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Abstract 18 

Single nucleotide polymorphisms (SNPs) and small insertions/deletions (2-50bp) in 19 

genomic regulatory regions may impact function, and although widespread, they are 20 

largely unexplored in livestock. Here leveraging >500 epigenomic datasets from pigs, 21 

cattle, sheep, and chickens, 8-39 million variants were identified with candidate 22 

functional confidence. Using our Functional Confidence scoring system, these 23 

candidate functional variants were further ranked as High, Moderate, Low, Minimal, or 24 

Possible functional confidence by scoring for likelihood of disrupting transcription 25 

factor (TF)-chromatin binding based on their presence in eight genomic regulatory 26 

features. Predictive reliability analysis of estimated breeding values (EBVs) based on 27 

High/Moderate Confidence variants from pig shows a 23~46% increase in reliability 28 

compared to EBVs based on general SNPs, illustrating the versatility of Functional 29 

Confidence scoring system for identifying potential functional variants in livestock. 30 

Therefore, we developed the Integrated Functional Mutation (IFmut) platform and 31 

embed the Functional Confidence scoring system for users to effortlessly navigate 32 

through epigenomic data or pinpoint specific genomic features/regions, uncover 33 

potential function of new variants or previously identified ones. Our work offers the 34 

scientific community a powerful and flexible tool, tailor-made for delving deep into 35 

variant function, setting a new benchmark in livestock research and breeding strategies. 36 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.06.578787doi: bioRxiv preprint 

mailto:Tao.Xiang@mail.hzau.edu.cn
mailto:shzhao@mail.hzau.edu.cn
https://doi.org/10.1101/2024.02.06.578787
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 37 

Variants in cis-regulatory elements can greatly affect gene expression, consequently 38 

influencing organismal phenotype (1-4).While some variants are harmless (i.e., neutral), 39 

others can lead to severe diseases or other deleterious effects (5). In human disease 40 

research, the identification and characterization of variants are crucial for determining 41 

the underlying causes of genetic disorders (6-8). Several large-scale initiatives, such as 42 

the 1000 Genomes Project, have facilitated exploration of variants in the human 43 

genome (9, 10). By contrast in livestock research, variants are typically studied through 44 

resequencing in livestock populations to improve breeding strategies (11-14). The 45 

identification of variants is a crucial initial step, but determining whether a variant is 46 

functional in livestock species such as pig (Sus scrofa), cattle (Bos taurus), sheep (Ovis 47 

aries), and chicken (Gallus gallus) poses a great challenge. 48 

            Advances in publicly available bioinformatic analytical toolkits, e.g., the 49 

Encyclopedia of DNA Elements (ENCODE) (15), have driven considerable progress in 50 

functional variant screening in humans, uncovering previously unrecognized functions 51 

of several regions in the human genome. In addition, integrated analysis of expression 52 

quantitative trait loci (eQTLs) and variants (16-18), along with establishment of the 53 

regulomeDB database (19), has also facilitated identification of cis-regulatory elements 54 

and trans-acting factors that influence gene expression, revealing a variety of regulatory 55 

mechanisms of the human genome. Despite these innovations in human genomic 56 

research, the exploration of variants with regulatory function in the genomes of 57 

important livestock species remains limited.  58 

           Genomic selection (GS) (20)  has brought about a revolution in livestock and 59 

poultry breeding, enabling greater precision in the selection of individuals based on 60 

quantitative traits, such as growth rates or disease resistance (21-25). However, GS 61 

efficiency relies on SNP markers distributed throughout the genome because all of the 62 

QTLs and and the SNPs used for these analyses are in linkage disequilibrium (LD) (20, 63 

26, 27). Although GS can enhance the reliability of estimated breeding values (EBVs), 64 

EBVs based on GS markers ignore the potentially significant source of functional 65 
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genetic variation available in genomic regulatory elements. Variants in regions 66 

containing gene regulatory elements can potentially modulate gene expression (28). By 67 

integrating variants and SNPs in regulatory regions into genomic prediction analysis, 68 

the reliability of EBVs for target traits may be increased. However, despite their 69 

possible value for improving EBV reliability, studies identifying candidate functional 70 

variants that may be informative for GS are lacking.  71 

           In this study, we identified genomic regulatory features in over 500 datasets 72 

comprising transposase-accessible chromatin with sequencing (ATAC-seq) data, 73 

DNase I hypersensitive site sequencing (Dnase-seq) data, H3 lysine 27 acetylation 74 

(H3K27ac) ChIP-seq, and transcription factor ChIP-seq data from pigs, cattle, sheep, 75 

and chickens. We then identified the candidate functional variants and employed a 76 

scoring system to assess the likelihood of variants affecting regulatory function (i.e., 77 

Functional Confidence Score) based on their presence (or absence) in eight different 78 

regulatory features/regions in genomes of the four livestock species. The identified 79 

variants were then ranked into five categories (12 sub-categories) based on Functional 80 

Confidence scores, in descending order from High, Moderate, Low, and Minimal 81 

functional confidence, to possible association with regulatory function. We further 82 

tested whether genomic prediction with High and Moderate confidence IFmut variants 83 

identified from three tissues of pig could improve the predictive reliability of EBVs 84 

over that of EBVs based on 11000 randomly selected SNP markers in pig. We then 85 

constructed the Integrated Functional Mutation (IFmut) database and Functional 86 

Confidence scoring system to provide a public resource for researchers. This study 87 

provides a large database with a versatile and powerful online toolkit, along with a 88 

proof-of-concept demonstration of IFmut for exploration of functional variants in 89 

fundamental research and molecular breeding of livestock.90 
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Results 91 

A large scale epigenomic screen of potential functional variants across four 92 

livestock species 93 

To screen for functional variants that potentially affect gene expression in livestock, we 94 

first obtained SNP and small InDel genomic variants in pig (susScr11), cattle (bosTau9), 95 

sheep (oviAri4), and chicken (galGal5) from the Ensembl database, including more 96 

than 63 million in pig, over 97 million in cattle, over 63 million in sheep, and over 23 97 

million in chickens. Analysis of their distribution and predicted effects using 98 

ChIPseeker R package and SnpEff software indicated that more than 90% of the 99 

variants were located in non-coding regions in all four species (Fig. 1A-D; 100 

Supplemental Fig. 1), aligning well with previous studies that showed variants are 101 

highly prevalent in intergenic and intronic regions of the human genome (7, 29, 30). 102 

Thus how to identify the potential functional variants from a large pool across four 103 

livestock species is still a challenge.  104 

           Since genomic regulatory features, especially transcription factor binding sites 105 

(TF binding sites) identified by epigenomic analyses, can be informative of the potential 106 

function of variants (19, 31), we sought to screen for potential function variants in the 107 

above libraries using epigenomic data. To this end, we collected 583 total epigenomic 108 

datasets (including ATAC-seq, Dnase-seq data, H3K27ac ChIP-seq, TF ChIP-seq and 109 

Hi-C) from pigs, cattle, sheep, and chickens generated in previous studies such as the 110 

FANNG project (32, 33), and our own previous study (34). After processing raw reads 111 

from ATAC-seq, Dnase-seq, or ChIP-seq data using the ENCODE pipeline, we 112 

removed 6 samples due to low number (<10000) of significant peaks and 35 samples 113 

due to low correlation among biological replicates (R<0.8). Ultimately, 538 datasets 114 

from 19 tissues and 12 cell lines met quality control standards (Fig. 1E,F), including 115 

256 ATAC-seq, 26 Dnase-seq data, 167 H3K27ac ChIP-seq, 80 TF ChIP-seq (63 for 116 

CTCF from pigs, cattle, sheep, and chicken and 17 for RAD21, EGR1, KLF2, KLF4, 117 
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OSR1, OSR2, SMC2, CAP-H and BRD4 from chicken), and 9 Hi-C datasets from pig 118 

(Fig. 1G-J). In total, 125, 193, 24, and 196 total datasets were compiled for pigs, cattle, 119 

sheep, and chickens, respectively (Fig. 1E). 120 

           ENCODE guidelines (https://www.encodeproject.org/) were then applied to 121 

identify genomic regulatory regions containing basic regulatory features and/or TF 122 

binding site-related features using these datasets. In total, more than 350000 non-123 

redundant genomic regions with basic regulatory features were identified across all four 124 

species, including open chromatin regions (OCR), H3K27ac significant peaks, and 125 

nucleosome-free regions (NFR; Table 1). Furthermore, footprint calling and significant 126 

TF binding peak calling followed by genomic mapping with TF motif positional weight 127 

matrices (PWMs) in the called features yielded between 41460-171290 non-redundant 128 

genome regions with regulatory features related to TF binding sites in each species 129 

(Table 1). The total length of non-redundant genomic regulatory regions accounted for 130 

approximately 31.56% of the pig reference genome (susScr11), while in cattle 131 

(bosTau9), sheep (oviAri4), and chicken (galGal5), these accounted respectively for 132 

30.74%, 12.63%, and 37.35% (Table 2).  133 

           Genomic variants positioned within transcription factor binding sites, such as 134 

in RegulomeDB, often result in functional consequences (19). Since the above 135 

genomic regions containing basic regulatory and TF binding-related features were 136 

identified through DNA-TF interaction data, variants detected in these regions were 137 

likely to have transcription regulation function in the host livestock species. Using 138 

BEDTools, we then determined which variants in our initial calling were located in 139 

these regulatory features, which yielded 21005715 (32.90%; Fig. 2A) SNPs and small 140 

InDels in pig, while 39157953 (40.32%; Fig. 2B) were detected in the cattle genome, 141 

8194045 (12.97%; Fig. 2C) in sheep, and 10896983 (47.05%; Fig. 2D) in chicken, 142 

which we collectively designated as potential functional variants.143 
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A scoring system to rank variants by likelihood of functional impacts  144 

In the current study, we identify a multitude of variants with predicted 145 

functional/phenotypic consequences in four livestock species, and the number of such 146 

variants in each species was positively correlated with proportion of the genome 147 

occupied by regulatory features (R=0.74; Supplemental Fig. 1E). To further distinguish 148 

differences in the likelihood that a regulatory region variant will indeed impact 149 

transcription regulation in livestock species, we developed a functional confidence 150 

index similar to that used by RegulomeDB for variant classification with human TF 151 

ChIP-seq data (19). At present, only 80 TF ChIP-seq datasets are available in livestock, 152 

the vast majority of which were generated for CTCF (in total 63), with only chicken 153 

having 17 ChIP-seq data for 9 TFs with ChIP-seq data, compared to the 876 TFs 154 

covered by 3537 ChIP-seq data in RegulomeDB v.2. Thus, due to the lack of TF ChIP-155 

seq data in livestock, functional confidence scoring instead relied on a combination of 156 

ATAC-seq/Dnase-seq (i.e., OCR and footprints) and H3K27ac ChIP-seq (i.e., NFR and 157 

significant narrow peaks; Fig3A; Table 3). In addition, quantitative trait loci (QTL) data 158 

were also collected, since variants in these regions can also potentially impact 159 

agronomic traits (Supplemental Table 1). 160 

           In the Functional Confidence scoring system, the greater the number of 161 

regulatory features used to determine the presence of SNPs/small InDels in TF binding 162 

sites, the higher the likelihood that a variant could affect transcriptional regulation 163 

(Table 3). Based on the prominent association of NFRs, OCRs and TF footprints 164 

(especially those containing fully or partially matching recognition motifs) with 165 

transcriptional activation, variants in these regions had the highest likelihood of 166 

affecting TF binding and gene expression, and were therefore scored as high functional 167 

confidence variants (Category 1). Variants that met these criteria but were never found 168 

in NFRs were subsequently scored as moderate functional confidence (Categories 2a-169 

2d), suggesting a moderate likelihood of affecting TF activity. Moreover, within 170 

Category 1 and 2, variants were present in QTLs, were assigned higher scores 171 
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(Categories 1a, 1c, 2a and 2c respectively), whereas variants were not in QTLs, had 172 

slightly lower likelihoods (Categories 1b, 1d, 2b and 2d respectively). By contrast, 173 

variants found in DNase/ATAC-seq or H3K27ac ChIP-seq data but not in TF footprints 174 

or recognition motifs were included in Categories 3 and 4, with low functional 175 

confidence and minimal functional confidence, respectively, in their likelihood of 176 

affecting TF binding. Finally, Category 5 was reserved for variants detected only by 177 

H3K27ac ChIP-seq, and were therefore potentially associated with transcriptional 178 

regulation (see Table 3 for a key of criteria).  179 

           Next, the candidate functional variants identified by our study were ranked based 180 

on our Functional Confidence scoring system. Then, Figure 3 shows a summary of 181 

variant numbers in each functional confidence category for pig (Fig.3E), cattle (Fig. 182 

3B), sheep (Fig. 3C), and chicken (Fig. 3D). Among these variants, a total of 240938, 183 

3096314, 280103, and 204100 SNPs/small InDels were included in high and moderate 184 

functional confidence categories (Category 1 and 2) Categories 1 and 2, accounting for 185 

1.15%, 7.91%, 3.42% and 1.87% of all potential functional variants in pigs, cattle, 186 

sheep and chickens, respectively (Fig. 3B-E).  187 

           To validate the variants in our above analysis were present in population data 188 

and that functional confidence scoring could be applied to whole-genome sequencing 189 

(WGS) data, we obtained 22926176 minimum allele frequency (MAF>0.047) filtered 190 

variants in WGS data from 491 individual pigs across 61 breeds generated in our 191 

previous study (34). Among these variants, 7557763 (32.97%) were identified as 192 

potentially functional variants, 87002 (1.15%) of which fell into categories 1 or 2 (Fig. 193 

3F). Overall, the proportions of variants in each category filtered by MAF from WGS 194 

data were similar to that of variants obtained from Ensembl (Fig. 3B,F). These results 195 

indicated that taking MAF into account did not affect the proportion of variants in each 196 

category, but could reduce the number of candidate functional variants. Thus on animal 197 

breeding a lower MAF threshold (e.g. 0.01) have to consider for functional variants to 198 

keep their efficiency of animal breeding.  199 
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The functional confidence scoring in eQTL classification and EBV reliability 200 

assessment 201 

Although eQTLs are reportedly associated with gene expression (35, 36), some TF 202 

ChIP-seq and DNase-seq studies in humans suggest that more than 50% of eQTLs are 203 

not associated with TF binding sites (19, 37), implying that genomic regulatory features 204 

could be used to assess the potential regulatory function of eQTLs. To test this possible 205 

use of our Functional Confidence scoring system, we obtained cis-eQTL data from 206 

adipose, liver, spleen, hypothalamus, kidney, lung, muscle, and rumen of cattle from 207 

the farmGTEx database (https://www.farmgtex.org/). Among these cis-eQTLs, more 208 

than 58% had no classification as potential functional variants (Categories 1-5; Fig. 4A 209 

and Supplemental Table 2). Moreover, only a small fraction of cis-eQTLs (~2.60%) in 210 

each tissue were scored as high and moderate functional confidence variants (Category 211 

1 and 2 variants; Fig. 4B,C). These results indicated that cis-eQTLs could primarily 212 

serve as marker loci, but were unlikely to be functional variants that affect transcription. 213 

In addition, this analysis provided a proof-of-concept that Functional Confidence 214 

scoring system could be used to assess potential regulatory function in cis-eQTL 215 

datasets and score for functional confidence.  216 

           We further validated Functional Confidence scoring system variant 217 

identification and functional confidence scoring by genomic prediction with high and 218 

moderate functional confidence variants (Category 1 and 2 variants) in pigs. We 219 

assessed the predictive reliability  of estimated breeding values (EBVs) for two traits, 220 

average daily gain (ADG) and backfat thickness (BF) in a large white population 221 

(n=874) using a genomic BLUP model with DMU software (38). EBVs were based on 222 

four different genomic relationship matrices constructed by four scenarios of SNP 223 

markers, including three scenarios using high and moderate functional confidence 224 

variants from muscle, liver, or adipose, as well as one scenario that used 11k randomly 225 

selected variants from whole genome sequence of pig (Table 4). Overall, the predictive 226 

reliability of EBVs for ADG and trait BF was similar among the three scenarios using 227 

high and moderate functional confidence variants (~0.31-0.38), whereas the predictive 228 
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reliability of EBVs was lowest in the scenario using 11K random SNPs (~0.27), despite 229 

containing the highest number of SNP markers (11000). Notably, predictive reliability 230 

was highest in the scenario based on variants detected in adipose (~0.38), despite using 231 

the fewest markers (3861 SNPs). Predictive reliability of EBVs generated with 232 

Category 1 and 2 variants from liver was higher than that of functional confidence 233 

variants from muscle. Ultimately, the predictive reliability of EBVs increased 23%~46% 234 

for the three tissue types by using high and moderate functional confidence variants 235 

compared to EBVs based on randomly selected SNP markers. This analysis further 236 

validated the use of Functional Confidence scoring system for screening functional 237 

variants in genomic data of livestock.  238 

Development of the Integrated Functional Mutation database for screening 239 

candidate functional variants in livestock species  240 

In order to facilitate screening for candidate functional variants in livestock species, we 241 

integrated genomic variants with epigenomic datasets in a single database, the 242 

Integrated Functional Mutation (IFmut) database. This database contains 65124531 243 

potential functional variants from the genomes of pig, cattle, sheep, and chicken (Fig. 244 

5A), as well as the 538 aforementioned epigenomic datasets from 19 tissues and 12 cell 245 

lines across the four species (Fig. 5B). In addition, the IFmut database 246 

(http://www.ifmutants.com:8210/#/home) has a user-friendly web interface that 247 

enables users to query variants of interest, different genomic regions, or browse 248 

epigenomic signal viewers. 249 

           In the first module, users can use a "Quick Search" function on the homepage to 250 

search for a specific dbSNP ID or search specific genomic regions for a variant of 251 

interest. Details, such as genomic location, conversion type, and functional confidence 252 

score (defined in the following section) about the queried variant, if stored in the IFmut 253 

database, are then listed at the bottom of the homepage (Fig. 5C). Clicking on an 254 

SNVID in the search hits will direct the user to a new page containing information about 255 

the regulatory feature(s) associated with queried variant of interest (Fig. 5D). In the 256 
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third module, users can search for <Affected motif= to facilitate hypothesis generation 257 

about the potential effects of a variant on TF binding. Searches in this module return 258 

logos plots of conservation of the potentially affected TF motif(s) and a table containing 259 

the predicted effect on TF binding, and the affected gene symbol of the TF motif etc. 260 

(Fig. 5E,F). In the fourth module, the "JBrowse" features allows users to view ATAC-261 

seq, Dnase-seq and ChIP-seq (H3K37ac and TFs) signals or Hi-C interaction heatmaps 262 

(for Pig) around the variant of interest, as well as nearby genes (Fig. 5G). For this 263 

purpose, each epigenomic dataset in the IFmut database is accompanied by BigWig and 264 

genome annotation files that can be loaded in the right sidebar of JBrowse (Fig. 5G; 265 

Supplemental Fig. 2), allowing users to examine epigenomic signals or annotation data 266 

around queried variants in greater detail.  267 

           To facilitate further exploration of potential functional variants, IFmut also 268 

provides hyperlinks to other databases: (i) For variants in pigs and cattle, users can click 269 

on hyperlinked SNVIDs to access the IAnimal database (https://ianimal.pro/), which 270 

contains additional information, such as genotype and major allele frequency (Fig. 5H). 271 

(ii) Clicking on the <TAD/TAD Boundary= feature of IFmut entries that contain 272 

topologically associating domain (TAD) information related to genomic variants in pig 273 

will also direct users to the IAnimal database, allowing a subsequent search for genes 274 

within that TAD or TAD boundary (Fig. 5I). (iii) Since ChromHMM Chromatin States 275 

uses epigenomic information (such as ChIP-Seq data for various histone modifications) 276 

across one or more human cell types to facilitate annotation of non-coding genome 277 

regions, this function can be used for comparative genomics analysis to identify 278 

regulatory feature-containing regions. The "ChromHMM Chromatin States" section in 279 

the IFmut database can thus be used to map variant-containing genomic regulatory 280 

regions in the four livestock species to corresponding chromatin regions in the human 281 

hg38 genome (https://genome-asia.ucsc.edu/; Fig. 5J) by LiftOver (39).   282 

           It should be noted that IFmut also incorporates the details of functional 283 

confidence scoring for each variant and provides the tool for scoring novel variants. For 284 

such variants that are not yet included in IFmut, and are the subject of a user query, a 285 

dialog box will prompt the user to categorize their variant using an embedded <Variant 286 
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scoring tool" (Fig. 6A). Upon clicking the "OK" button, a window is displayed 287 

containing the classification results for the variant of interest (Fig. 6A). Queried SNPs 288 

can also be loaded into JBrowse to visualize the relevant epigenetic data (Fig. 6B). 289 

Discussion 290 

Previous studies have shown that the majority of SNPs and small InDels are located in 291 

non-protein-coding genomic regions (7, 40-44), and thus interpreting whether and how 292 

a variant may affect function remains considerably challenging (45-47). Evaluating 293 

perturbation effects of variants on TF binding sites in TF ChIP-seq data is a 294 

demonstrably effective way for identifying potential functional variants in the human 295 

genome (19). However, available TF ChIP-seq data is still comparatively lacking in 296 

livestock, posing an obstacle for this approach of screening functional variants in 297 

regulatory genomic features. To overcome this limitation, we compiled the IFmut 298 

database of candidate SNP and small InDel functional variants in or near TF binding 299 

sites in ATAC-seq/Dnase-seq and H3K27ac ChIP-seq datasets. 300 

          ATAC-seq/Dnase-seq analyses can largely capture TF binding footprints in full 301 

range of open chromatin regions across the genome, and have been widely used for this 302 

purpose in human and livestock research (48-52). At present, the TF binding sites 303 

capturing in livestock were primarily relay on the ATAC-seq/Dnase-seq rather than the 304 

TF ChIP-seq. Then our Functional Confidence scoring system used ATAC-seq/Dnase-305 

seq data to identify TF binding sites, which is different with the approach in 306 

RegulomeDB based on TF ChIP-seq (19). Overall, our scoring approach was more 307 

suitable the current study of functional mutations in livestock for abundant ATAC-308 

seq/Dnase-seq datasets in these species, as well as the design idea of using the ATAC-309 

seq/Dnase-seq data to identify TF binding sites to rank functional mutations can also 310 

be transplanted to related research works on other species. 311 

           Further, our scoring approach identified five main categories of candidate 312 

functional variants in pig, cattle, sheep, and chicken. We primarily focused on SNP and 313 

InDel variants in the High and Moderate confidence groups (Categories 1 and 2), since 314 
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these variants were ranked based on their elevated likelihood of producing an effect in 315 

livestock breeding and production. Genomic predictions with these High and Moderate 316 

variants showed that Functional Confidence scoring could increase the predictive 317 

reliability of EBVs in pigs compared to a larger set of randomly selected SNPs. These 318 

findings suggested that our scoring system can guide the identification of important 319 

variants, and could therefore drive advances in genetic improvement of livestock. 320 

           It is well-known that increasing the number of SNP markers can also increase 321 

the predictive reliability of GEBVs (genomic EBVs (20) ). Nevertheless, in this study, 322 

we found that genomic prediction with 11000 random SNPs from across the pig genome 323 

resulted in markedly lower GEBV reliability than that in some scenarios where even 324 

only one third the number of High/Moderate confidence SNPs from IFmut were used. 325 

Furthermore, this genomic prediction analysis also indicated that adipose tissue was 326 

more strongly associated with average daily gain and backfat thickness than muscle or 327 

liver. This finding might be at least partially explained by adipose function as the major 328 

site of energy storage and insulation in pigs (53), and provides direct evidence that the 329 

selection of candidate functional SNPs can guide genomic breeding efforts in pigs. 330 

           As variants play important roles in genomic breeding in livestock, a number of 331 

sequencing-related databases have been developed for animal research, such as 332 

AnimalQTLdb (54), Animal-ImputeDB (55), Animal-eRNAdb (56), and IAnimal (57), 333 

and range from one omics data type to comprehensive multi-omics data collections. 334 

However, tools for identifying candidate functional variants, visualizing relevant 335 

evidence in epigenetics data, and scoring for confidence in their function are still 336 

unavailable for mining these databases. We therefore designed the IFmut platform to 337 

allow users to retrieve and explore genomic, and epigenetic data related to the possible 338 

function of a variant, as well as a Functional Confidence scoring tool for assessing new 339 

variants of interest identified by users alongside those in IFmut and across multiple 340 

livestock species. Overall, the Functional Confidence classification data for SNPs and 341 

small InDels in the four species in IFmut, along with the tools for further exploration, 342 

can facilitate investigations of functional impacts of variants343 
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Methods 344 

Data collection 345 

Genome variants VCF data of pig (susScr11), cattle (bosTau9), and chicken (galGal5) 346 

were downloaded from ensemble database (http://ftp.ensembl.org/pub/), genome 347 

variants VCF data of sheep (oviAri4) was from NCBI Single Nucleotide Polymorphism 348 

Database (https://ftp.ncbi.nih.gov/snp/organisms/archive/sheep_9940/VCF/00-349 

All.VCF.gz). We also used whole-genome sequencing (WGS) data from 491 individual 350 

pigs across 61 breeds generated in our previous study(29). QTL data of four livestock 351 

were downloaded from Animal QTL database (https://www.animalgenome.org/cgi-352 

bin/QTLdb/). In cattle, we also downloaded the best variants cis-eQTL data from the 353 

farmGTEx database (https://cgtex.roslin.ed.ac.uk/wp-354 

content/plugins/cgtex/static/rawdata/Full_summary_statisitcs_cis_eQTLs_FarmGTEx355 

_cattle_V0.tar.gz). The TF ChIP-seq, H3K27ac ChIP-seq, and ATAC-seq data in pig, 356 

cattle, sheep, and chicken, Hi-C data in pig, and Dnase-seq in chicken were downloaded 357 

from NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra/). A total of 579 358 

raw epigenomic datasets were collected from multiple projects in NCBI，of which 75 359 

datasets from pig were from our previous study (34). 360 

Sequencing data analysis 361 

To adhere to the ENCODE standard, we primarily refer to the analysis methods used in 362 

our previous study for processing ChIP-seq and ATAC-seq data  (34). 363 

ChIP-seq 364 

Mapping and Quality control 365 

The ENCODE ChIP-seq pipeline (https://github.com/kundajelab/chipseq_pipeline) 366 

was utilized to process the ChIP-seq datasets of the four species in a strict manner. The 367 

raw reads from each dataset were aligned to the respective reference genome assemblies 368 

(susScr11, bosTau9, oviAri4, galGal5) using BWA v0.7.17 (58). Subsequently, the 369 

removal of low MAPQ reads (<25), unmapped reads, mate unmapped reads, not 370 
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primary alignment reads, and duplicate reads using Picard v1.126 371 

(https://broadinstitute.github.io/picard) and SAMTools v1.9 (59). 372 

           The read coverage of genomic regions between replicate filtered BAM files was 373 

computed using the multiBamSummary bins function of deepTools v2.0 (60). A bin 374 

size of 2 kb was used to assess genome-wide similarities. The resulting read coverage 375 

matrix obtained from the multiBamSummary step was used to calculate the Pearson 376 

correlation coefficients between two replicate filtered BAM files. The non-duplicated 377 

BAM file of replicates with a Pearson correlation coefficient ≥ 0.8 were merged, and 378 

the remaining replicates with a correlation coefficient < 0.8 were excluded from further 379 

analysis. 380 

Identification of nucleosome free region 381 

The HOMER (61) were utilized to detect nucleosome-free regions (NFR). The 382 

makeTagDirectory command was used to generate tag directories for the H3K27ac IP 383 

and input data using the merged non-duplicated BAM file obtained from the <Mapping 384 

and Quality control= steps. Subsequently, the findPeaks command with the -nfr option 385 

was applied to identify NFR peaks, requiring at least 10,000 peaks per data, and finally 386 

excluding the scaffold regions. 387 

Identification of TF binding sites and H3K27ac narrow peaks 388 

The identification of TF binding sites and H3K27ac narrow peaks was carried out using 389 

MACS2 v2.1.0 (62) and deepTools v2.0 (60), as described in greater detail in the 390 

methods section of our previous study (34). 391 

ATAC-seq 392 

Mapping, quality control and peak calling 393 

The ATAC-seq datasets of four species were processed following the ENCODE 394 

ATAC-seq pipeline (https://github.com/kundajelab/atac_dnase_pipelines). The 395 

preprocessing steps included checking and trimming adapters using Cutadapt v1.14 396 

(https://cutadapt.readthedocs.io/en/stable/). The ATAC-seq reads were then aligned to 397 

the susScr11, bosTau9, oviAri4, and galGal5 reference genome assemblies using 398 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.06.578787doi: bioRxiv preprint 

https://broadinstitute.github.io/picard
https://github.com/kundajelab/atac_dnase_pipelines
https://cutadapt.readthedocs.io/en/stable/
https://doi.org/10.1101/2024.02.06.578787
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bowtie2 v2.3.4.1. After alignment, low MAPQ reads (<25), unmapped reads, mate 399 

unmapped reads, not primary alignments, reads failing platform, and duplicates were 400 

removed using SAMTools v1.9 (59) and Picard v1.126 401 

(https://broadinstitute.github.io/picard) software. The mitochondrial reads were further 402 

removed from the mapped BMA file using BEDTools v2.26.0 (63) to generate effective 403 

reads, which were subsequently used for peak calling. MACS2 v2.1.0 (62) was 404 

employed to call peaks for each replicate individually, using parameters: genome size 405 

(-g), p-value threshold (0.01), peak model (--nomodel), shift size (--shift), extension 406 

size (--extsize), and other options (--B, --SPMR, --keep-dup all, --call-summits). And 407 

generate a data set of at least 10,000 peaks for further analysis. 408 

Dnase-seq 409 

Mapping, quality control and peak calling 410 

For the Dnase-seq datasets of chicken, the ENCODE Dnase-seq pipeline 411 

(https://github.com/kundajelab/atac_dnase_pipelines) was followed. With the 412 

'dnase_seq' parameter specified to indicate Dnase-seq data, and the others were 413 

consistent with the above ATAC-seq analysis. 414 

Identification of open chromatin region 415 

In the peak calling step, peaks with P < 10-5  were considered significant and selected 416 

for further analysis. These significant narrow peaks were filtered based on replicates 417 

with high Pearson correlation coefficients (R > 0.8). The peaks from these replicates 418 

were merged using BEDTools v2.26.0 (63), requiring at least 50% overlap between 419 

peaks in each replicate. The merged peaks represent open chromatin regions. 420 

Furthermore, the BAM files from highly correlated replicates (R > 0.8) were merged to 421 

generate signal tracks using MACS2 v2.1.0 (62). This step helps to visualize the signal 422 

intensity and distribution of chromatin accessibility across the genome. 423 

Identification of footprints in ATAC-seq and Dnase-seq 424 

The footprint analysis was primarily performed as the following steps: (i) the board 425 

peaks were called from the merged ATAC-seq or Dnase-seq data using the MACS2 426 
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v2.1.0 broad module (62, 64); (ii) the broad peaks meeting the criteria of P < 10-10 and 427 

10-10 < P < 10-5 overlapping OCR were merged with BEDTools v2.26.0 (63) as 428 

significant broad peaks; (iii) the Hmm-based IdeNtification of Transcription factor 429 

footprints (HINT) framework of Regulatory Genomics Toolbox (RGT) v0.13.2 (65) 430 

was employed to analysis footprints using the significant broad peaks. The HINT 431 

framework was utilized with specific parameters depending on whether ATAC-seq or 432 

Dnase-seq data was used (--atac-seq or --dnase-seq) and considering paired-end 433 

sequencing data (--paired-end). The organism information (--organism=) was also 434 

specified; and (iv) the cutoff value for footprint score was determined as more than the 435 

20% quantile of all footprint score generated by the HINT framework of GRT v0.13.2 436 

(65). 437 

Transcription factor motif mapping in genome function region  438 

The transcription factor motif mapping was primarily performed as the following steps: 439 

(i) OCR, NFR, TF binding sites and footprint in OCR regions were merged into a BED 440 

file; (ii) The fasta-get-markov command from the MEME Suite 441 

(https://github.com/cinquin/MEME) software was used to generate a .fa.bg file and 442 

<bedtools getfasta= command generate .fa file corresponding .bed file of step (i); (iii) 443 

The fimo command in MEME Suite (--max-stored-scores 5000000) used to map motif 444 

in the genome; and (iv) the fimo mapped results of pig, cattle, sheep filtered by P < 445 

5*10-6, and chicken filtered by Pvalue < 5*10-7. 446 

Prediction of transcription factor motif effects 447 

 In addition, potential functional variants (Categories 1-5) located within footprint 448 

regions were analyzed using the motifbreakR (66) package in R v4.0. The motifDB 449 

database, specifically JASPAR 2018 (67), was selected as the data source for predicting 450 

the transcription factors to which the SNPs may bind. 451 

Hi-C  452 

The Hi-C data of two-week-old LW pigs were from our previous study (34), and the 453 

other Hi-C data were downloaded from GEO under accession number GSE153452 at 454 
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http://ncbi.nlm.nih.gov/geo, including the cells of pig from zygotes, 4 cell stage and 455 

morula of in vitro fertilization (IVF), and pig embryonic fibroblasts (PEFs). These 456 

downloaded data were processed using the HiC-Pro (version 2.11.1) pipeline to 457 

produce the ICE normalization contact matrices (68). The insulation score of the ICE 458 

matrix was calculated by using the following options: -is 480000 -ids 320000 -im 459 

iqrMean -ss 160000. Furthermore, the insulation method was utilized to define the 460 

topologically associating domain (TAD) structure (insulation/boundaries).  461 

Variants distribution statistics 462 

SNPs and small InDels were annotated using ChIPseeker package in R v3.6.0, the 463 

parameter of annotatePeak was setted that including level="transcript", 464 

assignGenomicAnnotation=TRUE, genomicAnnotationPriority=c("Promoter", 465 

"5UTR", "3UTR", "Exon", "Intron","Downstream", "Intergenic"), annoDb=NULL, 466 

addFlankGeneInfo=FALSE,sameStrand=FALSE,ignoreOverlap=FALSE, 467 

ignoreUpstream=FALSE,ignoreDownstream=FALSE). Next, the reference genome 468 

file (fasta) and annotation files (gtf) were used with the snpEff v4.5 software to predict 469 

the effects of SNPs on known genes (java -Xmx8g -jar snpEff.jar genome -i .bed).  470 

The identification and filtering of pig variants. 471 

Identification of SNP and small InDel in pig 472 

A total of 491 whole-genome sequences from 61 pig breeds were obtained from our 473 

previous study  (29). The method of data processing was consistent with our previous 474 

article (34). 475 

Chromatin state discovery and characterization 476 

The chromatin states of human genome (hg38) were downloaded from the NIH 477 

Roadmap Epigenomics program 478 

(https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmM479 

odels/imputed12marks/). The genome coordinates of human genome chromatin states 480 

were converted into those of pig genome (SusScr11), chicken genome (GalGal5), cattle 481 
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genome (BosTau9), and sheep genome (OviAri4) by LiftOver, respectively. The 482 

positions of SNPs from pig, chicken, cattle, and sheep were used to overlap with the 483 

converted genome coordinates of chromatin states by BEDTools v2.26.0. In addition, 484 

the converted genome coordinates of chromatin states with the same SNP were merged, 485 

and the merged genome coordinates were transformed into those of human genome. 486 

Performances of genomic predictions 487 

Dataset 488 

The phenotypic dataset used for genomic prediction were obtained from a national pig 489 

nucleus herd in North China. In this study, we used phenotypic recordings for two 490 

productive traits: 30-100 kg average daily gain (ADG) and 100 kg backfat thickness 491 

(BF). All the phenotypic records for the traits were obtained at the same time point, 492 

allowing a 10-kg deviation from the final bodyweight (100 ± 10 kg). All of the 493 

phenotypes were recorded between the year early 2018 and October 2022. Based on the 494 

traced pedigree, there were 11 lines existing in such pig population. For each pig line, 495 

DNA samples were collected from about 80 distantly related pigs and were sequenced 496 

by DNBSEQ-T7 platform with an averaged 5×  coverage. In total, 874 pigs were 497 

sequenced. After quality controls, which includes a genotype missing rate below 10%, 498 

a call rate of SNPs above 90%, and a minimum allele frequency (MAF) above 1%, 499 

18460807 (18000K) SNPs were kept and analyzed in the following study. Missing 500 

genotypes were imputed using software Beagle version 5.3. Among the 874 sequenced 501 

pigs, 872 pigs had phenotypes of ADG data, meanwhile 867 pigs had BF recordings. 502 

Environmental factors including such as genders, herds, and physical units were 503 

completely recorded.  504 

Genomic Best Linear Unbiased Prediction (GLUP) models 505 

The breeding values (EBV) for different traits were estimated using the following 506 

GBLUP models: 507 � =  �� +  �� +  �, 508 

where � represents a column vector of phenotypic values for each trait; b represents a 509 
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vector of fixed effects, including sex effect, herd effect and physical units effects; � 510 

represents a vector of random additive genetic effects; e represents a vector of residual 511 

effects. Matrices X and Z are corresponding design matrices associated with these 512 

effects. The GBLUP model assumes a normal distribution for the random additive 513 

effects and residual effects, as � ~ �(0, ���2), where � is genomic relationship matrix 514 

constructed as Vanraden method 1; � ~ �(0, ���2), where � is an identity matrix. The 515 

additive genetic variance and residual variance are denoted by ��2 and ��2, respectively. 516 

Scenarios of constructing genomic relationship matrices 517 

In this study, GBLUP models with four different genomic relationship matrices (�) 518 

were used to estimate the GEBVs for both ADG and BF traits. Four different sets of 519 

SNP markers were used for constructing the corresponding �  matrix. In scenario 1, 520 

sequenced SNP markers that were with top 1 and top 2 muscle scores (1+2 muscle, 521 

10544 SNPs) were calculated the �  matrix. Similarly, sequenced SNP markers that 522 

were with top 1 and top 2 liver scores (1+2 liver, 6049 SNPs) and with top 1 and top 2 523 

adipose scores (1+2 adipose, 3801 SNPs) were used for constructing �  matrices in 524 

scenarios 2 and 3, respectively. In scenario 4, 11000 (11K) randomly selected SNP 525 

markers were used for constructing � matrix. Scenario 4 were repeated for three times 526 

in the study. 527 

Predictive Reliabilities 528 

The mean predictive reliabilities of GEBVs were determined by employing the 529 

subsequent formula (Mrode, 2005): 530 �2 = ∑(1 2 ����2��2 ) /�, 531 

where �2 is reliability of GEBVs and � denotes an individual animal i; ��� represents 532 

the standard error that is associated with the predicted GEBVs; �� 2  represents the 533 

additive genetic variance and � is the number of used animals. 534 

Data access 535 

All track of ATAC-seq, ChIP-seq (H3K27ac and TFs) and Hi-C, as well as the candidate 536 

functional variants and their Functional Confidence score are available at 537 
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Figures and Tables 718 

Figure 1. Genomic distribution of variants and their predicted effects on annotated genes and 719 

epigenomic datasets collection in livestock. (A) Percent distribution of variants in different 720 

regions in the susScr11 reference genome. (B) Regions within genome predicted to be affected 721 

by variants based on annotated genes in the susScr11; black dots indicate regions within a gene 722 

predicted to be simultaneously affected a variant. (C) Distribution of variants in the bosTau9 723 

reference genome. (D) Predicted effects of cattle variants based on annotated genes in the bosTau9 724 

genome assembly. (E) Statistical summary of epigenomic datasets for the four species. Histogram 725 

of total numbers of datasets obtained for each species; empty columns (left) are raw data and 726 

filled columns (right) show number of datasets after filtering and quality control. Bubble size 727 

represents number of different epigenetics datasets; outer circles, raw data; inner circles, cleaned 728 
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data. (F) Statistical summary of epigenetics datasets for different tissue types in the four species. 729 

Empty histograms (left) are number of tissue types with raw datasets; filled histograms (right) are 730 

number of tissue types with cleaned datasets. Bubble size indicates number of different tissues 731 

represented in each data type; outer circles are raw datasets; inner circles are cleaned datasets. 732 

(G-J) Summary of different quality-controlled epigenomic datasets and represented tissue types 733 

in (G) pig, (H) cattle, (I) sheep, and (J) chicken. AEC, aortic endothelial cells; BLN, bronchial 734 

lymph node; ESC, embryonic stem cells; MG, mammary gland; PBAEC, primary bovine aortic 735 

endothelial cells; RM, renal medulla; and RPEC, rumen primary epithelial cell. AM, alveolar 736 

macrophage; EEC, esophagus epithelium cells; and REC, rumen epithelium cells. LBC, 737 

lymphoma B-cell; NC, neural crest; RC, retinal cell. 738 
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Figure 2. Statistical summary of candidate functional variants and their distribution in genomic 739 

regulatory features in four livestock species. (A) Total number of candidate functional variants 740 

distributed in each of 7 regulatory features, including narrow peaks in H3K27ac, open chromatin 741 

region (OCR), footprints in OCR, nucleosome free regions (NFR), recognition motifs in 742 

significant transcription factor (TF) peaks in ChIPseq, and TF binding sites, or associated with 743 

no regulatory features in epigenomic data from (A) pig, (B) cattle, (C) sheep, and (D) chicken.744 
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Figure 3 revised 745 

Figure 3. Confidence scoring of candidate functional variants. (A) Illustration of design principle 746 

of Functional Confidence scoring system. (B-E) Statistical summary of candidate functional variant 747 

distribution among confidence subcategories in (B) cattle, (C) sheep, (D) chickens, and (E) pigs. 748 

Bar at the top shows the proportional distribution of main confidence categories among total 749 

candidate functional variants for each livestock species. (F) Number of candidate functional variants 750 

in each subcategory filtered by minor allele frequency (MAF>0.047) from 491 whole genome 751 

sequencing datasets in pigs.752 
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Figure 4. Assessment of cis-eQTL data from cattle using IFmut. (A) Distribution of cattle cis-753 

eQTLs from 8 tissues (adipose, hypothalamus, kidney, liver, lung, muscle, rumen and spleen) in 754 

different Functional confidence categories assigned by IFmut. (B) Proportion of cis-eQTLs 755 

classified as high or moderate confidence candidate variants (Categories 1 and 2) in all cis-eQTLs. 756 

(C) Example of visualizing high and moderate confidence cis-eQTLs around the TMEM508 gene 757 

in epigenomic data from cattle in JBorwse tool.758 
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Figure 5. Overview of the Integrated Functional Mutation (IFmut) database. (A) IFmut home 759 

page, containing information about the four livestock species. (B) Graphic summary of datasets 760 

available in IFmut organized by search type. (C) Example of search results generated with the 761 

"Quick Search" function, including variant chromosomal location, conversion type, and 762 

confidence score. (D) Variant-associated regulatory features in the SNVID query results of Quick 763 

Search are linked to pages containing information such as motif affecting, TAD/boundary, and 764 

ChromHMM of human genome conservation region, which are further linked to source data, 765 

external databases, etc. (E) Clicking the <Image= link in the <Affected motif= column in (D) takes 766 

the user to logos plots of nucleotide conservation in TF recognition motif(s) potentially affected 767 

by a queried variant. (F) Clicking <Table= in the <Affected motif= column in (D) takes the user 768 

to a page containing the predicted effect on TF binding, and the affected gene symbol of the TF 769 
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motif etc. details about the potentially affected TF motif(s). (G) The track view of variant through 770 

"JBrowse" function in (D). This function will bring the user to track views and feature 771 

visualization for regions containing the queried variants in ATAC-seq and ChIP-seq (H3K37ac) 772 

data, Hi-C interaction heatmaps (for pig), and nearby genes. (H) Clicking on SNVID hyperlinks 773 

in (D) brings the user to the IAnimal database (https://ianimal.pro/) to obtain additional 774 

information, such as genotype and major allele frequency in pig or cattle. (I) A subsequent search 775 

for genes within topologically associating domains (TADs) or TAD boundaries that contain user 776 

queried variant provides links to information about those genes in the IAnimal database 777 

(https://ianimal.pro/). (J) Users can also perform comparative genomics between predicted 778 

variant-affected regions in livestock and corresponding chromatin regions in the human hg38 779 

reference genome mapped using LiftOver.780 
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Figure 6. Functional confidence scoring and epigenomic data visualization functions in IFmut for 781 

user analysis of novel candidate variants. (A) Functional Confidence Scoring tool in IFmut. For 782 

variants of interest not stored in IFmut, users are prompted with the option to conduct Functional 783 

Confidence scoring using the tool in IFmut. (B) Epigenomic data visualization to assess novel 784 

variants. To examine the evidence underlying the IFmut functional confidence score for a variant of 785 

interest, users can follow a link to the JBrowse tool showing epigenomic tracks, TAD regions, and 786 

nearby genes.787 
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Table 1. Number of regulatory features detected in livestock species. 
Regulatory feature pig cattle sheep chicken 

Basic regulatory feature 
NFR 200,450 328,909 58,655 103,504 

OCR 441,818 780,224 418,560 600,364 

Narrow H3K27ac peaks 163,307 162,841 57,167 69,527  

Footprints in OCR 2,318,229 4,002,427 978,982 3,157,063 

Total non-redundant 352,763 804,593 474,751 1,026,316 

TF binding site-related features 
Footprint-matching motifs 125,500 1,352,480 253,476 1,098,796 

Partial motif-containing footprints  198,272 1,569,613 374,664 680,374 

Motifs in significant peaks 1,354,404 24,540,298 15,242,424 2,962,352 

TF binding sites 43,007 182,643 136,538 135,362 

Total non-redundant 451,212 2,783,299 2,443,102 428,545 

NFR, nucleosome-free regions; OCR, open chromatin regions. 
 

Table 2. Genomic coverage of regulatory features. 

Regulatory feature pig cattle sheep chicken 

Basic regulatory feature (bp) 

NFR 60,641,955 95,978,174 9,085,698  33,571,036  

OCR 300,233,553 324,314,161 186,787,025  309,414,106  

Narrow H3K27ac peaks 700,812,854 608,126,611 117,598,663  229,512,492  

Footprints in OCR 93,287,631 127,134,565 24,974,332  151,709,670  

Total non-redundant 787,386,263 794,764,318 287,920,733 441,600,747 

TF binding site-related features (bp) 
Footprint-matching motifs 3,295,980 22,900,815 4,146,394  18,530,843  

Partial motif-containing footprints  7,771,203 46,493,819 9,943,498  30,423,419  

Motifs in significant peaks 20,463,073 135,948,968 53,057,694  50,400,477  

TF binding sites 31,158,919 332,861,617 55,897,125  100,867,511  

Total non-redundant 51,963,305 391,146,808 104,501,330 107,662,441 

NFR, nucleosome-free regions; OCR, open chromatin regions. 
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Table 3. Variant classification scheme for scoring system in IFmut database. 

Categorization Scheme 

Category Description 
  High possibility of affecting transcription factor binding 

1a QTL + OCR + NFR + Footprints in OCR + Footprint-matching motifs 
1b OCR + NFR + Footprints in OCR + Footprint-matching motifs 
1c QTL + OCR + NFR + Part motif-containing footprints  
1d OCR + NFR + Part motif-containing footprints 

    
  Moderate possibility of affecting TF binding 

2a QTL + OCR + Footprints in OCR + Footprint-matching motifs 
2b OCR + footprint in OCR+ Footprint-matching motifs 
2c QTL + OCR + Part motif-containing footprints 
2d OCR + Part motif-containing footprints 

    
  Low possibility of affecting TF binding 

3a OCR + NFR + Footprints in OCR 
3b OCR / NFR + Motifs in significant peaks 

    
  Minimal possibility of affecting TF binding  
4 OCR / NFR / Footprints in OCR / TF binding significant peaks 

    
  Likely to be associated with gene expression 
5 H3K27ac significant peaks 

QTL, quantitative trait loci; NFR, nucleosome-free regions; OCR, open chromatin regions 
 

Table 4. Predictive reliability of EBV for traits ADG and BF. 

Numbers within the parentheses are the standard errors of the reliability. 

Scenarios SNP numbers ADG BF 

11k random 11,000 0.268 (0.014) 0.265 (0.015) 
muscle  10,544 0.319 0.316 

liver 6,049 0.348 0.346 

adipose 3,801 0.380 0.378 
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