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ABSTRACT

Single-cell RNA sequencing (scRNA-seq) enables comprehensive characterization of the cell state.
However, its destructive nature prohibits measuring gene expression changes during dynamic pro-
cesses such as embryogenesis. Although recent studies integrating scRNA-seq with lineage tracing
have provided clonal insights between progenitor and mature cells, challenges remain. Because of
their experimental nature, observations are sparse, and cells observed in the early state are not the
exact progenitors of cells observed at later time points. To overcome these limitations, we developed
LineageVAE, a novel computational methodology that utilizes deep learning based on the property
that cells sharing barcodes have identical progenitors. This approach transforms scRNA-seq observa-
tions with an identical lineage barcode into sequential trajectories toward a common progenitor in a
latent cell state space. Using hematopoiesis and reprogrammed fibroblast datasets, we demonstrate the
capability of LineageVAE to reconstruct unobservable cell state transitions, historical transcriptome,
and regulatory dynamics toward progenitor cell states at single-cell resolution.

Keywords single-cell RNA sequencing (scRNA-seq) · lineage tracing · machine learning · deep learning · neural
network · deep generative model · variational autoencoder (VAE) · dimensionality reduction · time series data ·
differentiation · hematopoiesis · reprogramming · tumor evolution · generalized linear model (GLM) · transcription
factor activity

1 Motivation

Single-cell RNA sequencing (scRNA-seq) is crucial in identifying cell types, understanding cellular diversity, and
exploring changes in gene expression during differentiation and in response to stimuli. However, it has limitations in
tracking cell behavior over time because it is a destructive assay. On the other hand, in research on stem cells, particularly
induced pluripotent stem cells (iPS cells), and cancer, it is essential to explore the initial state of differentiated cells in
order to discover therapeutic targets during carcinogenesis and realize regenerative medicine to restore lost functions
and prevent diseases by gaining a deeper understanding of the precise mechanisms underlying cancer initiation from
a single transformed cell. Recognizing the initial cellular states and early development is essential in both of these
research areas. There is a need to understand cell state transitions, particularly from progenitors to differentiated
states. Existing methods have limitations, and inferring progenitor cell states remains a challenge. Recent studies have
shown promise in integrating scRNA-seq with lineage tracing to track clonal relationships and cell state transitions
during differentiation. Variational autoencoder (VAE)-based methods effectively capture biological features; however,
challenges remain in consistently inferring cell state transitions. In this study, we aimed to fill this gap by leveraging

∗majima.kouichirou.v9@s.mail.nagoya-u.ac.jp
†Corresponding author: yakojim@ncc.go.jp, shimamura@med.nagoya-u.ac.jp
‡Lead Contact: shimamura@med.nagoya-u.ac.jp

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.16.580598doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.16.580598
http://creativecommons.org/licenses/by/4.0/


A PREPRINT - FEBRUARY 16, 2024

VAE-based deep learning to infer continuous dynamics, progenitor cell states, and cell fate. This contributes to a
better understanding of the differentiation processes. Ultimately, we aimed to reveal the molecular factors governing
single-cell transcriptome dynamics during differentiation, thus enhancing our understanding of the differentiation
process. This process involves the restoration of progenitor and intermediate cell states, historical gene expression, and
transcription factor (TF) activity along real-time evolution.

2 Introduction

Cells differentiate into various distinct phenotypes in continuous biological processes such as tissue development and
disease progression. Differentiation studies aim to understand cell state transitions throughout this process, from the
progenitor state to the post-differentiation state. This involves identifying the driving factors that regulate these changes
and elucidating their underlying mechanisms. Single-cell RNA sequencing (scRNA-seq) has significantly contributed
to our understanding of these biological processes by analyzing individual cell transcriptomes and revealing cellular
heterogeneity and gene expression profiles within subpopulations (Hwang et al., 2018). However, scRNA-seq is limited
to capturing transient snapshots of cell transcriptomes because of the destructive nature of the process, allowing each
cell to be measured only once during the analysis. This limitation hinders monitoring of progenitor states and dynamic
transitions between cellular states during differentiation.

Several computational methods have been developed to elucidate the cell state transitions and differentiation pathways
over time. One method is the trajectory inference, which started with the concept of pseudotime (Trapnell et al., 2014)
and has evolved into more than 40 different methods (Saelens et al., 2019). These methods enable the ordering of cell
types along developmental trajectories in dynamic processes, such as the immune response and pancreatic beta cell
maturation (Song et al., 2019). However, they primarily arranged cells based on the similarity of expression patterns
from a single predefined progenitor state, thus failing to address the heterogeneity of progenitors before differentiation.
Another approach for inferring cell state transitions during differentiation is through optimal transport calculations,
such as the Waddington-OT (Schiebinger et al., 2019). These approaches establish connections between multiple time
points, enabling inference of long-term transitions by combining transport maps between intermediate time points. This
approach is based on proximity in either a high-dimensional expression space or compressed versions. Consistently
capturing the process of stem cells with similar cell states differentiating into multiple cell types, such as hematopoiesis,
makes it challenging.

Additionally, wet experimental methods, called lineage tracing, have been developed for differentiation analysis. Recent
advancements have demonstrated that integrating scRNA-seq measurements with lineage tracing using cell barcodes
allows the tracking of clonal relationships and observation of transitional cell states during differentiation at discrete and
sparse time points (Weinreb et al., 2020; Oren et al., 2021). However, the earliest observable cells are not true progenitor
cells owing to the destructive nature of the measurement and the necessity of multiple cell divisions to introduce DNA
barcodes. Several methods such as LineageOT (Wang SW et al., 2022), CoSpar (Forrow et al., 2021), and PhyloVelo
(Wang K et al., 2023) have linked observations across multiple time points through lineage relationships. However,
no method has effectively exploited the shared progenitor traits of clones with identical barcodes from unobservable
progenitor cell states.

To overcome these limitations, we introduced LineageVAE, which uses a variational autoencoder (VAE) to infer
progenitor cell states and continuous differentiation trajectories at the single-cell level. This method considers cell
state transitions from differentiated cells to progenitor cells in a latent cell state space generated by the VAE (Kingma
and Welling., 2013), to recover differentiation dynamics from a common progenitor cell to cells with shared lineage
information. LineageVAE depicts sequential cell state transitions from simple snapshots and infers cell states over time.
Moreover, it generates transcriptomes at each time point using a decoder. To the best of our knowledge, LineageVAE is
the first method that utilizes the property that the progenitors of cells introduced with a shared barcode are identical,
allowing the reconstruction of historical cell states and their expression profiles from the observed time point toward
these progenitor cells under the constraint that the cell state of each lineage converges to the progenitor state. This
methodology enabled us to infer sequential cell state dynamics, elucidate unobservable progenitor heterogeneity and
bias, reconstruct historical gene expression, and determine transcription factor (TF) activity along real-time evolution.
Applied to scRNA-seq data with lineage tracing during hematopoiesis and direct reprogramming, LineageVAE has
demonstrated its capability to restore backward cell state transitions toward progenitor cell states and regulatory activity
along differentiation trajectories.
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3 Results

3.1 The LineageVAE model

LineageVAE is based on a probabilistic generative model that assumes high-dimensional single-cell transcriptomes are
derived from low-dimensional latent cell states. Latent cell states of each cell are derived from the sequential cell state
transitions of progenitor cells which are shared by cells belonging to the same Lineage with identical barcodes. For
the unobserved variables, latent cell states, and the cell state trajectory toward the corresponding progenitor cells, we
conducted variational inference using deep learning techniques, similar to the VAE. In LineageVAE, we assumed the
following probabilistic model. As a generative model, for each lineage l integrated with the same DNA barcode, we
assumed a common progenitor cell state z0. At the initial cell state transition, it branches into as many cell states as the
cells observed with the corresponding barcode. Each cell i transitions its cell state z

i
t sequentially in the latent space as

time passes. At time point T i, observational data are generated from each latent state of each cell zi
T i . Observational

data consists of scRNA-seq transcriptome measurements xi
T i and lineage barcode l. Cell state transitions are modeled

using the normal distribution, and transcriptome measurements X i
T i is modeled using the Poisson distribution.

For the generative model above, we repeatedly perform variational inference backward in time and estimate the
transition dynamics in the latent space. For each lineage, each cell transitions its cell state from the observed time point
T i cell state zi

T i toward the common progenitor cell state z0 sequentially in the latent space (Supplementary Fig. 1). At
time point t = 0. the cell states of cells belonging to identical lineages converge to a common progenitor cellular state
z0.

The model was optimized as follows: First, LineageVAE uses an encoder-decoder pair to map data X to a lower-

dimensional latent space Z. The latent state of cell i at time t is denoted as z
(i)
t , which represents a set of low-dimensional

vectors of latent variables (here, set to 10 dimensions). The encoders was used to infer the variational posterior qφ(z | x)
from which z is sampled, while decoders calculate the parameters of Poisson distributions, which can be written as
pθ(x | z). Here, ϕ and ¹ denote the parameters for the encoder and decoder, respectively. Second, another encoder is
used to estimate the dynamics, which is the difference between the latent states at a certain time and the latent state at
the previous time, with É denoting the parameters for the encoder for inferring dynamics. This encoder was used to
infer the variational posterior:

qω(z
(i)
t−1 | z

(i)
t )

. These three neural networks were optimized by maximizing the Evidence Lower Bound (ELBO) for each lineage:
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The unique training procedure of LineageVAE, which involves three neural networks, can infer unobserved progenitor
cell states and historical cell state transitions between intermediate time points at the single-cell level. As an application
of this method, LineageVAE allows us to elucidate progenitor heterogeneity, reconstruct historical gene expression, and
estimate TF activity at each time point (Fig. 1).

3.2 LineageVAE extracts biologically meaningful latent variables from single-cell transcriptomes with lineage
tracing.

To validate the performance of LineageVAE in analyzing the single-cell transcriptome with lineage tracing data, we
applied LineageVAE to a recently published scRNA-seq with lineage tracing dataset of hematopoiesis, with 87,449
clones of 130,887 cells (Weinreb et al., 2020). The dataset included observations on day 2, 4, and 6, excluding
observations on days 0, 1, 3, and 5. Despite the large number of cells in the dataset, the number of multi-cell clones and
state-fate clones containing progenitors and differentiated cells, was limited. To address this limitation, we extracted
lineages containing more than 20 cells and included the day 2 observational data. We set the batch size for dynamic
estimation to 20, such that each lineage included as many cells as possible and as many cell types as possible, which were
already annotated in the original paper (Supplementary Table 1). This is because LineageVAE learns the lineage-specific
dynamics in each minibatch. We first learned the latent space using all 130,887 cells and subsequently estimated the
dynamics for each selected lineage. LineageVAE embedded cells from the same annotated subpopulation with similar
expression patterns closely in the latent space (Fig. 2b, Supplementary Table 2).
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Figure 1: LineageVAE conducts variational inference backward in time within the latent space. (upper), Lin-
eageVAE inference originates from the observation time point and extends toward the progenitor, representing the
uniquely identical state of the progenitor cell within the same lineage. This enables the inference of cell states at progen-
itor and intermediate time points. (lower), Downstream analysis enabled by LineageVAE serves various applications: i)
elucidating progenitor heterogeneity, ii) reconstructing historical gene expression, and iii) estimating TF activity at each
real-time point.

To assess how well the latent space reflected the biological meaning of the cells, we evaluated the accuracy of this
embedding. We calculated the average coordinates and standard deviations in the latent space for each manually
inspected and annotated subpopulation based on marker genes. Subsequently, we computed the Euclidean distance and
p-value between the subpopulations. Our analysis confirmed that cells of the same manually annotated cell type existed
in close proximity within the latent space, demonstrating that each cell type formed a distinct population (Supplementary
Table 2). This shows that the LineageVAE’s latent space is biologically meaningful and captures the biological variation
among cells. Subsequently, we assessed the ability of LineageVAE to estimate time-series dynamics by comparing the
estimated and observed cell states at each time point in the latent space. The data inferred by LineageVAE showed a
similar spread to the observed data at the corresponding time points in the latent space (Fig. 2a, c and Supplementary
Fig. 3). This indicates that LineageVAE effectively captured the time series transition of the cell states. We measured
the distance between the inferred latent and observed cell states to quantitatively evaluate the accuracy of the inferred
cell state transitions, at each time point using the silhouette score (Supplementary Fig. 2). Additionally, we employed
an index that compares the inferred and observed latent cell states at each time point by counting the proportion of
cells observed in the k neighborhood (here, k = 30). The silhouette score indicates that, As going back in time using
this method, the silhouette score tends to be higher, and each cell tends to exhibit cohesion, resembling a common
progenitor cell state. Furthermore, the ratio of the day 2 observed cells around an inferred cell increases on as one went
back to the progenitor (Table. 1). This demonstrates that the model correctly traced time back to the undifferentiated
region and captured changes in the cell state at each time point with high accuracy.
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Figure 2: LineageVAE analysis on the hematopoiesis lineage tracing dataset. a-c, UMAP visualization of the latent
space inferred by the model. Each point color is displayed by a, Observed time points. b, Celltype annotations. c,
Time-series transition of cell state estimated by LineageVAE. d, A projection of the times inferred by the pseudotime
algorithm into the same space. e, A projection of the times inferred by the scVelo algorithm into the same space. f-h,
Comparison with other methods by interpolation task. f, observed time point. g, day 4 interpolation by LineageVAE. h,
day 4 interpolation by Waddington-OT.

Table 1: The ratio of Observed time point in the k neighborhood. Observed time point of cells belonging to ob-
served cell series in the latent space exists in the k neighborhood of each inferred cell series. The observation column is
a control.

Day LineageVAE Waddington-OT Observation

day 2 2.20% 22.10% 3.70%
day 4 37.40% 21.40% 39.70%
day 6 60.30% 56.60% 56.60%

Table 2: Distance from observed undifferentiated area. Each depict the Euclidean distance from the centroid of
the observation on day 2 in the latent space. In the LineageVAE column, the distance represents the proximity to
the progenitor cell inferred by LineageVAE. In the Pseudotime and scVelo columns, the distances correspond to the
proximity to the rootcell of the trajectory inference in each respective method. These values serve as indices, indicating
how far the cell state of the inferred progenitor is from the undifferentiated region.

LineageVAE Pseudotime scVelo

1.46 3.84 3.66
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3.3 Quantitative evaluation of accuracy and comparison with other methods for dynamics estimation

Subsequently, we compared the proposed method with other methods. First, we compared our method to pseudotime
and scVelo (Trapnell et al., 2014) (Bergen et al., 2020, Fig. 2d and e). These two methods failed to predict the reagion
of progenitor cells and the direction of differentiation. Moreover, they are widely used in differentiation research, and
have contributed to the development of this field. However, when these methods are applied without time information
for data from multiple observation times or for data measured simply after differentiation, sometimes accurately
inferring the progenitor cell state may not be possible. The advantage of our method is the effective utilization of
time information such as lineage tracing and observed time points, when valid information is obtained. A quantitative
evaluation was performed by comparing the distances in the latent space between the mean point of day 2 observations
and the progenitor cells predicted by each method (Table. 2). The LineageVAE performed better than pseudotime and
scVelo in predicting differentiation trajectories and progenitor cell states.

Furthermore, we compared LineageVAE with another model that utilizes data with time information. We evaluated the
performance of the model in the task of recovering a held-out time point. Specifically, we assessed the capacity of the
model to accurately capture the marginal cell population on day 4 when trained solely on data from days 2 and 6. This
evaluation utilized cells for which lineage tracing data were available. Second, we compared our method with that of
Waddington-OT (Schiebinger et al., 2019), a technique that incorporates time point information (Fig. 2f-h). The data in
Waddington-OT are embedded in the PCA space, and in LineageVAE are embedded in the latent space. Theredore,
comparisons were difficult to make using the same distance scales. We employed an interpolation approach involving
day 4 to gauge the performance. We projected the observed cells onto the same space and calculated the ratios using
the adjacent observed time points of cells within the k-nearest neighbors (this time, k = 30) of the inferred day 4 cells.
This approach aimed to mitigate the embedding effect caused by different dimensionality reductions inherent in the
outcomes of each method. The simulated populations generated by our model outperformed those generated by the
conventional method Waddington-OT.

3.4 LineageVAE transcriptome reconstruction accurately predicts RNA expression at unobserved time points.

A trained LineageVAE model has the capability to generate transcriptomic measurements at each time point, tracing
back to the progenitor state, based on post-differentiation transcriptomic observations. In this study, LineageVAE was
used to estimate the transition of cell states over time in the latent space. Using these decoders, we reconstructed the
transcriptome at each time point, effectively capturing the state transitions. The RNA expressed in each cell at each time
point was sampled using the Poisson distributions, which allowed us to generate expression profiles for each lineage.

We analyzed marker gene expression by applying LineageVAE to the hematopoietic dataset to validate the biological
accuracy of the reconstructed transcriptomes. We focused on lineages in which the cells displayed a single direction of
differentiation and evaluated the expression of known markers associated with hematopoietic differentiation and markers
for undifferentiated cells. We selected these marker genes using PanglaoDB, including post-differentiation markers
(e.g., Sell and Itgam for monocytes) and undifferentiated markers (e.g., Cd34 for hematopoietic stem cells; Franzén
et al., 2019). This analysis aimed to confirm whether the reconstructed transcriptomes aligned with the established
biological knowledge. This analysis revealed a consistent pattern between the reconstructed transcriptomes and the
expected biological behavior of the cells. Specifically, we observed a decreases in the expression of post-differentiation
markers (Fig. 3a) and an increases in the expression of undifferentiated marker genes (Fig. 3b) as tracing back in time.
In other cell types, gene expression at each time point was restored for many genes to align with the experimental facts
(Supplementary Figs. 4, 5). These results further support the validity and accuracy of the reconstructed transcriptomes
in capturing the dynamics of cell differentiation and the expected biological behavior of the cells. These findings
suggest that LineageVAE can be used to infer transcriptome transitions.

3.5 Evaluation of unobservable ancestry bias through gene expression reconstruction.

We subsequently discussed progenitor bias by taking advantage of the ability of the LineageVAE to reconstruct
the transcriptome at each time point. First, we extracted the lineage that mainly differentiated into monocytes and
neutrophils (lineage where 50% or more differentiated into a single cell type), and reconstructed the expression of
each lineage progenitor (at day 0) from observation data at day 6 as model input data. Genes upregulated in the
progenitor cells of the monocyte and neutrophil cell populations at each time point were selected by calculating
differential expression genes (DEGs) of two populations, comparing their dispersion to the mean and standard deviation
of dispersions within a specific bin of mean gene expression (Satija et al., 2015; Zheng et al., 2015) (Fig. 3c). The
selected genes contained SerpinB1. SerpinB1 is reported as a critical protein in neutrophils, inhibiting serine proteases,
such as NE, CG, and PR-3, to maintain mature neutrophil reserves in the bone marrow. Deficiency in SerpinB1 increases
apoptosis and necrosis in the bone marrow, reducing neutrophil survival and resulting in fewer mobilizable neutrophils.
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Figure 3: Reconstruction of historical expression by LineageVAE. a, Inferred expression of monocyte differentia-
tion markers at each time point in cells that differentiate into monocytes. b, Inferred expression of undifferentiated
marker at each time point in cells that differentiate into monocytes. c, Evaluation of progenitor bias by heatmaps of
DEGs expression. Left: day 0, right: day 6.
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This study confirmed its high expression during neutrophil development, particularly at the promyelocyte stage. These
findings support the accuracy of our model for predicting progenitor cell states (Benarafa et al., 2011). In addition to
genes involved in blood cell differentiation, such as SerpinB1, many genes that are not known as marker genes were
also included (Franzén et al., 2019). Some of these genes may reflect differentiation bias at an early stage. LineageVAE,
which restores the expression of experimentally impossible-to-observe progenitor cells, may lead to discovering factors
regulating differentiation at an early stage and may be useful for extracting indicator genes. Differential expression are
calculated between monocytes and neutrophils in cells on day 6 and selected DEGs included the neutrophil marker Ngp.
This also suggests that the candidates identified in these analyzes include genes that cause differentiation bias (Franzén
et al., 2019).

3.6 Temporal differential changes in TF activity along differentiation trajectories

Our methodology enabled us to dissect the trajectory of differentiation trajectory and expression changes over time
at the single cellular level. Here, we scrutinized the temporal variations in TF activity based on the reconstructed
time series expression along this trajectory. TFs are proteins that control gene expression by binding to specific DNA
sequences. They can either activate or repress the recruitment of RNA polymerases to genes (Fig. 4a). Initially, we
summarized this regulatory relationship in a regulation matrix using previously reported information (Zhang et al.,
2021). We assumed that the expression of TFs at a certain time point, denoted as t, controls the expression of target
genes (TGs) at the next time point, t+1. We employed a generalized linear model (GLM) with TFs as the explanatory
variables and TGs as the response variable (Fig. 4b). The weights, denoted by wtij , represent the learnable parameters
in the GLM. Notably, these weights are intricately linked to the regulatory relationships between TF and TGs. When
there is no regulatory relationship between a TFs and its TGs in this matrix, denoted by rtij being 0, the corresponding
weight wtij is specifically set to 0 They are of each TF in regulating the expression of TGs for each gene is determined
through regression. We defined the sum of these weight norms for each TF as their activity. First, to verify the TFs
acitivity, using the trained model, we computed the average dynamics norm for each differentiation destination (Fig. 4c).
This value is expected to increase significantly during the process of vigorous differentiation into mature cells. Notably,
This suggests that the differentiation of monocytes and neutrophils is activated at an early time point, whereas the
differentiation rate of basophils accelerates after a delayed time point. Overall, the total TF activity was increased before
the norm of the dynamics increased (Supplementary Table 3). The activity of the TF Creb1 is assumed to increase from
the initial stage in the cell group that differentiates into neutrophils (Fig. 4c). In the cell population that differentiates
into neutrophils, the activity of the TF Creb1 is presumed to increase from an early stage before an increase in the norm
of dynamics (Chen et al., 2023). Creb1 is a well-known TF that is crucial in regulating various aspects of neutrophil
functions. This includes processes such as neutrophil extracellular traps (NETs) formation, phagocytic function, and the
overexpression of pro-inflammatory cytokines and chemokines. In basophils, where differentiation acceleration was
delayed, the timing of the increase in TFs activity was also delayed (Fig. 4d). With the ability to restore time-series
expression, it is possible to evaluate TFs activity at each time point.

3.7 LineagVI traces gene expression changes during the direct reprogramming from fibroblasts to induced
endoderm progenitors at each time point.

Finally, we applied LineageVAE to a lineage tracing dataset obtained through direct reprogramming using the CellTag-
ging method (Biddy et al., 2018; Kamimoto et al., 2023), aiming to validate the robustness of the LineageVAE model.
This study aimed to convert fibroblasts into induced endodermal progenitors (iEPs). We inputted the observed data from
day 28 into the trained model, allowing us to estimate the state of each cell from days 0 to day 28. We subsequently
compared these estimates with the actual observed data. The latent variables were projected onto the UMAP space, and
the observation time, cell type, inferred time series cell state transitions of each cell, and time series cell state transitions
of each cell in the two groups are displayed (Fig. 5a-d). The inferred time series data were retraced backwards in the
latent space in a manner consistent with the actual observation data. This confirmed that the cells congregated in the
fibroblast region as day 0 approached, suggesting that LineageVAE accurately predicted the past cell states. Cell type
classification is based on quadratic programming, as detailed in the original study (Treutlein et al., 2016). Subsequently,
we identified the lineages associated with iEP-enriched and iEP-depleted outcomes, similar to the approach used in
the original study. Lineages achieving a 20–50% reprogramming success rate are designated as "iEP-enriched clones".
Conversely, lineages in which fewer than 3% of cells exhibit the characteristics of induced endodermal progenitors
(iEPs) are categorized as "iEP-depleted clones". We visualized the typical paths of iEP-enriched clones and iEP-depleted
clones, excluding intermediate mixed lineages that existed within 0.1 times the standard deviation of the mean path of
each group (Fig. 5d). One notable innovation of our method is its ability to reconstruct the expression intensities at each
time point. The original study identified specific genes that were exclusively upregulated or downregulated following
successful reprogramming or upon reaching a dead-end fate, as indicated by their high or low expression levels on day
28. We conducted additional analyses of the identified genes. By analyzing the historical gene expression changes
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Figure 4: TF time differential activity analysis. a, Schematic diagram of how TF works. b, Application of GLM
for TF activity analysis. TGs are downstream genes regulated by TFs. The relationship between TFs and TGs was
calculated using the regulation matrix R.c, Norm of dynamics of each cell type. d, neutrophil (left) and basophil (right)
time series TF activities. Among the genes used in the analysis, those reported in previous studies on the TFs-TGs
regulatory relationship were selected as TFs.
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for these specific genes, we compared the patterns between iEP-enriched and iEP-depleted clones (Fig. 5e). In this
study, we applied time series k-means clustering to cluster time series expression changes and identified genes whose
expression was enhanced in either the iEP-enriched or iEP-depleted groups (Tavenard et al., 2020). Consequently, we
were able to infer the timing at which enhanced expression occurs during fate determination. Here, Apoa1 (an iEP
marker) and Peg3 (which is crucial for the p53 apoptotic response) are presented as examples of genes that exhibit
distinct patterns between the two groups (Fig. 5f and g). We estimated the gene expression levels for each lineage in an
experimentally unobservable initial state (Fig. 5e, Supplementary Fig. 6). This indicates that Hes1, whose expression
level has been reported to greatly affect growth and differentiation, expression level is significantly different between the
iEP-enriched and iEP-depleted groups, suggesting the correctness of this inference (Castella et al., 2000; Yoshiura et al.,
2007; Murata et al., 2005). Furthermore, gene regulatory network analysis can potentially enhance reprogramming
yield by effectively targeting upstream transcription factors.

4 Discussion

We developed a VAE-based generative modeling framework for learning the dynamics in the latent space of time series
scRNA-seq data. This model enables reasonable inference of unobserved cellular states and their lineage-specific
stochastic dynamics in the latent space. Moreover, it allows for the recovery of the transcriptome data at each time point
by inferring the technically unobservable progenitor state. Stem cell research, including induced pluripotent stem cells
(iPS cells), actively seeks to advance regenerative medicine to restore lost functions by regenerating tissues and organs
such as nerves, joints, muscles, skin, and the brain (Hoang et al., 2022; Yamanaka et al., 2012). Understanding the
initial cellular state and the developmental mechanisms during the early differentiational stages is crucial for advancing
regenerative therapies and organ transplantation by regulating differentiation into specific cell types. Most cancers
are presumed to originate from a single cell with an oncogenic mutation, with additional mutations that facilitate
tumor development(Greaves et al., 2012; Balani et al., 2017). However, the precise mechanisms underlying cancer
initiation by a single transformed cell and the effects of additional mutations remain unclear(Vogelstein et al., 2013;
Garraway et al., 2013). These analyses necessitate discussions that trace back to the progenitor cell state. However,
lineage tracing has limitations, such as the ability to obtain observations only at discrete and sparse time points owing
to scRNA-seq destroying cells during analysis, which makes it difficult to analyze the state of progenitor cells(Ding
et al., 2013). Furthermore, lineage tracing experiments requires culturing to introduce the DNA barcode; scRNA-seq is
performed after several rounds of cell division, and the direct progeny of the measured cells cannot be observed because
of the destructive nature of the measurements. Regarding the aforementioned limitations, a variational autoencoder
(VAE) is a powerful technique for capturing nonlinear latent structures in data (Kingma and Welling., 2013). Currently,
there are VAE-based methods are available for single-cell data analysis, namely scVAE, scVI and scGEN (Grønbech.,
2020; Romain., 2020; Lotfollahi., 2019). These methods have proven effective in capturing biological features within
reduced dimensions. The diversity in their architectural designs renders VAEs well-suited for addressing several crucial
challenges in scRNA-seq analysis, including dimensionality reduction, clustering, and data denoising (Wang et al.,
2018; Geddes et al., 2019; Eraslan et al., 2019). Furthermore, models that combine the VAE and latent space vector
arithmetics for high-dimensional single-cell gene expression data, captures the underlying structure of high-dimensional
gene expression data in a lower-dimensional space, known as a manifold. The simple and linear nature of this latent
space allows for linear extrapolations, which helps predict how gene expression changes in response to perturbations or
other conditions. By utilizing the different vectors under different conditions, VAEs can effectively map these predicted
changes back to the high-dimensional gene expression space, enabling the analysis and prediction of gene expression
changes under various perturbations or conditions. Several methods have been developed using this property of the VAE
characteristics, such as vicdyf and scMM (Minoura et al., 2019; Kojima et al., 2022). We gained insights from previous
studies that applied the VAE to single-cell data analysis and hypothesized that by tracing back in time in the latent
space, we could leverage the properties of the manifold space to recover a wide range of historical information. By
estimating the dynamics in latent space, we inferred unobserved intermediate cellular states and common progenitors of
all lineages. This method allows for the discussion of transcriptome and cell state transitions in dynamic processes.
Furthermore, when observational data is limited, the VAE-based model remains valuable because it can generate pseudo
cells from the latent space. This feature facilitates the analysis of dynamic biological processes. In addition, we
accurately captured the phenomenon of branching into multiple cell types by effectively utilizing the property that
cells sharing barcodes have identical progenitors and inferring back in time. From this, it seems reasonable to assume
that multiple cells converge to a single progenitor state. By removing the regularization term that causes cells sharing
a barcode to transition to a single-cell state, it may be possible to observe a reaction where the progenitors exhibit
heterogeneity and diversity, transitioning into a homogeneous cell population post-reaction. For example, when a drug
is added, multiple cells may transition into the same cell type. For downstream analysis, by restoring expression along
the time series using LineageVAE, we considered gene regulation networks along the time axis. By considering the
relationship between TF and TG, we were able to discuss regulatory lines in which variations in expression levels are
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Figure 5: Application of LineagVAE to direct reprogramming dataset. a-d,UMAP visualization of the latent space
inferred by the model. a, Time-series transition of cell state estimated by LineageVAE. b, Observed time points. c, Cell
type annottations. d, Typical paths of iEP-enriched clones and iEP-depleted clones. e, Time-series changes of each
gene expression in average of all cells. f, g, Restored expression along the time series. From top to bottom, Apoa1 (iEP
marker), Peg3 (necessary for the p53 apoptotic response).
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involved in determining the direction of differentiation. When one wants to promote differentiation into a specific cell
population, this will help guide the differentiation through the regulatory factors. We confirmed the robustness of the
model by applying LineageVAE to a direct reprogramming dataset. Barcoding technology has developed rapidly in
recent years, making it possible to create more detailed phylogenetic trees. Currently, our model considers only the
absolute flow of time, however, by creating a model based on these phylogenetic relationships, it will be able to capture
the unique flow of time for each differentiated area. Finally, the contribution of our proposal is that it can be optimized
by assuming a single progenitor. Our model can be calculated only in the backward direction of time; however, creating
a model that can be discussed both forward and backward in time may be possible by devising an optimization function
and network. Until now, tracking time-series transitions in a single cell experimentally has been challenging owing to
several limitations – each cell can be observed only once, and measurements can only be taken after the cell population
has grown following barcode introduction. Our computational methodology addresses these experimental constraints,
offering a solution to challenges that cannot be resolved using conventional methods in natural biotechnology. This
model enables many analyses within the time series domain of single-cell studies, particularly in time series scenarios
where data acquisition presents significant challenges.

5 Limitations of Study

LineageVAE is limited by its inability to predict future cell states. Additionally, accurately predicting the expression
states beyond the observed region poses a challenge. These issues can be mitigated by advancing observation
technologies through barcoding methods and utilizing mathematical models capable of conducting both forward and
backward calculations. There is also room for consideration regarding the number of steps taken when tracing back
time in the model (Bakken et al., 2020).

6 Method details

6.1 Generative model for sequential latent state transition

This section describes a generative model for time-series single-cell transcriptomes with lineage-tracing. This proba-
bilistic model uses latent variables, zt ∈ Rm , where m is the dimension of the latent cell state space, t is the time of the
cell state. Each lineage (a population of cells integrated with the same DNA barcode) begins with a unique progenitor
cell state, which diffuses within the latent space over time. Expression was observed from the latent state after the cell
state repeated diffusion until the observation time. The latent cell state is represented by z and follows a Gaussian prior
distribution. Dynamics zt − zt−1 represents the transition of the cell state during a certain period from time point t
is expressed as the difference in the cell state between specific time points. These values followed a Gaussian prior
distribution.

p(z0) = N (z0 | 0,σ0I) (1)

p(zt) = N (zt | zt,σtI) (2)

p(zt+1 | zt) = N (zt | (zt + µ(zt), (σt + σ)I) (3)

Where, σ0 is optimizable parameter which defines the scale of the standard deviation of progenitor cell state, σt

represents the scale of the standard deviation of cell state at time point t and σ is optimizable parameter which defines
the scale of the standard deviation in dynamics. We note that this distribution can be chosen arbitrarily and can include
options such as a Gaussian distribution with mean zinitial observation parameterized by the observed latent state of early
undifferentiated cell populations and optimizable parameter Ã, for example, as follows to facilitate optimization.

p(z0) = N (z0 | zinitial observation,σI) (4)

We modeled the latent cell state transition after a certain period as dynamics zt − zt−1. This generative model assumes
that the time evolution of the latent cell state z follows the Wiener process. For each lineage, By assuming an initial
latent cell state z0, we constructed a generative model for each transcriptome X at time point T0 as follows.

p(Z,X) = p(z0)
N
∏

i=1

p(z
(i)
1 |z0)(

T
(i)
0
∏

t=2

p(z
(i)
t |z

(i)
t−1))p(x

(i)

T
(i)
0

|z
(i)

T
(i)
0

) (5)

Where Z = (z0, z1, . . . , zT0
).
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6.2 Variational inference of transcriptome dynamics for time-series lineage-tracing single-cell data

We developed a computational methodology for estimating the dynamics of a time series lineage tracing single-cell
dataset. Suppose we have a dataset X consists of spliced and unspliced transcriptomes of a single cell s ∈ Rg

and u ∈ Rg, respectively, where g is the number of genes, lineage information represented by a barcode tag, and
time point information representing when the data were observed. As a variational inference of the aforementioned
generative model, we encode the cell state and infer the transition of the cell state going back in time. Our methodology
stochastically embeds the single cell transcriptome of each cell into a latent cell state space using a deep neural network.
Our methodology assumes a variational posterior distribution of the cell state at the previous time point for each latent
cell state, and then recursively predicts progenitor cells. In the following sections, we describe the generative model
for transcriptomes and the variational approximation of the posterior distributions of latent variables with lineage
information in the following sections.

6.3 Variational autoencoder for embedding high-dimensional transcriptome into low-dimensional latent space

To embed transcriptome data into a low-dimensional latent space, similar to previous studies, we used the variational
autoencoder (VAE) framework (Way et al., 2018; Lopez et al., 2018; Lotfollahi., 2019; Grønbech., 2020; Nagaharu
et al., 2022). A VAE is a deep generative neural network that reduces the dimensionality and generates data. Let x be
the data and z be the set of low-dimensional latent variables, z ∈ Rm where m is the dimension of the latent cell state
space, the VAE consists of an encoder and decoder neural network that parameterizes the variational posterior qΦ(z | x)
and likelihood pΘ(x | z), respectively. VAE replaces the true intractable posterior p(z | x) with a variational posterior
qΦ(z | x) and approximates the intractable integrals with pΘ(x | z), which is a likelihood of the data given a sample
from the variational posterior. This approach allows the encoder to estimate the low-dimensional latent variables z
from the data p(x) and the decoder to learn the generation of data from a given low-dimensional representation. The
VAE objective function is the lower bound of the marginal likelihood of x (evidence lower bound; ELBO), which can
be written with a reconstruction term and a Kullback-Leibeler (KL) divergence regularization term:

ELBO = Ez∼qΦ(z|x)

[

log
pΘ(z,x)

qΦ(z | x)

]

(6)

= Ez∼qΦ(z|x)[log pΘ(x | z)]− KL[qΦ(z | x)∥pΘ(z)] (7)

This probabilistic model assumes that the prior over the latent variables p(z) is typically chosen as an isotropic standard
multivariate Gaussian distribution.

p(z) = N (z | 0, I) (8)

We assumed that the transcriptome x follows the Poisson distribution.

p(x | z) = Poisson(x | x̂ = Ç¼θ(z)), (9)

where Ç ∈ R is the mean expression across all genes in the single cell and ¼θ(z) ∈ Rg is the decoding neural network
of the latent cell state with 50 hidden units, two layers, and layer normalization.

6.4 Variational inference of the latent variable posterior

To estimate the time series latent cell state z and corresponding transition dynamics over a specific time period, we
assumed that the variational distribution of dynamics zt − zt−1 is a Gaussian distribution dependent on the latent cell
state zt as shown below:

q(zt−1|zt) = N (zt−1|µ
′
φ(zt), diag(Ã

′
φ(zt))) (10)

where µ′ and Ã′ are neural networks with 50 hidden units, two layers, and layer normalization. These formulations
correspond to the assumption that the reverse time evolution of the latent cell state z follows an discrete advection-
diffusion model.

Zt −Zt−1 = −(Äµ′
φ(Zt) + ÄÃ′

φ(Zt)ϵ) (11)
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where ϵ ∼ N (0, I), µ′
φ(zt+1) is correspond to the average of latent state, dynamics Ã′

φ(zt+1) is correspond to the

fluctuation of latent state dynamics and Ä is a parameter that indicates that the absolute value of the dynamics, which is
the transition from the previous time, is sufficiently smaller than the variation of the cell state in the latent space at that
time, and it can be optimizable. Additionally, we performed variational inference backward in time in the latent space,
starting from the point corresponding to the observation time of the progenitor cell state.

q(Z|X) = q(z0|z
(1)
1 , z

(2)
1 , ..., z

(N)
1 )

N
∏

i=1

(

T
(i)
0
∏

t=2

q(z
(i)
t−1|z

(i)
t ))q(z

(i)

T
(i)
0

|x
(i)

T
(i)
0

) (12)

The key idea of LineageVAE is to assume that cells with the same lineage are in a uniquely identical state z0 at time
0, and that cell states change from z1 into z0 follows the same dynamics as the variational distribution at other time
points in the latent space so that z0 is represented as follows:

MoE : qΦ(z0 | z1
1 , z

2
1 , ..., z

i
1) =

n
∑

i=1

1

n
qφi

(z0 | zi
1) (13)

For the estimation process of the parameters of the generative models and the variational distribution, we maximized
the ELBO as defined below:

ELBO =EZ∼qφ(Z|X)



log p(z0) +

(

N
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log p(z
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1 |z0)

)

+
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0
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(i)

T
(i)
0

)

)





The calculation of ELBO necessitates sampling from the variational distribution. When sampling z0, we sampled z
i
0

from z
i
i and and selectively chose one of them, given that LineageVAE assumes a single progenitor cell states from

each lineage. Optionally, to optimize efficiency, z0 can be chosen using stratified sampling. During optimization, the
latent space series z is derived through reparameterized sampling from z inferred in the variational processes. Where
Ep(x)[f(x)] represents the expectation of f(x) given x ∼ P (x). For this maximization, we used the Adam optimizer
with a learning rate of 0.0001, mini batch size of 30 composed of a single lineage, and 1000 epochs at total. In the
first step, we estimated encoder parameter ϕ for embedding into low-dimensional latent space. In the second step, we
fixed ϕ and estimated encoder parameter ϕ′ for encoding dynamics and decoder parameter ¹. All implementations were
based on the PyTorch library of Python language.

6.5 Optimization using micro and macro information constraints

Our study employed lineage tracing information to infer macroscopic cell state transitions. Additionally, by differenti-
ating between spliced and unspliced mRNAs in standard scRNA-seq data, following the same approach as existing
methodologies (La Manno et al., 2018; Nagaharu et al., 2022), it is possible to infer the cell state change during a
micro-duration around the observed cell state. Here, we assumed that the mean parameters of spliced and unspliced
transcriptomes followed the differential equation of splicing kinetics as with existing tools for RNA velocity estimation:

ds

dt
= ´u− µs. (14)

where ´ ∈ Rg is gene-specific splicing rates of unspliced transcriptome and µ ∈ Rg is a vector of gene-specific
degradation rates of spliced transcriptome. The changes in the spliced transcriptome were expressed as:

ds

dt
≈

¼θ(z)− ¼θ(z − Äd)

¶t
(15)

From equations (14) and (15), we derived the mean parameter of the unspliced transcriptome as follows:
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û ≈
¼θ(z)− ¼θ(z − Äd) + ¶tµ¼θ(z)

´¶t
(16)

We assumed that the transcriptome u has the following Poisson distribution approximately.

p(u | zT0
, zT

−1
) = Poisson(u | û). (17)

Considering the micro constraints at the observed time point, ELBO can be expressed as follows:

ELBO =EZ∼qφ(Z|X)
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6.6 Model architecture and optimization

Optimization was conducted using the Adam optimizer with AMSGrad (Reddi et al., 2018). The neural network
structure comprised two hidden layers with 50 hidden units each. The learning rate was set as 0.0001. For the LARRY
data, mini batch sizes of 30 were employed, with each mini batch loaded with data corresponding to a single barcode.
Learning was performed out over 200 epochs.

6.7 Data preprocessing

We first selected the 1000 most variable genes for the transcriptome count data by applying the scanpy
highly_variable_genes function in log-normalized counts. Raw counts were used as model inputs.

6.8 Visualization of latent representations

The mean parameters for the variational posteriors were used as the latent variables. Latent variables obtained from
trained models were visualized on the two-dimensional space using the “umap” package in Python.

6.9 Evaluation of biological meaning of embedding using Euclidean distance

We calculated the average coordinates and their standard deviations in the latent space for each cell type, which were
manually annotated based on the gene expression in the original paper. We then calculated the Euclidean distance and
p-value between the cell types and confirmed that the same cell types were embedded in close positions in the latent
space.

6.10 Evaluation of embedding accuracy using observation data

To evaluate the accuracy of the time series estimation in a latent space containing data of various degrees of differentia-
tion, we counted the observed dates of cells in the k-neighborhood of each inferred cell in the observation space. We
calculated the ratio of observed dates of observed cells existing in the k-neighborhood. We used it as an index of the
similarity to the observed cells at a certain time point and degree of differentiation.

6.11 Comparison of embedding accuracy using observation data

To compare the accuracy of the methods, we interpolated day 4 using the data from days 2 and 6. Notably, Waddington-
OT method operates within the PCA space, whereas LineageVAE operates within the latent space. This distinction
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makes it challenging to directly compare the two methods using the same distance scale. To evaluate the performance
of these methods, we developed an interpolation strategy focused on day 4. This strategy involved calculating ratios
using the observation data from observed time points (this time, days 2, 4, and 6) for cells within K (this time 30)
neighborhood cells around each estimated day 4 cell in each embedded space. The primary objective of this approach
was to address and mitigate the embedding differences inherent in the outcomes generated by each of the two methods.

6.12 TFs activity evaluation

Here, we assumed that the expression of TFs (i) at a certain time point, denoted as t, controls the expression of TGs
(j) at the next time point, t+1. We employed a GLM with TFs as explanatory variables and TGs as the response

variable. Let X
(TF )
t be the matrix representing the TFs expression of each sample at time point t, X

(TG)
t be the matrix

representing the TGs expression of each sample at time point t, and R be a matrix summarizing the TF-TG interactions.
Each element of the matrix is denoted by rij . Let weights W be the learnable parameters determined by regression.
Each element of the matrix is denoted by wtij . The following regression model was used in this study.

E[X
(TG)
t+1 ] = X

(TF )
t Wt + ´

wtij = 0, if rij = 0.

To evaluate the TF activity, we calculated the sum of the absolute values of these weights. This value was then scaled
between 0 and 1 to eliminate the influence of the total amount of expression detected. A absolute value of each element
in the set wti, where j represents the various elements in the set. The TF activity was then computed as the sum of these
absolute values. To normalize the TF activity within a standardized range of 0 to 1, each TF activity value was divided
by the maximum TF activity value calculated across all TF i instances. In conclusion, we defined the TF Activity for
TF i at time point t as:

TF Activityit =

∑

j |wtij |

maxk

(

∑

j |wtkj |
)
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Zenodo and are publicly available on publication. The DOIs are listed in the Key Resources Table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon
request.
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Table S1: Batch Size and Cell Types Included

Batch Size 10 20 30 40 50

Undifferentiated 573 443 324 232 158
Neutrophil 490 383 262 184 120
Monocyte 382 323 257 208 126
Mast 53 2 2 2 1
Baso 49 24 2 2 1
Meg 12 4 1 0 0
Erythroid 10 7 0 0 0
Eos 5 2 1 1 1
Lymphoid 2 1 1 0 0
Ccr7_DC 1 1 0 0 0

Number of selected cells 1410 1180 870 720 500

Table S2: Average distance and p-value for each cell type. The mean and standard deviation on the latent space were
calculated for each cell type. This table displays the average distance and p-value for each cell type.

Baso Lymphoid Mast Meg Monocyte Neutrophil Undifferentiated

Baso 3.31 (p=0.427) 3.70 (p=0.427) 4.71 (p=0.427) 2.89 (p=0.340) 2.76 (p=0.409) 2.34 (p=0.709)

Lymphoid 3.31 (p=0.427) 3.61 (p=0.273) 4.10 (p=0.241) 2.89 (p=0.111) 3.44 (p=0.161) 2.00 (p=0.686)

Mast 3.70 (p=0.427) 3.61 (p=0.273) 3.42 (p=0.970) 3.30 (p=0.997) 3.95 (p=0.875) 3.54 (p=0.270)

Meg 4.71 (p=0.427) 4.10 (p=0.241) 3.42 (p=0.970) 4.00 (p=0.916) 4.04 (p=0.779) 3.94 (p=0.240)

Monocyte 2.89 (p=0.340) 2.89 (p=0.111) 3.30 (p=0.997) 4.00 (p=0.916) 2.47 (p=0.074) 2.00 (p=0.000)

Neutrophil 2.76 (p=0.409) 3.44 (p=0.161) 3.95 (p=0.875) 4.04 (p=0.779) 2.47 (p=0.074) 1.88 (p=0.000)

Undifferentiated 2.34 (p=0.709) 2.00 (p=0.686) 3.54 (p=0.270) 3.94 (p=0.240) 2.00 (p=0.000) 1.88 (p=0.000)

Table S3: TF Activity per time point for Different Cell Types. The calculated activities of the defined TFs for each
day were summed, and the totals for each date were then normalized, ensuring that the day with the highest sum equaled
1.00.

Day

Cell Type 0 1 2 3 4 5

Baso 0.76 0.80 0.63 0.94 1.00 0.86
Monocyte 1.00 0.79 0.67 0.68 0.80 0.98
Neutrophil 1.00 0.67 0.69 0.74 0.72 0.81
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Figure S1: LineageVAE graphical model. Shaded nodes xit indicate observed data, and white node zit symbolizes
latent variables. Edges indicate dependencies. Variational inference is conducted backward in time from the observed
data.

Figure S2: Quantitative evaluation of time series inferrence. a Silhouette score for cells in each estimated time
point for observed cells. b Ratio of observed cells that are k neighbors of the inferred cells.
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Figure S3: Overview of the time series inferrence. (Upper) Observation cells and observation time points (Lower)
Inferred cells and time points

Figure S4: Reconstruction of historical expression by LineageVAE. (left) Inferred expression of Neutrophil dif-
ferentiation markers at each time point in cells that differentiate into Neutrophil. (right) Inferred expression of
undifferentiated marker at each time point in cells that differentiate into Neutrophil.
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Figure S5: Visualization of recovered gene expression on UMAP. (Upper) Neutrophil Marker: Ngp expression at
each time point. (Middle) Monocyte Marker: Psap expression at each time point. (Lower) undifferentiated marker:
Cd34 expression at each time point.

Figure S6: Evaluation of progenitor bias by heatmaps DEGs expression on day 0, which is experimentally unob-
servable after reprogramming induction.
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