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Recent advances in large-scale recording technology have spurred

exciting new inquiries into the high-dimensional geometry of the neu-

ral code. However, characterizing this geometry from noisy neural

responses, particularly in datasets with more neurons than trials,

poses major statistical challenges. We address this problem by de-

veloping new tools for the accurate estimation of high-dimensional

signal geometry. We apply these tools to investigate the geometry

of representations in mouse primary visual cortex. Previous work

has argued that these representations exhibit a power law, in which

the n’th principal component falls off as 1/n. Here we show that re-

sponse geometry in V1 is better described by a broken power law,

in which two different exponents govern the falloff of early and late

modes of population activity. Our analysis reveals that later modes

decay more rapidly than previously suggested, resulting in a sub-

stantially larger fraction of signal variance contained in the early

modes of population activity. We examined the signal representa-

tions of the early population modes and found them to have higher

fidelity than even the most reliable neurons. Intriguingly there are

many population modes not captured by classic models of primary

visual cortex indicating there is highly redundant yet poorly charac-

terized tuning across neurons. Furthermore, inhibitory neurons tend

to co-activate in response to stimuli that drive the early modes con-

sistent with a role in sharpening population level tuning. Overall, our

novel and broadly applicable approach overturns prior results and

reveals striking structure in a population sensory representation.
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Each patch of the visual field is represented by a large1

population of neurons in primary visual cortex. This2

“population code” supports the performance of a huge diver-3

sity of downstream visual tasks, making it a topic of intense4

general interest in visual neuroscience. An important open5

question about neural population codes in V1 and beyond is6

their geometry (1, 2). Specifically, how does a population of7

n neurons make use of its n-dimensional activity space for8

representing external stimuli? One approach to this question9

is to examine the eigenvalues of the signal covariance matrix,10

which quantifies the correlations in a population’s (noiseless)11

responses over a collection of stimuli. If all eigenvalues are12

equal (corresponding to a “flat” eigenspectrum), the neurons13

are maximally uncorrelated, with each neuron encoding an14

orthogonal stimulus feature. Conversely, if the covariance con-15

tains only one non-zero eigenvalue, all neurons are perfectly16

correlated, meaning that they redundantly encode a single17

shared feature.18

Recent work from Stringer et al 2019 (3) argued that an19

optimal population code must trade off competing demands20

of efficiency and smoothness. Efficiency, which relates to the21

code’s capacity for carrying information, requires a maximally22

flat eigenspectrum, so that the population takes full advantage23

of its dynamic range in all dimensions. Smoothness, on the24

other hand, relates to the property that nearby stimuli evoke 25

nearby patterns of neural activity thus providing robustness 26

to perturbations of stimuli and neural responses. Stringer et 27

al argued that smoothness requires the eigenspectrum to decay 28

at least as quickly as a power law with a slope of 1. Any slower 29

decay of the eigenspectrum implies that the representation 30

will not be smooth, so nearby stimuli elicit widely separated 31

response patterns. Thus, the population code that maximizes 32

efficiency while preserving smoothness is a power law with 33

slope negative 1. Mathematically, the i’th eigenvalue of the 34

(noiseless) response distribution should be λi = ci−α, where 35

α = 1 is the power law exponent and c is a constant of 36

proportionality. 37

To assess whether this property holds in mouse visual cortex, 38

Stringer et al (3) introduced a novel method for estimating the 39

signal eigenspectrum known as cross-validated PCA (cvPCA). 40

On the basis of the cvPCA estimator applied to population 41

responses in mouse primary visual cortex, they determined 42

that the eigenspectrum both follows a power law and is at the 43

critical limit of decay (α = 1). They interpreted this result 44

as indicating that representations in V1 are as efficient as 45

possible while maintaining smoothness. 46

Here we show that the cvPCA estimator provides a biased 47

estimate of the signal eigenspectrum. We introduce a novel 48

estimator for signal eigenspectra to overcome this bias. We 49

then re-analyse the data from (3), and show that the signal 50

eigenspectrum in mouse V1 systematically deviates from a 51

power law. Rather, it is better explained by a broken power 52
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cortex. We discover population encoding is dominated by ap-
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much less of the representation than previously thought. Many
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ing highly redundant encoding of poorly characterized nonlinear
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son to dominant features consistent with a role in sharpening

population representation. Overall, we discover striking prop-

erties of population visual representation with novel, broadly

applicable, statistical tools.
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Fig. 1. The signal eigenspectrum and the challenge of estimating it. (A) Tuning curves of three neurons for a 1-dimensional stimulus (gray traces). (B) Same three tuning

curves plotted jointly in a 3D response space. (C) Joint tuning curve centered and plotted along principal axes of variation. (D) Eigenspectrum, which describes the variance

along each principal component of the joint tuning curve. (E) Noisy estimates of individual tuning curves at the same three points along the tuning curve (black points). True

tuning curve is unknown (light grey trace). (F) Noisy estimate of the joint tuning curve (black dots). (G) Estimated joint tuning curve centered and rotated to align with its

principal components; the resulting curve is 2-dimensional, since 3 points defined a plane. (H) Eigenspectrum of the estimated joint tuning curve. Only two eigenvalues are

non-zero, and thus later eigenvalue of true tuning curve are missing.

law, in which the largest eigenvalues follow a power law with53

shallow slope, and subsequent eigenvalues decay according to54

a different power law with steeper slope. Crucially, asymp-55

totic decay of small eigenvalues under this model is not at56

the critical limit of α = 1 , but decays significantly faster57

(∼ 20% steeper). We find that because of this form of the58

eigenspectrum population geometry is lower dimensional than59

previously thought and there are ten dominating eigenmodes60

that account for ∼ 30% of neural variation.61

To gain insight into the population neural representations62

in mouse V1, we examined these dominant dimensions of63

the population response. We found that some dimensions64

often recapitulated classical selectivity for spatial frequency65

and orientation that has been reported in primary visual66

cortex (4, 5) but with far higher fidelity than single neurons.67

However, other dimensions, that were also robustly encoded,68

were unexplained by classic models indicating that difficult to69

characterize single neuron tuning (6, 7) is highly redundant70

across neurons. Furthermore, we found that inhibitory neurons’71

contribution to these dominant dimensions tended to be larger72

and more uniform than the excitatory cells consistent with73

a role in sharpening population tuning analogous to single74

neuron level effects of inhibition (8). Overall, these findings75

highlight the importance of examining sensory representations76

at the population level to uncover emergent coding properties77

that are not apparent from single neuron responses alone.78

Results79

Neural tuning refers to a neuron’s average or “noise-free” re-80

sponse for a collection of stimuli. ((9–11), Fig 1A). The “pop-81

ulation” or “joint” tuning of a neural population is thus an 82

n-dimensional cloud of points defined by the mean responses 83

of all n neurons in the population over a particular stimulus 84

set (Fig 1B). To quantify the geometry of this joint tuning, we 85

can compute the eigenvalues of its covariance, which describe 86

the variance of this cloud of points along each axis in a set of n 87

orthogonal axes known as eigenmodes. This set of eigenvalues, 88

sorted from greatest to smallest, is known as the signal eigen- 89

spectrum. Estimating the signal eigenspectrum from neural 90

population recordings is a challenging statistical problem. In 91

high dimensional settings, the number of stimuli that can be 92

shown in an experiment may be smaller than the number of 93

neurons in the population. Moroever, neural responses are 94

noisy, meaning that multiple presentations of each stimulus 95

are required to accurately estimate the mean response to each 96

stimulus (Fig 1E). 97

Principal components analysis (PCA) applied to trial av- 98

eraged responses provides a standard method for estimating 99

the signal eigenspectrum. It finds a sequence of orthogonal 100

directions in neural response space that capture maximum 101

response variance. However, this approach leads to two sources 102

of bias (1) trial-to-trial noise covariance can corrupt estimates 103

of the underlying signal covariance, (2) even in the absence of 104

trial-to-trial noise, finite sampling of stimuli will bias estimates 105

of the eigenspectrum— for example if there are fewer stimuli 106

than neurons (d < n) then the sample covariance matrix will 107

only have d non-zero eigenvalues, thus n − d eigenvalues. For 108

example, three observations in neural response space (Fig 1F) 109

that have been centered can always be described perfectly by 110

two dimensions (Fig 1G) and thus eigenvalues with indices 111

above 2 will be 0 (Fig 1H). 112
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The cvPCA estimator was proposed as a solution for bias113

introduced by trial-to-trial noise. The estimator for the ith114

eigenvalue is formed by computing the estimated signal vari-115

ance (using an unbiased estimate of the signal covariance)116

along the ith eigenvector of an unbiased estimate of the to-117

tal covariance—signal plus noise covariance (see Methods,118

cvPCA). The noise covariance can then, for example, perturb119

the first eigenvector into a direction that is not the direction120

of maximal signal variance. Thus if the ordered signal and121

noise covariance matrix eigenvectors are not perfectly aligned,122

the cvPCA estimator will converge to the incorrect values (See123

Fig 2F). Additionally, cvPCA cannot estimate signal eigen-124

values greater than the number of stimuli, which limits its125

ability to accurately recover lawful relationships in the decay126

of small eigenvalues, which is of fundamental importance for127

the dimensionality of neural populations.128

To overcome these limitations, we introduce a novel method129

for estimating the signal eigenspectrum from noisy neural130

recordings by exploiting a recently developed estimator for131

the moments of the eigenvalue distribution.132

A moment-based estimator for the neural eigenspectrum. We133

developed a novel estimator that, up to a good approxima-134

tion, does not suffer from any of the three biases we have135

described. We did so by finding unbiased estimates of signal136

‘eigenmoments’, the pth moment being the signal covariance137

eigenvalues to the pth power averaged mp = 1

n

∑n

i=1
λ

p

S,i, then138

finding the best fit eigenspectrum to these unbiased estimates.139

We found our signal eigenmoment estimator by extending the140

results of Li et al (2014) and Kong & Valiant (2017).141

To provide intuition into this approach it is useful to con-142

sider the centered eigenmoments of two different eigenspectrum143

(Fig 2). If the eigenspectrum is flat (Fig 2A, column 1), imply-144

ing each neuron’s tuning is mutually orthogonal to all other145

neurons’ tuning, then the distribution of eigenvalues will be a146

delta function centered at the average variance of the neurons147

(Fig 2A column 2). The first eigenmoment is the mean of the148

eigenvalues and thus is also equal to the average variance of149

the neurons but all other moments are zero because there is150

no spread to the distribution (Fig 2B column 3 traces go to151

zero after p = 1). If an unbiased estimate of the first eigen-152

moment was obtained, E[m̂1] = 1

N

∑N

i=1
λi, and we knew the153

eigenspectrum was flat we would have an unbiased estimator154

of the eigenspectrum λi = m̂1. If we are unwilling to make155

such a strong assumption we can choose a more flexible para-156

metric form of the eigenspectrum, for example it is linear as a157

function of the index, and fit it to unbiased estimates of higher158

order moments (Fig 2A column 4, error between red dashed159

parametric eigenmoments and grey open circle unbiased esti-160

mates is minimized) and the eigenspectrum associated with161

those eigenmoments serves as an estimate of the ground truth162

eigenspectrum (Fig 2A column 5, red dashed trace).163

If the eigenspectrum is not flat but decreases linearly with164

the index (Fig 2B) then the distribution of eigenvalues will be165

uniform (Fig 2B column 2). The second eigenmoment will be166

non-zero because of this spread but every odd eigenmoment,167

but one, will be 0 because the distribution of eigenvalues is168

symmetric (Fig 2B column 3). More generally, the eigenspec-169

trum is uniquely specified by its eigenmoments.170

Critically the expected value of our estimates of signal171

eigenmoments are unbiased so do not depend on the rank of172

the data used to estimate them nor by corrupting noise regard-173
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Fig. 2. MEME estimator and validation in simulation. (A) Schematic of MEME

method applied to uniform eigenspectrum (B) and to eigenspectrum with linear decay.

(C) Comparison of MEME (red) and cvPCA (blue) estimates of power law in 1000

dimensions with low noise (signal eigenspectrum grey above noise eigenspectrum

black) and high number of stimuli (m=500). In the case of cvPCA, a power law is

estimated by fitting a line in log-log coordinates. We fit this line to eigenvalues along

eigenvalues 2-50 (blue dotted) matching the proportions used in Stringer et al, (3)

(D) Same simulation but with high noise. (E) Comparison of estimators on data

draw matching the distribution of experimental data from Stringer et al, but where

the signal and noise eigenvectors are the same and the eigenspectrum is set to be a

power law matching the slope estimated by the cvPCA procedure. (F) Simulation

where signal and noise eigenvectors are independently formed from noise.

less of its covariance structure. Furthermore we prove these 174

eigenmoment estimates are unbiased regardless of the data’s 175

distribution, provided finite moments, thus these guarantees 176

are broadly applicable. We now show that for typical ranges 177

of parameters in neural data our estimator is highly accurate 178

and overcomes issues with the prior estimator cvPCA. 179

Validation of estimator in simulation. To demonstrate the key 180

properties and effectiveness of our estimator we ran a sim- 181

ulation where both signal and noise eigenvalues followed a 182

power law. cvPCA is the only other estimator that has been 183

proposed to specifically estimate the signal eigenspectrum thus 184

we compare our estimator to it. 185

We first simulated d = 1000 neurons, m = 500 stimuli, 186

and n = 2 repeats. This corresponds for example to a typical 187

calcium recording experiment to characterize sensory tuning 188
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in a population recording. To estimate a power law Stringer189

et al (3) fit a line in log-log coordinates only for eigenvalues190

with indices between 11-500 out of 10,000 eigenvalues. Here191

we matched this procedure for a smaller number of neurons192

with a scaling factor of 1,000/10,000 to fit eigenvalue indices193

between 2-50. In the case where noise was low (Fig 2C grey194

signal eigenspectrum above black noise eigenspectrum) the195

MEME estimator performs well (red overlap grey) and cvPCA196

performs similarly. When we increased the noise level (Fig 2D,197

black above grey) we found that early cvPCA estimates tended198

to dramatically mis-estimate the true signal eigenspectrum199

(transparent blue trace on left well below grey) and this led to200

mis-estimation of the power law fit to the cvPCA estimates201

(dashed blue traces do not align with grey). Whereas the202

MEME estimate continued to accurately estimate the form of203

the power law (red dashed trace overlaps grey). It is possible204

that for a different choice of range the cvPCA estimated power205

law could have been more accurate but it is unclear how to206

apriori choose this range when the true power law is not known.207

Thus in simulation we discovered biases in the approach of208

fitting a power law to cvPCA estimates. We now consider if209

these biases could have affected results in the original study210

of Stringer et al .211

We found unbiased estimates of the signal and noise covari-212

ance of the original seven recordings of mouse primary visual213

cortex to natural images then enforced a true power law signal214

eigenspectrum that matched the slope estimated from cvPCA215

(see Methods, ‘Simulation procedure’). We then simulated216

data from this distribution and fit the signal power law using217

the original cvPCA approach and MEME. High dimensional218

signal and noise eigenvectors are difficult to estimate so we219

chose two extremal cases for our simulation. In the first case220

we aligned the signal and noise eigenvectors and found that221

cvPCA consistently under estimated the slope of the power222

law exponent α (Fig 2E blue points below black diagonal)223

whereas MEME accurately recovered the slope (red points224

overlaps black diagonal). We then ran the same simulation225

but where signal and noise were independently sampled and226

found an even larger downward bias of cvPCA while MEME227

remained accurate (Fig 2F). Thus we expect that regardless228

of the relationship between signal and noise the cvPCA power229

law exponent estimate is biased downwards but less so to230

the degree that signal and noise are aligned (see Methods,231

‘cvPCA’). Signal and noise correlation are known to co-vary232

(12–16), but see (17), thus it is plausible that in neural data233

the bias of cvPCA may be ameliorated somewhat.234

Given that cvPCA returned biased estimates of the signal235

eigenspectrum on simulated data matching the distribution236

of the original data, whereas MEME was accurate, we next237

examined whether estimates of signal eigenspectrum on the238

original data using the two different methods diverged.239

Application to estimation of power law eigenspectrum in240

mouse primary visual cortex. We re-analyzed the original data241

from Stringer et al, (3), responses from ∼ 10, 000 neurons242

across a patch of primary cortex (Fig 3A). Two repeated re-243

sponses of all neurons to a set of ∼ 2, 800 stimuli were collected244

(Fig 3BC) and these responses were mean centered neuron-wise245

(for details of calcium response pre-processing see Methods).246

In general we found these neurons tended to respond to a247

restricted region of the stimuli (Fig 3D, average power of es-248

timated linear receptive fields across all neurons of example249
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Fig. 3. Fit of Stringer et al, (2019) data using cvPCA and MEME. (A) Positions of

1,011 neurons 10,103 recorded from primary visual cortex of mouse.(B) Example

neural data, two repeats of the simultaneous responses of neurons to the same set of

stimuli. (C) Example stimulus shown to mice drawn from ImageNet. (D) Estimate

of the population receptive field (average power of estimated linear receptive fields of

all neurons). Bounding box used for visualizing linear RFs (red dashed). (E) Signal

eigenspectrum fit to neural data: a power law fit to cvPCA estimates following the

methods of Stringer et al, (blue), a power law fit to unbiased estimates of signal

eigenmoments pale red, and a broken power law fit to the same eigenmoments

(red). (F) Unbiased estimates of eigenmoments with 95 % CIs compared to the

eigenmoments corresponding to the eigenspectrum in (E). (G) Across all recordings

(n=7) the best fit broken power law eigenspectrum (red). (H) The power law exponent

estimated by cvPCA plotted against the exponent of the tail of the broken power law

estimated by MEME (α2 see (G)). Plotted are individual estimates with 95 % CI’s for

the MEME estimates and cvPCA (black points).

recording). We first applied cvPCA to an example recording 250

and fit a power law finding that it had a slope near 1 (Fig 251

2E blue, α = 0.96). When we fit a power law using MEME 252

we found a significantly shallower slope (α = 0.90). Yet the 253

eigenmoments of this MEME estimated power law systemati- 254

cally deviated from the unbiased estimates of the raw data’s 255
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eigenmoments, implying that a power law was a poor fit to256

the data (Fig 3F pale red points deviate beyond CI’s of grey257

points). Similarly the eigenmoments of the cvPCA estimate258

did not match the data’s eigenmoments (blue points deviate259

beyond CI’s of grey points). This motivated us to consider260

more flexible eigenspectrum functions. Given that the original261

study formed predictions with respect to the exponent of a262

power law, we fit a piece-wise power law to obtain a more263

flexible model while still being able to make direct comparisons264

to their predictions. We found that in all cases, accounting265

for model degrees of freedom, the broken power law fit the266

eigenmoments of the data better than a power law (Fig 2F267

red dots within CI’s of grey, see supplementary information268

Fig S1 for statistical tests across all recordings). The broken269

power law had an initial shallow power law and a tail power270

law that was much steeper (Fig 3E red trace slope initial ∼ 0.5271

then ∼ 1.2). This form of eigenspectrum was similar across272

all recordings (Fig 3G red traces overlap). The slope of signal273

eigenspectrum tail was consistently higher for the MEME than274

cvPCA estimates (Fig 3H, MEME average α = 1.20, cvPCA275

average α = 1.01). These findings are inconsistent with two276

claims from the original study. First, the eigenspectrum of277

population responses in mouse visual cortex is inconsistent278

with a power law, we find it is far better described as a bro-279

ken power law. Second, at no point does the eigenspectrum280

decay at a critical rate near α = 1, instead it initially decays281

50 % more slowly and then 20 % faster in the tail of the282

eigenspectrum.283

Despite the more rapid decay in the tail of the eigenspec-284

trum the overall dimensionality (as quantified by the partici-285

pation ratio (18, 19)) was on average 1.68 times higher than a286

power-law with a slope of 1 would predict. Thus the dimension-287

ality of primary visual cortex is much higher than previously288

thought but because of only ∼ 10 dominating modes. The289

number of dimensions needed to capture 75% of the variance290

of population tuning, another metric of dimensionality (20),291

is actually lower (under the fit broken power law on average292

357 eigenvectors are needed whereas for a power law with a293

slope of one 902 eigenvectors are needed). This contradiction294

in two metrics of dimensionality is precisely because the di-295

mensionality increase quantified by the participation ratio is296

driven by the first ten modes and once these are accounted297

for the remaining variation is captured rapidly by successive298

dimensions (see supplementary information Fig S2).299

These results imply there are two distinct regimes of joint300

encoding in mouse visual cortex. A high dimensional regime301

where ten dominating features of the stimulus have a similar302

magnitude of effect on the population and a low dimensional303

regime where the remaining variation of tuning is rapidly304

absorbed. This led us to examine the encoding properties of305

the dominant modes.306

Characterization of population tuning. The signal eigenspec-307

trum corresponds to a decomposition of neural responses into308

directions of maximal signal variation across stimuli. We will309

call these directions of maximal variation in neural response310

space “neural eigenmodes” (identical to the eigenvectors of the311

neural signal covariance matrix) and the variation in the scale312

of these modes across stimuli “eigenmode tuning” (identical to313

the eigenvectors of the stimuli signal covariance matrix). We314

estimated these by respectively calculating the eigenvectors315

from unbiased estimates of the signal covariance over stimuli316

and neurons. The neural eigenmode loadings tended to be 317

sparse with most weights near 0 but a few very large weights 318

(Fig 4A black trace concentrated around 0). For the first mode 319

we found a bias in the sign of the loadings (Fig 4A first row 320

black trace biased upwards) with 69 % positive. Thus, the 321

most variation in neural signal variation can be described as 322

uniform excitation on a subset of neurons. To gain insight 323

into the tuning of this eigenmode we fit a linear model that 324

predicted eigenmode tuning from a linear combination of stim- 325

uli pixels (Fig 4B orange traces, R2 = 0.2). Visualizing the 326

weights on stimuli pixels we found classic center surround 327

tuning (Fig 4C). Thus, surprisingly, a substantial fraction of 328

the variation in the first dominant mode of neural tuning could 329

be explained by a classic model of early visual selectivity. To 330

gain further insight we examined the stimuli that evoked the 331

three highest and lowest responses of this eigenmode and com- 332

pared them to the linear component of the responses (Fig 4D 333

first row of black and orange outlined images). Qualitatively 334

comparing the two sets we judged that the eigenmode tuning 335

was driven by higher spatial frequency image structure than 336

the linear component. Careful analysis of more flexible models 337

could gain greater insight into the non-linear component of 338

eigenmode tuning (i.e., the systematic prediction errors of the 339

linear models). Examining the linear receptive fields of other 340

recordings we repeatedly observed clear selectivity for spatial 341

frequency matching the scale of the population receptive field, 342

a diversity of orientation selectivity, and phases (Fig 4F left 343

to right). Thus classical primary visual cortex receptive field 344

properties drive a significant amount of variation in the top 345

eigenmodes of mouse primary visual cortex. 346

A normative explanation for the presence of signal corre- 347

lation between sensory neurons is that it can improve the 348

fidelity of the signals encoded in common across a population 349

of neurons (21–23). Here we quantified the scale of this effect 350

by measuring the noise corrected SNR (24) of eigenmodes and 351

single neurons. We estimated eigenmode neural loadings with 352

2,000 stimuli then projected neural responses to the rest of 353

the stimuli (∼ 300 − 800) onto those loadings and calculated 354

SNR across the two repeats. We found that tuning for early 355

eigenmodes had higher fidelity than the average neuron (Fig 356

5A, grey trace above black dashed for indices 1-10). This was a 357

consistent result across recordings with the first 10 eigenmodes 358

having an average SNR at least 4.9 times greater than that 359

of the average single neuron (average SNR 7.7 times greater). 360

Furthermore, eigenmode SNR is likely underestimated because 361

our estimates of signal eigenvectors are noisy. We can conclude 362

that a hypothetical downstream region could more easily de- 363

code the feature encoded by an early eigenmode than a typical 364

neuron because of the structure of signal correlations. 365

Ultimately these dominant eigenmodes, which we found 366

robustly encode image features, are the result of redundancy 367

in the tuning between individual neurons. We observed that 368

often early eigenmodes possess receptive field properties typ- 369

ical of the classic characterization of individual neurons in 370

primary visual cortex (Fig 4F). It might be expected that 371

if the selectivity of all 10,000 neurons were restricted to the 372

relatively small linear subspace spanned by a narrow band of 373

spatial frequencies the top eigenmode tuning would inevitably 374

recapitulate this structure. Yet, it is well known that classic 375

models do not often predict the bulk of variation in single 376

neuron tuning, in fact the tuning of individual neurons are 377
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Fig. 4. Analysis of population neural tuning. (A) Signal eigenmode loadings on each neuron (estimated left-singular vectors of noiseless responses, neuron by stimuli matrix)

plotted against SNR of the neuron. (B) Signal eigenmode tuning (right-singular vectors) in black, least squares fit of image pixels to eigenmode tuning in orange. (C)

Visualization of linear receptive field of eigenmode tuning (dot product of linear RF pixels with image pixels gives orange trace in (B)). (D) Stimuli that gave the top and bottom

three responses from eigenmode tuning (black outlined top row) and the linear receptive field (orange outlined bottom row). (E) Formula for reconstruction of neural signal

matrix (rows neurons, columns stimuli) from eigenmode neural loadings (left singular vectors of signal matrix which in the limit of infinite stimuli equals the eigenvectors of the

signal covariance matrix) and tuning vectors (right singular vectors). (F) Linear receptive fields from all recordings of responses to natural images (rows) ranked by eigenmode

(columns).

notoriously difficult to predict across natural images even with378

flexible data driven models (6, 7). Indeed, when we estimated379

the ability of a linear filter to predict neural responses, by380

regressing the pixels of the images on the neural responses381

and estimating R
2 using a noise corrected estimator (24) (see382

Methods, Estimation of model performance), we found that383

on average less than a quarter of neuronal signal variance384

could be predicted (Fig 5B dashed black trace). We also fit a385

basis of gabor filters and their squares (a multi-scale ensemble386

of classic simple and complex cell models (6, 25)) and found387

that on average predictive performance increased only slightly388

(green dashed above black). Thus a minority of single neuron389

tuning is characterized by linear or classic receptive field prop-390

erties thus a majority is non-linear and not characterized by391

classic models. Unlike the stereotyped classical receptive fields392

it is not obvious whether or not this single neuron selectivity393

will be robustly represented at the population level. Each394

neuron’s unexplained tuning could be orthogonal. Yet, we find395

that it is often highly redundant at the population level: less396

than a quarter of the variation in the top eigenmode can be 397

captured by a classic model (Fig 5A beginning of black and 398

green solid trace). These eigenmodes are noisy estimates so 399

it is not clear how much of their tuning is ‘explainable’ but 400

we find that later, more difficult to estimate, eigenmodes can 401

often be better explained (black trace peaks at eigenmode 4 402

with 50 % variance explained). Across recordings we find that 403

it is typical for some modes to have up to half their variance 404

explained while others, often the first mode, have less than 405

a quarter explained (see supplementary information Fig S3). 406

These results suggest there are distinct single neuron tuning 407

properties that are highly redundantly encoded across primary 408

visual cortex but that are not well characterized by classic 409

models of primary visual cortex. Redundancy implies these 410

tuning properties are of particular import to the organism and 411

yet it remains unclear what these tuning properties are (see 412

Discussion). 413

We finally asked how the geometry of the representation 414

relates to neuronal physiology. Are neurons essentially ex- 415
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Fig. 5. Population and single neuron tuning and the distinct contribution of inhibitory

interneurons to the population receptive field. (A) Estimated SNR of ranked signal

eigenmodes (black solid trace) compared to average SNR of individual neurons (black

dashed horizontal line) along with 95 % quantile (transparent grey). (B) Fraction

variance explained (corrected for noise and model degrees of freedom) by linear model

(black) and simple and complex cell model multi-scale population (green) for single

neurons on average and top ten eigenmodes.(C) The distribution of eigenmode

neural loading on neurons identified as inhibitory (grey) and other neurons (black) for

the 2nd eigenmode in example recording. (D) Across the top 20 eigenmodes for the

three tdtomato+ labeled recordings the fraction negative loadings for inhibitory and

other neurons (respectively gray and black), green dots indicate where these fractions

are significantly different (p<0.001).

changeable as coordinate axes of the high-dimensional sensory416

representation or do different neuronal types participate in a417

distinct manner? One of the foremost physiological distinction418

made between cortical neurons is whether they are excitatory419

or inhibitory thus it is natural to ask whether they take on420

distinct roles in population geometry. In the three recordings421

where GABAergic neurons were identified with a tdtomato422

label we found systematic difference in the eigenmode loading’s423

on these putative GABAergic inhibitory neurons. For example424

in the second eigenmode of an example recording there is a425

large difference in the distribution of inhibitory neurons with426

positive eigenmode loadings ( 75 %) whereas other neurons in427

the recording are equally likely to have negative or positive428

loadings (Fig 5C). This provides evidence that the features en-429

coded by the eigenmode have a distinctly more uniform effect430

on the activity of inhibitory interneurons than other neuron431

types. There was often a significant difference in the fraction432

of negative loadings between inhibitory neurons and other433

neurons across the top twenty modes (Fig 5D, green dots). 434

Thus we find evidence that the principal stimulus features driv- 435

ing population responses have a distinct effect on inhibitory 436

neurons. Specifically inhibitory neurons tuning includes a 437

component of one sign of eigenmode tuning more often than 438

other neurons. Understanding this tuning and the significance 439

of one sign vs the other could be relevant to the function 440

of inhibitory neurons in shaping sensory representations (see 441

Discussion). 442

Discussion 443

Summary. We have introduced a novel and highly accurate 444

estimator of the eigenspectrum of high-dimensional population 445

neural tuning. In particular it performs well in the challenging 446

conditions of limited stimuli and correlated noisy measure- 447

ments that are common in large scale neural recordings. We 448

applied this estimator to re-analyze a large scale recording of 449

mouse primary visual cortex in response to natural images. 450

We showed that the eigenspectrum was not well fit by a power 451

law—in contrast to the conclusions prior work. Instead it 452

was captured by a broken power law. The broken power law 453

showed a characteristic form with an initially shallow slope for 454

the first 10 eigenvalues (α1 ≈ 0.5) and a steeper fall off for 455

the remaining eigenvalues (α2 ≈ 1.2). The tail of the signal 456

eigenspectrum was steeper than previously estimated, α ≈ 1 457

vs α ≈ 1.2. We examined the image features that drove the 458

dominant variation in the initial component of the power law 459

and found their encoding fidelity was higher than the average 460

neuron and that they sometimes were well characterized by 461

classic models of primary visual cortex but also sometimes 462

decidedly not. Finally we found that the features driving 463

the dominant eigenmodes had distinct effects on putative in- 464

hibitory neurons, tending to be uniform in the sign of its effect. 465

We thus have discovered clear links between geometry, com- 466

putation and physiology in mouse primary visual cortex and 467

introduced a novel estimator of high dimensional geometry 468

that is more accurate than prior methods. 469

Relevance to prior work. We re-analyzed the data of Stringer 470

et. al., (3) and came to qualitatively different conclusions 471

about the form of the signal eigenspectrum. Specifically, it 472

was claimed that the signal eigenspectrum follows a power 473

law with a slope near one whereas we found the signal eigen- 474

spectrum is consistent with a broken-power law with neither 475

of its slopes near 1. The authors originally argued that a 476

slower-decaying eigenspectrum indicated a more efficient rep- 477

resentation, whereas steeper decay reflected a smoother rep- 478

resentation and that a power law with a slope of one was 479

the slowest the eigenspectrum could decay (for the purpose 480

of efficiency) before the representation became pathologically 481

unsmooth. Thus their original cvPCA based estimates that 482

the slope of the tail of the eigenspectrum was near 1 indicated 483

that these theoretical considerations could precisely predict 484

an empirical property of primary visual cortex. Yet, our more 485

accurate MEME estimator revealed the slope was not at this 486

critical point, weakening the explanatory power of their theory. 487

One explanation for deviations from their theory could rest 488

in the veracity of its assumptions. The truth of the claim 489

that a more slowly decaying eigenspectrum is in general more 490

efficient depends on the form of the noise both in the responses 491

of the neurons and in the stimulus. For example Atick and 492
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Redlich (26) found that when noise in inputs was low then the493

most efficient linear sensory transformation would whiten the494

inputs, thus the output eigenspectrum would be flat, but when495

noise was high it would average over inputs and the output496

eigenspectrum would fall off steeply. Thus an explanation497

for the signal eigenspectrum in mouse primary visual cortex498

being consistent with a broken power law may derive from499

the character of input and neuronal noise and not require500

consideration of constraints on the smoothness of the neural501

code.502

Thus a fundamental feature of sensory representation of503

primary visual cortex, the form of its eigenspectrum, remains504

unexplained. Despite this mystery, our empirical finding has505

concrete consequences to the project of characterizing primary506

visual cortex that we discuss below.507

Interpretation of the signal eigenspectrum. Our estimator al-508

lows accurate estimates of the entire signal eigenspectrum of509

neural populations. We now consider two interpretations of the510

signal eigenspectrum of practical significance to understanding511

sensory coding: (1) its relevance to predictive modeling of512

neural tuning and (2) sensory encoding.513

The signal eigenspectrum of a population of sensory neurons514

quantifies the optimal performance of a linear combination of515

image features in predicting the responses of those neurons.516

The cumulative sum up to the nth eigenvalue is exactly how517

much variance can be explained by n of these hypothetical518

optimally predictive image features. This puts a tight upper519

bound on the performance of the now common practice of520

regressing learned image features on neural responses (e.g.,521

DNN responses). If there are n features the variance explained522

cannot surpass
∑n

i=1
λS,i. Thus an accurate estimate of the523

signal eigenspectrum could be used as a metric of how close524

a model is to optimal efficiency i.e., uses no more features525

than necessary for a given predictive performance. Thus a526

very practical view of the signal eigenspectrum is an exact527

quantification of minimal complexity of the model needed to528

capture the tuning of a population of neurons. A power law529

is a heavy tailed distribution which suggests the complexity530

of sensory representation is quite high—the performance of531

this hypothetical perfect model converges slowly with the532

number of parameters. Yet our finding of a steeper slope in533

the tail indicates substantial savings. For example to achieve534

75% variance explained ∼ 900 features would be needed if535

the signal eigenspectrum followed a power law with a slope536

of 1 whereas for the broken power law on average ∼ 350537

features are needed. In short, this study suggests that sensory538

neuroscientists seeking a compact but fairly predictive model539

of primary visual cortex should bear in mind they will need at540

least 350 image features—a large but still feasibly characterized541

number of features.542

Alternatively, the image features of this hypothetical opti-543

mal model are also just image features that the neural popula-544

tion jointly encodes. Thus the eigenspectrum exactly quantifies545

the dimensionality of the features space within which the mean546

population neural response encodes images. From this perspec-547

tive our finding of an initially slow decay of the eigenspectrum548

implies that there are ten or so roughly equally weighted fea-549

tures that the neural population encodes with high redundancy550

across a large population of neurons. The more rapid fall off in551

the tail of the signal eigenspectrum indicates that additional552

features quickly diminish in their effect on the population, but553

the heavy tail of the power law still insures that cumulatively 554

these additional features drive the majority of variation (first 555

10 explain ∼ 30% of variation). While we have measured 556

the degree of variation along these feature dimensions we do 557

not know what these features are. Predictive models have 558

primarily focused on the tuning of individual neurons, our 559

measurements of signal eigenspectrum and associated SNR, 560

indicate that the features encoded across the population are 561

highly redundant and perhaps more relevant to downstream 562

processes given their fidelity. Some of the variation in the 563

tuning of individual neurons may reflect components that are 564

not strongly represented at the population level (i.e., tuning 565

that is unique to each neuron). Thus it could be productive 566

to use predictive models to explain eigenmode tuning in addi- 567

tion to single neuron tuning. It may turn out that dominant 568

modes are more easily captured similarly to how we found a 569

surprising amount of their variation could be explained with 570

a linear model. 571

Population sensory representations in primary visual cortex. 572

We found that the image features associated with the dominant 573

eigenmodes were far more robustly encoded than those of the 574

average neuron. This a clear empirical reason to recommend 575

studying this population level tuning: primary visual cortex 576

encodes these visual features in particular with very high 577

fidelity. Further experiments where populations receptive 578

fields are aligned to the same stimuli could determine whether 579

this tuning is shared across animals. 580

Ultimately the striking difference in SNR between neu- 581

rons and eigenmodes is the result of commonality in tuning 582

across the population of neurons—signal correlation—where 583

tuning redundancy leads to robustness to noise. While long 584

hypothesized to be a potential consequence and normative 585

explanation of signal correlation (21–23) direct estimation of 586

what features are robustly encoded in primary visual cortex 587

is enabled by simultaneous recordings of a large population 588

of retintopically overlapping neurons. Stereotyped properties 589

with respect to selectivity for spatial frequency and orienta- 590

tion in primary visual cortex has long been known but it has 591

become increasingly clear that primary visual cortex responses 592

are not solely characterize by their selectivity for spatial fre- 593

quency and orientation (6, 7). Thus our finding that, similarly, 594

eigenemodes are often not well-described by such classical no- 595

tions is a data-driven indication that there are uncharacterized 596

but stereotypical components of single neuron tuning encoded 597

across the population. We have not exhaustively characterized 598

these modes with respect to the more recent models of primary 599

visual cortex (e.g., inclusion of a normalization pool (27)) the 600

significance of these more recent efforts could be emphasized 601

if they are shown to capture unexplained population level 602

representation. Otherwise more flexible data driven models 603

(e.g., deep neural networks) could be applied to eigenmode 604

tuning and the difficult work of characterizing these models 605

could in part be justified by the assurance they were capturing 606

image features primary visual cortex robustly encodes at the 607

population level. 608

Inhibitory neurons distinct participation in sensory represen- 609

tation. Inhibitory neurons, in contrast to excitatory neurons, 610

typically do not have axons that extend to other regions of vi- 611

sual cortex—thus they presumably act to modulate the sensory 612

representation that is transmitted to other brain regions (28). 613
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There is evidence that inhibitory neurons, when collectively614

activated, can sharpen tuning (8). We found that putative615

inhibitory neurons had the same sign eigenmode tuning more616

often than other neurons—in other words inhibitory neurons617

tended to co-activate at a higher rate than other neurons618

in response to features that maximally drove the population.619

Future work could causally test if inhibitory neurons sharpen620

tuning along directions of eigenmode tuning. This could reveal621

novel computational roles of inhibitory interneurons in shap-622

ing the visual sensory representation beyond single neuron623

orientation and spatial frequency tuning.624

Conclusion625

We have made several principal empirical observations about626

the population code in primary visual cortex. The signal eigen-627

spectrum is a broken power law with slow than rapid decay, the628

top modes are of far higher fidelity than the average individual629

neuron and are often not well characterized by classic models630

of primary visual cortex, and inhibitory neurons tend to be631

driven in concert by the top modes’ features. Taken together632

these results challenge the primacy of studying individual neu-633

ral tuning curves given the dramatic emergence of distinct,634

but poorly characterized, population level computations that635

are robust to noise, and with clear relevance to physiology.636

Beyond our empirical findings, we have demonstrated that637

the challenge of describing high dimensional neural codes638

requires novel statistical methods that are rigorously validated.639

They lay a critical foundation for surmounting the ‘curse of640

dimensionality’ in the study of neural representations and641

motivate addressing this curse because they indicate the rich642

statistical structure that lays waiting to be uncovered at the643

population level.644

Materials and Methods645

646

Assumptions and terminology for derivation of estimator. Here we647

employ a common model of population neural responses:648

Fk,i = µ + Si + εk,i, [1]649

where Fk,i is a vector of responses from n neurons to the k’th650

repeat of the i’th stimulus, µ is a vector of the mean (across the651

stimuli distribution) responses of each neuron , Si is the vector652

of expected neural responses to the ith stimulus, (i.e., samples653

from the tuning curve) with signal covariance ΣS , and εk,i is the654

per-trial noise with noise covariance ΣN . The signal covariance655

ΣS , the object of our current study, is given by the covariance of656

noiseless responses Si over the stimulus distribution P (S) (e.g.,657

sampling from a database of natural images). We will often deal658

with m × n matrices of responses collected on the kth repeat which659

we will call Fk, the concatenation of m draws from Fk,i. Here we660

focus on the estimation of the signal eigenvalues, λS,i = fi(ΣS),661

the sorted eigenvalues of the signal covariance matrix ΣS . We662

also consider the noise eigenvalues, λN,i the sorted eigenvalues of663

the noise covariance matrix ΣN . We will estimate these quantities664

indirectly from unbiased estimates of signal and noise eigenmoments,665

the p’th moments respectively being:
∑n

i=1
λp

S,i
and

∑n

i=1
λp

N,i
.666

Unbiased estimation of eigenmoments. Our estimator infers the sig-667

nal eigenspectrum by matching unbiased estimates of signal eigen-668

moments. It is an extension of previous work developing unbiased669

estimates of eigenmoments from noiseless data that we review next.670

Estimation from noiseless data. Unbiased estimates of eigenmoments 671

were first discovered by Li et al (29) but then employed to infer 672

eigenspectra by Kong and Valiant (30). In the noiseless case we 673

have direct observations of Si (letting µ = 0), and an m × n matrix 674

formed by concatenating m presentations of stimuli, we call S. 675

For insight into the method we show how an unbiased estimate 676

of the pth eigenmoment can be calculated in the noiseless case. 677

A single unbiased estimate of covariance can be formed from the 678

jth observation Σ̂Sj
= SjST

j
then the statistic 1

n
Tr(
∏p

j=1
Σ̂Sj

), 679

formed from p independent estimates of covariance, is an unbiased 680

estimate of the pth eigenmoment because, 681

E

[

1

n
Tr

(

p
∏

j=1

Σ̂Sj

)]

=
1

n
Tr

(

p
∏

j=1

E

[

Σ̂Sj

]

)

=
1

n
Tr(Σp

S
) =

1

n

n
∑

i=1

λp

S,i
,

the first step following from independence of the estimates of covari- 682

ance and the linearity of the trace and expectation, the second step 683

is by definition true of an unbiased estimate, and the last step follows 684

from the identity for symmetric matrices Tr(Ap) =
∑n

i=1
λp

i
. 685

It is unnecessary to explicitly calculate the outer product for

each Σ̂i but instead calculate inner products, for example ,

Tr(Σ̂S1
Σ̂S2

) = Tr(S1ST
1 S2ST

2 ) = Tr(ST
1 S2ST

2 S1) = ST
1 S2ST

2 S1.

More generally we can get the pth eigenmoment as follows, let σ be
a set of p distinct indices of IID observations of S [σ1, σ2, ...σp] and
σp+1 = σ1. Then the estimator of the pth eigenmoment is,

m̂p =
1

n

p
∏

i=1

Sσi
ST

σi+1
.

As p and m grow there are many number of distinct indices over 686

which to form this estimator. To reduce variance one could average 687

over all possible sets of distinct indices. This quickly becomes com- 688

putationally intractable and so Kong and Valiant developed a rapid 689

approximation where they average over all increasing sets of indices. 690

This can be accomplished with the following calculation letting 691

A = SST , where S is the m × n concatenation of m observations 692

and Aup be the same matrix with lower triangular and diagonal 693

entries set to 0, 694

m̂p =
tr(Ap−1

up A)

n
(

m
p

) . [2] 695

Extension to noisy data. The estimator of Kong and Valiant assumed 696

that there was no noise, correlated or otherwise, in the measurement 697

of S. Here we extend their estimator to the case of measurement 698

error as described in Eqn.1. The key insight is that across repeats 699

noise, εk,i, will be independent while signal, Si, will be identical. So, 700

under the assumption µ = 0, we obtain the ith unbiased estimate of 701

the signal covariance with only two repeats of data Σ̂Si
= F2,iF

T
1,i

702

because, 703

E[F1,iF
T
2,i] = E[(Si + ε1,i)(Si + ε2,i)

T ]

= E[SiS
T
i ] + E[ε1,iS

T
i ] + E[Siε2,i] + E[ε1,iε

T
2,i] = ΣS ,

where the last step follows from the independence between signal, 704

noise, and different trials of noise. Following the logic of the prior 705

section we can set A = FiF
T
j

where i 6= j and Eqn. 2 serves as 706

our unbiased estimator. Importantly the unbiased nature of this 707

estimator does not depend on the distribution from which data are 708

drawn. For the common case where µ 6= 0 we transform our data 709

so that µ = 0 but the covariance remains the same, then apply our 710

estimator to this transformed data. The transformation is simple, 711

for each repeat separate the responses into two disjoint sets of stimuli 712

responses (same number of stimuli in each) take their difference and 713

divide by
√

2. This works because draws of noise and signal across 714

stimuli are independent but the mean response is constant, and so 715
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the difference only scales signal and noise covariance while removing716

the mean. In our analyses, we take the strategy of subtracting the717

odd stimuli from the even stimuli for each repeat. The variance718

of this procedure could be reduced by taking more differences719

from the many possible disjoint sets and calculating estimates of720

eigenmoments for all of them and then averaging. Naively, we721

could have subtracted the sample mean from each neuron calculated722

across all stimuli. This would change the covariance structure of723

the observations resulting in an unnecessary bias, thus we do not724

take this approach.725

Fitting the eigenspectrum using estimated eigenmoments. The goal726

of the methodological developments in this paper is to infer eigen-727

spectra from finite noisy data. Kong and Valiant develop a non-728

parametric approach to this inference in the noiseless case. Here729

we propose a parametric approach for the cases where scientific730

questions pertain directly to parameteric forms of eigenspectra (e.g.,731

Stringer et al, (3)). In addition, if a parametric form can be as-732

sumed then there are potentially large gains in accuracy to be made.733

We can also assess if the parametric form is a good assumption734

by determining if it can account for systematic variation in the735

eigenmoments (see below).736

Our approach to inferring parametric eigenspectra is simple: we737

optimize the parameters of the assumed form of the eigenspectrum738

to minimize the squared error between its eigenmoments and the739

eigenmoments estimated from the data. To solve the nonlinear least740

squares problem and satisfy constraints on parameters (e.g., power741

law slope cannot be negative because eigenvalues monotonically742

decrease) we use the nonlinear least squares function implemented743

in scipy (31). When fitting a broken power law we simply perform a744

grid search of potential breaks points, optimize slope and intercept745

parameters for each, then use the break points that gave the minimal746

error. In practice we scale the variance of the data before estimating747

the eigenmoments because later eigenmoments can easily go beyond748

the floating point range if the raw scale of the data is too high749

or low. We scale the data with an unbiased estimate of the total750

signal variance (sum of signal variance across all neurons). The751

eigenspectrum of the raw data can easily be recovered by re-scaling.752

Estimated eigenmoments are heteroscedastic and correlated753

which can affect the accuracy of this estimation procedure. Higher-754

order eigenmoments tend to be increasingly variable thus including755

them can make estimates of eigenspectrum parameters unstable.756

To address this we estimate the sampling covariance matrix of the757

estimated eigenmoments with a bootstrap procedure (sample with758

replacement from stimuli) and then apply a whitening matrix to the759

errors between the estimated and fit eigenmoments. This effectively760

weights the eigenmoments according to their reliability. In practice761

we find that parameters are not changed by using more than 10762

eigenmoments because their variability is extremely high and thus763

their influence is down weighted.764

Simulation procedure. To validate our estimator and create para-
metric bootstrap confidence intervals around our estimates we make
use of simulations that match the distribution of the original ex-
perimental data. We simulate according to the model specified in
Eqn. 1. We form an unbiased estimate of the noise covariance for
each stimulus by subtracting off the mean of the two trials than
averaging these individually unbiased estimates across all stimuli as
follows,

Σ̂N =
1

m

m
∑

i=1

(F:,i − F̄·,i)(F:,i − F̄·,i)
T .

To form an unbiased estimate of the signal covariance we calculate
the sample covariance between the two repeated observations of
stimuli,

Σ̂S =
1

m − 1
(F1 − F̄ T

1,·)(F2 − F̄2,·)
T .

Neither estimate will be positive semi-definite (PSD) because there765

are fewer stimuli than neurons. Furthermore the estimate of signal766

covariance is unlikely to be symmetric. To address this we force767

the noise covariance matrix to be PSD by finding its eigenvalues768

and setting any less than 0 to be 0. To force the signal covariance769

matrix to be symmetric we average it with its transpose, then force770

this covariance matrix to be PSD.771

In most simulations we set the signal eigenspectrum by perform- 772

ing the eigenvalue decomposition, Σ̂S = V DV T , then reconstructing 773

the covariance matrix but with the desired eigenvalues, D′, giving 774

Σ̂′

S
= V D′V T . 775

cvPCA. We calculate the cvPCA estimator for the ith signal
eigenvalue,(λS,i) as follows,

λ̂S,i = fi(
1

m
F1F T

1 )T 1

m
F1F T

2 fi(
1

m
F1F T

1 ) [3]

−→ fi(ΣS + ΣN )T ΣSfi(ΣS + ΣN ),

where fi(·) calculates the ith eigenvector via SVD, the arrow indi- 776

cates convergence as m → ∞, and we assume µ = 0 (see Eqn. 1). 777

Thus it estimates an eigenvector from the covariance estimated in 778

one repeat of data and then finds the amount of variance explained 779

by it in an unbiased estimate of the signal covariance calculated 780

across different repeats. This is not a consistent estimator because 781

the eigenvector estimates converge to those of ΣS + ΣN , thus de- 782

pending on the relationship between signal and noise these estimates 783

can be inaccurate. For example if they have the same eigenvectors 784

in the same ordering then they will converge to the correct value 785

(except for those beyond the rank of the data), whereas if they are 786

independent this step of cvPCA will mis-estimate the directions 787

to calculate maximal variation in the unbiased estimate of signal 788

covariance. The calculation method in Stringer et al 2019 (3) differs 789

slightly from that here, the principal difference being that singular 790

vectors are calculated directly from neural responses instead of 791

their sample covariance. We confirmed that this approach gives 792

essentially the same numerical results while having a simple form 793

from which the estimator’s inconsistency is clear. 794

Consistent estimates of eigenmode tuning and loadings. As shown 795

above using raw data to estimate signal eigenvectors can lead to 796

gross biases. Here we analyzed the tuning of signal eigenmodes and 797

the loadings on individual neurons. Thus we sought a consistent 798

estimator of these quantities. We estimated these respectively 799

by performing SVD on F T
1

F2, the unbiased estimate of signal 800

covariance between stimuli, and F1F T
2

, the unbiased estimate of 801

signal covariance between neurons. As long as the signal eigenvalues 802

are monotonically decreasing this provides consistent estimates of 803

eigenvectors associated with signal eigenvalues above the rank of 804

the data. 805

Estimation of model performance. We sought to evaluate the fraction
of signal variance explained by our models. Applying the naive
estimate of R2 between neurons and a model’s prediction would be
downwardly biased by trial-to-trial variability and upwardly biased
by the number of model parameters—over-fitting (24). Thus we
estimated model performance with a noise and model degrees of
freedom corrected estimator. Below we provide a short derivation.
We rewrite the model of population neural responses by separating
Si into two terms,

Si = βT xi + εS ,

where xi with Cov[xi] = Σs is the vector of d model feature values 806

in the ith image, β is the fixed set of weights that determines the 807

linear relationship between the neural signal and image features, and 808

εS is the component of the neural signal that cannot be predicted 809

by a linear combination of the model features that is assumed to 810

be distributed as εS ∼ N(0, σ2). 811

Our desired estimand is then,

R2
ER

=
βT ΣSβ

σ2
S

+ βT ΣSβ
,

which goes to 1 if the neural signal responses are a perfect linear 812

function of the features xi. To estimate this quantity we follow 813

the approach of finding unbiased estimates of the numerator and 814

denominator. 815

For the numerator, under the above assumptions, the residual
sum of squares from the least square fit of image feature to neural
responses is distributed as follows,

m
∑

i=1

(F̄·,i − β̂xi)
2 ∼ (σ2

S + σ2
N /K)χ2

m−d
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so,

E

[

m
∑

i=1

(F̄·,i − β̂xi)
2

]

= (σ2
S + σ2

N /K),

an unbiased estimate of total variance is,

E

[

1

m − 1

m
∑

i=1

(F̄·,i − F̄·,·)
2

]

= βT ΣSβ + σ2
S + σ2

N /K,

so subtracting the two estimators gives an unbiased estimate of
linear variance,

E

[

1

m − 1

m
∑

i=1

(F̄·,i − F̄·,·)
2 − 1

m − d

m
∑

i=1

(F̄·,i − β̂xi)
2

]

= βT ΣSβ.

For the denominator an unbiased estimate of trial-to-trial variability816

can be subtracted from the unbiased estimate of total variance.817

To estimate linearity of tuning we regressed the pixels of images818

on response profiles. The raw stimuli are grey scale images of 68×270819

pixels giving 18, 360 features in the regression but there were only820

∼ 2, 800 stimuli shown thus the linearity statistic cannot be naively821

calculated (i.e., there are more features than observations). To822

address this we performed principal components regression: we823

regressed onto the top D principal components of the images. We824

found that performance saturated at D ≈ 100 principal components825

of the images, we used D = 100 features for the R2 values in Fig826

4B and 5B.827

To determine if a population of class simple and complex cell828

models, could account for additional variance we formed a basis of829

gabor filters tiling scale (fraction of image 1, 0.5, 0.25), orientation (4830

rotations), phase (0 and 90 degrees), and position (non-overlapping831

tiling at each scale). We then regressed on the responses of these832

filters and their square to calculate R2 as described above. To833

tile the entire 68 × 270 image with gabor filters would result in834

more features than observations. Fortunately we found that it835

was unnecessary to use the entire image because receptive fields in836

each recording were restricted to a small subset of the image. To837

localize receptive fields we estimated the linear receptive fields of all838

neurons in each recording we then took the sum of squares across839

neurons as an estimate of the population receptive field profile. We840

estimated the boundary of the receptive field with the 95th quantile841

of its profile and extracted a rectangular patch of the image that842

contained the boundary of the receptive field (for example, Fig 3D843

red dashed box). We found that the performance of a linear model844

predicting eigenmode responses did not significantly suffer when845

using this restricted patch instead of the entire image. We also used846

these receptive field bounds to visualize linear receptive fields (Fig847

4C,F).848

Experimental data. All stimuli were presented for 0.5s with a random849

inter-stimulus interval between 0.3 and 1.1s consisting of a grey-850

screen. The images used in the experiment were taken from the851

ImageNet database, which includes categories such as birds, cats,852

and insects. The researchers manually selected images that had a853

mix of low and high spatial frequencies and that did not consist of854

more than 50 % uniform background. All images were uniformly855

contrast-normalized by subtracting the local mean brightness and856

dividing by the local mean contrast. To compute the local mean and857

standard deviation, a Gaussian filter with a standard deviation of 30858

degrees was used. Each stimulus consisted of a different normalized859

image from the ImageNet database, with ∼ 2, 800 different images860

used in total. The same image was displayed on all three screens,861

but each screen showed the image at a different rotation.862

Mice bred to express GCaMP6 in excitatory neurons were used863

in the majority of recordings. Mice bred to express tdTomato864

in inhibitory neurons were also used in a subset of the recording865

while GCaMP6 was expressed virally, allowing the identification of866

inhibitory and excitatory neurons.867

Neural activity was recorded using a two-photon microscope868

while the mice were free to run on an air-floating ball. Recordings869

were collected across multiple depth planes at a frequency of 2.5 or 3870

Hz, with planes 30-35 µm apart. The field of view of the microscope871

was selected such that 10,000 neurons could be observed with a872

retinotopic location on the stimulus display. The 2,800 natural 873

image stimuli were displayed twice in a recording in two blocks of 874

the same randomized order. 875

Calcium movie data was processed using the Suite2p tool- 876

box to estimate spike rates of neurons. Underlying neural 877

activity was estimated using non-negative spike deconvolution. 878

These deconvolved traces were normalized to the mean and 879

standard deviation of their activity during a 30-minute pe- 880

riod of grey-screen spontaneous activity. For further detail 881

please see the original study. All analyses done in this paper 882

were performed on the pre-processed data available on figshare 883

(32) (https://figshare.com/articles/Recordings_of_ten_thousand_neurons_ 884

in_visual_cortex_in_response_to_2_800_natural_images/6845348). 885
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Supporting Information Appendix (SI). .965

Fig S1. Chi-squared test statistic of difference between eigenmoments of parametric

model of eigenspectrum and direct unbiased estimates of eigenmoments from data.

This was the sum of squared weighted errors (see Methods, Fitting the eigenspec-

trum using estimated eigenmoments) and the null distribution was Chi-squared with

degrees of freedom (DOF) equal to the number of model parameters (cvPCA DOF=2,

MEME power-law DOF=2, MEME broken power-law DOF=4).
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Fig S2. Cumulative fraction signal variance explained as a function of eigenvector

rank. Broken power-laws fit to 7 recordings of responses to natural images are

plotted in red and for reference a power law with slope of 1 is plotted in black (10,000

neurons).
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Fig S3. For all recordings the fraction variance explained (corrected for model degrees

of freedom) of the top ten eigenmodes by a linear model (black) and a simple and

complex cell model (green). See Methods, Estimating model performance.
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