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Abstract 

Visual neural decoding aims to unlock the mysteries of how the human brain interprets the visual 

world. While early studies made some progress in decoding visual activity for singular type of 

information, they failed to concurrently reveal the multi-level interweaving linguistic information in 

the brain. Here, we developed a novel Visual Language Decoding Model (VLDM) capable of decoding 

categories, semantic labels, and textual descriptions from visual perceptual activities simultaneously. 

We selected the large-scale NSD dataset to ensure the efficiency of the decoding model in joint training 

and evaluation across multiple tasks. For category decoding, we achieved the effective classification 

of 12 categories with an accuracy of nearly 70%, significantly surpassing the chance level. For label 

decoding, we attained the precise prediction of 80 specific semantic labels with a 16-fold improvement 

over the chance level. For text decoding, the scores of the decoded text surpassed the corresponding 

baseline levels by remarkable margins on six evaluation metrics. This study contributes significantly 

to extensive applications in multi-layered brain-computer interfaces, potentially leading to more 

natural and efficient human-computer interaction experiences. 

Keywords: visual decoding; multitask decoding; functional magnetic resonance imaging. 
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Introduction 

The connection between vision and language has been a captivating area of research in cognitive 

neuroscience. Our brains exhibit intricate and close connections when processing visual and language 

information1,2. Studies indicate a close relationship between the processing of visual signals and the 

comprehension and production of language3. Visual signals are transmitted to the brain9s visual 

cortex4,5, while language processing primarily involves language-related brain areas like Broca9s and 

Wernicke9s areas6,7. However, there9s evidence of mutual interaction between visual and language 

brain areas8. When comprehending language, the brain activates regions associated with vision9,10, 

implying a potential interdependence between language comprehension and the processing of visual 

information. This collaboration might help explain why we use rich and vivid language expressions 

when faced with visual images or scenes.  

The process of visual cognition, progressing from coarse to fine recognition11,12, is pivotal in 

perceiving and expressing what we see and feel about the world.. Taking the appreciation of an artwork 

as an example, depicted in Fig. 1, we express admiration for its beauty, but behind such verbal 

expression lies a gradual unfolding from the whole to the details. Initially, what we see is merely a 

categorization of the overall scene, such as determining whether it depicts a landscape, figures, or 

abstract art. As our appreciation proceeds, the visual system begins to process more specific semantic 

labels such as the sunset, lake, clouds, and birds, maybe coupled with some background details. 

Likewise, the description of the image may also undergo a hierarchical progression from the theme to 

the specifics. We might begin with category words like <scenery=, followed by foreground descriptive 

phrases such as <the lake illuminated by the glow of the setting sun=, <a bird freely soaring=, or 

<colorful clouds in the sky=. Our description might culminate in more vivid or poetic expressions such 

as <The setting sun and a solitary duck fly together, sharing the autumn water and the sky9s hue=. 

Therefore, the incremental process of language production mirrors the perception process in visual 

cognition9,13. 
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Fig. 1. Overview of the Visual Language Decoding Process. Our study aims to decode 

simultaneously the primary categories, multiple labels, and textual descriptions from brain activity 

during the observation of natural images. Brain activity during the observation of natural images was 

captured using fMRI, covering multiple cortical regions. We selected 10 regions (V1, V2, V3, OFA, 

PPA, OPA, VWFA, FBA, FFA, and EBA) for conducting multitask decoding calculations. The Visual 

Language Decoding Model comprises the Visual-Encoder, Multitask-Encoder, Category-Decoder, 

Label-Decoder, and Text-Decoder. Initially, the Visual-Encoder and Multitask-Encoder encode the 

response activities from the chosen cortical regions to acquire multitask features of the stimulus images. 

Subsequently, the Category-Decoder, Label-Decoder, and Text-Decoder execute three individual 

decoding tasks simultaneously to predict the primary categories and multiple labels within the stimulus 

images, and to generate textual descriptions. The methods for these three decoding tasks correspond 

to different levels of brain-machine interface applications, namely, controlling wheelchairs, operating 

robotic arms, and restoring language functions. 

How to decode linguistic information in visual cognition is an important research topic in brain 

science and artificial intelligence today. Since 2005, renowned labs worldwide have made significant 

progress in visual decoding using machine learning and deep learning techniques. These techniques 

are capable of extracting multi-level linguistic information including object categories14,15, semantic 
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labels16,17 and descriptive text18-20 from visual activities triggered by natural scenes. However, these 

researches mainly decode information independently through a single task, which lacks knowledge 

sharing between different decoding tasks as well as limits the generalization capability of visual 

decoding. In the field of artificial intelligence, joint modeling of multiple tasks has been shown to help 

improve the efficiency of joint task processing. For example, in the field of computer vision, Wu et al. 

designed a multi-task network, YOLOP21, that is capable of handling three key driving perception 

tasks: object detection, drivable area segmentation, and lane detection, which greatly improves the 

performance of handling these three tasks simultaneously. Meanwhile, in natural language processing, 

cutting-edge technologies such as ChatGPT integrate GPT22-24, Reinforcement Learning from Human 

Feedback25, and Chain-of-Thought Prompt26 to accomplish advanced machine translation and Q&A 

systems. Inspired by technologies in computer vision and natural language processing, multi-task 

decoding methods will have the potential to improve the efficiency and generalization of visual 

information decoding. 

Thus, we proposed a Visual Language Decoding Model (VLDM) which consisted of two 

encoders (Visual-Encoder and Multitask-Encoder) and three decoders (Category-Decoder, Label-

Decoder, and Text-Decoder), capable of simultaneously performing three decoding tasks: primary 

categories, multiple labels, and textual descriptions. as illustrated in Fig. 1. Here our main objective is 

to achieve the synchronized decoding of visual perceptual activities into multi-level information. The 

responses to visual activities are acquired through functional magnetic resonance imaging (fMRI), 

measuring blood-oxygen-level dependent (BOLD) signals. fMRI offers high spatial resolution and is 

a commonly used non-invasive measurement tool27. We selected the data of four subjects (Sub 1, Sub 

2, Sub 5, and Sub 7) from the large publicly available NSD dataset28 and collected responses from 10 

visual cortex regions while they viewed 30,000 natural images from the COCO dataset29 which 

provided 12 primary categories, 80 multiple labels, and5 textual descriptions for each natural image. 

Hopefully, our proposed Visual Language Decoding Model (VLDM) will take advantage of the well-
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suited dataset to predict multiple levels of language information by integrating three decoding task 

which correspond to at least three levels of application value for brain-machine interfaces: 1) Category 

decoding aids in controlling assistive devices like wheelchairs via brain activity, enhancing daily life 

convenience for disabled individuals; 2) Label decoding provides more complex and advanced control 

capabilities for disabled individuals, such as operating robotic arms, promoting more flexible 

lifestyles; 3) Text decoding supports aphasic patients in restoring language function, enabling natural 

communication and instruction transmission. 

Results 

In this section, we will sequentially present the relevant research findings concerning category 

decoding, label decoding, and text decoding tasks. 

Category decoding results 

We employed classification accuracy as an evaluation metric, quantitatively analyzing the 

accuracy of correctly categorizing viewed natural images into the 12 distinct categories (person, 

vehicle, outdoor, animal, accessory, sports, kitchen, food, furniture, electronic, appliance, and indoor) 

(depicted in Fig. 2a). During the training process of the multitask decoding model, we meticulously 

recorded the classification accuracy of four subjects on the test set after each iteration, as depicted in 

Fig. 2b. The results indicate a noticeable consistency in the accuracy variation curves among the four 

subjects. Upon reaching a stable state after a gradual increase in the early iterations, the classification 

accuracy for the four subjects respectively reached 0.6548, 0.6413, 0.6761, and 0.6099, significantly 

surpassing the chance level (1/12, 0.083). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.16.580578doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.16.580578
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 2. Illustrates the results of category decoding. a, displays sample images from twelve principal 

classes sourced from the COCO dataset. b, presents the accuracy trendlines from the testing set of four 

subjects throughout the training phase. c, compares the classification accuracies of different cortical 

regions for the 12 natural image categories. The error line indicates the standard deviation of accuracy 

for the four subjects. Gray and purple bars indicate the average accuracy rates produced by the Single 

and Joint visual areas. d, shows the final layer output features of the category decoder, which are 

downscaled to 2D space by T-SNE to obtain visualization results. Each point represents each sample 

of the test set, and different colors indicate different categories. e, confusion matrix for 12 categories 

obtained from human brain activity. f, confusion matrix for 12 categories obtained from CLIP image 

features. g, confusion matrix for 12 categories obtained from CLIP text features. 

(1) Comparison of classification accuracy across different visual cortical areas

In Fig. 2c, the results reveal noticeable differences in the classification accuracy among various 

visual cortical regions. Among the independent visual areas, the EBA region exhibited the highest 

classification accuracy in visual decoding tasks, reaching 0.5994. Following EBA, FFA, FBA, and 
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VWFA regions achieved accuracies of 0.5302, 0.5210, and 0.5153, respectively. The lower-level 

visual cortex areas, V1, V2, and V3, showed relatively lower classification accuracies at 0.2940, 

0.3079, and 0.3668, respectively. OPA and PPA regions had classification accuracies of 0.4792 and 

0.4653, respectively, while OFA demonstrated a slightly lower accuracy at 0.4014. VC, the combined 

visual areas, demonstrated the highest classification accuracy at 0.6520, followed closely by HVC at 

0.6409, while LVC exhibited an accuracy of 0.3968. Taken together, it9s evident that higher-level 

visual areas (such as EBA, FBA, FFA, OFA, OPA, PPA, and VWFA) typically exhibit stronger 

classification decoding abilities than the lower-level visual areas (e.g., V1, V2, and V3) and the 

combined visual areas (LVC, HVC and VC) had higher classification accuracies than any of their 

constituent visual areas.  

(2) 2D Visualization of output features from the classification decoder

Using the t-distributed Stochastic Neighbor Embedding (t-SNE) method, we reduced the category 

distribution features to two-dimensional(2D) space. In this 2D space, closer distances indicate higher 

correlation between category distribution features, while farther distances signify lower correlation. 

Fig. 2d showcases the t-SNE visualization results for Subject 1. The results illustrate that the sports 

category and animal category are relatively positioned on opposite sides, reflecting their 

distinctiveness in the feature space and effectively demonstrating the efficacy of the multitask 

decoding model in recognizing dissimilar categories. Similarly, close proximity between the kitchen 

and food categories is observed, representing objects associated with similar real-world environments, 

such as bread commonly being found in kitchens. Moreover, the vehicle category is positioned 

between the sports and outdoor categories, mirroring the fact that vehicles like motorcycles or bicycles 

are often associated with human movement and outdoor settings in real-world scenarios. These 

visualizations <coincidentally= reproduce the real-world relationships among these categories, thereby 

validating the effectiveness and accuracy of our classification decoder. Additionally, Supplementary 

Fig. 1 displays the t-SNE visualizations for Subject 2, Subject 5, and Subject 7. 
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(3) Confusion matrix for classification

Fig. 2e displays the average confusion matrix across the four subjects. Each cell in the confusion 

matrix shows the frequency of a specific category being misidentified by the decoder as another 

category. Specifically, the rows of the matrix represent the actual categories, while the columns 

represent the predicted categories. Therefore, the <size of the circles= in each cell indicates the 

frequency of instances where the actual category was predicted as a particular category. Ideally, most 

instances should be concentrated along the diagonal of the confusion matrix, signifying agreement 

between predicted and actual categories. In Fig. 2e, it9s noticeable that there are larger <red circles= 

along the diagonal, indicating these categories are correctly classified, reflecting the overall accuracy 

of our model. For instance, categories like animal, vehicle, person, furniture, and food are easily 

correctly classified. However, there are also instances of misclassifications. For example, the sports 

category is most frequently misclassified as the person category; accessory, outdoor, and indoor 

categories are commonly misclassified as the vehicle category; appliance, electronic, and kitchen 

categories are frequently misclassified as the furniture category; and the kitchen category is most prone 

to being misclassified as the food category. We conducted two additional experiments: 1) classifying 

CLIP features of natural images to obtain a confusion matrix for the 12 categories (as shown in Fig. 

2f); 2) classifying CLIP features of textual descriptions of natural images to obtain a confusion matrix 

for the 12 categories (as shown in Fig. 2g). It was discovered that both the confusion matrices derived 

from natural images and textual descriptions exhibited very high similarity to the confusion matrix 

derived from brain data. Additionally, Supplementary Fig. 2 demonstrates the confusion matrices for 

subjects 1, 2, 5, and 7. 
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Fig. 3. depicts the research findings on label decoding. a, shows a visualization of the label decoding 

results, where the upper section displays images from the test set stimuli, while the lower section 

represents various labels decoded from brain visual activity. b, describes the variation curve of label 

accuracy obtained from brain visual activity based on four test subjects, with the dashed line indicating 

the level of random prediction. c, presents the accuracy rates of the four test subjects across 80 labels. 

d, displays the comparison of accuracy between <Moving attributes= and <Static attributes= labels. e, 

provides a comparative analysis of the accuracy of <Dynamical attributes= and <Static attributes= labels 

across 10 independent visual cortices and 3 combined visual cortices. f, illustrates the comparison of 

accuracy between <Natural attributes= and <Synthetic attributes= labels. g, conducts a comparative 

analysis of the accuracy of <Natural attributes= and <Synthetic attributes= labels across 10 independent 

visual cortices and 3 combined visual cortices. 

Label decoding results 

The natural images involved in this study encompass a total of 80 different labels (refer to 

Supplementary Table 1 for details). It9s noteworthy that each natural image contains only a few labels, 

as depicted in Fig. 3a. In Fig. 3b, it is observed that the accuracy curve for label decoding exhibits an 

upward trend as the training progresses. When the accuracy curve reaches a stable state after a certain 

number of iterations, the accuracy rates for the four subjects are 0.1940, 0.1811, 0.2123, and 0.1529, 

respectively, with the average accuracy (0.1851) being approximately 15 times higher than the chance 
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level (0.0125). It indicates that the performance of the multitask decoding model in label decoding 

significantly surpasses random guessing. In Fig. 3c, the results indicate varied performance in 

decoding different labels. Some labels such as <person=, <clock=, and <sink=, occupying relatively 

higher proportions in visual responses at 18.12%, 1.57%, and 1.56% respectively, exhibited generally 

higher average decoding accuracies of 0.9192, 0.4171, and 0.4140. However, for less frequently 

occurring labels like <toaster= (0.07%), <hair drier= (0.06%), and <parking meter= (0.21%), the model 

displayed relatively lower decoding accuracies at 0.0032, 0.0045, and 0.0047 respectively. 

Nonetheless, except for these three less frequent labels, most other labels displayed accuracies 

significantly surpassing the chance level. 

(1) Comparison of accuracies between moving attribute and static attribute labels

In Fig. 3d, we compared the decoding accuracy of these two types of attribute labels. The results 

indicated that, decoding accuracy was higher on average for moving labels (0.1923) compared with 

static attribute labels (0.1594), but both surpassed the random baseline of 0.0125. Next, we further 

explored the distribution of <moving attributes= and <static attributes= in the visual cortex. In Fig. 3e, 

we compared the decoding accuracy of these two types of attribute labels across 10 distinct visual 

areas (V1, V2, V3, EBA, FBA, FFA, OFA, OPA, PPA, and VWFA) and 3 combined visual areas 

(LVC, HVC, and VC). When observing the independent visual areas, we found a notably higher 

decoding accuracy for moving attribute labels than for static attributes in the EBA region. This 

primarily indicates the specific sensitivity of the EBA region towards moving attributes when 

processing visual information. 

(2) Comparison of accuracy between natural and artificial attribute labels

Meanwhile, to explore the decoding performance differences between <natural attributes= and 

<artificial attributes=, we categorized 80 labels into these two groups. As depicted in Fig. 3f and Fig. 

3g, this is an intriguing finding that the OPA and FFA regions might exhibit slight preferences or 
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advantages when processing <natural attributes= or <artificial attributes=. Specifically, the OPA region 

shows slightly higher decoding accuracy when processing <natural attributes= and relatively lower 

accuracy when dealing with <artificial attributes=. Conversely, the FFA region demonstrates the 

opposite pattern. 

Fig. 4. illustrates the results of text decoding. a, displays a visual representation of the language 

decoding results: the upper section exhibits stimulating images from the test set, while the lower 

section presents sentences derived from brain visual activity describing the stimulating images. b, 

reveals histograms depicting the frequency distribution of six evaluation metrics. In each subplot, the 

blue distribution represents evaluation scores between decoded text and standard text from the test 

set, while the orange distribution serves as a baseline distribution, showcasing evaluation scores 

between decoded text and all text from the test set. c, showcases a comparison of language decoding 

accuracy across ten independent visual cortices and three combined visual cortices, where the dashed 

line represents the level of random prediction. 

Text decoding results 

Fig. 4a shows the results of text decoding, where each block9s image represents a natural image 

viewed by the subject, and the text represents the sentence generated by our proposed decoding model. 

For example, in Fig. 4a, the decoded sentence for the second image in the first row is <a cat is sitting 
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on a wooden chair=, where <cat= and <wooden chair= accurately describe the objects in the image, 

while <sitting= accurately reflects the action of the objects in the image, and prepositions and articles 

string these objects and actions into a descriptive sentence. These results indicate that our model can 

accurately capture not only the main objects and actions in the image but also effectively organize 

these semantic labels into a complete and coherent descriptive text. For further insights into the results 

of text decoding, please refer to Supplementary Fig. 3 and Supplementary Fig. 4. 

(1) Accuracy assessment of text decoding

On the test set, the average BLEU, CIDEr, and ROUGE scores across four subjects were 0.1922, 

0.7986, and 0.1909, respectively. Their corresponding baseline levels were 0.1421, 0.5843, and 0.1439, 

respectively. These baseline levels referred to the average scores of the decoded sentences compared 

to all sentences in the test set across the respective evaluation metrics. Relative to the baseline levels, 

the BLEU, CIDEr, and ROUGE scores increased by over 35%, 36%, and 32%, respectively. 

Furthermore, compared to the baseline levels, the WCS, GCS, and FTCS scores (0.5287, 0.8020, and 

0.8612) increased by over 28%, 6%, and 3%, respectively. Fig. 4b displays histograms of the six 

evaluation metrics obtained in the VC region for subject 1. In each subplot, the yellow distribution 

represents the scores of the respective evaluation metrics between the decoded sentences and the target 

sentences in the test set, while the blue distribution represents the scores between the decoded 

sentences and all sentences. Additionally, Supplementary Fig. 5 illustrates histograms of six evaluation 

metrics obtained in the VC region for subjects 2, 5, and 7. The yellow distribution generally leans 

towards the right side, indicating that the sentences generated by our model are semantically closer to 

the target sentences. 

(2) Comparison of text decoding accuracy in different visual cortices

Fig. 4c vividly illustrates the significant differences in decoding accuracy across various visual 

regions. Among them, EBA exhibited the highest average score at 0.5178, demonstrating the most 
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optimal decoding accuracy. Following this, OPA, VWFA, and FFA had decoding accuracies of 0.4876, 

0.4881, and 0.4876; FBA, OFA, and PPA scored 0.4799, 0.4725, and 0.4711; V1, V2, and V3 

displayed the lowest decoding accuracies at 0.4552, 0.4518, and 0.4547, respectively. Meanwhile, the 

combined regions, HVC and VC, showed very similar and notably higher decoding accuracies (0.5293 

and 0.5287) while LVC exhibited a slightly lower accuracy of 0.4722. In summary, we found that the 

decoding accuracies in combined regions were slightly higher than those in individual areas: the 

accuracy of LVC surpassed that of V1, V2, or V3; the accuracy of HVC also exceeded any of the ten 

independent regions. 

Discussion 

This study established a multi-task joint decoding model called VLDM to extract multi-level 

language information from the brain9s visual cortex. By utilizing NSD and VLDM, we have explored 

how the brain presents different levels of language symbols when processing visual information, 

including category, semantic labels, and text descriptions. 

First of all, the results of the category decoding revealed a gradual improvement up to a 

stabilization in classification accuracy across four subjects as the number of iterations increased. This 

trend potentially supports the robustness of the model, indicating a relative consistency in its 

performance across different individuals. Similar tendencies were observed in our previous studies 

although specific accuracy values varied15. These differences might stem from various factors such as 

the datasets used, the selection of visual cortical regions, and the design of decoding models. 

Furthermore, a comparative analysis of classification accuracy demonstrated significant differences 

among distinct visual cortical regions. Individual higher-order visual areas exhibited higher accuracy 

while lower-level visual cortical areas displayed relatively lower accuracy. These outcomes align with 

previous research supporting the viewpoint that higher-level visual areas often demonstrate stronger 

classification decoding capabilities15,30. Concerning combined visual regions, the LVC region 
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demonstrated higher classification accuracy than any of V1, V2, and V3, while HVC displayed higher 

accuracy than any of its constituent regions. These findings support the idea that integrating multiple 

visual regions can enhance decoding performance31. Remarkably, this study employed t-SNE analysis 

to visualize the category distribution features outputted by the category- decoder in a 2D format, 

revealing the interrelations among different categories in real world. For instance, the far distance 

between 8sports9 and 8animals9 reflected their distinct feature spaces, while 8kitchen9 and 8food9 

categories were closely clustered, consistent with the real-world scenario where objects representing 

these concepts often coexist in similar environments. Similar observations have been noted in previous 

research32,33. Finally, the confusion matrices of classification showed a high similarity between image 

or text and brain activity. This extends previous research, suggesting the patterns of confusion between 

categories, whether in natural images or language descriptions, can be reflected in the neural visual 

activity of the brain. It provides detailed information for specific categories and enables a deeper 

investigation of misjudged categories, allowing for fine-tuning of the model to improve decoding 

performance.  

Second, we found variations in the decoding accuracies among different labels. Higher-frequency 

labels, such as <person=, <clock=, and <sink=, exhibited relatively higher average decoding accuracy, 

whereas lower-frequency labels like <toaster=, <hair drier=, and <parking meter= showed relatively 

lower decoding accuracy. This contrast might stem from low frequencies of these labels in the training 

samples, thereby limiting the model9s learning and adjusting performance. This divergence aligns with 

similar phenomena observed in prior research that labels appearing less frequently in training data may 

pose greater challenges to models due to their limited sample count, making it harder to adequately 

learn their features and patterns34,35. This underscores the model9s high accuracies across the majority 

of labels, demonstrating its adaptability and robustness for multi-label decoding tasks.  

Moreover, the comparison between moving and static attributes deepened our understanding of 

semantic attribute decoding in the brain. Earlier studies have highlighted differences in how distinct 
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brain regions process static and dynamic information36. This outcome reveals the specificity of EBA 

in processing dynamic information, consistent with previous evidence that the EBA region excels in 

handling information related to body movements or object motion37,38. One possible explanation is that 

moving attribute labels involve richer and more complex information, such as motion direction, speed, 

object changes, etc. Meanwhile, the study delved into the preferences for natural and man-made 

attribute labels within specific brain regions. The OPA was found to have a certain preference for man-

made attribute labels, whereas FFA exhibited a preference for natural attribute labels. This disparity 

might arise from the specialized visual cognitive functions of these two regions. The OPA region is 

believed to primarily involve object recognition and localization in complex scenes39, and in modern 

human life, most encountered objects are human-made, such as phones, computers, cars, etc. In 

contrast, the FFA region is a crucial area for facial recognition40, showing higher decoding accuracy 

when processing <natural attributes= like faces. These results underscore the functional specificity of 

different brain regions in processing visual information, providing clues for understanding how the 

brain concurrently processes and integrates various kinds of visual information. However, further 

research is needed to validate the repeatability of these observations regarding decoding these pairs of 

attributes and to delve deeper into the neural mechanisms underlying these differences. 

Third, our multitask visual-language decoding model succeeded in accurately capturing key 

objects and actions within images, organizing them into fluent and comprehensible textual descriptions. 

This echoes well with our prior work which directly utilized a dual-channel language model to generate 

precise language information from fMRI neural activity20. Furthermore, our findings indirectly 

corroborated that higher brain areas, such as FFA and VWFA, are primarily responsible for handling 

high-level semantic information, while lower-level brain regions like V1 and V2 handle fundamental 

visual information41-43. Previous research has indicated the pronounced advantages of FFA and VWFA 

areas in processing information related to faces and bodies43. Meanwhile, the involvement of HVC in 

recognizing semantic objects and scenes further supports the greater contribution of these regions to 
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language decoding than those lower areas focusing on basic visual features14. This intrinsic mechanism 

of complementary collaboration between vision and language in the brain warrants further exploration 

in subsequent studies. 

Taken together, this study innovatively decodes categories, labels, and textual descriptions 

simultaneously, addressing previous gaps in exploring how the brain intertwines and interacts with 

various visual information. This research emphasizes the complexity of brain processing of visual 

information, contributing to a more comprehensive understanding of the interplay of visual cognition 

and language processing within the brain. Exploring visual information processing mechanisms from 

the perspective of brain decoding may offer new insights for the development of brain-computer 

interface technology and future human-computer interactions. 

However, there are some limitations. The NSD dataset might limit the model9s generalizability 

in terms of scale and diversity. Next, the scale of the decoding model might influence its performance. 

Future research could consider utilizing larger and more diverse datasets to enhance the model9s 

generalization capabilities across various scenes, objects, and contexts. Additionally, there is a need to 

work on the interpretability of the model to comprehensively understand the decision-making 

mechanisms during both decoding and predicting processes. Future research should also explore 

universal decoding techniques akin to ChatGPT, paving the way for new frontiers in brain decoding 

research. 

Methods 

The NSD and the COCO Dataset. 

The natural scene dataset NSD28 is a large-scale fMRI dataset comprising data from 8 subjects. 

Each subject viewed nearly 10,000 distinct colored natural scene images, each seen thrice, totaling 30-

40 scanning sessions. We selected data from 4 subjects (Sub 1, Sub 2, Sub 5, and Sub 7). This data 

underwent two preprocessing steps involving temporal and spatial interpolation to correct slice timing 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.16.580578doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.16.580578
http://creativecommons.org/licenses/by-nc-nd/4.0/


differences and head motion. For decoding tasks, we utilized Z-score single-trial beta values generated 

by the GLMSingle method. The NSD dataset delineates multiple regions of interest (ROIs). We chose 

10 distinct visual areas: V1, V2, V3, OFA, PPA, OPA, VWFA, FBA, FFA, and EBA. Additionally, 

we defined three combined regions: LVC, HVC, and VC. Specifically, LVC represented the combined 

region of V1, V2, and V3; HVC represented the combined region of OFA, PPA, OPA, VWFA, FBA, 

FFA, and EBA; whereas VC denoted the overall region encompassing these 10 distinct visual areas. 

The dimensions of these regions9 response activities were standardized (up-sampled or down-sampled) 

to the same length (1024 dimensions), with their original dimensions (also referred to as voxel count) 

detailed in Table 1. 

Table 1. The original dimensions (Number of voxels) of visual activities from different ROIs in 

NSD. 

V1 V2 V3 EBA FBA FFA OFA OPA PPA VWFA 

Sub 1 1350 1433 1187 2971 826 794 355 1611 1033 1278 

Sub 2 1102 1075 1097 3439 1217 869 441 1381 994 552 

Sub 5 1113 1081 925 4587 968 907 782 1332 1221 697 

Sub 7 1142 986 726 3062 552 484 316 1083 912 1068 

The stimulus images in the NSD were derived from the COCO dataset29. Each subject completed 

40 scanning sessions, with each session comprising 750 stimulus images. In this paper, we selected 

the first 37 sessions, totaling 27,750 stimulus images. Among these, 2,770 stimulus images were used 

as a test set, while the remaining 24,980 were used as a training set. Each stimulus image included a 

primary category, multiple labels, and five text descriptions. The primary categories, termed as <super-

category= in the COCO dataset, encompassed a total of 12 categories: person, vehicle, outdoor, animal, 

accessory, sports, kitchen, food, furniture, electronic, appliance, and indoor. The multiple labels, 

termed as <name= in the COCO dataset, amount to 80 labels. The distribution of samples for these 

primary categories and labels is detailed in Supplementary Table 1. The five text descriptions originate 
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from natural image descriptions in the COCO dataset, and during subsequent model training, we 

randomly selected one sentence for participation in the training. In summary, for each subject, we 

obtained datasets consisting of 24,980 training samples and 2,770 test samples. Each sample comprised 

a natural image, a primary category, multiple labels, five text descriptions, as well as visual activities 

from ten distinct regions and three combined regions. 

The Encoder-Decoder-Based VLDM 

To investigate the multi-layered decoding of visual perception, we developed a VLDM which 

consists of two encoders (Visual-Encoder and Multitask-Encoder) and three decoders (Category-

Decoder, Label-Decoder, and Text-Decoder). These encoders and decoders play distinct roles in the 

process of decoding visual information. Fig. 5 illustrates the overall structure of VLDM. 

(1) Visual-Encoder

While viewing natural images (visual stimuli), subject9s BOLD responses (brain activities) were 

measured using fMRI, as depicted in Fig. 5a. The design of the Visual-Encoder is to capture semantic 

information about the stimulus image from perceptual activities. We use a Bidirectional Gated 

Recurrent Unit (BiGRU) as the architecture for the Visual-Encoder. Illustrated in Fig. 5b, the Visual-

Encoder initially receives visual activities ( V1, V2, . . . , VT ) from multiple brain cortices (ROIs), 

subsequently processing and obtaining visual features (F1, F2, . . . , FT), where T represents the selected 

number of brain cortices. Here, we selected 10 brain cortices, comprising: V1, V2, V3, OFA, PPA, 

OPA, VWFA, FBA, FFA, and EBA. These visual activities are fed into the BiGRU44, Bidirectional 

Gated Recurrent Unit, to acquire visual features (F1, F2, . . . , FT). 

(F1, F2, . . . , FT) = BiGRU(V1, V2, . . . , VT;  WBiGRU) (1) 

where WBiGRU denotes the set of parameters included in BiGRU.
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Fig. 5. illustrates the encoding-decoding framework of the visual language decoding model. a, 

overview of the natural image perception experiment: Subjects view natural images while their brain 

activity is captured via fMRI. Subsequently, visual response activities are extracted from multiple brain 

cortices for subsequent information decoding tasks. b, Visual-Encoder: Constructed using BiGRU, it 

aims to receive visual response activities from multiple brain cortices, process them, and output latent 

features of visual activity. c, Multitask-Encoder: Built with BERT, its objective is to receive latent 

features of visual activity, integrate two tokens for category and label, and further process to output 

multitask features. d, Category-Decoder: Constructed with MLP, its function is to predict the primary 

category of stimulus images based on the [Z1] feature within multitask features. e, Label-Decoder: 

Also constructed with MLP, its function is to predict multiple labels of stimulus images based on the 

multitask feature [Z2]. f, Text-Decoder: Constructed using Transformer decoder, its function is to 

generate textual descriptions of stimulus images based on multitask features [Z3, Z4, . . . , ZT+2] . 

**Note: BiGRU stands for Bidirectional Gated Recurrent Unit; BERT stands for Bidirectional Encoder 

Representation from Transformers; MLP stands for Multi-layer Perceptron. 
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Subsequently, these visual features (F1, F2, . . . , FT) carrying semantic information are used as the

main body of the input for the Multitask-Encoder. 

(2) Multitask-Encoder

The goal of the Multitask-Encoder is to integrate [CTG] and [LBL] tokens upon the foundation 

of visual features (F1, F2, . . . , FT) to obtain the multitask features (Z1, Z2, . . . , ZT+2), as depicted in Fig. 

5c. [CTG] and [LBL] correspond respectively to category and label decoding tasks. To facilitate 

diverse task execution, we concatenate the two embedding vectors associated with [CTG] and [LBL], 

along with the visual features (F1, F2, . . . , FT) obtained from the Visual-Encoder. Moreover, to enable 

the model to learn positional dependencies within the sequence, we introduce positional embeddings45, 

creating visual features (X1, X2, . . . , XT+2) enriched with positional encoding. Subsequently, to capture 

advanced visual information, we utilize BERT46 as the architecture for the multi-task encoder. BERT 

receives visual features (X1, X2, . . . , XT+2 ) with positional encoding for computing and outputting 

multitask features (Z1, Z2, . . . , ZT+2). The specific formula is articulated as follows: 

(X1, X2, . . . , XT+2) = PosE(E[CTG], E[LBL], F1, F2, . . . , FT)     (2) 

where E[CTG] and E[LBL] denote the embedding vectors corresponding to [CTG] and [LBL], 

respectively; and PosE(⋅) denotes the position processor. 

After the collaborative work of the Visual-Encoder and Multitask-Encoder, the visual activities 

(V1, V2, . . . , VT ) are encoded into multitask features (Z1,  Z2, . . . , ZT+2 ). The specific formula is as 

follows: 

(Z1,  Z2, . . . , ZT+2) = BERT(X1,  X2, . . . , XT+2;  WBERT) (3) 

where BERT(⋅) and WBERT denote BERT and its parameter set, respectively.

Afterwards, we divide the multitask features into three parts: [Z1], [Z2], and [Z3, Z4, . . . , ZT+2]. [Z1] is fed into the Category-Decoder to predict the primary category of natural images; [Z2] is input 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.16.580578doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.16.580578
http://creativecommons.org/licenses/by-nc-nd/4.0/


to the Label-Decoder to predict multiple labels of natural images; and [Z3, Z4, . . . , ZT+2] is input to 

the Text-Decoder to generate textual descriptions of natural images. 

(3) Category-Decoder

The Category-Decoder is a classifier, whose responsibility is to predict the primary category from 

perceptual activities. We use a common Multi-layer Perceptron (MLP) as the structure for the 

Category-Decoder. In Fig. 5d, the MLP employing two hidden layers for classifying the multitask 

feature [Z1]. To enhance model generalization and stability, each neuron within the hidden layers 

utilizes the Leaky-ReLU (0.2) activation function and Layer Normalization. The output layer of the 

Category-Decoder comprises 12 neurons, each representing a distinct category. To alleviate the effects 

of saturation, we applied the Softmax activation function to these neurons, enabling the acquisition of 

a probability distribution for predicting categories. Leveraging the Category-Decoder, we could 

compute the predicted category ( Cpred ) and the category loss ( LCTG ). The specific formulas are 

presented below: 

Cpred = MLPCTG(Z1; WCTG)
(4) 

LCTG  =  CELF(Cpred, Ctrue)
(5) 

where MLPCTG(⋅)  and WCTG  denote the Category-Decoder and its corresponding parameter set,

respectively; [Z1] stands for the first part of the multitask features extracted from the Multitask-

Encoder; CELF(⋅) stands for the Cross Entropy Loss Function; Cpred and Ctrue denote the predicted 

category and the actual category, respectively. 

(4) Label-Decoder

To predict multiple labels of natural images from visual activities, we employed the Label-

Decoder depicted in Fig. 5e to transform the multitask feature Z2 into a probability distribution for 
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80 labels. Similar to the Category-Decoder, the Label-Decoder was also an MLP comprising two 

hidden layers, utilizing the Leaky-ReLU (0.2) activation function and Layer Normalization for 

enhanced stability. Likewise, to mitigate saturation effects, the Softmax activation function for non-

linear transformation was employed in the final layer of the Label-Decoder, yielding a probability 

distribution for the 80 labels. Specifically, given [Z2] from the Multitask-Encoder, the predicted 

labels (Spred) for natural images can be obtained via the Label-Decoder. The explicit formulas for 

predicting labels and their associated loss are detailed below: 

Spred = MLPLBL(Z2; WLBL)
(6)

LLBL  =  CELF(Spred, Strue)
(7) 

where MLPLBL(⋅)  and WLBL  denote the Label-Decoder and its corresponding parameter set,

respectively; Z2 stands for the second part of the multitask features extracted from the Multitask-

Encoder; CELF(⋅) stands for the Cross Entropy Loss Function; Spred and Strue denote the predicted 

labels and the actual labels, respectively. 

(5) Text-Decoder

The Text-Decoder aims to generate text describing the stimulus image from perceptual activities. 

In Fig. 5f, the task of the Text-Decoder was to convert multi-task features [Z3, Z4, . . . , ZT+2] into 

descriptive textual ( Dpred ). This implementation involved a detailed analysis and sophisticated 

encoding of the features, allowing the transformation of visual information into understandable text. 

To capture the underlying linguistic information in brain activity, we constructed the Text-Decoder 

using a decoder of Transformer. Its output comprises predictions for textual descriptions (Dpred), and 

the specific implementation process is outlined as follows: 

Tpred = DOT(Z3, Z4,..., ZT+2; WDOT)
(8)
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LTXT  =  CELF(Dpred, Dtrue)
(9) 

where DOT(⋅)  and WDOT˙
 denote the Text-Decoder and its corresponding parameter set,

respectively; [Z3, Z4, . . . , ZT+2]  represent the third part of the multitask features obtained from 

Multitask-Encoder; CELF(⋅) stands for the Cross Entropy Loss Function; Dpred and Dtrue denote 

the predicted text and the actual text, respectively. 

Multi-task decoding on the VLDM 

We used the NSD dataset to train and test our model. During the training phase, we employed the 

Adam optimizer47 to minimize the total loss (LCTG + LLBL + LTXT) and obtain an optimized parameter

configuration. Throughout the training, we conducted 300 epochs, utilizing a learning rate of 0.001 

and a batch size of 128. It9s important to note that the testing results for category decoding and label 

decoding were simultaneously generated during the training process. If there was no observable 

improvement in test performance over consecutive iterations, we would terminate the training. The 

entire computational process was executed using 2 NVIDIA A100 GPUs, each equipped with 40 GB 

of memory. 

(1) Category decoding

In the multitask decoding approach, category decoding is identified as the primary task since it 

provides essential information about how the brain perceives natural images. In this study, subjects 

viewed natural images encompassing 12 different categories (person, vehicle, outdoor, animal, 

accessory, sports, kitchen, food, furniture, electronic, appliance, and indoor) (depicted in Fig. 2a), and 

fMRI captured the response activities of these images across 10 visual cortex regions (V1, V2, V3, 

OFA, PPA, OPA, VWFA, FBA, FFA, and EBA). These visual activities were transformed into 

multitask features by the Visual-Encoder and Multitask-Encoder. Subsequently, the first segment of 

these multitask features was fed into the category decoder to obtain the category distribution of the 

natural images. We employed classification accuracy as an evaluation metric, quantitatively analyzing 
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and measuring the accuracy of correctly categorizing viewed natural images into the 12 distinct 

categories. First, to compare the classification decoding performance across different cortical regions, 

we conducted multitask visual decoding separately on 10 distinct visual areas (V1, V2, V3, OFA, PPA, 

OPA, VWFA, FBA, FFA, and EBA) and 3 combined visual areas (LVC, HVC, and VC). Second, to 

gain insight into the intricate relationships of the 12 categories within brain representations, we 

performed a 2D visualization of the category distribution features output by the classification decoder 

with the t-distributed Stochastic Neighbor Embedding (t-SNE) Technique. This technique effectively 

retains spatial structural information from the original distribution features, enabling a clear 

visualization of the distribution patterns of different categories on a two-dimensional plane48,49. 

Initially, for the 2,770 test samples, we extracted the output of the classification decoder (category 

distribution features) and employed the t-SNE algorithm for processing. Throughout this process, the 

category distribution features of each test sample were mapped to a 2D coordinate, representing the 

position of that sample. Each sample was assigned to one of our designated 12 categories, distinguished 

using different colors for visualization. Third, to further understand the confusion among the 12 

categories, we computed the confusion matrix. This confusion matrix is crucial for analyzing the 

model9s performance. 

(2) Label decoding

Unlike category decoding, the label decoding task not only predicts the primary labels 

(categories) within the images but also forecasts secondary labels, such as foreground or background 

labels. The process of label decoding includes: 1) acquiring multi-task features based on Visual-

Encoder and Multitask-Encoder, similar to category decoding; 2) the Label-Decoder receives and 

processes the second part of multi-task features to obtain a probability distribution for the 80 labels; 

3) quantitatively assessing the performance of label decoding using the mAP (Mean Average

Precision) metric50. To investigate the performance differences between different types of 
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information, we categorized 80 labels into two pairs of attributes such as <moving attributes= vs 

<static attributes= and <natural attributes= vs <artificial attributes=.     

(3) Text decoding 

Text decoding is more complex than label decoding. This is because it not only requires the 

proposed model to predict labels in the stimulus image but also to string together these labels to form 

a sentence describing the entire content of the stimulus image. To achieve this goal, we associated 

brain visual activity with text describing the stimulus image and trained a text decoder based on an 

attention mechanism. This decoder can first extract multi-task features from the output of the multi-

task encoder, and generate one word at a time, gradually composing a complete descriptive sentence. 

At each step of the generation process, the model determines a candidate list for the next word based 

on the words generated so far and the multi-task features. To quantitatively assess the accuracy of 

language decoding, we employed a series of evaluation metrics, including BLEU, CIDEr, ROUGE, 

WCS, GCS, and FTCS, to measure the similarity between the decoded sentences and the target 

sentences. Among these metrics, WCS, GCS, and FTCS utilize Word2vec, Glove, and FastText 

embeddings, respectively, to obtain sentence vectors by computing average word vectors. Then, the 

cosine similarity between the sentence vectors of the decoded sentence and the corresponding target 

sentence were calculated. The reason for selecting WCS, GCS, and FTCS as evaluation metrics is that 

they can accurately measure the semantic similarity between decoded sentences and target sentences. 

Further, to investigate preferences within the visual cortex for language decoding, we assessed ten 

distinct regions (including V1, V2, V3, EBA, FBA, FFA, OFA, OPA, PPA, and VWFA) along with 

three combined areas (LVC, HVC, and VC) for their decoding accuracy using Word2vec. We chose 

Word2vec due to its demonstrated effectiveness in assessing language relevance and measuring 

semantic similarity20. 
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Supplementary Materials for <From Sight to Insight: A Multi-task 

Approach with the Visual Language Decoding Model= 

Supplementary Table 1. Statistical quantities of elements for 'primary categories' and 'multi labels' 

in NSD. 

No. Category Number No. Label Number 

sub1 sub2 sub5 sub7 sub1 sub2 sub5 sub7 

1 person 15222 15015 14913 14778 1 person 15222 15015 14913 14778 

2 vehicle 9492 9822 9666 9495 

2 bicycle 789 855 741 804 

3 car 2850 3003 2979 2874 

4 motorcycle 792 819 882 723 

5 airplane 822 885 804 942 

6 bus 987 999 930 981 

7 train 966 1023 990 1008 

8 truck 1455 1440 1566 1401 

9 boat 831 798 774 762 

3 outdoor 3417 3762 3609 3564 

10 traffic light 1008 1122 1026 1071 

11 fire hydrant 432 480 528 465 

12 stop sign 456 408 483 462 

13 parking meter 165 204 141 177 

14 bench 1356 1548 1431 1389 

4 animal 7038 6975 6993 7062 

15 bird 891 834 939 930 

16 cat 1098 1041 1014 951 

17 dog 1143 1023 1077 1077 

18 horse 693 765 714 786 

19 sheep 387 372 444 408 

20 cow 558 636 573 507 

21 elephant 621 675 600 687 

22 bear 333 345 321 351 

23 zebra 516 528 534 576 

24 giraffe 798 756 777 789 

5 accessory 5166 5166 5151 4944 

25 backpack 1266 1320 1326 1299 

26 umbrella 909 996 948 855 

27 handbag 1524 1563 1548 1467 

28 tie 939 723 726 837 
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29 suitcase 528 564 603 486 

6 sports 7701 7176 7299 7368 

30 frisbee 540 492 543 534 

31 skis 1020 879 768 906 

32 snowboard 465 432 468 387 

33 sports ball 1098 1023 1035 1089 

34 kite 564 453 528 546 

35 baseball bat 573 507 579 579 

36 baseball glove 675 570 588 672 

37 skateboard 795 786 831 738 

38 surfboard 1071 1101 1107 1053 

39 tennis racket 900 933 852 864 

7 kitchen 9030 9006 9114 8853 

40 bottle 1986 2046 2028 1965 

41 wine glass 579 582 537 561 

42 cup 2127 2139 2142 2043 

43 fork 741 801 828 756 

44 knife 945 948 1005 996 

45 spoon 873 816 891 840 

46 bowl 1779 1674 1683 1692 

8 food 4878 4971 5037 5160 

47 banana 612 618 570 603 

48 apple 393 471 378 432 

49 sandwich 516 537 498 534 

50 orange 372 504 471 468 

51 broccoli 486 465 531 543 

52 carrot 399 423 411 495 

53 hot dog 282 255 288 252 

54 pizza 777 756 810 837 

55 donut 417 360 372 360 

56 cake 624 582 708 636 

9 furniture 9417 9069 9294 9264 

57 chair 2940 2724 2745 2973 

58 couch 879 903 945 876 

59 potted plant 1089 1041 1005 1029 

60 bed 954 882 948 816 

61 dining table 2673 2616 2655 2538 

62 toilet 882 903 996 1032 

10 electronics 4215 4434 4398 4176 63 tv 966 972 990 948 
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64 laptop 720 822 813 777 

65 mouse 402 468 414 429 

66 remote 612 627 633 603 

67 keyboard 438 453 501 450 

68 cell phone 1077 1092 1047 969 

11 appliance 3096 3006 3027 2943 

69 microwave 426 375 417 318 

70 oven 762 750 711 705 

71 toaster 54 57 72 51 

72 sink 1290 1284 1272 1305 

73 refrigerator 564 540 555 564 

12 indoor 4380 4320 4383 4545 

74 book 1299 1272 1302 1227 

75 clock 1242 1284 1314 1362 

76 vase 840 870 855 966 

77 scissors 225 204 207 219 

78 teddy bear 453 393 441 483 

79 hair drier 66 45 57 42 

80 toothbrush 255 252 207 246 

Supplementary Fig. 1. The output features of Category-Decoder for Subject 2, Subject 5 and 

Subject 7 are shown from left to right, which were downscaled by T-SNE to a two-dimensional 

space to generate a visualization map of the 12 categories. 
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Supplementary Fig. 2. The four subfigures show the confusion matrices for the 12 categories 

obtained from the response in the VC area corresponding to Subject 1, Subject 2, Subject 5 and 

Subject 7. 
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Supplementary Fig. 3. Each image is derived from the test set, accompanied by the text generated 

by the Text-Decoder describing the stimulus image based on brain activity. 
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Supplementary Fig. 4. Each image is derived from the test set, accompanied by the text generated 

by the Text-Decoder describing the stimulus image based on brain activity. 
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Supplementary Fig. 5. The upper, middle and lower rows show the frequency distributions of six 

evaluation metrics (BLEU, CIDEr, ROUGE, WCS, GCS, and FTCS) obtained by Subject 2, Subject 

5, and Subject 7, respectively, in the VC response. In each subplot, the orange distribution represents 

the evaluation values between the decoded text and the standardized text, while the blue distribution, 

which serves as the baseline, indicates the distribution of evaluation values between the decoded text 

and all the texts in the test set. 
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