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Recent advances in large-scale recording technology have spurred
exciting new inquiries into the high-dimensional geometry of the neu-
ral code. However, characterizing this geometry from noisy neural
responses, particularly in datasets with more neurons than trials,
poses major statistical challenges. We address this problem by de-
veloping new tools for the accurate estimation of high-dimensional
signal geometry. We apply these tools to investigate the geometry
of representations in mouse primary visual cortex. Previous work
has argued that these representations exhibit a power law, in which
the »’th principal component falls off as 1/n. Here we show that re-
sponse geometry in V1 is better described by a broken power law,
in which two different exponents govern the falloff of early and late
modes of population activity. Our analysis reveals that later modes
decay more rapidly than previously suggested, resulting in a sub-
stantially larger fraction of signal variance contained in the early
modes of population activity. We examined the signal representa-
tions of the early population modes and found them to have higher
fidelity than even the most reliable neurons. Intriguingly there are
many population modes not captured by classic models of primary
visual cortex indicating there is highly redundant yet poorly charac-
terized tuning across neurons. Furthermore, inhibitory neurons tend
to co-activate in response to stimuli that drive the early modes con-
sistent with a role in sharpening population level tuning. Overall, our
novel and broadly applicable approach overturns prior results and
reveals striking structure in a population sensory representation.

neural coding | high-dimensional | statistics

Each patch of the visual field is represented by a large
population of neurons in primary visual cortex. This
“population code” supports the performance of a huge diver-
sity of downstream visual tasks, making it a topic of intense
general interest in visual neuroscience. An important open
question about neural population codes in V1 and beyond is
their geometry (1, 2). Specifically, how does a population of
n neurons make use of its n-dimensional activity space for
representing external stimuli? One approach to this question
is to examine the eigenvalues of the signal covariance matrix,
which quantifies the correlations in a population’s (noiseless)
responses over a collection of stimuli. If all eigenvalues are
equal (corresponding to a “flat” eigenspectrum), the neurons
are maximally uncorrelated, with each neuron encoding an
orthogonal stimulus feature. Conversely, if the covariance con-
tains only one non-zero eigenvalue, all neurons are perfectly
correlated, meaning that they redundantly encode a single
shared feature.

Recent work from Stringer et al 2019 (3) argued that an
optimal population code must trade off competing demands
of efficiency and smoothness. Efficiency, which relates to the
code’s capacity for carrying information, requires a maximally
flat eigenspectrum, so that the population takes full advantage
of its dynamic range in all dimensions. Smoothness, on the

www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

other hand, relates to the property that nearby stimuli evoke
nearby patterns of neural activity thus providing robustness
to perturbations of stimuli and neural responses. Stringer et
al argued that smoothness requires the eigenspectrum to decay
at least as quickly as a power law with a slope of 1. Any slower
decay of the eigenspectrum implies that the representation
will not be smooth, so nearby stimuli elicit widely separated
response patterns. Thus, the population code that maximizes
efficiency while preserving smoothness is a power law with
slope negative 1. Mathematically, the i'th eigenvalue of the
(noiseless) response distribution should be A\; = ¢i™, where
a = 1 is the power law exponent and c¢ is a constant of
proportionality.

To assess whether this property holds in mouse visual cortex,
Stringer et al (3) introduced a novel method for estimating the
signal eigenspectrum known as cross-validated PCA (cvPCA).
On the basis of the cvPCA estimator applied to population
responses in mouse primary visual cortex, they determined
that the eigenspectrum both follows a power law and is at the
critical limit of decay (o = 1). They interpreted this result
as indicating that representations in V1 are as efficient as
possible while maintaining smoothness.

Here we show that the cvPCA estimator provides a biased
estimate of the signal eigenspectrum. We introduce a novel
estimator for signal eigenspectra to overcome this bias. We
then re-analyse the data from (3), and show that the signal
eigenspectrum in mouse V1 systematically deviates from a
power law. Rather, it is better explained by a broken power

Significance Statement

The nervous system encodes the visual environment across
millions of neurons. Such high-dimensional signals are difficult
to estimate—and consequently—to characterize. We address
this challenge with a novel statistical method that revises past
conceptions of the complexity of encoding in primary visual
cortex. We discover population encoding is dominated by ap-
proximately ten features while additional features account for
much less of the representation than previously thought. Many
dominant features are not explained by classic models indicat-
ing highly redundant encoding of poorly characterized nonlinear
image features. Interestingly, inhibitory neurons respond in uni-
son to dominant features consistent with a role in sharpening
population representation. Overall, we discover striking prop-
erties of population visual representation with novel, broadly
applicable, statistical tools.
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Fig. 1. The signal eigenspectrum and the challenge of estimating it. (A) Tuning curves of three neurons for a 1-dimensional stimulus (gray traces). (B) Same three tuning
curves plotted jointly in a 3D response space. (C) Joint tuning curve centered and plotted along principal axes of variation. (D) Eigenspectrum, which describes the variance
along each principal component of the joint tuning curve. (E) Noisy estimates of individual tuning curves at the same three points along the tuning curve (black points). True
tuning curve is unknown (light grey trace). (F') Noisy estimate of the joint tuning curve (black dots). (G Estimated joint tuning curve centered and rotated to align with its
principal components; the resulting curve is 2-dimensional, since 3 points defined a plane. (H) Eigenspectrum of the estimated joint tuning curve. Only two eigenvalues are

non-zero, and thus later eigenvalue of true tuning curve are missing.

law, in which the largest eigenvalues follow a power law with
shallow slope, and subsequent eigenvalues decay according to
a different power law with steeper slope. Crucially, asymp-
totic decay of small eigenvalues under this model is not at
the critical limit of @ = 1 , but decays significantly faster
(~ 20% steeper). We find that because of this form of the
eigenspectrum population geometry is lower dimensional than
previously thought and there are ten dominating eigenmodes
that account for ~ 30% of neural variation.

To gain insight into the population neural representations
in mouse V1, we examined these dominant dimensions of
the population response. We found that some dimensions
often recapitulated classical selectivity for spatial frequency
and orientation that has been reported in primary visual
cortex (4, 5) but with far higher fidelity than single neurons.
However, other dimensions, that were also robustly encoded,
were unexplained by classic models indicating that difficult to
characterize single neuron tuning (6, 7) is highly redundant
across neurons. Furthermore, we found that inhibitory neurons’
contribution to these dominant dimensions tended to be larger
and more uniform than the excitatory cells consistent with
a role in sharpening population tuning analogous to single
neuron level effects of inhibition (8). Overall, these findings
highlight the importance of examining sensory representations
at the population level to uncover emergent coding properties
that are not apparent from single neuron responses alone.

Results
Neural tuning refers to a neuron’s average or “noise-free” re-

sponse for a collection of stimuli. ((9-11), Fig 1A). The “pop-

2 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

ulation” or “joint” tuning of a neural population is thus an
n-dimensional cloud of points defined by the mean responses
of all n neurons in the population over a particular stimulus
set (Fig 1B). To quantify the geometry of this joint tuning, we
can compute the eigenvalues of its covariance, which describe
the variance of this cloud of points along each axis in a set of n
orthogonal axes known as eigenmodes. This set of eigenvalues,
sorted from greatest to smallest, is known as the signal eigen-
spectrum. Estimating the signal eigenspectrum from neural
population recordings is a challenging statistical problem. In
high dimensional settings, the number of stimuli that can be
shown in an experiment may be smaller than the number of
neurons in the population. Moroever, neural responses are
noisy, meaning that multiple presentations of each stimulus
are required to accurately estimate the mean response to each
stimulus (Fig 1E).

Principal components analysis (PCA) applied to trial av-
eraged responses provides a standard method for estimating
the signal eigenspectrum. It finds a sequence of orthogonal
directions in neural response space that capture maximum
response variance. However, this approach leads to two sources
of bias (1) trial-to-trial noise covariance can corrupt estimates
of the underlying signal covariance, (2) even in the absence of
trial-to-trial noise, finite sampling of stimuli will bias estimates
of the eigenspectrum— for example if there are fewer stimuli
than neurons (d < n) then the sample covariance matrix will
only have d non-zero eigenvalues, thus n — d eigenvalues. For
example, three observations in neural response space (Fig 1F)
that have been centered can always be described perfectly by
two dimensions (Fig 1G) and thus eigenvalues with indices
above 2 will be 0 (Fig 1H).

Pospisil et al.

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111

12


www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX
https://doi.org/10.1101/2024.02.16.580726
http://creativecommons.org/licenses/by-nc-nd/4.0/

113
114
115
116
17
118
119
120
121
122
123
124
125
126
127
128
129
130
131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.16.580726; this version posted February 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

The cvPCA estimator was proposed as a solution for bias
introduced by trial-to-trial noise. The estimator for the ith
eigenvalue is formed by computing the estimated signal vari-
ance (using an unbiased estimate of the signal covariance)
along the ith eigenvector of an unbiased estimate of the to-
tal covariance—signal plus noise covariance (see Methods,
c¢vPCA). The noise covariance can then, for example, perturb
the first eigenvector into a direction that is not the direction
of maximal signal variance. Thus if the ordered signal and
noise covariance matrix eigenvectors are not perfectly aligned,
the cvPCA estimator will converge to the incorrect values (See
Fig 2F). Additionally, cvPCA cannot estimate signal eigen-
values greater than the number of stimuli, which limits its
ability to accurately recover lawful relationships in the decay
of small eigenvalues, which is of fundamental importance for
the dimensionality of neural populations.

To overcome these limitations, we introduce a novel method
for estimating the signal eigenspectrum from noisy neural
recordings by exploiting a recently developed estimator for
the moments of the eigenvalue distribution.

A moment-based estimator for the neural eigenspectrum. We
developed a novel estimator that, up to a good approxima-
tion, does not suffer from any of the three biases we have
described. We did so by finding unbiased estimates of signal
‘eigenmoments’, the pth moment being the signal covariance
eigenvalues to the pth power averaged m, = 71L ?:1 A?, ;» then
finding the best fit eigenspectrum to these unbiased estimates.
We found our signal eigenmoment estimator by extending the
results of Li et al (2014) and Kong & Valiant (2017).

To provide intuition into this approach it is useful to con-
sider the centered eigenmoments of two different eigenspectrum
(Fig 2). If the eigenspectrum is flat (Fig 2A, column 1), imply-
ing each neuron’s tuning is mutually orthogonal to all other
neurons’ tuning, then the distribution of eigenvalues will be a
delta function centered at the average variance of the neurons
(Fig 2A column 2). The first eigenmoment is the mean of the
eigenvalues and thus is also equal to the average variance of
the neurons but all other moments are zero because there is
no spread to the distribution (Fig 2B column 3 traces go to
zero after p = 1). If an unbiased estimate of the first eigen-
moment was obtained, E[rh] = % Zil i, and we knew the
eigenspectrum was flat we would have an unbiased estimator
of the eigenspectrum \; = . If we are unwilling to make
such a strong assumption we can choose a more flexible para-
metric form of the eigenspectrum, for example it is linear as a
function of the index, and fit it to unbiased estimates of higher
order moments (Fig 2A column 4, error between red dashed
parametric eigenmoments and grey open circle unbiased esti-
mates is minimized) and the eigenspectrum associated with
those eigenmoments serves as an estimate of the ground truth
eigenspectrum (Fig 2A column 5, red dashed trace).

If the eigenspectrum is not flat but decreases linearly with
the index (Fig 2B) then the distribution of eigenvalues will be
uniform (Fig 2B column 2). The second eigenmoment will be
non-zero because of this spread but every odd eigenmoment,
but one, will be 0 because the distribution of eigenvalues is
symmetric (Fig 2B column 3). More generally, the eigenspec-
trum is uniquely specified by its eigenmoments.

Critically the expected value of our estimates of signal
eigenmoments are unbiased so do not depend on the rank of
the data used to estimate them nor by corrupting noise regard-
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Fig. 2. MEME estimator and validation in simulation. (A) Schematic of MEME
method applied to uniform eigenspectrum (B) and to eigenspectrum with linear decay.
(C) Comparison of MEME (red) and cvPCA (blue) estimates of power law in 1000
dimensions with low noise (signal eigenspectrum grey above noise eigenspectrum
black) and high number of stimuli (m=500). In the case of cvPCA, a power law is
estimated by fitting a line in log-log coordinates. We fit this line to eigenvalues along
eigenvalues 2-50 (blue dotted) matching the proportions used in Stringer et al, (3)
(D) Same simulation but with high noise. (E) Comparison of estimators on data
draw matching the distribution of experimental data from Stringer et al, but where
the signal and noise eigenvectors are the same and the eigenspectrum is set to be a
power law matching the slope estimated by the cvPCA procedure. (F) Simulation
where signal and noise eigenvectors are independently formed from noise.

less of its covariance structure. Furthermore we prove these
eigenmoment estimates are unbiased regardless of the data’s
distribution, provided finite moments, thus these guarantees
are broadly applicable. We now show that for typical ranges
of parameters in neural data our estimator is highly accurate
and overcomes issues with the prior estimator cvPCA.

Validation of estimator in simulation. To demonstrate the key
properties and effectiveness of our estimator we ran a sim-
ulation where both signal and noise eigenvalues followed a
power law. cvPCA is the only other estimator that has been
proposed to specifically estimate the signal eigenspectrum thus
we compare our estimator to it.

We first simulated d = 1000 neurons, m = 500 stimuli,
and n = 2 repeats. This corresponds for example to a typical
calcium recording experiment to characterize sensory tuning
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in a population recording. To estimate a power law Stringer
et al (3) fit a line in log-log coordinates only for eigenvalues
with indices between 11-500 out of 10,000 eigenvalues. Here
we matched this procedure for a smaller number of neurons
with a scaling factor of 1,000/10,000 to fit eigenvalue indices
between 2-50. In the case where noise was low (Fig 2C grey
signal eigenspectrum above black noise eigenspectrum) the
MEME estimator performs well (red overlap grey) and cvPCA
performs similarly. When we increased the noise level (Fig 2D,
black above grey) we found that early cvPCA estimates tended
to dramatically mis-estimate the true signal eigenspectrum
(transparent blue trace on left well below grey) and this led to
mis-estimation of the power law fit to the cvPCA estimates
(dashed blue traces do not align with grey). Whereas the
MEME estimate continued to accurately estimate the form of
the power law (red dashed trace overlaps grey). It is possible
that for a different choice of range the cvPCA estimated power
law could have been more accurate but it is unclear how to
apriori choose this range when the true power law is not known.
Thus in simulation we discovered biases in the approach of
fitting a power law to cvPCA estimates. We now consider if
these biases could have affected results in the original study
of Stringer et al .

We found unbiased estimates of the signal and noise covari-
ance of the original seven recordings of mouse primary visual
cortex to natural images then enforced a true power law signal
eigenspectrum that matched the slope estimated from cvPCA
(see Methods, ‘Simulation procedure’). We then simulated
data from this distribution and fit the signal power law using
the original cvPCA approach and MEME. High dimensional
signal and noise eigenvectors are difficult to estimate so we
chose two extremal cases for our simulation. In the first case
we aligned the signal and noise eigenvectors and found that
cvPCA consistently under estimated the slope of the power
law exponent « (Fig 2E blue points below black diagonal)
whereas MEME accurately recovered the slope (red points
overlaps black diagonal). We then ran the same simulation
but where signal and noise were independently sampled and
found an even larger downward bias of cvPCA while MEME
remained accurate (Fig 2F). Thus we expect that regardless
of the relationship between signal and noise the cvPCA power
law exponent estimate is biased downwards but less so to
the degree that signal and noise are aligned (see Methods,
‘cvPCA”). Signal and noise correlation are known to co-vary
(12-16), but see (17), thus it is plausible that in neural data
the bias of cvPCA may be ameliorated somewhat.

Given that cvPCA returned biased estimates of the signal
eigenspectrum on simulated data matching the distribution
of the original data, whereas MEME was accurate, we next
examined whether estimates of signal eigenspectrum on the
original data using the two different methods diverged.

Application to estimation of power law eigenspectrum in
mouse primary visual cortex. We re-analyzed the original data
from Stringer et al, (3), responses from ~ 10,000 neurons
across a patch of primary cortex (Fig 3A). Two repeated re-
sponses of all neurons to a set of ~ 2,800 stimuli were collected
(Fig 3BC) and these responses were mean centered neuron-wise
(for details of calcium response pre-processing see Methods).
In general we found these neurons tended to respond to a
restricted region of the stimuli (Fig 3D, average power of es-
timated linear receptive fields across all neurons of example

4 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX
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Fig. 3. Fit of Stringer et al, (2019) data using cvPCA and MEME. (A) Positions of
1,011 neurons 10,103 recorded from primary visual cortex of mouse.(B) Example
neural data, two repeats of the simultaneous responses of neurons to the same set of
stimuli. (C) Example stimulus shown to mice drawn from ImageNet. (D) Estimate
of the population receptive field (average power of estimated linear receptive fields of
all neurons). Bounding box used for visualizing linear RFs (red dashed). (E) Signal
eigenspectrum fit to neural data: a power law fit to cvPCA estimates following the
methods of Stringer et al, (blue), a power law fit to unbiased estimates of signal
eigenmoments pale red, and a broken power law fit to the same eigenmoments
(red). (F') Unbiased estimates of eigenmoments with 95 % Cls compared to the
eigenmoments corresponding to the eigenspectrum in (E). (G) Across all recordings
(n=7) the best fit broken power law eigenspectrum (red). (H) The power law exponent
estimated by cvPCA plotted against the exponent of the tail of the broken power law
estimated by MEME (a2 see (G)). Plotted are individual estimates with 95 % ClI’s for
the MEME estimates and cvPCA (black points).

recording). We first applied cvPCA to an example recording
and fit a power law finding that it had a slope near 1 (Fig
2E blue, o = 0.96). When we fit a power law using MEME
we found a significantly shallower slope (o = 0.90). Yet the
eigenmoments of this MEME estimated power law systemati-
cally deviated from the unbiased estimates of the raw data’s
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eigenmoments, implying that a power law was a poor fit to
the data (Fig 3F pale red points deviate beyond CI’s of grey
points). Similarly the eigenmoments of the cvPCA estimate
did not match the data’s eigenmoments (blue points deviate
beyond CT’s of grey points). This motivated us to consider
more flexible eigenspectrum functions. Given that the original
study formed predictions with respect to the exponent of a
power law, we fit a piece-wise power law to obtain a more
flexible model while still being able to make direct comparisons
to their predictions. We found that in all cases, accounting
for model degrees of freedom, the broken power law fit the
eigenmoments of the data better than a power law (Fig 2F
red dots within CI’s of grey, see supplementary information
Fig S1 for statistical tests across all recordings). The broken
power law had an initial shallow power law and a tail power
law that was much steeper (Fig 3E red trace slope initial ~ 0.5
then ~ 1.2). This form of eigenspectrum was similar across
all recordings (Fig 3G red traces overlap). The slope of signal
eigenspectrum tail was consistently higher for the MEME than
cvPCA estimates (Fig 3H, MEME average o = 1.20, cvPCA
average a = 1.01). These findings are inconsistent with two
claims from the original study. First, the eigenspectrum of
population responses in mouse visual cortex is inconsistent
with a power law, we find it is far better described as a bro-
ken power law. Second, at no point does the eigenspectrum
decay at a critical rate near o = 1, instead it initially decays
50 % more slowly and then 20 % faster in the tail of the
eigenspectrum.

Despite the more rapid decay in the tail of the eigenspec-
trum the overall dimensionality (as quantified by the partici-
pation ratio (18, 19)) was on average 1.68 times higher than a
power-law with a slope of 1 would predict. Thus the dimension-
ality of primary visual cortex is much higher than previously
thought but because of only ~ 10 dominating modes. The
number of dimensions needed to capture 75% of the variance
of population tuning, another metric of dimensionality (20),
is actually lower (under the fit broken power law on average
357 eigenvectors are needed whereas for a power law with a
slope of one 902 eigenvectors are needed). This contradiction
in two metrics of dimensionality is precisely because the di-
mensionality increase quantified by the participation ratio is
driven by the first ten modes and once these are accounted
for the remaining variation is captured rapidly by successive
dimensions (see supplementary information Fig S2).

These results imply there are two distinct regimes of joint
encoding in mouse visual cortex. A high dimensional regime
where ten dominating features of the stimulus have a similar
magnitude of effect on the population and a low dimensional
regime where the remaining variation of tuning is rapidly
absorbed. This led us to examine the encoding properties of
the dominant modes.

Characterization of population tuning. The signal eigenspec-
trum corresponds to a decomposition of neural responses into
directions of maximal signal variation across stimuli. We will
call these directions of maximal variation in neural response
space “neural eigenmodes” (identical to the eigenvectors of the
neural signal covariance matrix) and the variation in the scale
of these modes across stimuli “eigenmode tuning” (identical to
the eigenvectors of the stimuli signal covariance matrix). We
estimated these by respectively calculating the eigenvectors
from unbiased estimates of the signal covariance over stimuli

Pospisil et al.

and neurons. The neural eigenmode loadings tended to be
sparse with most weights near 0 but a few very large weights
(Fig 4A black trace concentrated around 0). For the first mode
we found a bias in the sign of the loadings (Fig 4A first row
black trace biased upwards) with 69 % positive. Thus, the
most variation in neural signal variation can be described as
uniform excitation on a subset of neurons. To gain insight
into the tuning of this eigenmode we fit a linear model that
predicted eigenmode tuning from a linear combination of stim-
uli pixels (Fig 4B orange traces, R? = 0.2). Visualizing the
weights on stimuli pixels we found classic center surround
tuning (Fig 4C). Thus, surprisingly, a substantial fraction of
the variation in the first dominant mode of neural tuning could
be explained by a classic model of early visual selectivity. To
gain further insight we examined the stimuli that evoked the
three highest and lowest responses of this eigenmode and com-
pared them to the linear component of the responses (Fig 4D
first row of black and orange outlined images). Qualitatively
comparing the two sets we judged that the eigenmode tuning
was driven by higher spatial frequency image structure than
the linear component. Careful analysis of more flexible models
could gain greater insight into the non-linear component of
eigenmode tuning (i.e., the systematic prediction errors of the
linear models). Examining the linear receptive fields of other
recordings we repeatedly observed clear selectivity for spatial
frequency matching the scale of the population receptive field,
a diversity of orientation selectivity, and phases (Fig 4F left
to right). Thus classical primary visual cortex receptive field
properties drive a significant amount of variation in the top
eigenmodes of mouse primary visual cortex.

A normative explanation for the presence of signal corre-
lation between sensory neurons is that it can improve the
fidelity of the signals encoded in common across a population
of neurons (21-23). Here we quantified the scale of this effect
by measuring the noise corrected SNR (24) of eigenmodes and
single neurons. We estimated eigenmode neural loadings with
2,000 stimuli then projected neural responses to the rest of
the stimuli (~ 300 — 800) onto those loadings and calculated
SNR across the two repeats. We found that tuning for early
eigenmodes had higher fidelity than the average neuron (Fig
5A, grey trace above black dashed for indices 1-10). This was a
consistent result across recordings with the first 10 eigenmodes
having an average SNR at least 4.9 times greater than that
of the average single neuron (average SNR 7.7 times greater).
Furthermore, eigenmode SNR is likely underestimated because
our estimates of signal eigenvectors are noisy. We can conclude
that a hypothetical downstream region could more easily de-
code the feature encoded by an early eigenmode than a typical
neuron because of the structure of signal correlations.

Ultimately these dominant eigenmodes, which we found
robustly encode image features, are the result of redundancy
in the tuning between individual neurons. We observed that
often early eigenmodes possess receptive field properties typ-
ical of the classic characterization of individual neurons in
primary visual cortex (Fig 4F). It might be expected that
if the selectivity of all 10,000 neurons were restricted to the
relatively small linear subspace spanned by a narrow band of
spatial frequencies the top eigenmode tuning would inevitably
recapitulate this structure. Yet, it is well known that classic
models do not often predict the bulk of variation in single
neuron tuning, in fact the tuning of individual neurons are
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Fig. 4. Analysis of population neural tuning. (A Signal eigenmode loadings on each neuron (estimated left-singular vectors of noiseless responses, neuron by stimuli matrix)

plotted against SNR of the neuron. (B) Signal eigenmode tuning (right-singular v

ectors) in black, least squares fit of image pixels to eigenmode tuning in orange. (C)

Visualization of linear receptive field of eigenmode tuning (dot product of linear RF pixels with image pixels gives orange trace in (B)). (D) Stimuli that gave the top and bottom
three responses from eigenmode tuning (black outlined top row) and the linear receptive field (orange outlined bottom row). (E) Formula for reconstruction of neural signal

matrix (rows neurons, columns stimuli) from eigenmode neural loadings (left singular

vectors of signal matrix which in the limit of infinite stimuli equals the eigenvectors of the

signal covariance matrix) and tuning vectors (right singular vectors). (F') Linear receptive fields from all recordings of responses to natural images (rows) ranked by eigenmode

(columns).

notoriously difficult to predict across natural images even with
flexible data driven models (6, 7). Indeed, when we estimated
the ability of a linear filter to predict neural responses, by
regressing the pixels of the images on the neural responses
and estimating R? using a noise corrected estimator (24) (see
Methods, Estimation of model performance), we found that
on average less than a quarter of neuronal signal variance
could be predicted (Fig 5B dashed black trace). We also fit a
basis of gabor filters and their squares (a multi-scale ensemble
of classic simple and complex cell models (6, 25)) and found
that on average predictive performance increased only slightly
(green dashed above black). Thus a minority of single neuron
tuning is characterized by linear or classic receptive field prop-
erties thus a majority is non-linear and not characterized by
classic models. Unlike the stereotyped classical receptive fields
it is not obvious whether or not this single neuron selectivity
will be robustly represented at the population level. Each
neuron’s unexplained tuning could be orthogonal. Yet, we find
that it is often highly redundant at the population level: less

6 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

than a quarter of the variation in the top eigenmode can be
captured by a classic model (Fig 5A beginning of black and
green solid trace). These eigenmodes are noisy estimates so
it is not clear how much of their tuning is ‘explainable’ but
we find that later, more difficult to estimate, eigenmodes can
often be better explained (black trace peaks at eigenmode 4
with 50 % variance explained). Across recordings we find that
it is typical for some modes to have up to half their variance
explained while others, often the first mode, have less than
a quarter explained (see supplementary information Fig S3).
These results suggest there are distinct single neuron tuning
properties that are highly redundantly encoded across primary
visual cortex but that are not well characterized by classic
models of primary visual cortex. Redundancy implies these
tuning properties are of particular import to the organism and
yet it remains unclear what these tuning properties are (see
Discussion).

We finally asked how the geometry of the representation
relates to neuronal physiology. Are neurons essentially ex-

Pospisil et al.

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

412

414

415


www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX
https://doi.org/10.1101/2024.02.16.580726
http://creativecommons.org/licenses/by-nc-nd/4.0/

416
417
418
419
420
421
422
423
424
425
426
427
428
429

430

432

433

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.16.580726; this version posted February 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Classic and non-classic image features
robustly encoded at population level

_ _Signal variance B . Population
" SNR= Roise variance Linear simple + complex
i A4,
- = = Signal distribution I [E Y
— == Noise distribution
e Signal variance ) 1 L!
4 4 e Noise variance o 7]
e o ']
©
i = 4
- Eigenmode = S 8
> Neuron avg. ... > c 0.5 4
195) 21 95% quantiles g ®©
s ;
o X 1 !
©c O
(i
0 - ET—— 01 s
1 10 100 1,000 1 5 10

Eigenmode rank

Contribution of inhibitory interneurons

to population receptive field ,
Top eigenmodes

. D of labeled recordings
Example eigenmode o Recording index
g‘j‘m“’* b= ® oraeer  a0iroRze 20170014
tdtomato-
é‘ 50 omae 8)87 _. Significant . .
n cC.= . o
C O 1 (XY
L 8§85 | AR BT
MP032 -'6— : : | . .. N I
O 2017-09-14 9 |
-0.1-0.05 0 005 01 “* .
. igenmoae
Neural loading rank

Fig. 5. Population and single neuron tuning and the distinct contribution of inhibitory
interneurons to the population receptive field. (A) Estimated SNR of ranked signal
eigenmodes (black solid trace) compared to average SNR of individual neurons (black
dashed horizontal line) along with 95 % quantile (transparent grey). (B) Fraction
variance explained (corrected for noise and model degrees of freedom) by linear model
(black) and simple and complex cell model multi-scale population (green) for single
neurons on average and top ten eigenmodes.(C) The distribution of eigenmode
neural loading on neurons identified as inhibitory (grey) and other neurons (black) for
the 2nd eigenmode in example recording. (D) Across the top 20 eigenmodes for the
three tdtomato+ labeled recordings the fraction negative loadings for inhibitory and
other neurons (respectively gray and black), green dots indicate where these fractions
are significantly different (p<0.001).

changeable as coordinate axes of the high-dimensional sensory
representation or do different neuronal types participate in a
distinct manner? One of the foremost physiological distinction
made between cortical neurons is whether they are excitatory
or inhibitory thus it is natural to ask whether they take on
distinct roles in population geometry. In the three recordings
where GABAergic neurons were identified with a tdtomato
label we found systematic difference in the eigenmode loading’s
on these putative GABAergic inhibitory neurons. For example
in the second eigenmode of an example recording there is a
large difference in the distribution of inhibitory neurons with
positive eigenmode loadings ( 75 %) whereas other neurons in
the recording are equally likely to have negative or positive
loadings (Fig 5C). This provides evidence that the features en-
coded by the eigenmode have a distinctly more uniform effect
on the activity of inhibitory interneurons than other neuron
types. There was often a significant difference in the fraction
of negative loadings between inhibitory neurons and other
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neurons across the top twenty modes (Fig 5D, green dots).
Thus we find evidence that the principal stimulus features driv-
ing population responses have a distinct effect on inhibitory
neurons. Specifically inhibitory neurons tuning includes a
component of one sign of eigenmode tuning more often than
other neurons. Understanding this tuning and the significance
of one sign vs the other could be relevant to the function
of inhibitory neurons in shaping sensory representations (see
Discussion).

Discussion

Summary. We have introduced a novel and highly accurate
estimator of the eigenspectrum of high-dimensional population
neural tuning. In particular it performs well in the challenging
conditions of limited stimuli and correlated noisy measure-
ments that are common in large scale neural recordings. We
applied this estimator to re-analyze a large scale recording of
mouse primary visual cortex in response to natural images.
We showed that the eigenspectrum was not well fit by a power
law—in contrast to the conclusions prior work. Instead it
was captured by a broken power law. The broken power law
showed a characteristic form with an initially shallow slope for
the first 10 eigenvalues (a1 = 0.5) and a steeper fall off for
the remaining eigenvalues (a2 =~ 1.2). The tail of the signal
eigenspectrum was steeper than previously estimated, o ~ 1
vs a =~ 1.2. We examined the image features that drove the
dominant variation in the initial component of the power law
and found their encoding fidelity was higher than the average
neuron and that they sometimes were well characterized by
classic models of primary visual cortex but also sometimes
decidedly not. Finally we found that the features driving
the dominant eigenmodes had distinct effects on putative in-
hibitory neurons, tending to be uniform in the sign of its effect.
We thus have discovered clear links between geometry, com-
putation and physiology in mouse primary visual cortex and
introduced a novel estimator of high dimensional geometry
that is more accurate than prior methods.

Relevance to prior work. We re-analyzed the data of Stringer
et. al., (3) and came to qualitatively different conclusions
about the form of the signal eigenspectrum. Specifically, it
was claimed that the signal eigenspectrum follows a power
law with a slope near one whereas we found the signal eigen-
spectrum is consistent with a broken-power law with neither
of its slopes near 1. The authors originally argued that a
slower-decaying eigenspectrum indicated a more efficient rep-
resentation, whereas steeper decay reflected a smoother rep-
resentation and that a power law with a slope of one was
the slowest the eigenspectrum could decay (for the purpose
of efficiency) before the representation became pathologically
unsmooth. Thus their original cvPCA based estimates that
the slope of the tail of the eigenspectrum was near 1 indicated
that these theoretical considerations could precisely predict
an empirical property of primary visual cortex. Yet, our more
accurate MEME estimator revealed the slope was not at this
critical point, weakening the explanatory power of their theory.

One explanation for deviations from their theory could rest
in the veracity of its assumptions. The truth of the claim
that a more slowly decaying eigenspectrum is in general more
efficient depends on the form of the noise both in the responses
of the neurons and in the stimulus. For example Atick and
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Redlich (26) found that when noise in inputs was low then the
most efficient linear sensory transformation would whiten the
inputs, thus the output eigenspectrum would be flat, but when
noise was high it would average over inputs and the output
eigenspectrum would fall off steeply. Thus an explanation
for the signal eigenspectrum in mouse primary visual cortex
being consistent with a broken power law may derive from
the character of input and neuronal noise and not require
consideration of constraints on the smoothness of the neural
code.

Thus a fundamental feature of sensory representation of
primary visual cortex, the form of its eigenspectrum, remains
unexplained. Despite this mystery, our empirical finding has
concrete consequences to the project of characterizing primary
visual cortex that we discuss below.

Interpretation of the signal eigenspectrum. Our estimator al-
lows accurate estimates of the entire signal eigenspectrum of
neural populations. We now consider two interpretations of the
signal eigenspectrum of practical significance to understanding
sensory coding: (1) its relevance to predictive modeling of
neural tuning and (2) sensory encoding.

The signal eigenspectrum of a population of sensory neurons
quantifies the optimal performance of a linear combination of
image features in predicting the responses of those neurons.
The cumulative sum up to the nth eigenvalue is exactly how
much variance can be explained by n of these hypothetical
optimally predictive image features. This puts a tight upper
bound on the performance of the now common practice of
regressing learned image features on neural responses (e.g.,
DNN responses). If there are n features the variance explained
cannot surpass 2721 As,i. Thus an accurate estimate of the
signal eigenspectrum could be used as a metric of how close
a model is to optimal efficiency i.e., uses no more features
than necessary for a given predictive performance. Thus a
very practical view of the signal eigenspectrum is an exact
quantification of minimal complexity of the model needed to
capture the tuning of a population of neurons. A power law
is a heavy tailed distribution which suggests the complexity
of sensory representation is quite high—the performance of
this hypothetical perfect model converges slowly with the
number of parameters. Yet our finding of a steeper slope in
the tail indicates substantial savings. For example to achieve
75% variance explained ~ 900 features would be needed if
the signal eigenspectrum followed a power law with a slope
of 1 whereas for the broken power law on average ~ 350
features are needed. In short, this study suggests that sensory
neuroscientists seeking a compact but fairly predictive model
of primary visual cortex should bear in mind they will need at
least 350 image features—a large but still feasibly characterized
number of features.

Alternatively, the image features of this hypothetical opti-
mal model are also just image features that the neural popula-
tion jointly encodes. Thus the eigenspectrum exactly quantifies
the dimensionality of the features space within which the mean
population neural response encodes images. From this perspec-
tive our finding of an initially slow decay of the eigenspectrum
implies that there are ten or so roughly equally weighted fea-
tures that the neural population encodes with high redundancy
across a large population of neurons. The more rapid fall off in
the tail of the signal eigenspectrum indicates that additional
features quickly diminish in their effect on the population, but

8 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

the heavy tail of the power law still insures that cumulatively
these additional features drive the majority of variation (first
10 explain ~ 30% of variation). While we have measured
the degree of variation along these feature dimensions we do
not know what these features are. Predictive models have
primarily focused on the tuning of individual neurons, our
measurements of signal eigenspectrum and associated SNR,
indicate that the features encoded across the population are
highly redundant and perhaps more relevant to downstream
processes given their fidelity. Some of the variation in the
tuning of individual neurons may reflect components that are
not strongly represented at the population level (i.e., tuning
that is unique to each neuron). Thus it could be productive
to use predictive models to explain eigenmode tuning in addi-
tion to single neuron tuning. It may turn out that dominant
modes are more easily captured similarly to how we found a
surprising amount of their variation could be explained with
a linear model.

Population sensory representations in primary visual cortex.
We found that the image features associated with the dominant
eigenmodes were far more robustly encoded than those of the
average neuron. This a clear empirical reason to recommend
studying this population level tuning: primary visual cortex
encodes these visual features in particular with very high
fidelity. Further experiments where populations receptive
fields are aligned to the same stimuli could determine whether
this tuning is shared across animals.

Ultimately the striking difference in SNR between neu-
rons and eigenmodes is the result of commonality in tuning
across the population of neurons—signal correlation—where
tuning redundancy leads to robustness to noise. While long
hypothesized to be a potential consequence and normative
explanation of signal correlation (21-23) direct estimation of
what features are robustly encoded in primary visual cortex
is enabled by simultaneous recordings of a large population
of retintopically overlapping neurons. Stereotyped properties
with respect to selectivity for spatial frequency and orienta-
tion in primary visual cortex has long been known but it has
become increasingly clear that primary visual cortex responses
are not solely characterize by their selectivity for spatial fre-
quency and orientation (6, 7). Thus our finding that, similarly,
eigenemodes are often not well-described by such classical no-
tions is a data-driven indication that there are uncharacterized
but stereotypical components of single neuron tuning encoded
across the population. We have not exhaustively characterized
these modes with respect to the more recent models of primary
visual cortex (e.g., inclusion of a normalization pool (27)) the
significance of these more recent efforts could be emphasized
if they are shown to capture unexplained population level
representation. Otherwise more flexible data driven models
(e.g., deep neural networks) could be applied to eigenmode
tuning and the difficult work of characterizing these models
could in part be justified by the assurance they were capturing
image features primary visual cortex robustly encodes at the
population level.

Inhibitory neurons distinct participation in sensory represen-
tation. Inhibitory neurons, in contrast to excitatory neurons,
typically do not have axons that extend to other regions of vi-
sual cortex—thus they presumably act to modulate the sensory
representation that is transmitted to other brain regions (28).
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There is evidence that inhibitory neurons, when collectively
activated, can sharpen tuning (8). We found that putative
inhibitory neurons had the same sign eigenmode tuning more
often than other neurons—in other words inhibitory neurons
tended to co-activate at a higher rate than other neurons
in response to features that maximally drove the population.
Future work could causally test if inhibitory neurons sharpen
tuning along directions of eigenmode tuning. This could reveal
novel computational roles of inhibitory interneurons in shap-
ing the visual sensory representation beyond single neuron
orientation and spatial frequency tuning.

Conclusion

We have made several principal empirical observations about
the population code in primary visual cortex. The signal eigen-
spectrum is a broken power law with slow than rapid decay, the
top modes are of far higher fidelity than the average individual
neuron and are often not well characterized by classic models
of primary visual cortex, and inhibitory neurons tend to be
driven in concert by the top modes’ features. Taken together
these results challenge the primacy of studying individual neu-
ral tuning curves given the dramatic emergence of distinct,
but poorly characterized, population level computations that
are robust to noise, and with clear relevance to physiology.

Beyond our empirical findings, we have demonstrated that
the challenge of describing high dimensional neural codes
requires novel statistical methods that are rigorously validated.
They lay a critical foundation for surmounting the ‘curse of
dimensionality’ in the study of neural representations and
motivate addressing this curse because they indicate the rich
statistical structure that lays waiting to be uncovered at the
population level.

Materials and Methods

Assumptions and terminology for derivation of estimator. Here we
employ a common model of population neural responses:

Fri=p+ S+ ek, (1]

where FJ, ; is a vector of responses from n neurons to the k’th
repeat of the i’th stimulus, p is a vector of the mean (across the
stimuli distribution) responses of each neuron , S; is the vector
of expected neural responses to the ith stimulus, (i.e., samples
from the tuning curve) with signal covariance Xg, and € ; is the
per-trial noise with noise covariance . The signal covariance
Y g, the object of our current study, is given by the covariance of
noiseless responses S; over the stimulus distribution P(S) (e.g.,
sampling from a database of natural images). We will often deal
with m X n matrices of responses collected on the kth repeat which
we will call Fy, the concatenation of m draws from Fj, ;. Here we
focus on the estimation of the signal eigenvalues, Ag; = fi(Zs),
the sorted eigenvalues of the signal covariance matrix >g. We
also consider the noise eigenvalues, Ay ; the sorted eigenvalues of
the noise covariance matrix . We will estimate these quantities
indirectly from unbiased estimates of signal and noise eigenmoments,
the p’th moments respectively being: Z:zl /\gﬂ. and Z:;l )‘]Jif,i'

Unbiased estimation of eigenmoments. Our estimator infers the sig-
nal eigenspectrum by matching unbiased estimates of signal eigen-
moments. It is an extension of previous work developing unbiased
estimates of eigenmoments from noiseless data that we review next.
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Estimation from noiseless data. Unbiased estimates of eigenmoments
were first discovered by Li et al (29) but then employed to infer
eigenspectra by Kong and Valiant (30). In the noiseless case we
have direct observations of S; (letting p = 0), and an m X n matrix
formed by concatenating m presentations of stimuli, we call S.
For insight into the method we show how an unbiased estimate
of the pth eigenmoment can be calculated in the noiseless case.
A single unbiased estimate of covariance can be formed from the
jth observation f]sj = SijT then the statistic %Tr( ?:1 25].),
formed from p independent estimates of covariance, is an unbiased
estimate of the pth eigenmoment because,

p
1 .
E|-Tr | |zsj
=1

P
1 .
~Tr | | E[Ss,]
j=1
n

1 1
STE(SE) == ) A2,
n () nz S,i

=1

the first step following from independence of the estimates of covari-
ance and the linearity of the trace and expectation, the second step
is by definition true of an unbiased estimate, and the last step follows
from the identity for symmetric matrices Tr(AP) = Z?:I AP

It is unnecessary to explicitly calculate the outer product for
each 3; but instead calculate inner products, for example ,

Tr(Ss, 3s,) = Tr(S157 $287) = Tr(ST S28781) = ST 5257 54.

More generally we can get the pth eigenmoment as follows, let o be
a set of p distinct indices of IID observations of S [01, 02, ...0p] and
o0p+1 = o1. Then the estimator of the pth eigenmoment is,

1 +E
P | I T
hp = SoiS0 41
i=1

As p and m grow there are many number of distinct indices over
which to form this estimator. To reduce variance one could average
over all possible sets of distinct indices. This quickly becomes com-
putationally intractable and so Kong and Valiant developed a rapid
approximation where they average over all increasing sets of indices.
This can be accomplished with the following calculation letting
A = SST where S is the m x n concatenation of m observations
and Ayp be the same matrix with lower triangular and diagonal
entries set to 0,

(AR A)
Ty = ————.
n(3)

Extension to noisy data. The estimator of Kong and Valiant assumed
that there was no noise, correlated or otherwise, in the measurement
of S. Here we extend their estimator to the case of measurement
error as described in Eqn.1. The key insight is that across repeats
noise, €, ;, will be independent while signal, S;, will be identical. So,
under the assumption g = 0, we obtain the ith unbiased estimate of
the signal covariance with only two repeats of data by s; = Fg,,-Ff? i
because,

2]

E[F1iFy ;] = E[(Si + €1,0)(Si + €2,0)"]
= E[S:S]] + Ele1,:5] ] + E[Sie2,i] + Elen,i€3 ;] = Ts,

where the last step follows from the independence between signal,
noise, and different trials of noise. Following the logic of the prior
section we can set A = FZFjT where i # j and Eqn. 2 serves as
our unbiased estimator. Importantly the unbiased nature of this
estimator does not depend on the distribution from which data are
drawn. For the common case where p # 0 we transform our data
so that © = 0 but the covariance remains the same, then apply our
estimator to this transformed data. The transformation is simple,
for each repeat separate the responses into two disjoint sets of stimuli
responses (same number of stimuli in each) take their difference and
divide by v/2. This works because draws of noise and signal across
stimuli are independent but the mean response is constant, and so
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the difference only scales signal and noise covariance while removing
the mean. In our analyses, we take the strategy of subtracting the
odd stimuli from the even stimuli for each repeat. The variance
of this procedure could be reduced by taking more differences
from the many possible disjoint sets and calculating estimates of
eigenmoments for all of them and then averaging. Naively, we
could have subtracted the sample mean from each neuron calculated
across all stimuli. This would change the covariance structure of
the observations resulting in an unnecessary bias, thus we do not
take this approach.

Fitting the eigenspectrum using estimated eigenmoments. The goal
of the methodological developments in this paper is to infer eigen-
spectra from finite noisy data. Kong and Valiant develop a non-
parametric approach to this inference in the noiseless case. Here
we propose a parametric approach for the cases where scientific
questions pertain directly to parameteric forms of eigenspectra (e.g.,
Stringer et al, (3)). In addition, if a parametric form can be as-
sumed then there are potentially large gains in accuracy to be made.
We can also assess if the parametric form is a good assumption
by determining if it can account for systematic variation in the
eigenmoments (see below).

Our approach to inferring parametric eigenspectra is simple: we
optimize the parameters of the assumed form of the eigenspectrum
to minimize the squared error between its eigenmoments and the
eigenmoments estimated from the data. To solve the nonlinear least
squares problem and satisfy constraints on parameters (e.g., power
law slope cannot be negative because eigenvalues monotonically
decrease) we use the nonlinear least squares function implemented
in scipy (31). When fitting a broken power law we simply perform a
grid search of potential breaks points, optimize slope and intercept
parameters for each, then use the break points that gave the minimal
error. In practice we scale the variance of the data before estimating
the eigenmoments because later eigenmoments can easily go beyond
the floating point range if the raw scale of the data is too high
or low. We scale the data with an unbiased estimate of the total
signal variance (sum of signal variance across all neurons). The
eigenspectrum of the raw data can easily be recovered by re-scaling.

Estimated eigenmoments are heteroscedastic and correlated
which can affect the accuracy of this estimation procedure. Higher-
order eigenmoments tend to be increasingly variable thus including
them can make estimates of eigenspectrum parameters unstable.
To address this we estimate the sampling covariance matrix of the
estimated eigenmoments with a bootstrap procedure (sample with
replacement from stimuli) and then apply a whitening matrix to the
errors between the estimated and fit eigenmoments. This effectively
weights the eigenmoments according to their reliability. In practice
we find that parameters are not changed by using more than 10
eigenmoments because their variability is extremely high and thus
their influence is down weighted.

Simulation procedure. To validate our estimator and create para-
metric bootstrap confidence intervals around our estimates we make
use of simulations that match the distribution of the original ex-
perimental data. We simulate according to the model specified in
Eqgn. 1. We form an unbiased estimate of the noise covariance for
each stimulus by subtracting off the mean of the two trials than
averaging these individually unbiased estimates across all stimuli as
follows,

Sy =

3~

m
Z(E,i —F)(F,;—-F)T.
i=1

To form an unbiased estimate of the signal covariance we calculate
the sample covariance between the two repeated observations of
stimuli,

A 1 _ _
Sg=——(F — FL)(Fy — 2 )T
m—1 ’

Neither estimate will be positive semi-definite (PSD) because there
are fewer stimuli than neurons. Furthermore the estimate of signal
covariance is unlikely to be symmetric. To address this we force
the noise covariance matrix to be PSD by finding its eigenvalues
and setting any less than 0 to be 0. To force the signal covariance
matrix to be symmetric we average it with its transpose, then force
this covariance matrix to be PSD.
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In most simulations we set the signal eigenspectrum by perform-
ing the eigenvalue decomposition, Sg = VDVT | then reconstructing
the covariance matrix but with the desired eigenvalues, D', giving
2, =vD'VT.

cVvPCA. We calculate the cvPCA estimator for the ith signal
eigenvalue,(Ag ;) as follows,

. 1 1 1
Xsi = fi(=FF)T—FF) fi(—FF) (3]
m m m

= fi(Ss + SN Ss fi(Bs + En),

where f;(-) calculates the ith eigenvector via SVD, the arrow indi-
cates convergence as m — oo, and we assume g = 0 (see Eqn. 1).
Thus it estimates an eigenvector from the covariance estimated in
one repeat of data and then finds the amount of variance explained
by it in an unbiased estimate of the signal covariance calculated
across different repeats. This is not a consistent estimator because
the eigenvector estimates converge to those of g + X, thus de-
pending on the relationship between signal and noise these estimates
can be inaccurate. For example if they have the same eigenvectors
in the same ordering then they will converge to the correct value
(except for those beyond the rank of the data), whereas if they are
independent this step of cvPCA will mis-estimate the directions
to calculate maximal variation in the unbiased estimate of signal
covariance. The calculation method in Stringer et al 2019 (3) differs
slightly from that here, the principal difference being that singular
vectors are calculated directly from neural responses instead of
their sample covariance. We confirmed that this approach gives
essentially the same numerical results while having a simple form
from which the estimator’s inconsistency is clear.

Consistent estimates of eigenmode tuning and loadings. As shown
above using raw data to estimate signal eigenvectors can lead to
gross biases. Here we analyzed the tuning of signal eigenmodes and
the loadings on individual neurons. Thus we sought a consistent
estimator of these quantities. We estimated these respectively
by performing SVD on FlTFg, the unbiased estimate of signal
covariance between stimuli, and F} F2T, the unbiased estimate of
signal covariance between neurons. As long as the signal eigenvalues
are monotonically decreasing this provides consistent estimates of
eigenvectors associated with signal eigenvalues above the rank of
the data.

Estimation of model performance. We sought to evaluate the fraction
of signal variance explained by our models. Applying the naive
estimate of R? between neurons and a model’s prediction would be
downwardly biased by trial-to-trial variability and upwardly biased
by the number of model parameters—over-fitting (24). Thus we
estimated model performance with a noise and model degrees of
freedom corrected estimator. Below we provide a short derivation.
We rewrite the model of population neural responses by separating
S; into two terms,
S; = B"xi + es,
where x; with Cov[z;] = X5 is the vector of d model feature values
in the ith image, [ is the fixed set of weights that determines the
linear relationship between the neural signal and image features, and
€g is the component of the neural signal that cannot be predicted
by a linear combination of the model features that is assumed to
be distributed as eg ~ N(0,0?).
Our desired estimand is then,
2 5TESﬁ

R — T 9 T aTw o
ER ™ 52 + 8T8

which goes to 1 if the neural signal responses are a perfect linear
function of the features x;. To estimate this quantity we follow
the approach of finding unbiased estimates of the numerator and
denominator.

For the numerator, under the above assumptions, the residual
sum of squares from the least square fit of image feature to neural
responses is distributed as follows,

S (B - Az~ (02 + 0% KN
=1
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so,
m

E E (F.i = Bei)*| = (0% + o} /K),
i=1
an unbiased estimate of total variance is,
m

E ﬁ Z(FZ

=1

—F )| =pTSsB+ 02 + 0% /K,

so subtracting the two estimators gives an unbiased estimate of
linear variance,

m

E|—1_ Z(ﬁ —F.)? - ﬁ Z(F.ﬂ- — Bz)?| = pTsgB.
=1

m—1
i=1

For the denominator an unbiased estimate of trial-to-trial variability
can be subtracted from the unbiased estimate of total variance.

To estimate linearity of tuning we regressed the pixels of images
on response profiles. The raw stimuli are grey scale images of 68 x 270
pixels giving 18, 360 features in the regression but there were only
~ 2,800 stimuli shown thus the linearity statistic cannot be naively
calculated (i.e., there are more features than observations). To
address this we performed principal components regression: we
regressed onto the top D principal components of the images. We
found that performance saturated at D =~ 100 principal components
of the images, we used D = 100 features for the R? values in Fig
4B and 5B.

To determine if a population of class simple and complex cell
models, could account for additional variance we formed a basis of
gabor filters tiling scale (fraction of image 1, 0.5, 0.25), orientation (4
rotations), phase (0 and 90 degrees), and position (non-overlapping
tiling at each scale). We then regressed on the responses of these
filters and their square to calculate R? as described above. To
tile the entire 68 x 270 image with gabor filters would result in
more features than observations. Fortunately we found that it
was unnecessary to use the entire image because receptive fields in
each recording were restricted to a small subset of the image. To
localize receptive fields we estimated the linear receptive fields of all
neurons in each recording we then took the sum of squares across
neurons as an estimate of the population receptive field profile. We
estimated the boundary of the receptive field with the 95th quantile
of its profile and extracted a rectangular patch of the image that
contained the boundary of the receptive field (for example, Fig 3D
red dashed box). We found that the performance of a linear model
predicting eigenmode responses did not significantly suffer when
using this restricted patch instead of the entire image. We also used
these receptive field bounds to visualize linear receptive fields (Fig
4CF).

Experimental data. All stimuli were presented for 0.5s with a random
inter-stimulus interval between 0.3 and 1.1s consisting of a grey-
screen. The images used in the experiment were taken from the
ImageNet database, which includes categories such as birds, cats,
and insects. The researchers manually selected images that had a
mix of low and high spatial frequencies and that did not consist of
more than 50 % uniform background. All images were uniformly
contrast-normalized by subtracting the local mean brightness and
dividing by the local mean contrast. To compute the local mean and
standard deviation, a Gaussian filter with a standard deviation of 30
degrees was used. Each stimulus consisted of a different normalized
image from the ImageNet database, with ~ 2,800 different images
used in total. The same image was displayed on all three screens,
but each screen showed the image at a different rotation.

Mice bred to express GCaMP6 in excitatory neurons were used
in the majority of recordings. Mice bred to express tdTomato
in inhibitory neurons were also used in a subset of the recording
while GCaMP6 was expressed virally, allowing the identification of
inhibitory and excitatory neurons.

Neural activity was recorded using a two-photon microscope
while the mice were free to run on an air-floating ball. Recordings
were collected across multiple depth planes at a frequency of 2.5 or 3
Hz, with planes 30-35 um apart. The field of view of the microscope
was selected such that 10,000 neurons could be observed with a
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retinotopic location on the stimulus display. The 2,800 natural
image stimuli were displayed twice in a recording in two blocks of
the same randomized order.

Calcium movie data was processed using the Suite2p tool-
box to estimate spike rates of neurons. Underlying neural
activity was estimated using non-negative spike deconvolution.
These deconvolved traces were normalized to the mean and
standard deviation of their activity during a 30-minute pe-
riod of grey-screen spontaneous activity. For further detail
please see the original study. All analyses done in this paper
were performed on the pre-processed data available on figshare
(32) (https://figshare.com/articles/Recordings_of_ten_thousand_neurons_
in_visual_cortex_in_response_to_2_800_natural_images/6845348).
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Fig S1. Chi-squared test statistic of difference between eigenmoments of parametric
model of eigenspectrum and direct unbiased estimates of eigenmoments from data.
This was the sum of squared weighted errors (see Methods, Fitting the eigenspec-
trum using estimated eigenmoments) and the null distribution was Chi-squared with
degrees of freedom (DOF) equal to the number of model parameters (cvPCA DOF=2,
MEME power-law DOF=2, MEME broken power-law DOF=4).
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Fig S2. Cumulative fraction signal variance explained as a function of eigenvector
rank. Broken power-laws fit to 7 recordings of responses to natural images are
plotted in red and for reference a power law with slope of 1 is plotted in black (10,000
neurons).
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Fig S3. For all recordings the fraction variance explained (corrected for model degrees
of freedom) of the top ten eigenmodes by a linear model (black) and a simple and
complex cell model (green). See Methods, Estimating model performance.
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