

Revisiting the high-dimensional geometry of population responses in visual cortex

Dean A. Pospisil^a and Jonathan W. Pillow^a

^aPrinceton Neuroscience Institute, Princeton University, Princeton, NJ, 08544

This manuscript was compiled on February 16, 2024

1 **Recent advances in large-scale recording technology have spurred**
2 **exciting new inquiries into the high-dimensional geometry of the neural**
3 **code. However, characterizing this geometry from noisy neural**
4 **responses, particularly in datasets with more neurons than trials,**
5 **poses major statistical challenges. We address this problem by de-**
6 **veloping new tools for the accurate estimation of high-dimensional**
7 **signal geometry. We apply these tools to investigate the geometry**
8 **of representations in mouse primary visual cortex. Previous work**
9 **has argued that these representations exhibit a power law, in which**
10 **the n 'th principal component falls off as $1/n$. Here we show that re-**
11 **sponse geometry in V1 is better described by a broken power law,**
12 **in which two different exponents govern the falloff of early and late**
13 **modes of population activity. Our analysis reveals that later modes**
14 **decay more rapidly than previously suggested, resulting in a sub-**
15 **stantially larger fraction of signal variance contained in the early**
16 **modes of population activity. We examined the signal representa-**
17 **tions of the early population modes and found them to have higher**
18 **fidelity than even the most reliable neurons. Intriguingly there are**
19 **many population modes not captured by classic models of primary**
20 **visual cortex indicating there is highly redundant yet poorly charac-**
21 **terized tuning across neurons. Furthermore, inhibitory neurons tend**
22 **to co-activate in response to stimuli that drive the early modes con-**
23 **sistent with a role in sharpening population level tuning. Overall, our**
24 **novel and broadly applicable approach overturns prior results and**
25 **reveals striking structure in a population sensory representation.**

neural coding | high-dimensional | statistics

1 **E**ach patch of the visual field is represented by a large
2 population of neurons in primary visual cortex. This
3 “population code” supports the performance of a huge diversity
4 of downstream visual tasks, making it a topic of intense
5 general interest in visual neuroscience. An important open
6 question about neural population codes in V1 and beyond is
7 their geometry (1, 2). Specifically, how does a population of
8 n neurons make use of its n -dimensional activity space for
9 representing external stimuli? One approach to this question
10 is to examine the eigenvalues of the signal covariance matrix,
11 which quantifies the correlations in a population’s (noiseless)
12 responses over a collection of stimuli. If all eigenvalues are
13 equal (corresponding to a “flat” eigenspectrum), the neurons
14 are maximally uncorrelated, with each neuron encoding an
15 orthogonal stimulus feature. Conversely, if the covariance
16 contains only one non-zero eigenvalue, all neurons are perfectly
17 correlated, meaning that they redundantly encode a single
18 shared feature.

19 Recent work from Stringer *et al* 2019 (3) argued that an
20 optimal population code must trade off competing demands
21 of efficiency and smoothness. Efficiency, which relates to the
22 code’s capacity for carrying information, requires a maximally
23 flat eigenspectrum, so that the population takes full advantage
24 of its dynamic range in all dimensions. Smoothness, on the

other hand, relates to the property that nearby stimuli evoke nearby patterns of neural activity thus providing robustness to perturbations of stimuli and neural responses. Stringer *et al* argued that smoothness requires the eigenspectrum to decay at least as quickly as a power law with a slope of 1. Any slower decay of the eigenspectrum implies that the representation will not be smooth, so nearby stimuli elicit widely separated response patterns. Thus, the population code that maximizes efficiency while preserving smoothness is a power law with slope negative 1. Mathematically, the i 'th eigenvalue of the (noiseless) response distribution should be $\lambda_i = ci^{-\alpha}$, where $\alpha = 1$ is the power law exponent and c is a constant of proportionality.

To assess whether this property holds in mouse visual cortex, Stringer *et al* (3) introduced a novel method for estimating the signal eigenspectrum known as cross-validated PCA (cvPCA). On the basis of the cvPCA estimator applied to population responses in mouse primary visual cortex, they determined that the eigenspectrum both follows a power law and is at the critical limit of decay ($\alpha = 1$). They interpreted this result as indicating that representations in V1 are as efficient as possible while maintaining smoothness.

Here we show that the cvPCA estimator provides a biased estimate of the signal eigenspectrum. We introduce a novel estimator for signal eigenspectra to overcome this bias. We then re-analyse the data from (3), and show that the signal eigenspectrum in mouse V1 systematically deviates from a power law. Rather, it is better explained by a broken power

Significance Statement

The nervous system encodes the visual environment across millions of neurons. Such high-dimensional signals are difficult to estimate—and consequently—to characterize. We address this challenge with a novel statistical method that revises past conceptions of the complexity of encoding in primary visual cortex. We discover population encoding is dominated by approximately ten features while additional features account for much less of the representation than previously thought. Many dominant features are not explained by classic models indicating highly redundant encoding of poorly characterized nonlinear image features. Interestingly, inhibitory neurons respond in unison to dominant features consistent with a role in sharpening population representation. Overall, we discover striking properties of population visual representation with novel, broadly applicable, statistical tools.

Please provide details of author contributions here.

Please declare any competing interests here.

¹To whom correspondence should be addressed. E-mail: dp4846@princeton.edu

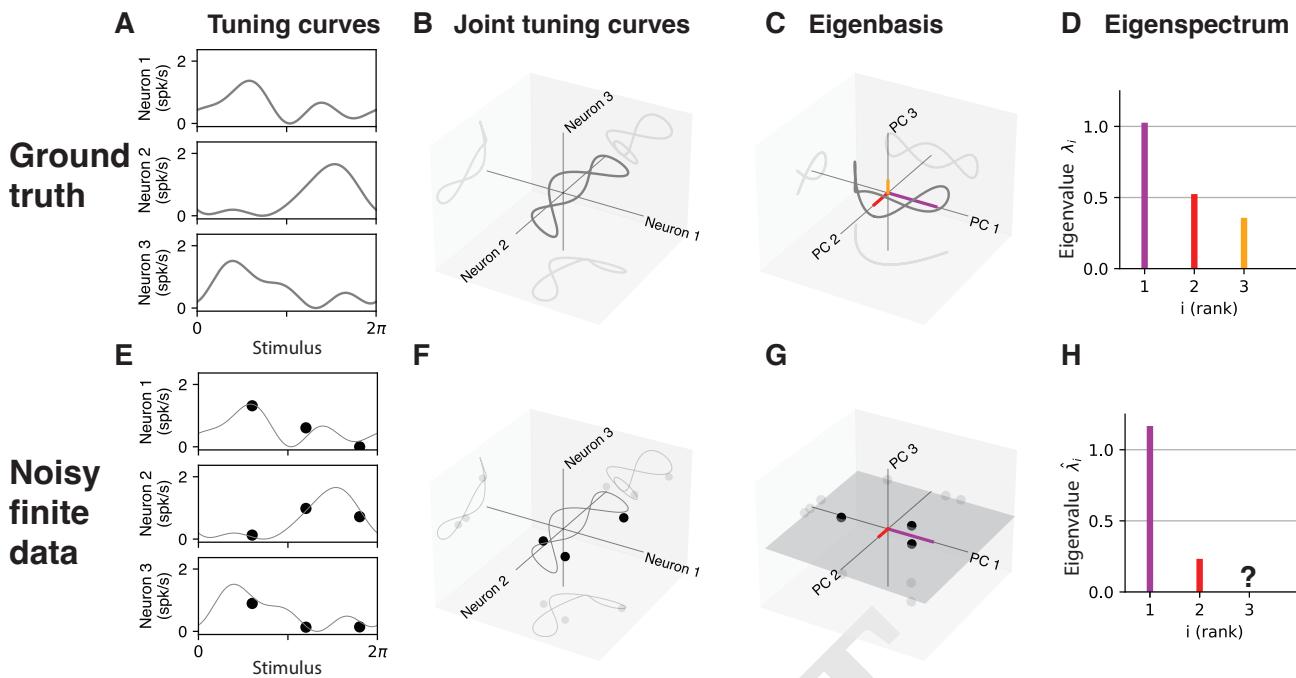


Fig. 1. The signal eigenspectrum and the challenge of estimating it. **(A)** Tuning curves of three neurons for a 1-dimensional stimulus (gray traces). **(B)** Same three tuning curves plotted jointly in a 3D response space. **(C)** Joint tuning curve centered and plotted along principal axes of variation. **(D)** Eigenspectrum, which describes the variance along each principal component of the joint tuning curve. **(E)** Noisy estimates of individual tuning curves at the same three points along the tuning curve (black points). True tuning curve is unknown (light gray trace). **(F)** Noisy estimate of the joint tuning curve (black dots). **(G)** Estimated joint tuning curve centered and rotated to align with its principal components; the resulting curve is 2-dimensional, since 3 points defined a plane. **(H)** Eigenspectrum of the estimated joint tuning curve. Only two eigenvalues are non-zero, and thus later eigenvalue of true tuning curve are missing.

53 law, in which the largest eigenvalues follow a power law with
 54 shallow slope, and subsequent eigenvalues decay according to
 55 a different power law with steeper slope. Crucially, asymptotic
 56 decay of small eigenvalues under this model is not at
 57 the critical limit of $\alpha = 1$, but decays significantly faster
 58 ($\sim 20\%$ steeper). We find that because of this form of the
 59 eigenspectrum population geometry is lower dimensional than
 60 previously thought and there are ten dominating eigenmodes
 61 that account for $\sim 30\%$ of neural variation.

62 To gain insight into the population neural representations
 63 in mouse V1, we examined these dominant dimensions of
 64 the population response. We found that some dimensions
 65 often recapitulated classical selectivity for spatial frequency
 66 and orientation that has been reported in primary visual
 67 cortex (4, 5) but with far higher fidelity than single neurons.
 68 However, other dimensions, that were also robustly encoded,
 69 were unexplained by classic models indicating that difficult to
 70 characterize single neuron tuning (6, 7) is highly redundant
 71 across neurons. Furthermore, we found that inhibitory neurons'
 72 contribution to these dominant dimensions tended to be larger
 73 and more uniform than the excitatory cells consistent with
 74 a role in sharpening population tuning analogous to single
 75 neuron level effects of inhibition (8). Overall, these findings
 76 highlight the importance of examining sensory representations
 77 at the population level to uncover emergent coding properties
 78 that are not apparent from single neuron responses alone.

79 Results

80 Neural tuning refers to a neuron's average or "noise-free" re-
 81 sponse for a collection of stimuli. ((9–11), Fig 1A). The "pop-
 82 ulation" or "joint" tuning of a neural population is thus an
 83 n -dimensional cloud of points defined by the mean responses
 84 of all n neurons in the population over a particular stimulus
 85 set (Fig 1B). To quantify the geometry of this joint tuning,
 86 we can compute the eigenvalues of its covariance, which describe
 87 the variance of this cloud of points along each axis in a set of n
 88 orthogonal axes known as eigenmodes. This set of eigenvalues,
 89 sorted from greatest to smallest, is known as the signal eigen-
 90 spectrum. Estimating the signal eigenspectrum from neural
 91 population recordings is a challenging statistical problem. In
 92 high dimensional settings, the number of stimuli that can be
 93 shown in an experiment may be smaller than the number of
 94 neurons in the population. Moreover, neural responses are
 95 noisy, meaning that multiple presentations of each stimulus
 96 are required to accurately estimate the mean response to each
 97 stimulus (Fig 1E).

98 Principal components analysis (PCA) applied to trial av-
 99 eraged responses provides a standard method for estimating
 100 the signal eigenspectrum. It finds a sequence of orthogonal
 101 directions in neural response space that capture maximum
 102 response variance. However, this approach leads to two sources
 103 of bias (1) trial-to-trial noise covariance can corrupt estimates
 104 of the underlying signal covariance, (2) even in the absence of
 105 trial-to-trial noise, finite sampling of stimuli will bias estimates
 106 of the eigenspectrum—for example if there are fewer stimuli
 107 than neurons ($d < n$) then the sample covariance matrix will
 108 only have d non-zero eigenvalues, thus $n - d$ eigenvalues. For
 109 example, three observations in neural response space (Fig 1F)
 110 that have been centered can always be described perfectly by
 111 two dimensions (Fig 1G) and thus eigenvalues with indices
 112 above 2 will be 0 (Fig 1H).

113 The cvPCA estimator was proposed as a solution for bias
 114 introduced by trial-to-trial noise. The estimator for the i th
 115 eigenvalue is formed by computing the estimated signal variance
 116 (using an unbiased estimate of the signal covariance)
 117 along the i th eigenvector of an unbiased estimate of the total
 118 covariance—signal plus noise covariance (see Methods,
 119 cvPCA). The noise covariance can then, for example, perturb
 120 the first eigenvector into a direction that is not the direction
 121 of maximal signal variance. Thus if the ordered signal and
 122 noise covariance matrix eigenvectors are not perfectly aligned,
 123 the cvPCA estimator will converge to the incorrect values (See
 124 Fig 2F). Additionally, cvPCA cannot estimate signal eigen-
 125 values greater than the number of stimuli, which limits its
 126 ability to accurately recover lawful relationships in the decay
 127 of small eigenvalues, which is of fundamental importance for
 128 the dimensionality of neural populations.

129 To overcome these limitations, we introduce a novel method
 130 for estimating the signal eigenspectrum from noisy neural
 131 recordings by exploiting a recently developed estimator for
 132 the moments of the eigenvalue distribution.

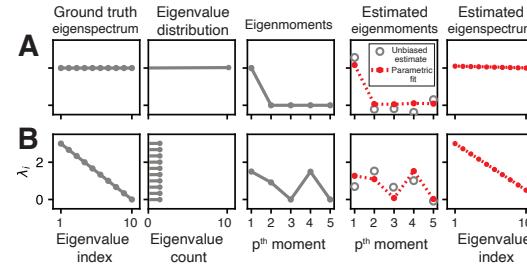
133 **A moment-based estimator for the neural eigenspectrum.** We
 134 developed a novel estimator that, up to a good approximation,
 135 does not suffer from any of the three biases we have
 136 described. We did so by finding unbiased estimates of signal
 137 ‘eigenmoments’, the p th moment being the signal covariance
 138 eigenvalues to the p th power averaged $m_p = \frac{1}{n} \sum_{i=1}^n \lambda_{S,i}^p$, then
 139 finding the best fit eigenspectrum to these unbiased estimates.
 140 We found our signal eigenmoment estimator by extending the
 141 results of Li *et al* (2014) and Kong & Valiant (2017).

142 To provide intuition into this approach it is useful to consider the centered eigenmoments of two different eigenspectrum
 143 (Fig 2). If the eigenspectrum is flat (Fig 2A, column 1), implying
 144 each neuron’s tuning is mutually orthogonal to all other
 145 neurons’ tuning, then the distribution of eigenvalues will be a
 146 delta function centered at the average variance of the neurons
 147 (Fig 2A column 2). The first eigenmoment is the mean of the
 148 eigenvalues and thus is also equal to the average variance of
 149 the neurons but all other moments are zero because there is
 150 no spread to the distribution (Fig 2B column 3 traces go to
 151 zero after $p = 1$). If an unbiased estimate of the first eigen-
 152 moment was obtained, $\mathbb{E}[\hat{m}_1] = \frac{1}{N} \sum_{i=1}^N \lambda_i$, and we knew the
 153 eigenspectrum was flat we would have an unbiased estimator
 154 of the eigenspectrum $\lambda_i = \hat{m}_1$. If we are unwilling to make
 155 such a strong assumption we can choose a more flexible para-
 156 metric form of the eigenspectrum, for example it is linear as a
 157 function of the index, and fit it to unbiased estimates of higher
 158 order moments (Fig 2A column 4, error between red dashed
 159 parametric eigenmoments and grey open circle unbiased esti-
 160 mates is minimized) and the eigenspectrum associated with
 161 those eigenmoments serves as an estimate of the ground truth
 162 eigenspectrum (Fig 2A column 5, red dashed trace).

163 If the eigenspectrum is not flat but decreases linearly with
 164 the index (Fig 2B) then the distribution of eigenvalues will be
 165 uniform (Fig 2B column 2). The second eigenmoment will be
 166 non-zero because of this spread but every odd eigenmoment,
 167 but one, will be 0 because the distribution of eigenvalues is
 168 symmetric (Fig 2B column 3). More generally, the eigenspec-
 169 trum is uniquely specified by its eigenmoments.

170 Critically the expected value of our estimates of signal
 171 eigenmoments are unbiased so do not depend on the rank of
 172 the data used to estimate them nor by corrupting noise regard-

MEME (minimize eigenmoment error)



Simulation of MEME vs cvPCA

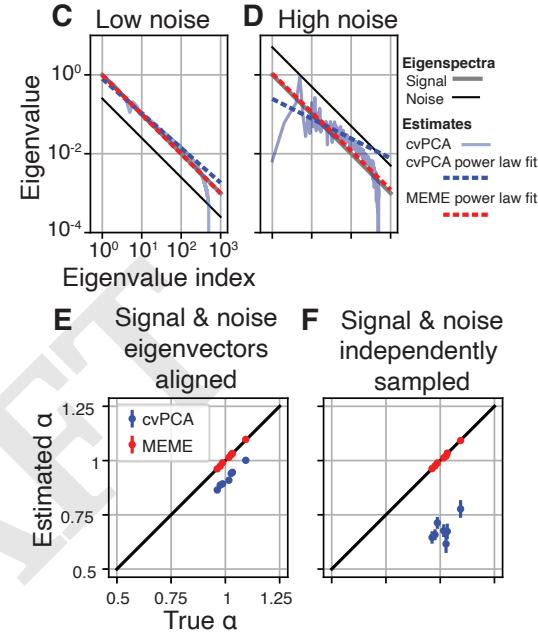


Fig. 2. MEME estimator and validation in simulation. **(A)** Schematic of MEME method applied to uniform eigenspectrum **(B)** and to eigenspectrum with linear decay. **(C)** Comparison of MEME (red) and cvPCA (blue) estimates of power law in 1000 dimensions with low noise (signal eigenspectrum grey above noise eigenspectrum black) and high number of stimuli ($m=500$). In the case of cvPCA, a power law is estimated by fitting a line in log-log coordinates. We fit this line to eigenvalues along eigenvalues 2-50 (blue dotted) matching the proportions used in Stringer *et al.* (3) **(D)** Same simulation but with high noise. **(E)** Comparison of estimators on data drawn matching the distribution of experimental data from Stringer *et al.*, but where the signal and noise eigenvectors are the same and the eigenspectrum is set to be a power law matching the slope estimated by the cvPCA procedure. **(F)** Simulation where signal and noise eigenvectors are independently formed from noise.

174 less of its covariance structure. Furthermore we prove these
 175 eigenmoment estimates are unbiased regardless of the data’s
 176 distribution, provided finite moments, thus these guarantees
 177 are broadly applicable. We now show that for typical ranges
 178 of parameters in neural data our estimator is highly accurate
 179 and overcomes issues with the prior estimator cvPCA.

180 **Validation of estimator in simulation.** To demonstrate the key
 181 properties and effectiveness of our estimator we ran a sim-
 182 ulation where both signal and noise eigenvalues followed a
 183 power law. cvPCA is the only other estimator that has been
 184 proposed to specifically estimate the signal eigenspectrum thus
 185 we compare our estimator to it.

186 We first simulated $d = 1000$ neurons, $m = 500$ stimuli,
 187 and $n = 2$ repeats. This corresponds for example to a typical
 188 calcium recording experiment to characterize sensory tuning

189 in a population recording. To estimate a power law Stringer
 190 *et al* (3) fit a line in log-log coordinates only for eigenvalues
 191 with indices between 11-500 out of 10,000 eigenvalues. Here
 192 we matched this procedure for a smaller number of neurons
 193 with a scaling factor of 1,000/10,000 to fit eigenvalue indices
 194 between 2-50. In the case where noise was low (Fig 2C grey
 195 signal eigenspectrum above black noise eigenspectrum) the
 196 MEME estimator performs well (red overlap grey) and cvPCA
 197 performs similarly. When we increased the noise level (Fig 2D,
 198 black above grey) we found that early cvPCA estimates tended
 199 to dramatically mis-estimate the true signal eigenspectrum
 200 (transparent blue trace on left well below grey) and this led to
 201 mis-estimation of the power law fit to the cvPCA estimates
 202 (dashed blue traces do not align with grey). Whereas the
 203 MEME estimate continued to accurately estimate the form of
 204 the power law (red dashed trace overlaps grey). It is possible
 205 that for a different choice of range the cvPCA estimated power
 206 law could have been more accurate but it is unclear how to
 207 a priori choose this range when the true power law is not known.
 208 Thus in simulation we discovered biases in the approach of
 209 fitting a power law to cvPCA estimates. We now consider if
 210 these biases could have affected results in the original study
 211 of Stringer *et al*.

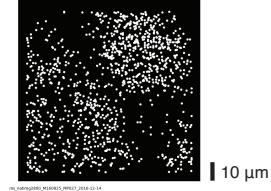
212 We found unbiased estimates of the signal and noise covariance
 213 of the original seven recordings of mouse primary visual cortex
 214 to natural images then enforced a true power law signal
 215 eigenspectrum that matched the slope estimated from cvPCA
 216 (see Methods, ‘Simulation procedure’). We then simulated
 217 data from this distribution and fit the signal power law using
 218 the original cvPCA approach and MEME. High dimensional
 219 signal and noise eigenvectors are difficult to estimate so we
 220 chose two extremal cases for our simulation. In the first case
 221 we aligned the signal and noise eigenvectors and found that
 222 cvPCA consistently under estimated the slope of the power
 223 law exponent α (Fig 2E blue points below black diagonal)
 224 whereas MEME accurately recovered the slope (red points
 225 overlaps black diagonal). We then ran the same simulation
 226 but where signal and noise were independently sampled and
 227 found an even larger downward bias of cvPCA while MEME
 228 remained accurate (Fig 2F). Thus we expect that regardless
 229 of the relationship between signal and noise the cvPCA power
 230 law exponent estimate is biased downwards but less so to
 231 the degree that signal and noise are aligned (see Methods,
 232 ‘cvPCA’). Signal and noise correlation are known to co-vary
 233 (12–16), but see (17), thus it is plausible that in neural data
 234 the bias of cvPCA may be ameliorated somewhat.

235 Given that cvPCA returned biased estimates of the signal
 236 eigenspectrum on simulated data matching the distribution
 237 of the original data, whereas MEME was accurate, we next
 238 examined whether estimates of signal eigenspectrum on the
 239 original data using the two different methods diverged.

240 **Application to estimation of power law eigenspectrum in**
 241 **mouse primary visual cortex.** We re-analyzed the original data
 242 from Stringer *et al*, (3), responses from $\sim 10,000$ neurons
 243 across a patch of primary cortex (Fig 3A). Two repeated re-
 244 sponds of all neurons to a set of $\sim 2,800$ stimuli were collected
 245 (Fig 3BC) and these responses were mean centered neuron-wise
 246 (for details of calcium response pre-processing see Methods).
 247 In general we found these neurons tended to respond to a
 248 restricted region of the stimuli (Fig 3D, average power of es-
 249 timated linear receptive fields across all neurons of example

Experimental data

A Neuron ROI's



C Example stimulus

D Avg. receptive field

Repeat 1 Repeat 2

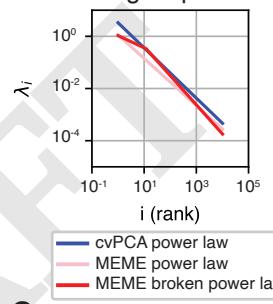
Neuron (102 of 10,103 shown)

Stimulus (28 of 2,800 shown)

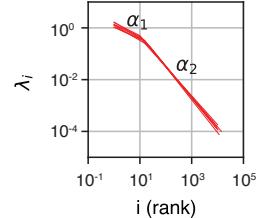
Inferred spk/s (mean subtracted)

Estimated signal eigenspectra

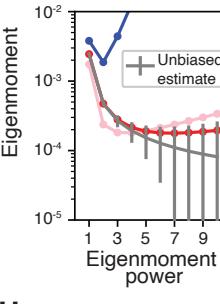
E Example recording fit eigenspectra



G Broken power law across recordings



F Model vs data eigenmoments



H Comparison of tail slope

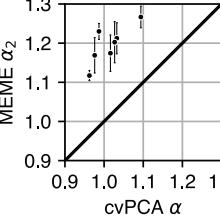


Fig. 3. Fit of Stringer *et al*, (2019) data using cvPCA and MEME. (A) Positions of 1,011 neurons 10,103 recorded from primary visual cortex of mouse. (B) Example neural data, two repeats of the simultaneous responses of neurons to the same set of stimuli. (C) Example stimulus shown to mice drawn from ImageNet. (D) Estimate of the population receptive field (average power of estimated linear receptive fields of all neurons). Bounding box used for visualizing linear RFs (red dashed). (E) Signal eigenspectrum fit to neural data: a power law fit to cvPCA estimates following the methods of Stringer *et al*, (blue), a power law fit to unbiased estimates of signal eigenmoments pale red, and a broken power law fit to the same eigenmoments (red). (F) Unbiased estimates of eigenmoments with 95 % CIs compared to the eigenmoments corresponding to the eigenspectrum in (E). (G) Across all recordings ($n=7$) the best fit broken power law eigenspectrum (red). (H) The power law exponent estimated by cvPCA plotted against the exponent of the tail of the broken power law estimated by MEME (α_2 see (G)). Plotted are individual estimates with 95 % CIs for the MEME estimates and cvPCA (black points).

recording). We first applied cvPCA to an example recording and fit a power law finding that it had a slope near 1 (Fig 2E blue, $\alpha = 0.96$). When we fit a power law using MEME we found a significantly shallower slope ($\alpha = 0.90$). Yet the eigenmoments of this MEME estimated power law systematically deviated from the unbiased estimates of the raw data’s

256 eigenmoments, implying that a power law was a poor fit to
257 the data (Fig 3F pale red points deviate beyond CI's of grey
258 points). Similarly the eigenmoments of the cvPCA estimate
259 did not match the data's eigenmoments (blue points deviate
260 beyond CI's of grey points). This motivated us to consider
261 more flexible eigenspectrum functions. Given that the original
262 study formed predictions with respect to the exponent of a
263 power law, we fit a piece-wise power law to obtain a more
264 flexible model while still being able to make direct comparisons
265 to their predictions. We found that in all cases, accounting
266 for model degrees of freedom, the broken power law fit the
267 eigenmoments of the data better than a power law (Fig 2F
268 red dots within CI's of grey, see supplementary information
269 Fig S1 for statistical tests across all recordings). The broken
270 power law had an initial shallow power law and a tail power
271 law that was much steeper (Fig 3E red trace slope initial ~ 0.5
272 then ~ 1.2). This form of eigenspectrum was similar across
273 all recordings (Fig 3G red traces overlap). The slope of signal
274 eigenspectrum tail was consistently higher for the MEME than
275 cvPCA estimates (Fig 3H, MEME average $\alpha = 1.20$, cvPCA
276 average $\alpha = 1.01$). These findings are inconsistent with two
277 claims from the original study. First, the eigenspectrum of
278 population responses in mouse visual cortex is inconsistent
279 with a power law, we find it is far better described as a bro-
280 ken power law. Second, at no point does the eigenspectrum
281 decay at a critical rate near $\alpha = 1$, instead it initially decays
282 50 % more slowly and then 20 % faster in the tail of the
283 eigenspectrum.

284 Despite the more rapid decay in the tail of the eigenspec-
285 trum the overall dimensionality (as quantified by the parti-
286 cipation ratio (18, 19)) was on average 1.68 times higher than a
287 power-law with a slope of 1 would predict. Thus the dimen-
288 sionality of primary visual cortex is much higher than previously
289 thought but because of only ~ 10 dominating modes. The
290 number of dimensions needed to capture 75% of the variance
291 of population tuning, another metric of dimensionality (20),
292 is actually lower (under the fit broken power law on average
293 357 eigenvectors are needed whereas for a power law with a
294 slope of one 902 eigenvectors are needed). This contradic-
295 tion in two metrics of dimensionality is precisely because the
296 dimensionality increase quantified by the participation ratio is
297 driven by the first ten modes and once these are accounted
298 for the remaining variation is captured rapidly by successive
299 dimensions (see supplementary information Fig S2).

300 These results imply there are two distinct regimes of joint
301 encoding in mouse visual cortex. A high dimensional regime
302 where ten dominating features of the stimulus have a similar
303 magnitude of effect on the population and a low dimensional
304 regime where the remaining variation of tuning is rapidly
305 absorbed. This led us to examine the encoding properties of
306 the dominant modes.

307 **Characterization of population tuning.** The signal eigenspec-
308 trum corresponds to a decomposition of neural responses into
309 directions of maximal signal variation across stimuli. We will
310 call these directions of maximal variation in neural response
311 space “neural eigenmodes” (identical to the eigenvectors of the
312 neural signal covariance matrix) and the variation in the scale
313 of these modes across stimuli “eigenmode tuning” (identical to
314 the eigenvectors of the stimuli signal covariance matrix). We
315 estimated these by respectively calculating the eigenvectors
316 from unbiased estimates of the signal covariance over stimuli

317 and neurons. The neural eigenmode loadings tended to be
318 sparse with most weights near 0 but a few very large weights
319 (Fig 4A black trace concentrated around 0). For the first mode
320 we found a bias in the sign of the loadings (Fig 4A first row
321 black trace biased upwards) with 69 % positive. Thus, the
322 most variation in neural signal variation can be described as
323 uniform excitation on a subset of neurons. To gain insight
324 into the tuning of this eigenmode we fit a linear model that
325 predicted eigenmode tuning from a linear combination of stim-
326uli pixels (Fig 4B orange traces, $R^2 = 0.2$). Visualizing the
327 weights on stimuli pixels we found classic center surround
328 tuning (Fig 4C). Thus, surprisingly, a substantial fraction of
329 the variation in the first dominant mode of neural tuning could
330 be explained by a classic model of early visual selectivity. To
331 gain further insight we examined the stimuli that evoked the
332 three highest and lowest responses of this eigenmode and com-
333 pared them to the linear component of the responses (Fig 4D
334 first row of black and orange outlined images). Qualitatively
335 comparing the two sets we judged that the eigenmode tuning
336 was driven by higher spatial frequency image structure than
337 the linear component. Careful analysis of more flexible models
338 could gain greater insight into the non-linear component of
339 eigenmode tuning (i.e., the systematic prediction errors of the
340 linear models). Examining the linear receptive fields of other
341 recordings we repeatedly observed clear selectivity for spatial
342 frequency matching the scale of the population receptive field,
343 a diversity of orientation selectivity, and phases (Fig 4F left
344 to right). Thus classical primary visual cortex receptive field
345 properties drive a significant amount of variation in the top
346 eigenmodes of mouse primary visual cortex.

347 A normative explanation for the presence of signal corre-
348 lation between sensory neurons is that it can improve the
349 fidelity of the signals encoded in common across a population
350 of neurons (21–23). Here we quantified the scale of this effect
351 by measuring the noise corrected SNR (24) of eigenmodes and
352 single neurons. We estimated eigenmode neural loadings with
353 2,000 stimuli then projected neural responses to the rest of
354 the stimuli (~ 300 – 800) onto those loadings and calculated
355 SNR across the two repeats. We found that tuning for early
356 eigenmodes had higher fidelity than the average neuron (Fig
357 5A, grey trace above black dashed for indices 1–10). This was a
358 consistent result across recordings with the first 10 eigenmodes
359 having an average SNR at least 4.9 times greater than that
360 of the average single neuron (average SNR 7.7 times greater).
361 Furthermore, eigenmode SNR is likely underestimated because
362 our estimates of signal eigenvectors are noisy. We can conclude
363 that a hypothetical downstream region could more easily de-
364 code the feature encoded by an early eigenmode than a typical
365 neuron because of the structure of signal correlations.

366 Ultimately these dominant eigenmodes, which we found
367 robustly encode image features, are the result of redundancy
368 in the tuning between individual neurons. We observed that
369 often early eigenmodes possess receptive field properties typ-
370 ical of the classic characterization of individual neurons in
371 primary visual cortex (Fig 4F). It might be expected that
372 if the selectivity of all 10,000 neurons were restricted to the
373 relatively small linear subspace spanned by a narrow band of
374 spatial frequencies the top eigenmode tuning would inevitably
375 recapitulate this structure. Yet, it is well known that classic
376 models do not often predict the bulk of variation in single
377 neuron tuning, in fact the tuning of individual neurons are

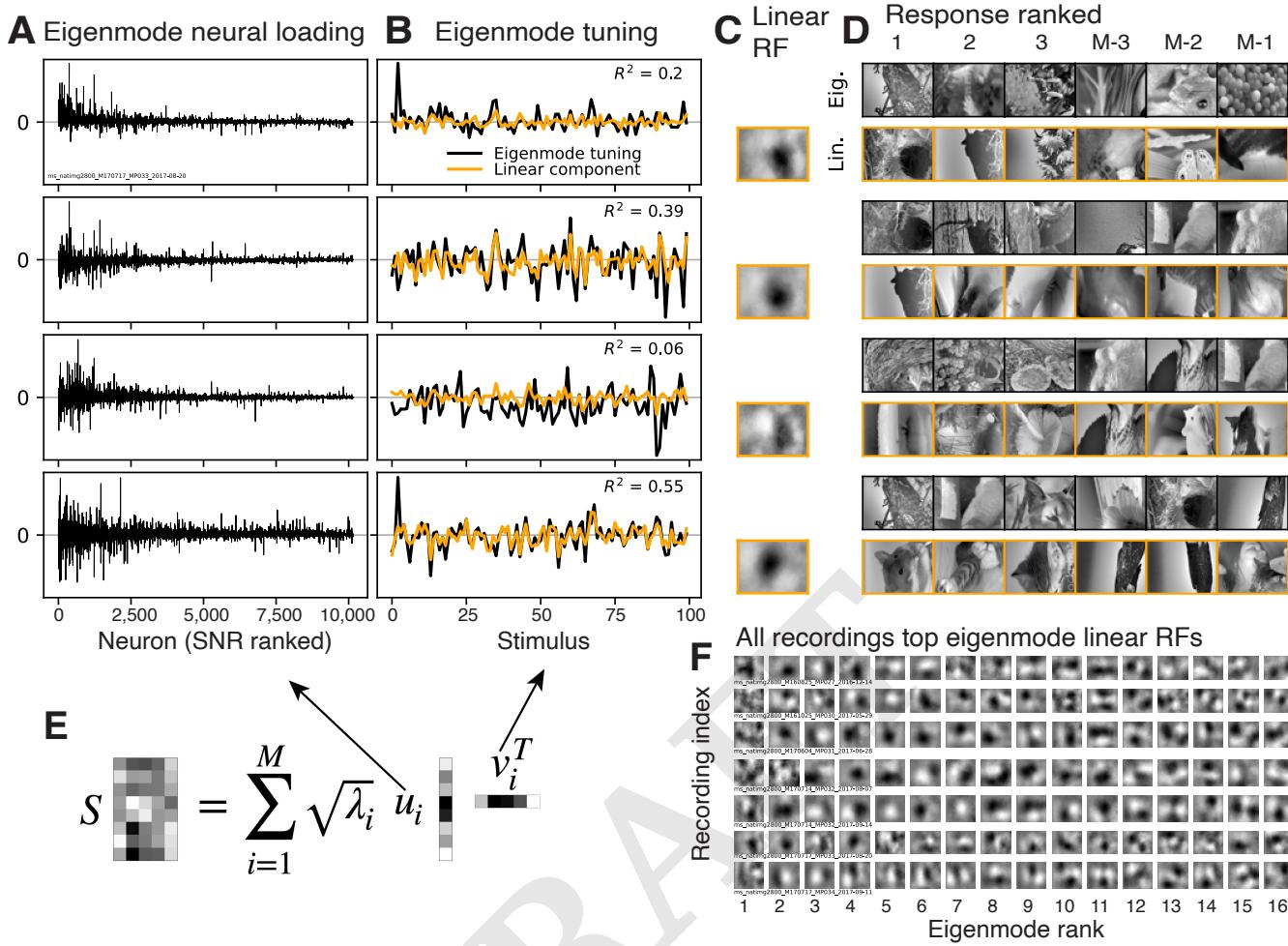


Fig. 4. Analysis of population neural tuning. **(A)** Signal eigenmode loadings on each neuron (estimated left-singular vectors of noiseless responses, neuron by stimuli matrix) plotted against SNR of the neuron. **(B)** Signal eigenmode tuning (right-singular vectors) in black, least squares fit of image pixels to eigenmode tuning in orange. **(C)** Visualization of linear receptive field of eigenmode tuning (dot product of linear RF pixels with image pixels gives orange trace in (B)). **(D)** Stimuli that gave the top and bottom three responses from eigenmode tuning (black outlined top row) and the linear receptive field (orange outlined bottom row). **(E)** Formula for reconstruction of neural signal matrix (rows neurons, columns stimuli) from eigenmode neural loadings (left singular vectors of signal matrix which in the limit of infinite stimuli equals the eigenvectors of the signal covariance matrix) and tuning vectors (right singular vectors). **(F)** Linear receptive fields from all recordings of responses to natural images (rows) ranked by eigenmode (columns).

notoriously difficult to predict across natural images even with flexible data driven models (6, 7). Indeed, when we estimated the ability of a linear filter to predict neural responses, by regressing the pixels of the images on the neural responses and estimating R^2 using a noise corrected estimator (24) (see Methods, Estimation of model performance), we found that on average less than a quarter of neuronal signal variance could be predicted (Fig 5B dashed black trace). We also fit a basis of gabor filters and their squares (a multi-scale ensemble of classic simple and complex cell models (6, 25)) and found that on average predictive performance increased only slightly (green dashed above black). Thus a minority of single neuron tuning is characterized by linear or classic receptive field properties thus a majority is non-linear and not characterized by classic models. Unlike the stereotyped classical receptive fields it is not obvious whether or not this single neuron selectivity will be robustly represented at the population level. Each neuron's unexplained tuning could be orthogonal. Yet, we find that it is often highly redundant at the population level: less

than a quarter of the variation in the top eigenmode can be captured by a classic model (Fig 5A beginning of black and green solid trace). These eigenmodes are noisy estimates so it is not clear how much of their tuning is 'explainable' but we find that later, more difficult to estimate, eigenmodes can often be better explained (black trace peaks at eigenmode 4 with 50 % variance explained). Across recordings we find that it is typical for some modes to have up to half their variance explained while others, often the first mode, have less than a quarter explained (see supplementary information Fig S3). These results suggest there are distinct single neuron tuning properties that are highly redundantly encoded across primary visual cortex but that are not well characterized by classic models of primary visual cortex. Redundancy implies these tuning properties are of particular import to the organism and yet it remains unclear what these tuning properties are (see Discussion).

We finally asked how the geometry of the representation relates to neuronal physiology. Are neurons essentially ex-

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

Classic and non-classic image features robustly encoded at population level

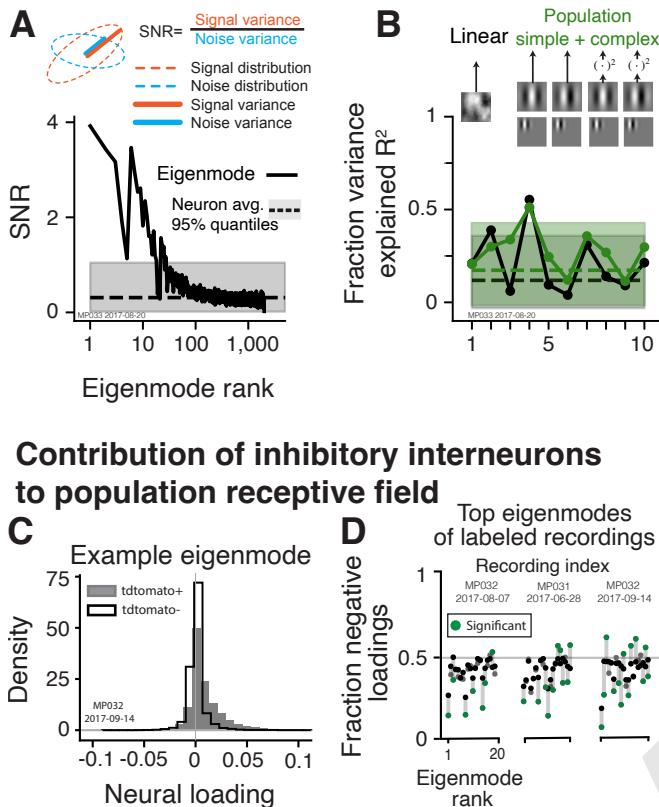


Fig. 5. Population and single neuron tuning and the distinct contribution of inhibitory interneurons to the population receptive field. **(A)** Estimated SNR of ranked signal eigenmodes (black solid trace) compared to average SNR of individual neurons (black dashed horizontal line) along with 95 % quantile (transparent grey). **(B)** Fraction variance explained (corrected for noise and model degrees of freedom) by linear model (black) and simple and complex cell model multi-scale population (green) for single neurons on average and top ten eigenmodes. **(C)** The distribution of eigenmode neural loading on neurons identified as inhibitory (grey) and other neurons (black) for the 2nd eigenmode in example recording. **(D)** Across the top 20 eigenmodes for the three tdtomato+ labeled recordings the fraction negative loadings for inhibitory and other neurons (respectively gray and black), green dots indicate where these fractions are significantly different ($p < 0.001$).

neurons across the top twenty modes (Fig 5D, green dots). Thus we find evidence that the principal stimulus features driving population responses have a distinct effect on inhibitory neurons. Specifically inhibitory neurons tuning includes a component of one sign of eigenmode tuning more often than other neurons. Understanding this tuning and the significance of one sign vs the other could be relevant to the function of inhibitory neurons in shaping sensory representations (see Discussion).

Discussion

Summary. We have introduced a novel and highly accurate estimator of the eigenspectrum of high-dimensional population neural tuning. In particular it performs well in the challenging conditions of limited stimuli and correlated noisy measurements that are common in large scale neural recordings. We applied this estimator to re-analyze a large scale recording of mouse primary visual cortex in response to natural images. We showed that the eigenspectrum was not well fit by a power law—in contrast to the conclusions prior work. Instead it was captured by a broken power law. The broken power law showed a characteristic form with an initially shallow slope for the first 10 eigenvalues ($\alpha_1 \approx 0.5$) and a steeper fall off for the remaining eigenvalues ($\alpha_2 \approx 1.2$). The tail of the signal eigenspectrum was steeper than previously estimated, $\alpha \approx 1$ vs $\alpha \approx 1.2$. We examined the image features that drove the dominant variation in the initial component of the power law and found their encoding fidelity was higher than the average neuron and that they sometimes were well characterized by classic models of primary visual cortex but also sometimes decidedly not. Finally we found that the features driving the dominant eigenmodes had distinct effects on putative inhibitory neurons, tending to be uniform in the sign of its effect. We thus have discovered clear links between geometry, computation and physiology in mouse primary visual cortex and introduced a novel estimator of high dimensional geometry that is more accurate than prior methods.

Relevance to prior work. We re-analyzed the data of Stringer et. al., (3) and came to qualitatively different conclusions about the form of the signal eigenspectrum. Specifically, it was claimed that the signal eigenspectrum follows a power law with a slope near one whereas we found the signal eigenspectrum is consistent with a broken-power law with neither of its slopes near 1. The authors originally argued that a slower-decaying eigenspectrum indicated a more efficient representation, whereas steeper decay reflected a smoother representation and that a power law with a slope of one was the slowest the eigenspectrum could decay (for the purpose of efficiency) before the representation became pathologically unsmooth. Thus their original cvPCA based estimates that the slope of the tail of the eigenspectrum was near 1 indicated that these theoretical considerations could precisely predict an empirical property of primary visual cortex. Yet, our more accurate MEME estimator revealed the slope was not at this critical point, weakening the explanatory power of their theory.

One explanation for deviations from their theory could rest in the veracity of its assumptions. The truth of the claim that a more slowly decaying eigenspectrum is in general more efficient depends on the form of the noise both in the responses of the neurons and in the stimulus. For example Atick and

changeable as coordinate axes of the high-dimensional sensory representation or do different neuronal types participate in a distinct manner? One of the foremost physiological distinction made between cortical neurons is whether they are excitatory or inhibitory thus it is natural to ask whether they take on distinct roles in population geometry. In the three recordings where GABAergic neurons were identified with a tdtomato label we found systematic difference in the eigenmode loading's on these putative GABAergic inhibitory neurons. For example in the second eigenmode of an example recording there is a large difference in the distribution of inhibitory neurons with positive eigenmode loadings (75 %) whereas other neurons in the recording are equally likely to have negative or positive loadings (Fig 5C). This provides evidence that the features encoded by the eigenmode have a distinctly more uniform effect on the activity of inhibitory interneurons than other neuron types. There was often a significant difference in the fraction of negative loadings between inhibitory neurons and other

493 Redlich (26) found that when noise in inputs was low then the
494 most efficient linear sensory transformation would whiten the
495 inputs, thus the output eigenspectrum would be flat, but when
496 noise was high it would average over inputs and the output
497 eigenspectrum would fall off steeply. Thus an explanation
498 for the signal eigenspectrum in mouse primary visual cortex
499 being consistent with a broken power law may derive from
500 the character of input and neuronal noise and not require
501 consideration of constraints on the smoothness of the neural
502 code.

503 Thus a fundamental feature of sensory representation of
504 primary visual cortex, the form of its eigenspectrum, remains
505 unexplained. Despite this mystery, our empirical finding has
506 concrete consequences to the project of characterizing primary
507 visual cortex that we discuss below.

508 **Interpretation of the signal eigenspectrum.** Our estimator al-
509 lows accurate estimates of the entire signal eigenspectrum of
510 neural populations. We now consider two interpretations of the
511 signal eigenspectrum of practical significance to understanding
512 sensory coding: (1) its relevance to predictive modeling of
513 neural tuning and (2) sensory encoding.

514 The signal eigenspectrum of a population of sensory neurons
515 quantifies the optimal performance of a linear combination of
516 image features in predicting the responses of those neurons.
517 The cumulative sum up to the n th eigenvalue is exactly how
518 much variance can be explained by n of these hypothetical
519 optimally predictive image features. This puts a tight upper
520 bound on the performance of the now common practice of
521 regressing learned image features on neural responses (e.g.,
522 DNN responses). If there are n features the variance explained
523 cannot surpass $\sum_{i=1}^n \lambda_{S,i}$. Thus an accurate estimate of the
524 signal eigenspectrum could be used as a metric of how close
525 a model is to optimal efficiency i.e., uses no more features
526 than necessary for a given predictive performance. Thus a
527 very practical view of the signal eigenspectrum is an exact
528 quantification of minimal complexity of the model needed to
529 capture the tuning of a population of neurons. A power law
530 is a heavy tailed distribution which suggests the complexity
531 of sensory representation is quite high—the performance of
532 this hypothetical perfect model converges slowly with the
533 number of parameters. Yet our finding of a steeper slope in
534 the tail indicates substantial savings. For example to achieve
535 75% variance explained ~ 900 features would be needed if
536 the signal eigenspectrum followed a power law with a slope
537 of 1 whereas for the broken power law on average ~ 350
538 features are needed. In short, this study suggests that sensory
539 neuroscientists seeking a compact but fairly predictive model
540 of primary visual cortex should bear in mind they will need at
541 least 350 image features—a large but still feasibly characterized
542 number of features.

543 Alternatively, the image features of this hypothetical optimal
544 model are also just image features that the neural population
545 jointly encodes. Thus the eigenspectrum exactly quantifies
546 the dimensionality of the features space within which the mean
547 population neural response encodes images. From this perspective
548 our finding of an initially slow decay of the eigenspectrum
549 implies that there are ten or so roughly equally weighted features
550 that the neural population encodes with high redundancy
551 across a large population of neurons. The more rapid fall off in
552 the tail of the signal eigenspectrum indicates that additional
553 features quickly diminish in their effect on the population, but

554 the heavy tail of the power law still insures that cumulatively
555 these additional features drive the majority of variation (first
556 10 explain $\sim 30\%$ of variation). While we have measured
557 the degree of variation along these feature dimensions we do
558 not know what these features are. Predictive models have
559 primarily focused on the tuning of individual neurons, our
560 measurements of signal eigenspectrum and associated SNR,
561 indicate that the features encoded across the population are
562 highly redundant and perhaps more relevant to downstream
563 processes given their fidelity. Some of the variation in the
564 tuning of individual neurons may reflect components that are
565 not strongly represented at the population level (i.e., tuning
566 that is unique to each neuron). Thus it could be productive
567 to use predictive models to explain eigenmode tuning in addition
568 to single neuron tuning. It may turn out that dominant
569 modes are more easily captured similarly to how we found a
570 surprising amount of their variation could be explained with
571 a linear model.

572 **Population sensory representations in primary visual cortex.**
573 We found that the image features associated with the dominant
574 eigenmodes were far more robustly encoded than those of the
575 average neuron. This a clear empirical reason to recommend
576 studying this population level tuning: primary visual cortex
577 encodes these visual features in particular with very high
578 fidelity. Further experiments where populations receptive
579 fields are aligned to the same stimuli could determine whether
580 this tuning is shared across animals.

581 Ultimately the striking difference in SNR between neurons
582 and eigenmodes is the result of commonality in tuning
583 across the population of neurons—signal correlation—where
584 tuning redundancy leads to robustness to noise. While long
585 hypothesized to be a potential consequence and normative
586 explanation of signal correlation (21–23) direct estimation of
587 what features are robustly encoded in primary visual cortex
588 is enabled by simultaneous recordings of a large population
589 of retinotopically overlapping neurons. Stereotyped properties
590 with respect to selectivity for spatial frequency and orientation
591 in primary visual cortex has long been known but it has
592 become increasingly clear that primary visual cortex responses
593 are not solely characterize by their selectivity for spatial
594 frequency and orientation (6, 7). Thus our finding that, similarly,
595 eigenmodes are often not well-described by such classical notations
596 is a data-driven indication that there are uncharacterized
597 but stereotypical components of single neuron tuning encoded
598 across the population. We have not exhaustively characterized
599 these modes with respect to the more recent models of primary
600 visual cortex (e.g., inclusion of a normalization pool (27)) the
601 significance of these more recent efforts could be emphasized
602 if they are shown to capture unexplained population level
603 representation. Otherwise more flexible data driven models
604 (e.g., deep neural networks) could be applied to eigenmode
605 tuning and the difficult work of characterizing these models
606 could in part be justified by the assurance they were capturing
607 image features primary visual cortex robustly encodes at the
608 population level.

609 **Inhibitory neurons distinct participation in sensory repres-
610 entation.** Inhibitory neurons, in contrast to excitatory neurons,
611 typically do not have axons that extend to other regions of vi-
612 sual cortex—thus they presumably act to modulate the sensory
613 representation that is transmitted to other brain regions (28).

614 There is evidence that inhibitory neurons, when collectively
 615 activated, can sharpen tuning (8). We found that putative
 616 inhibitory neurons had the same sign eigenmode tuning more
 617 often than other neurons—in other words inhibitory neurons
 618 tended to co-activate at a higher rate than other neurons
 619 in response to features that maximally drove the population.
 620 Future work could causally test if inhibitory neurons sharpen
 621 tuning along directions of eigenmode tuning. This could reveal
 622 novel computational roles of inhibitory interneurons in shap-
 623 ing the visual sensory representation beyond single neuron
 624 orientation and spatial frequency tuning.

625 Conclusion

626 We have made several principal empirical observations about
 627 the population code in primary visual cortex. The signal eigen-
 628 spectrum is a broken power law with slow than rapid decay, the
 629 top modes are of far higher fidelity than the average individual
 630 neuron and are often not well characterized by classic models
 631 of primary visual cortex, and inhibitory neurons tend to be
 632 driven in concert by the top modes' features. Taken together
 633 these results challenge the primacy of studying individual neural
 634 tuning curves given the dramatic emergence of distinct, but
 635 poorly characterized, population level computations that
 636 are robust to noise, and with clear relevance to physiology.

637 Beyond our empirical findings, we have demonstrated that
 638 the challenge of describing high dimensional neural codes
 639 requires novel statistical methods that are rigorously validated.
 640 They lay a critical foundation for surmounting the ‘curse of
 641 dimensionality’ in the study of neural representations and
 642 motivate addressing this curse because they indicate the rich
 643 statistical structure that lays waiting to be uncovered at the
 644 population level.

645 Materials and Methods

646

647 **Assumptions and terminology for derivation of estimator.** Here we
 648 employ a common model of population neural responses:

$$649 F_{k,i} = \mu + S_i + \epsilon_{k,i}, \quad [1]$$

650 where $F_{k,i}$ is a vector of responses from n neurons to the k 'th
 651 repeat of the i 'th stimulus, μ is a vector of the mean (across the
 652 stimuli distribution) responses of each neuron, S_i is the vector
 653 of expected neural responses to the i th stimulus, (i.e., samples
 654 from the tuning curve) with signal covariance Σ_S , and $\epsilon_{k,i}$ is the
 655 per-trial noise with noise covariance Σ_N . The signal covariance
 656 Σ_S , the object of our current study, is given by the covariance of
 657 noiseless responses S_i over the stimulus distribution $P(S)$ (e.g.,
 658 sampling from a database of natural images). We will often deal
 659 with $m \times n$ matrices of responses collected on the k th repeat which
 660 we will call F_k , the concatenation of m draws from $F_{k,i}$. Here we
 661 focus on the estimation of the signal eigenvalues, $\lambda_{S,i} = f_i(\Sigma_S)$,
 662 the sorted eigenvalues of the signal covariance matrix Σ_S . We
 663 also consider the noise eigenvalues, $\lambda_{N,i}$ the sorted eigenvalues of
 664 the noise covariance matrix Σ_N . We will estimate these quantities
 665 indirectly from unbiased estimates of signal and noise eigenmoments,
 666 the p 'th moments respectively being: $\sum_{i=1}^n \lambda_{S,i}^p$ and $\sum_{i=1}^n \lambda_{N,i}^p$.

667 **Unbiased estimation of eigenmoments.** Our estimator infers the sig-
 668 nal eigenspectrum by matching unbiased estimates of signal eigen-
 669 moments. It is an extension of previous work developing unbiased
 670 estimates of eigenmoments from noiseless data that we review next.

Estimation from noiseless data. Unbiased estimates of eigenmoments
 671 were first discovered by Li *et al* (29) but then employed to infer
 672 eigenspectra by Kong and Valiant (30). In the noiseless case we
 673 have direct observations of S_i (letting $\mu = 0$), and an $m \times n$ matrix
 674 formed by concatenating m presentations of stimuli, we call S . For
 675 insight into the method we show how an unbiased estimate
 676 of the p th eigenmoment can be calculated in the noiseless case.
 677 A single unbiased estimate of covariance can be formed from the
 678 j th observation $\hat{\Sigma}_{S_j} = S_j S_j^T$ then the statistic $\frac{1}{n} \text{Tr}(\prod_{j=1}^p \hat{\Sigma}_{S_j})$,
 679 formed from p independent estimates of covariance, is an unbiased
 680 estimate of the p th eigenmoment because,

$$681 \mathbb{E} \left[\frac{1}{n} \text{Tr} \left(\prod_{j=1}^p \hat{\Sigma}_{S_j} \right) \right] = \frac{1}{n} \text{Tr} \left(\prod_{j=1}^p \mathbb{E} [\hat{\Sigma}_{S_j}] \right) \\ 682 = \frac{1}{n} \text{Tr}(\Sigma_S^p) = \frac{1}{n} \sum_{i=1}^n \lambda_{S,i}^p,$$

683 the first step following from independence of the estimates of covariance
 684 and the linearity of the trace and expectation, the second step follows
 685 from the definition true of an unbiased estimate, and the last step follows
 686 from the identity for symmetric matrices $\text{Tr}(A^p) = \sum_{i=1}^n \lambda_i^p$.

687 It is unnecessary to explicitly calculate the outer product for
 688 each $\hat{\Sigma}_i$ but instead calculate inner products, for example ,

$$689 \text{Tr}(\hat{\Sigma}_{S_1} \hat{\Sigma}_{S_2}) = \text{Tr}(S_1 S_1^T S_2 S_2^T) = \text{Tr}(S_1^T S_2 S_2^T S_1) = S_1^T S_2 S_2^T S_1.$$

690 More generally we can get the p th eigenmoment as follows, let σ be
 691 a set of p distinct indices of IID observations of S $[\sigma_1, \sigma_2, \dots, \sigma_p]$ and
 692 $\sigma_{p+1} = \sigma_1$. Then the estimator of the p th eigenmoment is,

$$693 \hat{m}_p = \frac{1}{n} \prod_{i=1}^p S_{\sigma_i} S_{\sigma_{i+1}}^T.$$

694 As p and m grow there are many number of distinct indices over
 695 which to form this estimator. To reduce variance one could average
 696 over all possible sets of distinct indices. This quickly becomes com-
 697 putationally intractable and so Kong and Valiant developed a rapid
 698 approximation where they average over all increasing sets of indices.
 699 This can be accomplished with the following calculation letting
 700 $A = SS^T$, where S is the $m \times n$ concatenation of m observations
 701 and A_{up} be the same matrix with lower triangular and diagonal
 702 entries set to 0,

$$703 \hat{m}_p = \frac{\text{tr}(A_{\text{up}}^{p-1} A)}{n \binom{m}{p}}. \quad [2]$$

704 **Extension to noisy data.** The estimator of Kong and Valiant assumed
 705 that there was no noise, correlated or otherwise, in the measurement
 706 of S . Here we extend their estimator to the case of measurement
 707 error as described in Eqn.1. The key insight is that across repeats
 708 noise, $\epsilon_{k,i}$, will be independent while signal, S_i , will be identical. So,
 709 under the assumption $\mu = 0$, we obtain the i th unbiased estimate of
 710 the signal covariance with only two repeats of data $\hat{\Sigma}_{S_i} = F_{2,i} F_{1,i}^T$,
 711 because,

$$712 \mathbb{E}[F_{1,i} F_{2,i}^T] = \mathbb{E}[(S_i + \epsilon_{1,i})(S_i + \epsilon_{2,i})^T] \\ 713 = \mathbb{E}[S_i S_i^T] + \mathbb{E}[\epsilon_{1,i} S_i^T] + \mathbb{E}[S_i \epsilon_{2,i}] + \mathbb{E}[\epsilon_{1,i} \epsilon_{2,i}^T] = \Sigma_S,$$

714 where the last step follows from the independence between signal,
 715 noise, and different trials of noise. Following the logic of the prior
 716 section we can set $A = F_i F_j^T$ where $i \neq j$ and Eqn. 2 serves as
 717 our unbiased estimator. Importantly the unbiased nature of this
 718 estimator does not depend on the distribution from which data are
 719 drawn. For the common case where $\mu \neq 0$ we transform our data
 720 so that $\mu = 0$ but the covariance remains the same, then apply our
 721 estimator to this transformed data. The transformation is simple,
 722 for each repeat separate the responses into two disjoint sets of stimuli
 723 responses (same number of stimuli in each) take their difference and
 724 divide by $\sqrt{2}$. This works because draws of noise and signal across
 725 stimuli are independent but the mean response is constant, and so

716 the difference only scales signal and noise covariance while removing
 717 the mean. In our analyses, we take the strategy of subtracting the
 718 odd stimuli from the even stimuli for each repeat. The variance
 719 of this procedure could be reduced by taking more differences
 720 from the many possible disjoint sets and calculating estimates of
 721 eigenmoments for all of them and then averaging. Naively, we
 722 could have subtracted the sample mean from each neuron calculated
 723 across all stimuli. This would change the covariance structure of
 724 the observations resulting in an unnecessary bias, thus we do not
 725 take this approach.

726 **Fitting the eigenspectrum using estimated eigenmoments.** The goal
 727 of the methodological developments in this paper is to infer eigen-
 728 spectra from finite noisy data. Kong and Valiant develop a non-
 729 parametric approach to this inference in the noiseless case. Here
 730 we propose a parametric approach for the cases where scientific
 731 questions pertain directly to parameteric forms of eigenspectra (e.g.,
 732 Stringer *et al.* (3)). In addition, if a parametric form can be as-
 733 sumed then there are potentially large gains in accuracy to be made.
 734 We can also assess if the parametric form is a good assumption
 735 by determining if it can account for systematic variation in the
 736 eigenmoments (see below).

737 Our approach to inferring parametric eigenspectra is simple: we
 738 optimize the parameters of the assumed form of the eigenspectrum
 739 to minimize the squared error between its eigenmoments and the
 740 eigenmoments estimated from the data. To solve the nonlinear least
 741 squares problem and satisfy constraints on parameters (e.g., power
 742 law slope cannot be negative because eigenvalues monotonically
 743 decrease) we use the nonlinear least squares function implemented
 744 in `scipy` (31). When fitting a broken power law we simply perform a
 745 grid search of potential breaks points, optimize slope and intercept
 746 parameters for each, then use the break points that gave the minimal
 747 error. In practice we scale the variance of the data before estimating
 748 the eigenmoments because later eigenmoments can easily go beyond
 749 the floating point range if the raw scale of the data is too high
 750 or low. We scale the data with an unbiased estimate of the total
 751 signal variance (sum of signal variance across all neurons). The
 752 eigenspectrum of the raw data can easily be recovered by re-scaling.

753 Estimated eigenmoments are heteroscedastic and correlated
 754 which can affect the accuracy of this estimation procedure. Higher-
 755 order eigenmoments tend to be increasingly variable thus including
 756 them can make estimates of eigenspectrum parameters unstable.
 757 To address this we estimate the sampling covariance matrix of the
 758 estimated eigenmoments with a bootstrap procedure (sample with
 759 replacement from stimuli) and then apply a whitening matrix to the
 760 errors between the estimated and fit eigenmoments. This effectively
 761 weights the eigenmoments according to their reliability. In practice
 762 we find that parameters are not changed by using more than 10
 763 eigenmoments because their variability is extremely high and thus
 764 their influence is down weighted.

765 **Simulation procedure.** To validate our estimator and create para-
 766 metric bootstrap confidence intervals around our estimates we make
 767 use of simulations that match the distribution of the original ex-
 768 perimental data. We simulate according to the model specified in
 769 Eqn. 1. We form an unbiased estimate of the noise covariance for
 770 each stimulus by subtracting off the mean of the two trials than
 771 averaging these individually unbiased estimates across all stimuli as
 772 follows,

$$\hat{\Sigma}_N = \frac{1}{m} \sum_{i=1}^m (F_{:,i} - \bar{F}_{:,i})(F_{:,i} - \bar{F}_{:,i})^T.$$

773 To form an unbiased estimate of the signal covariance we calculate
 774 the sample covariance between the two repeated observations of
 775 stimuli,

$$\hat{\Sigma}_S = \frac{1}{m-1} (F_1 - \bar{F}_{1,:}^T)(F_2 - \bar{F}_{2,:})^T.$$

776 Neither estimate will be positive semi-definite (PSD) because there
 777 are fewer stimuli than neurons. Furthermore the estimate of signal
 778 covariance is unlikely to be symmetric. To address this we force
 779 the noise covariance matrix to be PSD by finding its eigenvalues
 780 and setting any less than 0 to be 0. To force the signal covariance
 781 matrix to be symmetric we average it with its transpose, then force
 782 this covariance matrix to be PSD.

772 In most simulations we set the signal eigenspectrum by performing
 773 the eigenvalue decomposition, $\hat{\Sigma}_S = VDV^T$, then reconstructing
 774 the covariance matrix but with the desired eigenvalues, D' , giving
 775 $\hat{\Sigma}'_S = VD'V^T$.

776 **cvPCA.** We calculate the cvPCA estimator for the i th signal
 777 eigenvalue, $(\lambda_{S,i})$ as follows,

$$\hat{\lambda}_{S,i} = f_i\left(\frac{1}{m} F_1 F_1^T\right)^T \frac{1}{m} F_1 F_2^T f_i\left(\frac{1}{m} F_1 F_1^T\right) \quad [3]$$

$$\rightarrow f_i(\Sigma_S + \Sigma_N)^T \Sigma_S f_i(\Sigma_S + \Sigma_N),$$

776 where $f_i(\cdot)$ calculates the i th eigenvector via SVD, the arrow indi-
 777 cates convergence as $m \rightarrow \infty$, and we assume $\mu = 0$ (see Eqn. 1).
 778 Thus it estimates an eigenvector from the covariance estimated in
 779 one repeat of data and then finds the amount of variance explained
 780 by it in an unbiased estimate of the signal covariance calculated
 781 across different repeats. This is not a consistent estimator because
 782 the eigenvector estimates converge to those of $\Sigma_S + \Sigma_N$, thus de-
 783 pending on the relationship between signal and noise these estimates
 784 can be inaccurate. For example if they have the same eigenvectors
 785 in the same ordering then they will converge to the correct value
 786 (except for those beyond the rank of the data), whereas if they are
 787 independent this step of cvPCA will mis-estimate the directions
 788 to calculate maximal variation in the unbiased estimate of signal
 789 covariance. The calculation method in Stringer *et al* 2019 (3) differs
 790 slightly from that here, the principal difference being that singular
 791 vectors are calculated directly from neural responses instead of
 792 their sample covariance. We confirmed that this approach gives
 793 essentially the same numerical results while having a simple form
 794 from which the estimator's inconsistency is clear.

795 **Consistent estimates of eigenmode tuning and loadings.** As shown
 796 above using raw data to estimate signal eigenvectors can lead to
 797 gross biases. Here we analyzed the tuning of signal eigenmodes and
 798 the loadings on individual neurons. Thus we sought a consistent
 799 estimator of these quantities. We estimated these respectively
 800 by performing SVD on $F_1^T F_2$, the unbiased estimate of signal
 801 covariance between stimuli, and $F_1 F_2^T$, the unbiased estimate of signal
 802 covariance between neurons. As long as the signal eigenvalues
 803 are monotonically decreasing this provides consistent estimates of
 804 eigenvectors associated with signal eigenvalues above the rank of
 805 the data.

806 **Estimation of model performance.** We sought to evaluate the fraction
 807 of signal variance explained by our models. Applying the naive
 808 estimate of R^2 between neurons and a model's prediction would be
 809 downwardly biased by trial-to-trial variability and upwardly biased
 810 by the number of model parameters—over-fitting (24). Thus we
 811 estimated model performance with a noise and model degrees of
 812 freedom corrected estimator. Below we provide a short derivation.
 813 We rewrite the model of population neural responses by separating
 814 S_i into two terms,

$$S_i = \beta^T x_i + \epsilon_S,$$

815 where x_i with $Cov[x_i] = \Sigma_s$ is the vector of d model feature values
 816 in the i th image, β is the fixed set of weights that determines the
 817 linear relationship between the neural signal and image features, and
 818 ϵ_S is the component of the neural signal that cannot be predicted
 819 by a linear combination of the model features that is assumed to
 820 be distributed as $\epsilon_S \sim N(0, \sigma^2)$.

821 Our desired estimand is then,

$$R_{\text{ER}}^2 = \frac{\beta^T \Sigma_S \beta}{\sigma_S^2 + \beta^T \Sigma_S \beta},$$

822 which goes to 1 if the neural signal responses are a perfect linear
 823 function of the features x_i . To estimate this quantity we follow
 824 the approach of finding unbiased estimates of the numerator and
 825 denominator.

826 For the numerator, under the above assumptions, the residual
 827 sum of squares from the least square fit of image feature to neural
 828 responses is distributed as follows,

$$\sum_{i=1}^m (\bar{F}_{:,i} - \hat{\beta} x_i)^2 \sim (\sigma_S^2 + \sigma_N^2/K) \chi_{m-d}^2$$

so,

$$\mathbb{E} \left[\sum_{i=1}^m (\bar{F}_{\cdot,i} - \hat{\beta}x_i)^2 \right] = (\sigma_S^2 + \sigma_N^2/K),$$

an unbiased estimate of total variance is,

$$\mathbb{E} \left[\frac{1}{m-1} \sum_{i=1}^m (\bar{F}_{\cdot,i} - \bar{F}_{\cdot,\cdot})^2 \right] = \beta^T \Sigma_S \beta + \sigma_S^2 + \sigma_N^2/K,$$

so subtracting the two estimators gives an unbiased estimate of linear variance,

$$\mathbb{E} \left[\frac{1}{m-1} \sum_{i=1}^m (\bar{F}_{\cdot,i} - \bar{F}_{\cdot,\cdot})^2 - \frac{1}{m-d} \sum_{i=1}^m (\bar{F}_{\cdot,i} - \hat{\beta}x_i)^2 \right] = \beta^T \Sigma_S \beta.$$

For the denominator an unbiased estimate of trial-to-trial variability can be subtracted from the unbiased estimate of total variance.

To estimate linearity of tuning we regressed the pixels of images on response profiles. The raw stimuli are grey scale images of 68×270 pixels giving 18,360 features in the regression but there were only $\sim 2,800$ stimuli shown thus the linearity statistic cannot be naively calculated (i.e., there are more features than observations). To address this we performed principal components regression: we regressed onto the top D principal components of the images. We found that performance saturated at $D \approx 100$ principal components of the images, we used $D = 100$ features for the R^2 values in Fig 4B and 5B.

To determine if a population of class simple and complex cell models, could account for additional variance we formed a basis of gabor filters tiling scale (fraction of image 1, 0.5, 0.25), orientation (4 rotations), phase (0 and 90 degrees), and position (non-overlapping tiling at each scale). We then regressed on the responses of these filters and their square to calculate R^2 as described above. To tile the entire 68×270 image with gabor filters would result in more features than observations. Fortunately we found that it was unnecessary to use the entire image because receptive fields in each recording were restricted to a small subset of the image. To localize receptive fields we estimated the linear receptive fields of all neurons in each recording we then took the sum of squares across neurons as an estimate of the population receptive field profile. We estimated the boundary of the receptive field with the 95th quantile of its profile and extracted a rectangular patch of the image that contained the boundary of the receptive field (for example, Fig 3D red dashed box). We found that the performance of a linear model predicting eigenmode responses did not significantly suffer when using this restricted patch instead of the entire image. We also used these receptive field bounds to visualize linear receptive fields (Fig 4C,F).

Experimental data. All stimuli were presented for 0.5s with a random inter-stimulus interval between 0.3 and 1.1s consisting of a grey-screen. The images used in the experiment were taken from the ImageNet database, which includes categories such as birds, cats, and insects. The researchers manually selected images that had a mix of low and high spatial frequencies and that did not consist of more than 50 % uniform background. All images were uniformly contrast-normalized by subtracting the local mean brightness and dividing by the local mean contrast. To compute the local mean and standard deviation, a Gaussian filter with a standard deviation of 30 degrees was used. Each stimulus consisted of a different normalized image from the ImageNet database, with $\sim 2,800$ different images used in total. The same image was displayed on all three screens, but each screen showed the image at a different rotation.

Mice bred to express GCaMP6 in excitatory neurons were used in the majority of recordings. Mice bred to express tdTomato in inhibitory neurons were also used in a subset of the recording while GCaMP6 was expressed virally, allowing the identification of inhibitory and excitatory neurons.

Neural activity was recorded using a two-photon microscope while the mice were free to run on an air-floating ball. Recordings were collected across multiple depth planes at a frequency of 2.5 or 3 Hz, with planes 30-35 μm apart. The field of view of the microscope was selected such that 10,000 neurons could be observed with a

retinotopic location on the stimulus display. The 2,800 natural image stimuli were displayed twice in a recording in two blocks of the same randomized order.

Calcium movie data was processed using the Suite2p toolbox to estimate spike rates of neurons. Underlying neural activity was estimated using non-negative spike deconvolution. These deconvolved traces were normalized to the mean and standard deviation of their activity during a 30-minute period of grey-screen spontaneous activity. For further detail please see the original study. All analyses done in this paper were performed on the pre-processed data available on figshare (32) (https://figshare.com/articles/Recordings_of_ten_thousand_neurons_in_visual_cortex_in_response_to_2_800_natural_images/6845348).

ACKNOWLEDGMENTS. We thank members of the Pillow lab, Kenneth Harris, Matteo Carandini, Carsen Stringer, and members of the Cortexlab for their feedback on the project.

1. N Kriegeskorte, XX Wei, Neural tuning and representational geometry. *Nat. Rev. Neurosci.* **22**, 703–718 (2021).
2. C Langdon, M Genkin, TA Engel, A unifying perspective on neural manifolds and circuits for cognition. *Nat. Rev. Neurosci.* pp. 1–15 (2023).
3. C Stringer, M Pachitariu, N Steinmetz, M Carandini, KD Harris, High-dimensional geometry of population responses in visual cortex. *Nature* **571**, 361–365 (2019) Number: 7765 Publisher: Nature Publishing Group.
4. DH Hubel, TN Wiesel, Receptive fields of single neurones in the cat's striate cortex. *The J. Physiol.* **148**, 574–591 (1959).
5. CM Niell, MP Stryker, Highly selective receptive fields in mouse visual cortex. *The J. Neurosci. The Off. J. Soc. for Neurosci.* **28**, 7520–7536 (2008).
6. S David, J Gallant, Predicting neuronal responses during natural vision. *Netw. (Bristol, England)* **16**, 239–60 (2005).
7. KF Willeke, et al., The Sensorimotor competition on predicting large-scale mouse primary visual cortex activity (2022) arXiv:2206.08666 [cs, q-bio].
8. SH Lee, AC Kwan, Y Dan, Interneuron subtypes and orientation tuning. *Nature* **508**, E1–E2 (2014) Number: 7494 Publisher: Nature Publishing Group.
9. TJ Gawne, BJ Richmond, How independent are the messages carried by adjacent inferior temporal cortical neurons? *J. Neurosci.* **13**, 2758–2771 (1993) Publisher: Society for Neuroscience Section: Articles.
10. MR Cohen, A Kohn, Measuring and interpreting neuronal correlations. *Nat. Neurosci.* **14**, 811–819 (2011) Bandiera_abtest: a Cg_type: Nature Research Journals Number: 7 Primary_type: Reviews Publisher: Nature Publishing Group Subject_term: Neural encoding Subject_term_id: neural-encoding.
11. S Panzeri, SR Schultz, A Treves, ET Rolls, Correlations and the encoding of information in the nervous system. *Proc. Royal Soc. B: Biol. Sci.* **266**, 1001–1012 (1999).
12. D Lee, NL Port, W Kruse, AP Georgopoulos, Variability and correlated noise in the discharge of neurons in motor and parietal areas of the primate cortex. *The J. Neurosci. The Off. J. Soc. for Neurosci.* **18**, 1161–1170 (1998).
13. W Bair, E Zohary, WT Newsome, Correlated firing in macaque visual area MT: time scales and relationship to behavior. *The J. Neurosci. The Off. J. Soc. for Neurosci.* **21**, 1676–1697 (2001).
14. BB Averbeck, PE Latham, A Pouget, Neural correlations, population coding and computation. *Nat. Rev. Neurosci.* **7**, 358–366 (2006) Number: 5 Publisher: Nature Publishing Group.
15. MR Cohen, JHR Maunsell, Attention improves performance primarily by reducing interneuronal correlations. *Nat. Neurosci.* **12**, 1594–1600 (2009) Number: 12 Publisher: Nature Publishing Group.
16. AS Ecker, et al., State Dependence of Noise Correlations in Macaque Primary Visual Cortex. *Neuron* **82**, 235–248 (2014) Publisher: Elsevier.
17. DA Pospisil, W Bair, Accounting for Biases in the Estimation of Neuronal Signal Correlation. *J. Neurosci.* **41**, 5638–5651 (2021) Publisher: Society for Neuroscience Section: Research Articles.
18. P Gao, et al., A theory of multineuronal dimensionality, dynamics and measurement. *bioRxiv* p. 214262 (2017) Publisher: Cold Spring Harbor Laboratory Section: New Results.
19. L Mazzucato, A Fontanini, G La Camera, Stimuli Reduce the Dimensionality of Cortical Activity. *Front. Syst. Neurosci.* **10**, 11 (2016).
20. BR Cowley, MA Smith, A Kohn, BM Yu, Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex. *PLoS Comput. Biol.* **12**, e1005185 (2016).
21. E Zohary, MN Shadlen, WT Newsome, Correlated neuronal discharge rate and its implications for psychophysical performance. *Nature* **370**, 140–143 (1994) Number: 6485 Publisher: Nature Publishing Group.
22. MN Shadlen, WT Newsome, The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. *The J. Neurosci. The Off. J. Soc. for Neurosci.* **18**, 3870–3896 (1998).
23. S Panzeri, M Moroni, H Safaai, CD Harvey, The structures and functions of correlations in neural population codes. *Nat. Rev. Neurosci.* **23**, 551–567 (2022) Number: 9 Publisher: Nature Publishing Group.
24. DA Pospisil, W Bair, The unbiased estimation of the fraction of variance explained by a model. *PLOS Comput. Biol.* **17**, e1009212 (2021) Publisher: Public Library of Science.
25. DJ Field, DJ Tolhurst, The structure and symmetry of simple-cell receptive-field profiles in the cat's visual cortex. *Proc. Royal Soc. London. Ser. B, Biol. Sci.* **228**, 379–400 (1986).
26. JJ Atick, AN Redlich, Towards a Theory of Early Visual Processing. *Neural Comput.* **2**, 308–320 (1990).

952 27. M Carandini, DJ Heeger, Normalization as a canonical neural computation. *Nat. reviews. Neurosci.* **13**, 51–62 (2011).

953 28. JS Isaacson, M Scanziani, How inhibition shapes cortical activity. *Neuron* **72**, 231–243 (2011).

954 29. Y Li, HL Nguyen, DP Woodruff, On sketching matrix norms and the top singular vector in *Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms*, SODA '14. (Society for Industrial and Applied Mathematics, USA), pp. 1562–1581 (2014).

955 30. W Kong, G Valiant, Spectrum estimation from samples. *The Annals Stat.* **45**, 2218–2247 (2017) Publisher: Institute of Mathematical Statistics.

956 31. P Virtanen, et al., SciPy 1.0: fundamental algorithms for scientific computing in Python. *Nat. Methods* **17**, 261–272 (2020) Number: 3 Publisher: Nature Publishing Group.

957 32. C Stringer, M Pachitariu, M Carandini, K Harris, Recordings of 10,000 neurons in visual cortex in response to 2,800 natural images (2018).

958

959

960

961

962

963

964

DRAFT

965 **Supporting Information Appendix (SI).**

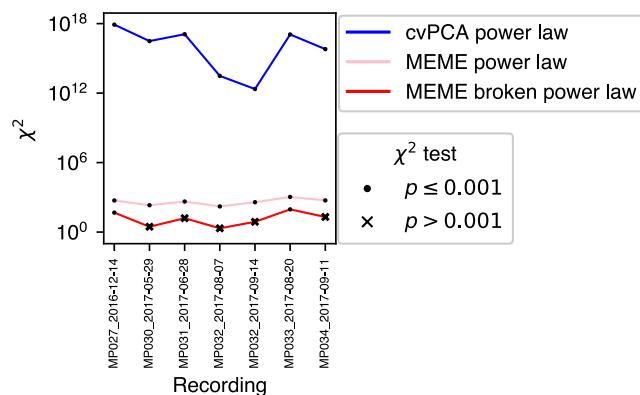


Fig S1. Chi-squared test statistic of difference between eigenmoments of parametric model of eigenspectrum and direct unbiased estimates of eigenmoments from data. This was the sum of squared weighted errors (see Methods, Fitting the eigenspectrum using estimated eigenmoments) and the null distribution was Chi-squared with degrees of freedom (DOF) equal to the number of model parameters (cvPCA DOF=2, MEME power-law DOF=2, MEME broken power-law DOF=4).

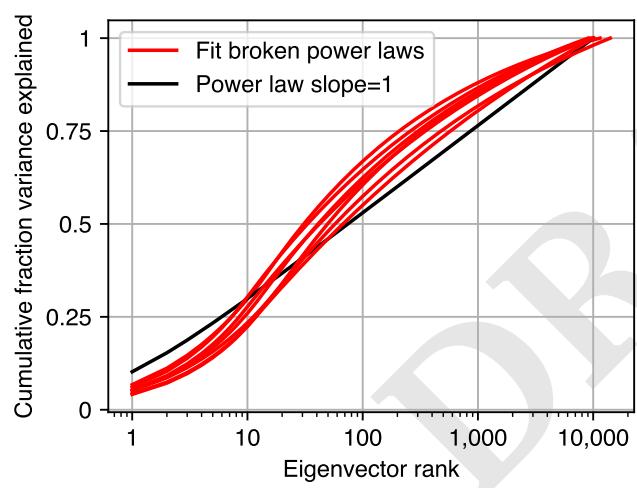


Fig S2. Cumulative fraction signal variance explained as a function of eigenvector rank. Broken power-laws fit to 7 recordings of responses to natural images are plotted in red and for reference a power law with slope of 1 is plotted in black (10,000 neurons).

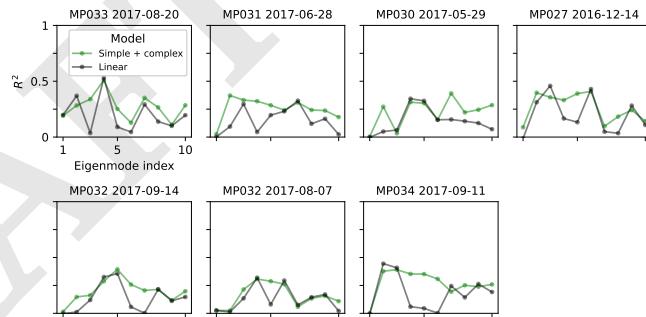


Fig S3. For all recordings the fraction variance explained (corrected for model degrees of freedom) of the top ten eigenmodes by a linear model (black) and a simple and complex cell model (green). See Methods, Estimating model performance.