 
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113 relationship with cognitive impairment and APOE4 genotype [13]. The discordance 

114 between in vivo measurement of BBBd and evidence of AD pathology suggests that 

115 BBBd may either be a very early precursor of AD, or lead to dementia symptoms 

116 through a mechanism independent of amyloid and tau pathology [14]. 

117 In this study, we investigated the relationship between BBBd and AD through 2 

118 lines of evidence. First, we examined the full spatial distribution of BBBd which offers an 

119 ability to draw inferences about causal mechanisms and to help establish the role of 

120 BBBd in dementia. To do this, we compared BBB function in a group of cognitively 

121 normal older adults (OA) to young adults (YA) and mapped the whole brain distribution 

122 of BBBd. Second, we investigated whether BBBd in OA was associated with APOE4 

123 genotype and regional Aβ and tau, measured using PET imaging.

124

125 Methods

126 Participants

127 We recruited 31 cognitively normal OA and 10 YA enrolled through the Berkeley Aging 

128 Cohort Study (BACS). OA participants were part of an ongoing longitudinal study of 

129 aging and received neuropsychological testing, DCE-MRI, and both Aβ and tau PET. 

130 We acquired PET scans an average of 2.4 months (SD=5.3) before or after the DCE-

131 MRI. YA participants received neuropsychological testing and DCE-MRI only. Inclusion 

132 criteria included a baseline Mini Mental State Examination (MMSE) score of >26, scores 

133 on all neuropsychological tests within 1.5 SD of age, sex and education adjusted norms, 

134 no neurological, psychiatric, or major medical illness, and no medications affecting 

135 cognitive ability. 
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136 Standard Protocol Approvals, Registrations, and Participant Consents

137 The project was approved by the institutional review board (IRB) at the University of 

138 California, Berkeley, and written informed consent was collected from each 

139 participant. The recruitment period for this study was 12/16/2019 � 6/23/2023. 

140

141 MRI Acquisition

142 1.5T MRI data were collected for standard PET processing at the Lawrence Berkeley 

143 National Laboratory (LBNL) on a Siemens Magnetom Avanto scanner. A whole-brain 

144 high resolution sagittal T1-weighted MPRAGE scan was acquired for each participant 

145 (TR= 2110 ms, TE=3.58 ms, voxel size= 1mm isotropic, flip angle= 15°). 

146 3T MRI data were collected at the UC Berkeley Henry H. Wheeler, Jr. Brain 

147 Imaging Center with a 3T Siemens Trio scanner and 32-channel head coil. High 

148 resolution sagittal T1-weighted magnetization prepared rapid gradient echo (MPRAGE) 

149 scans were acquired for each participant (repetition time (TR)=2300 ms, inversion time 

150 (TI)=900 ms, echo time (TE)=2.96 ms, flip angle=9°, voxel size=1 mm isotropic, field of 

151 view (FOV)=256 x 240 x 176 mm). 

152 Baseline coronal T1-weighted maps were acquired using a T1-weighted three-

153 dimensional (3D) spoiled gradient echo pulse sequence and variable flip angle method 

154 (TR=3.8 ms, TE=1.64 ms, voxel size=2.5 x 1.3 x 2.5 mm, FOV=240 x 180 x 220 mm, 

155 flip angles=2, 5,10,12,15°) with full brain coverage. Coronal DCE-MRI were acquired 

156 with the same sequence and a flip angle of 5°. The sequence was repeated for a total of 

157 21.3 minutes with a time resolution of 18 seconds [15]. The macrocyclic gadolinium-
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158 based contrast agent Gadobutrol (gadavist, 1 mmol/ml, 0.1ml/kg body weight) was 

159 administered intravenously over 30 seconds following the first 7 DCE repetitions. 

160

161 PET Acquisition 

162 Methods for PET acquisition and analysis have been described previously, but are 

163 summarized here [16]. All PET scans were acquired at LBNL on a Siemens Biograph 

164 PET/CT scanner with the radiotracers [11C]PiB for A and [18F]Flortaucipir (FTP) for tau 

165 synthesized at LBNL�s Biomedical Isotope Facility. Following acquisition of a CT scan, 

166 PiB-PET data were collected across 35 dynamic acquisition frames for 90 minutes after 

167 injection and FTP-PET data were binned into 4 x 5 minute frames from 80-100 minutes 

168 after injection. All PET images were reconstructed using an ordered subset expectation 

169 maximization algorithm, with attenuation correction, scatter correction, and smoothing 

170 with a 4 mm Gaussian kernel. 

171

172 Structural MRI Processing

173 The 3T T1-weighted images were segmented using FreeSurfer v7.1.1 

174 (http://surfer.nmr.mgh.harvard.edu/) to derive anatomical ROIs in native space for the 

175 measurement of BBBd. Segmentations and parcellations were visually checked to 

176 ensure accuracy. FS Desikan-Killiany atlas ROIs were extracted and used to calculate 

177 region-specific BBBd. The 1.5T MRIs were used only for PET coregistration and were 

178 segmented in our standard processing pipeline to derive native space FS ROIs for PiB 

179 and FTP quantification.

180
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181 DCE-MRI Processing

182 DCE-MRI scans were realigned to the first image for motion correction using Statistical 

183 Parametric Mapping 12 (SPM12) prior to analysis. Analysis was completed using the 

184 DCE-MRI analysis software, ROCKETSHIP, running with Matlab [17]. The arterial input 

185 function (AIF) was manually labeled in each participant at the common carotid artery 

186 and was fitted with a bi-exponential function prior to kinetic modeling. A modified version 

187 of the Patlak linearized regression mathematical analysis was used to generate BBB 

188 permeability volume transfer constant (Ktrans) maps [18]. This model provides high 

189 accuracy and precision for small permeability values [19, 20]. The total contrast agent 

190 concentration in the brain tissue, Ctissue (t), can be described as a function of the 

191 contrast agent concentration in plasma, CAIF (t), the volume fraction of plasma, vp, and 

192 the blood-to-brain volume transfer constant, Ktrans, using the following equation: 

193

194 Ctissue (t) = Ktrans ∫ CAIF (�) d� +vp CAIF(t) 

195

196 Ktrans thus represents the transport from the intravascular space to the extravascular 

197 extracellular space, with a higher Ktrans indicating greater BBBd. Ktrans was calculated at 

198 a voxelwise level for each subject and was averaged within FS Desikan-Killiany atlas 

199 ROIs. 

200

201 PET Processing

202 FTP images were realigned, averaged, and coregistered to the participant�s 1.5T MRI 

203 using SPM12. Standardized uptake value ratio (SUVR) images were calculated by 
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204 using the mean tracer uptake from 80-100 minutes post-injection and were normalized 

205 with an inferior cerebellar gray reference region [21]. The average SUVR values were 

206 calculated in FS Desikan-Killiany atlas ROIs derived from segmentation of the 

207 participant�s MRI. This ROI data was partial volume corrected (PVC) using a modified 

208 Geometric Transfer Matrix approach and these values were used for analyses [21, 22]. 

209 PiB images were also realigned using SPM12. The frames from the first 20 

210 minutes of acquisition were used for coregistration to the participant�s 1.5T MRI. 

211 Distribution volume ratio (DVR) images for the PiB frames 35-90 minutes post injection 

212 were calculated using Logan Graphical analysis [23] and using whole cerebellar gray as 

213 a reference region. Global Aβ uptake was calculated using FS cortical ROIs [24].  A 

214 DVR of greater than1.065 was used to classify participants as Aβ+ [25]. We also 

215 calculated the mean DVR within a set of FS Desikan-Killiany atlas ROIs that reflect the 

216 typical pattern of A deposition. 

217

218 Statistical Analyses

219 Ktrans values were not normally distributed, as indicated by the Shapiro-Wilk�s test and 

220 were therefore log transformed. Statistical analyses were conducted using jamovi 

221 (https://www.jamovi.org/) and RStudio version 4.2.3 (https://www.rstudio.com/). To 

222 investigate regional differences in Ktrans values between OA and YA, we ran a repeated 

223 measures analysis of variance (ANOVA) (group, region, and group X region), followed 

224 by post-hoc independent sample t-tests. S1 Table lists the 37 ROIs used in this 

225 analysis. We ran the analysis using Ktrans values averaged across hemispheres, 

226 followed by right and left hemispheres comparisons in the OA. Subsequent analyses 
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227 examining relationships between Ktrans and AD biomarkers used only those regions 

228 where OA showed significantly larger Ktrans values than YA. First, we created an 

229 averaged Ktrans variable using these 20 regions and reported comparisons between sex, 

230 Aβ status, and APOE4 carrier status. We also ran a linear model predicting averaged 

231 Ktrans from EC FTP and an EC FTP by Aβ status interaction, controlling for age and sex. 

232 We also ran the same model using FTP in a temporal meta-ROI [26]. 

233 Sparse Canonical Correlation Analysis (SCCA) was used to examine the 

234 multivariate regional relationships between BBBd and AD biomarkers, including PiB and 

235 FTP. SCCA is a variant of the traditional Canonical Correlation Analysis (CCA), which 

236 finds the optimal linear combinations of variables from two different modalities that are 

237 highly correlated with each other by weighting each variable to determine its 

238 significance in the correlation [27, 28]. The original variables are multiplied by these 

239 weights to form a multivariate projection. The canonical correlation is the correlation 

240 between these multivariate projections and multiple canonical correlations can be 

241 derived by using the residual data of the canonical variates to compute the subsequent 

242 canonical correlation. The first canonical correlation is usually the highest, capturing the 

243 maximum possible correlation between the two sets of variables. SCCA enhances CCA 

244 by incorporating sparsity constraints into the canonical vectors, often through penalties 

245 like the Lasso penalty. This process ensures that many weights in the canonical vectors 

246 are zero, highlighting the most significant variables in each modality contributing to the 

247 correlation.

248 We performed SCCA using the using the Penalized Multivariate Analysis (PMA) 

249 R package [29]. Bilateral Ktrans, FTP and PiB ROIs were chosen for analysis to reduce 
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250 redundancy in the model.  We used the 20 ROIs that were most affected by aging in our 

251 sample. The effects of age and sex were removed from the data by calculating the 

252 residuals, which were used for analyses. A lasso penalty of 0.5 was used to extract the 

253 most meaningful ROIs and we did not constrain any of the weights in the model to be 

254 positive or negative. The data were also mean centered and scaled. SCCA was 

255 performed separately for Ktrans and PiB and Ktrans and FTP. Significance was determined 

256 by correlating the multivariate projections of Ktrans and AD biomarkers (PiB, FTP), which 

257 produces a correlation coefficient in each dimension. An F-approximation of Wilk�s 

258 lambda was used as a test statistic and p-values < 0.05 were considered significant. 

259

260 Data Availability

261 Data will be made publicly available to qualified investigators following publication of this 

262 study. 

263

264 Results

265 Participant Characteristics 

266 The sample consisted of 31 OA (68-85 years old, mean 77.5, SD 5.2) and 10 YA (22-28 

267 years old, mean 24.3, SD 2.3). Table 1 shows the sample characteristics for OA and 

268 YA. Groups did not differ on years of education or sex. Within the OA group, 14 

269 participants were classified as Aβ+, 4 as APOE4 carriers, and 8 had treated 

270 hypertension (HTN). The range of partial volume corrected FTP values in the entorhinal 

271 cortex was 0.8-1.9 and in the temporal meta-ROI was 1.0-2.4. 

272
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273 Table 1. Participant Demographics. 
274

275 Abbreviations: MMSE = Mini-Mental State Examination; APOE4 = Apolipoprotein ε4; 

276 HTN = Hypertension. DVR = Distribution volume ratio; EC = Entorhinal cortex; PVC = 

277 Partial volume corrected; SUVR = Standardized uptake value ratio Data shown as mean 

278 ± SD for continuous variables or n (%) for categorical variables. Group comparisons 

279 were run using independent sample t-tests or χ2 tests. * p < 0.05 ** p < 0.001

280

281 Generation of Ktrans Maps

282 Fig 1 shows example whole brain Ktrans maps in 2 OA and 2 YA participants with high 

283 and low BBBd (defined as the highest and lowest average Ktrans from each group in 

284 averaged temporal, parietal, and occipital lobes).  The 2 OA participants demonstrated 

285 larger Ktrans values distributed throughout the cortex than the YA, compared to limited 

286 and more localized BBBd.

Old (n = 31) Young (n = 10)

Age, y** 77.5 ± 5.2 24.3 ± 2.3

Female 16 (52%) 3 (30%)

Years of education 17.6 ± 1.7 18.6 ± 2.1

MMSE* 28.4 ± 1.4 29.6 ± 0.9

APOE4 carriers 4 (14%); n = 28 n/a

Aβ+ 14 (45%) n/a

Global PiB (DVR) 1.1 ± 0.2 n/a

EC FTP (PVC SUVR) 1.4 ± 0.3 n/a

Temporal meta-ROI FTP 
(PVC SUVR)

1.4 ± 0.2 n/a

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.16.580788doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.16.580788
http://creativecommons.org/licenses/by/4.0/


13

287 Fig 1. Voxelwise Ktrans Maps. Representative voxelwise BBB Ktrans maps in 2 OA (top) 

288 and 2 YA (bottom) participants classified as having high and low BBBd. These are the 

289 raw Ktrans values with units of min-1. 

290

291 Differences in BBBd Between OA and YA in Cortical Regions

292 A repeated measures ANOVA (age group, region, age group X region) across the BBBd 

293 average calculated in 37 bilateral FS-defined cortical ROIs showed a significant main 

294 effect of region and an age group by region interaction (F = 2.1, p<0.001). Post-hoc 

295 independent sample t-tests showed that OA had larger Ktrans than YA in 20 regions 

296 bilaterally, that were largely in temporal and parietal cortex: (amygdala (Amyg), banks of 

297 the superior temporal sulcus (BanksSTS), entorhinal cortex (EC), fusiform gyrus (Fu), 

298 hippocampus (HC), insula (Ins), inferior temporal (IT), middle temporal (MT), 

299 parahippocampus (PHC), transverse temporal (TrT)), parietal (inferior parietal (IP), 

300 isthmus of the cingulate gyrus (IstCg), posterior cingulate (PCC), precuneus (PreCu)), 

301 and occipital lobes (cuneus (Cu), lateral occipital (LO), lingual (Lg), pericalcarine 

302 (PerCa)). There were also two regions in the frontal lobe where OA had larger Ktrans 

303 (pars opercualris (Op), paracentral (PaC)) (S1 Fig, all p < 0.05). Only the PHC and 

304 IstCg survived corrections for multiple comparisons (p < 0.001). We did not find any 

305 other regions with significant Ktrans differences between groups, including white matter, 

306 nor were there any ROIs where YA had higher Ktrans than OA. Effect sizes for the left 

307 and right hemisphere separately are shown in Fig 2. We used a paired samples t-test to 

308 compare left and right hemisphere Ktrans values in the OA and found significantly larger 

309 Ktrans in the left bankssts, Fu, HC, Ins, IP, IstCg, Lg, MT, PerCa, PHC, and TrT, with the 
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310 bankssts, Fu, IstCg, IP, and PHC surviving corrections for multiple comparisons (p < 

311 0.001). The overall pattern of increased BBBd was similar across hemispheres, so we 

312 used averaged bilateral data for the rest of the analyses to reduce the number of ROIs. 

313

314 Fig 2. Ktrans Differences Between OA and YA. Results from independent sample t-test 

315 comparing log transformed Ktrans values in 74 FS ROIs between OA and YA. Brain plots 

316 show the Cohen�s d effect size for each ROI. Effect sizes were overall larger in the left 

317 hemisphere than the right hemisphere. 

318

319 Averaged BBBd Comparisons and Correlations

320 We created an averaged Ktrans ROI consisting of the 20 regions where OA showed 

321 significantly larger Ktrans than YA. Within the OA participants, there was no significant 

322 correlation between age and the averaged Ktrans ROI (R = 0.22, p = 0.34). There were 

323 no significant averaged Ktrans differences by sex (t = -0.75, p = 0.46) or Aβ status (t = -

324 1.27, p = 0.21). There was also no significant relationship between averaged Ktrans and 

325 global PiB index (R = 0.32, p = 0.22). We did find a significant difference by APOE4 

326 status (t = -2.50, p = 0.02), where APOE4 carriers had greater Ktrans. There was no 

327 significant main effect of EC FTP or temporal meta-ROI FTP on predicting averaged 

328 Ktrans, but there was trend level interaction for EC FTP and Aβ status (R = 0.41, p = 

329 0.08), as well as meta-ROI FTP and Aβ status (R = 0.42, p = 0.08). 

330

331 Regional relationships between BBBd and AD biomarkers 
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332 Figs 3 and 4 show visual representations of the relationships between Ktrans and AD 

333 biomarkers for the first three canonical correlation dimensions, and S2 and S3 Table 

334 show the weights of each region that contributed to the dimension. 

335 The first two canonical correlations between Ktrans and PiB were significant. 

336 Dimension 1 was represented by positive Ktrans weights primarily in the temporal lobe 

337 and positive PiB weights in temporal and parietal cortices (Fig 3A, r = 0.39, F (9, 61) = 

338 2.8, p = 0.009), indicating brain regions where higher PIB DVR was associated with 

339 higher Ktrans. Dimension 2 was represented by both positive and negative Ktrans weights 

340 in parietal, occipital, and temporal cortices and mainly negative PiB weights in the 

341 temporal lobe (Fig 3B, r = 0.67, F (4, 52) = 5.2, p = 0.001). The dimension 3 correlation 

342 was not statistically significant (Fig 3C, r = 0.26, F (1, 27) = 2.0, p = 0.17).

343 Next, we looked at the associations between Ktrans and partial volume corrected 

344 FTP in 20 regions. The correlation between Ktrans and FTP in dimension 1 was not 

345 statistically significant (Fig 4A, r = 0.42, F (9, 61) = 1.5, p = 0.16). Dimension 2 showed 

346 a trend level correlation represented by positive Ktrans weights mainly in the temporal 

347 lobe and positive FTP weights in the temporal and parietal cortices (Fig 4B, r = 0.30, F 

348 (4, 52) = 2.1, p = 0.09). Dimension 3 was represented by positive Ktrans weights in lateral 

349 temporal and medial parietal regions and positive FTP weights in similar regions (Fig 

350 4C, r = 0.43, F (1, 27) = 6.3, p = 0.02). 

351

352 Fig 3. Associations Between BBBd and Aβ. Brain plots show the first three 

353 dimensions from the sparse canonical correlation analysis between Ktrans and PiB ROIs 

354 controlled for the effects of age and sex (A-C). (A) Dimension 1, r = 0.39, F (9, 61) = 
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355 2.8, p = 0.009 (B) Dimension 2, r = 0.67, F (4, 52) = 5.2, p = 0.001 (C) Dimension 3, r = 

356 0.26, F (1, 27) = 2.0, p = 0.17. Dimensions represent Ktrans changes (increase or 

357 decrease) aligned with corresponding PiB changes. Increases in a variable are signified 

358 by positive weights and decreases with negative weights. Regions are colored based on 

359 their weight and bilateral ROIs are depicted on a left hemisphere template brain. 

360 Weights reduced to zero due to sparsity constraints are not included in the color scale.

361

362 Fig 4. Associations Between BBBd and Tau. Brain plots show the first three 

363 dimensions from the sparse canonical correlation analysis between Ktrans and partial 

364 volume corrected FTP ROIs controlled for the effects of age and sex (A-C). (A) 

365 Dimension 1, r = 0.42, F (9, 61) = 1.5, p = 0.16 (B) Dimension 2, r = 0.30, F (4, 52) = 

366 2.1, p = 0.09 (C) Dimension 3, r = 0.43, F (1, 27) = 6.3, p = 0.02. Dimensions represent 

367 Ktrans changes (increase or decrease) aligned with corresponding FTP changes. 

368 Increases in a variable are signified by positive weights and decreases with negative 

369 weights. Regions are colored based on their weight and bilateral ROIs are depicted on a 

370 left hemisphere template brain. Weights reduced to zero due to sparsity constraints are 

371 not included in the color scale.

372

373 Discussion

374 Better characterization of BBBd during aging and its relationship, if any, to AD 

375 biomarkers is critical in understanding the role of neurovascular dysfunction in the AD 

376 pathological cascade. Using DCE-MRI in cognitively normal OA and YA, we showed 

377 that BBBd does not occur globally, but rather occurred predominately in the temporal 
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378 lobe, with involvement of the parietal, and less involvement of occipital and frontal 

379 lobes. In these regions we also found that APOE4 carriers had greater BBBd than non-

380 carriers. PET imaging showed that BBBd has weak and inconsistent relationships with 

381 AD pathology. Although the large group of brain regions with elevated BBBd did not 

382 show any relationship to A, there was a trend for an A by tau interaction on Ktrans in 

383 this region, and the SCCA showed a pattern of regional relationships between Ktrans and 

384 PiB DVR that recapitulated the known topography of AD pathology.  Overall, these 

385 findings indicate that BBBd during aging occurs in overlapping regions affected in AD, is 

386 related to APOE genotype, and that it may be related to A pathololgy. 

387 The regional BBBd we found strikingly reflects the pattern of brain vulnerability to 

388 AD pathology, particularly in regions that are affected early. Tau accumulation in normal 

389 aging begins in the medial temporal lobe and spreads to neighboring regions in the 

390 inferolateral temporal and medial parietal lobes in the presence of Aβ [16, 30]. The 

391 pattern of brain Aβ accumulation overlaps with the spatial location of tau best in later 

392 disease stages, covering regions in prefrontal, parietal, lateral temporal, and cingulate 

393 cortices. In line with previous studies [6�9, 12, 13], we saw greater BBBd in the MTL, 

394 particularly the EC, PHC, and HC, which accumulate tau pathology and undergo 

395 atrophy in normal aging, but do not typically accumulate Aβ at early stages of AD [31]. 

396 We also saw that in our sample the frontal lobe is relatively spared from BBBd, which is 

397 interesting because this brain region is associated with early Aβ accumulation [31], but 

398 late tau accumulation [32]. These differences suggest that BBBd follows a distribution 

399 pattern more like tau accumulation than A, with involvement of the MTL, temporal, 

400 parietal, and occipital lobes. 
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401 We next aimed to untangle the relationships between BBBd and neuroimaging 

402 measures of AD biomarkers. We found no significant difference in BBBd based on Aβ 

403 status in the prespecified ROIs, although there was a significant APOE4 effect. We did 

404 not find any main effects of global Aβ, or regional tau in EC or temporal meta-ROI in 

405 predicting averaged Ktrans. However, we did find trend level interactions between Aβ 

406 status and tau, which suggests the possibility that the combined pathologies, which 

407 reflect the presence of AD, are related to BBBd. To further investigate the regional 

408 relationship between BBBd and AD biomarkers, we used a data driven SCCA approach. 

409 This method has the advantage of not requiring prespecified ROIs, and therefore may 

410 be able to detect subtle regional relationships.  We observed that increased BBBd was 

411 associated with increased Aβ in temporal and parietal cortex, brain regions typically 

412 affected by A pathology. However, the spatial relationships between tau pathology and 

413 BBBd revealed through this statistical approach were weak. Altogether, we interpret our 

414 results as pointing towards complex relationships between A, tau and BBBd such that 

415 A and BBBd could promote tau deposition over time, or A and tau together could 

416 promote BBBd. Larger samples and longitudinal data will be necessary to establish 

417 these relationships. 

418 The current evidence for a relationship between AD pathology and BBBd is 

419 conflicting. Existing studies use different methods for defining BBBd, and different ways 

420 of measuring AD pathology. Our findings of an effect of APOE4 genotype on BBBd 

421 replicate results of one study; this study did not find any consistent or trend level 

422 relationships between DCE-measured BBBd and A or tau pathology measured with 

423 PET, but did find an APOE effect [13]. A previous study using MRI measures of water 
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424 exchange to characterize BBBd showed an association between greater BBB 

425 permeability in frontal, parietal, and temporal regions, and evidence of Aβ accumulation, 

426 measured as reduced CSF Aβ42 levels [33]. In a sample of patients with dementia, 

427 greater BBBd, measured using Qalb, was associated with less CSF Aβ42 and Aβ40, but 

428 was not associated with CSF pTau181 or tTau [34]. However, another study using MRI 

429 measures of water exchange, found that greater BBB permeability was associated with 

430 increased CSF pTau [35]. These studies are difficult to compare to one another 

431 because of the methodological differences but suggest the possibility of relationships 

432 between AD pathology and alterations in BBB function.

433 Associations between BBBd and AD pathology have also been probed with 

434 animal models, which also can assess temporal relationships. Previous research found 

435 that BBBd leads to the deposition of Aβ by increasing its production and preventing its 

436 normal transport across the BBB [36, 37]. Studies in animal models have also shown 

437 that BBB permeability is increased before the presence of Aβ pathology in an AD 

438 mouse model [38] and that loss of pericytes increased brain Aβ40 and Aβ42 levels [39]. 

439 In contrast, another study found that excessive Aβ generation and deposition disrupts 

440 the BBB [40]. In the rTg4510 mouse model, BBBd emerged at the same time that 

441 perivascular tau emerged around major HC blood vessels and tau depletion eliminated 

442 BBBd [41].  Other research using human induced pluripotent stem cell-derived 3D 

443 organoids found that exposure to human serum, as a model of BBBd, increased tau 

444 phosphorylation [42]. Future longitudinal animal model studies examining relationships 

445 between these pathological proteins and BBBd have the potential for explaining 

446 relationships between these processes and revealing underlying mechanisms.
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447 Although we used a technique for measuring BBBd that has high spatial and 

448 temporal resolution, along with state-of-the-art measures of AD pathology, our study 

449 does have limitations. The sample was small, especially in in view of the number of 

450 brain regions investigated. Our statistical approach required multiple post-hoc tests, 

451 however this was justified by the significant group by region interaction. We also 

452 attempted to minimize this problem by using the multivariate method of sparse 

453 canonical correlation. Even though we investigated relationships between BBBd and AD 

454 biomarkers in many brain regions, the sparsity constraint ensured that only the most 

455 meaningful regions contributing to the canonical correlation were selected. The study of 

456 normal older participants, as opposed to those with AD, may also result in smaller effect 

457 sizes, although this is offset by the importance of finding results in cognitively normal 

458 individuals. Importantly, even though we focused on cognitively normal older adults, the 

459 range of global PiB and FTP values in our sample has been enough to see biological 

460 effects in other studies [43, 44]. In this sample we only had 4 subjects who were APOE4 

461 carriers, so future studies are needed to investigate the APOE effect further. Our 

462 sample also lacked diversity in terms of race/ethnicity and socioeconomic status, which 

463 limits the generalizability of these findings.

464 Taken together, our findings provide good evidence in support of previous work 

465 showing that aging is associated with BBBd. Furthermore, these alterations are not 

466 limited to MTL but include temporal and parietal cortical areas characteristically 

467 associated with AD pathology, especially tau. APOE4 appears to facilitate BBBd, but 

468 whether this occurs through a pathway related to AD pathology or independent of it is 

469 unclear. Consistent with previously reported data, relationships between AD pathology 
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470 and BBBd are inconsistent and could reflect temporal lags between these processes, or 

471 an interaction between A and tau pathology on BBBd that we cannot detect with our 

472 sample size. Nevertheless, these data point to important associations between aging, 

473 the spatial pattern of BBBd, and possible associations with AD pathology that require 

474 further investigation.  
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486 S1 Figure. Regional BBBd in OA and YA. Repeated measures ANOVA revealed a 

487 significant age group by region interaction (F= 2.1, p < 0.001). The boxplot shows the 

488 regions where OA had significantly greater Ktrans values following a post hoc 
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490 Significance was defined as p < 0.05. 
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