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Abstract

Single nucleotide polymorphisms (SNPs) and small insertions/deletions (2-50bp) in
genomic regulatory regions may impact function, and although widespread, they are
largely unexplored in livestock. Here leveraging >500 epigenomic datasets from pigs,
cattle, sheep, and chickens, 8-39 million variants were identified with candidate
functional confidence. Using our Functional Confidence scoring system, these
candidate functional variants were further ranked as High, Moderate, Low, Minimal, or
Possible functional confidence by scoring for likelihood of disrupting transcription
factor (TF)-chromatin binding based on their presence in eight genomic regulatory
features. Predictive reliability analysis of estimated breeding values (EBVs) based on
High/Moderate Confidence variants from pig shows a 23~46% increase in reliability
compared to EBVs based on general SNPs, illustrating the versatility of Functional
Confidence scoring system for identifying potential functional variants in livestock.
Therefore, we developed the Integrated Functional Mutation (IFmut) platform and
embed the Functional Confidence scoring system for users to effortlessly navigate
through epigenomic data or pinpoint specific genomic features/regions, uncover
potential function of new variants or previously identified ones. Our work offers the
scientific community a powerful and flexible tool, tailor-made for delving deep into

variant function, setting a new benchmark in livestock research and breeding strategies.
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37 Introduction

38  Variants in cis-regulatory elements can greatly affect gene expression, consequently
39 influencing organismal phenotype (/-4).While some variants are harmless (i.e., neutral),
40  others can lead to severe diseases or other deleterious effects (5). In human disease
41  research, the identification and characterization of variants are crucial for determining
42  the underlying causes of genetic disorders (6-8). Several large-scale initiatives, such as
43  the 1000 Genomes Project, have facilitated exploration of variants in the human
44 genome (9, 10). By contrast in livestock research, variants are typically studied through
45  resequencing in livestock populations to improve breeding strategies (//-14). The
46  1identification of variants is a crucial initial step, but determining whether a variant is
47  functional in livestock species such as pig (Sus scrofa), cattle (Bos taurus), sheep (Ovis
48  aries), and chicken (Gallus gallus) poses a great challenge.

49 Advances in publicly available bioinformatic analytical toolkits, e.g., the
50 Encyclopedia of DNA Elements (ENCODE) (/5), have driven considerable progress in
51  functional variant screening in humans, uncovering previously unrecognized functions
52  of several regions in the human genome. In addition, integrated analysis of expression
53  quantitative trait loci (eQTLs) and variants (/6-18), along with establishment of the
54  regulomeDB database (/9), has also facilitated identification of cis-regulatory elements
55  and trans-acting factors that influence gene expression, revealing a variety of regulatory
56  mechanisms of the human genome. Despite these innovations in human genomic
57  research, the exploration of variants with regulatory function in the genomes of
58  important livestock species remains limited.

59 Genomic selection (GS) (20) has brought about a revolution in livestock and
60  poultry breeding, enabling greater precision in the selection of individuals based on
61  quantitative traits, such as growth rates or disease resistance (2/-25). However, GS
62  efficiency relies on SNP markers distributed throughout the genome because all of the
63  QTLs and and the SNPs used for these analyses are in linkage disequilibrium (LD) (20,
64 26, 27). Although GS can enhance the reliability of estimated breeding values (EBVs),

65 EBVs based on GS markers ignore the potentially significant source of functional
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66  genetic variation available in genomic regulatory elements. Variants in regions
67  containing gene regulatory elements can potentially modulate gene expression (28). By
68 integrating variants and SNPs in regulatory regions into genomic prediction analysis,
69  the reliability of EBVs for target traits may be increased. However, despite their
70  possible value for improving EBV reliability, studies identifying candidate functional
71  variants that may be informative for GS are lacking.

72 In this study, we identified genomic regulatory features in over 500 datasets
73 comprising transposase-accessible chromatin with sequencing (ATAC-seq) data,
74 DNase I hypersensitive site sequencing (Dnase-seq) data, H3 lysine 27 acetylation
75  (H3K27ac) ChIP-seq, and transcription factor ChIP-seq data from pigs, cattle, sheep,
76 and chickens. We then identified the candidate functional variants and employed a
77  scoring system to assess the likelihood of variants affecting regulatory function (i.e.,
78  Functional Confidence Score) based on their presence (or absence) in eight different
79  regulatory features/regions in genomes of the four livestock species. The identified
80  variants were then ranked into five categories (12 sub-categories) based on Functional
81  Confidence scores, in descending order from High, Moderate, Low, and Minimal
82  functional confidence, to possible association with regulatory function. We further
83  tested whether genomic prediction with High and Moderate confidence IFmut variants
84  identified from three tissues of pig could improve the predictive reliability of EBVs
85  over that of EBVs based on 11000 randomly selected SNP markers in pig. We then
86  constructed the Integrated Functional Mutation (IFmut) database and Functional
87  Confidence scoring system to provide a public resource for researchers. This study
88  provides a large database with a versatile and powerful online toolkit, along with a
89  proof-of-concept demonstration of IFmut for exploration of functional variants in

90 fundamental research and molecular breeding of livestock.
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91 Results

92 A large scale epigenomic screen of potential functional variants across four

93  livestock species

94  To screen for functional variants that potentially affect gene expression in livestock, we
95 first obtained SNP and small InDel genomic variants in pig (susScrl1), cattle (bosTau9),
96  sheep (oviAri4), and chicken (galGal5) from the Ensembl database, including more
97  than 63 million in pig, over 97 million in cattle, over 63 million in sheep, and over 23
98 million in chickens. Analysis of their distribution and predicted effects using
99  ChIPseeker R package and SnpEff software indicated that more than 90% of the
100  variants were located in non-coding regions in all four species (Fig. 1A-D;
101 Supplemental Fig. 1), aligning well with previous studies that showed variants are
102  highly prevalent in intergenic and intronic regions of the human genome (7, 29, 30).
103 Thus how to identify the potential functional variants from a large pool across four
104  livestock species is still a challenge.
105 Since genomic regulatory features, especially transcription factor binding sites
106  (TF binding sites) identified by epigenomic analyses, can be informative of the potential
107  function of variants (/9, 37), we sought to screen for potential function variants in the
108  above libraries using epigenomic data. To this end, we collected 583 total epigenomic
109  datasets (including ATAC-seq, Dnase-seq data, H3K27ac ChIP-seq, TF ChIP-seq and
110  Hi-C) from pigs, cattle, sheep, and chickens generated in previous studies such as the
111 FANNG project (32, 33), and our own previous study (34). After processing raw reads
112 from ATAC-seq, Dnase-seq, or ChlIP-seq data using the ENCODE pipeline, we
113 removed 6 samples due to low number (<10000) of significant peaks and 35 samples
114  due to low correlation among biological replicates (R<0.8). Ultimately, 538 datasets
115  from 19 tissues and 12 cell lines met quality control standards (Fig. 1E,F), including
116 256 ATAC-seq, 26 Dnase-seq data, 167 H3K27ac ChIP-seq, 80 TF ChIP-seq (63 for
117 CTCEF from pigs, cattle, sheep, and chicken and 17 for RAD21, EGR1, KLF2, KLF4,
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OSR1, OSR2, SMC2, CAP-H and BRD4 from chicken), and 9 Hi-C datasets from pig
(Fig. 1G-J). In total, 125, 193, 24, and 196 total datasets were compiled for pigs, cattle,
sheep, and chickens, respectively (Fig. 1E).

ENCODE guidelines (https://www.encodeproject.org/) were then applied to

identify genomic regulatory regions containing basic regulatory features and/or TF
binding site-related features using these datasets. In total, more than 350000 non-
redundant genomic regions with basic regulatory features were identified across all four
species, including open chromatin regions (OCR), H3K27ac significant peaks, and
nucleosome-free regions (NFR; Table 1). Furthermore, footprint calling and significant
TF binding peak calling followed by genomic mapping with TF motif positional weight
matrices (PWMs) in the called features yielded between 41460-171290 non-redundant
genome regions with regulatory features related to TF binding sites in each species
(Table 1). The total length of non-redundant genomic regulatory regions accounted for
approximately 31.56% of the pig reference genome (susScrll), while in cattle
(bosTau9), sheep (oviAri4), and chicken (galGal5), these accounted respectively for
30.74%, 12.63%, and 37.35% (Table 2).

Genomic variants positioned within transcription factor binding sites, such as
in RegulomeDB, often result in functional consequences (/9). Since the above
genomic regions containing basic regulatory and TF binding-related features were
identified through DNA-TF interaction data, variants detected in these regions were
likely to have transcription regulation function in the host livestock species. Using
BEDTools, we then determined which variants in our initial calling were located in
these regulatory features, which yielded 21005715 (32.90%; Fig. 2A) SNPs and small
InDels in pig, while 39157953 (40.32%; Fig. 2B) were detected in the cattle genome,
8194045 (12.97%; Fig. 2C) in sheep, and 10896983 (47.05%; Fig. 2D) in chicken,

which we collectively designated as potential functional variants.
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144 A scoring system to rank variants by likelihood of functional impacts

145 In the current study, we identify a multitude of variants with predicted
146  functional/phenotypic consequences in four livestock species, and the number of such
147  variants in each species was positively correlated with proportion of the genome
148  occupied by regulatory features (R=0.74; Supplemental Fig. 1E). To further distinguish
149  differences in the likelihood that a regulatory region variant will indeed impact
150 transcription regulation in livestock species, we developed a functional confidence
151  index similar to that used by RegulomeDB for variant classification with human TF
152  ChIP-seq data (/9). At present, only 80 TF ChIP-seq datasets are available in livestock,
153  the vast majority of which were generated for CTCF (in total 63), with only chicken
154  having 17 ChIP-seq data for 9 TFs with ChlIP-seq data, compared to the 876 TFs
155  covered by 3537 ChIP-seq data in RegulomeDB v.2. Thus, due to the lack of TF ChIP-
156  seq data in livestock, functional confidence scoring instead relied on a combination of
157  ATAC-seq/Dnase-seq (i.e., OCR and footprints) and H3K27ac ChIP-seq (i.e., NFR and
158  significant narrow peaks; Fig3A; Table 3). In addition, quantitative trait loci (QTL) data
159  were also collected, since variants in these regions can also potentially impact
160  agronomic traits (Supplemental Table 1).

161 In the Functional Confidence scoring system, the greater the number of
162  regulatory features used to determine the presence of SNPs/small InDels in TF binding
163  sites, the higher the likelihood that a variant could affect transcriptional regulation
164  (Table 3). Based on the prominent association of NFRs, OCRs and TF footprints
165  (especially those containing fully or partially matching recognition motifs) with
166  transcriptional activation, variants in these regions had the highest likelihood of
167  affecting TF binding and gene expression, and were therefore scored as high functional
168  confidence variants (Category 1). Variants that met these criteria but were never found
169  in NFRs were subsequently scored as moderate functional confidence (Categories 2a-
170  2d), suggesting a moderate likelihood of affecting TF activity. Moreover, within

171 Category 1 and 2, variants were present in QTLs, were assigned higher scores
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172 (Categories la, lc, 2a and 2c respectively), whereas variants were not in QTLs, had
173 slightly lower likelihoods (Categories 1b, 1d, 2b and 2d respectively). By contrast,
174  variants found in DNase/ATAC-seq or H3K27ac ChIP-seq data but not in TF footprints
175  or recognition motifs were included in Categories 3 and 4, with low functional
176  confidence and minimal functional confidence, respectively, in their likelihood of
177  affecting TF binding. Finally, Category 5 was reserved for variants detected only by
178  H3K27ac ChIP-seq, and were therefore potentially associated with transcriptional
179  regulation (see Table 3 for a key of criteria).

180 Next, the candidate functional variants identified by our study were ranked based
181  on our Functional Confidence scoring system. Then, Figure 3 shows a summary of
182  variant numbers in each functional confidence category for pig (Fig.3E), cattle (Fig.
183  3B), sheep (Fig. 3C), and chicken (Fig. 3D). Among these variants, a total of 240938,
184 3096314, 280103, and 204100 SNPs/small InDels were included in high and moderate
185  functional confidence categories (Category 1 and 2) Categories 1 and 2, accounting for
186  1.15%, 7.91%, 3.42% and 1.87% of all potential functional variants in pigs, cattle,
187  sheep and chickens, respectively (Fig. 3B-E).

188 To validate the variants in our above analysis were present in population data
189  and that functional confidence scoring could be applied to whole-genome sequencing
190  (WGS) data, we obtained 22926176 minimum allele frequency (MAF>0.047) filtered
191  variants in WGS data from 491 individual pigs across 61 breeds generated in our
192  previous study (34). Among these variants, 7557763 (32.97%) were identified as
193  potentially functional variants, 87002 (1.15%) of which fell into categories 1 or 2 (Fig.
194  3F). Overall, the proportions of variants in each category filtered by MAF from WGS
195 data were similar to that of variants obtained from Ensembl (Fig. 3B,F). These results
196  indicated that taking MAF into account did not affect the proportion of variants in each
197  category, but could reduce the number of candidate functional variants. Thus on animal
198  breeding a lower MAF threshold (e.g. 0.01) have to consider for functional variants to

199  keep their efficiency of animal breeding.
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200  The functional confidence scoring in eQTL classification and EBV reliability

201 assessment

202  Although eQTLs are reportedly associated with gene expression (35, 36), some TF
203  ChIP-seq and DNase-seq studies in humans suggest that more than 50% of eQTLs are
204  notassociated with TF binding sites (/9, 37), implying that genomic regulatory features
205  could be used to assess the potential regulatory function of eQTLs. To test this possible
206  use of our Functional Confidence scoring system, we obtained cis-eQTL data from
207  adipose, liver, spleen, hypothalamus, kidney, lung, muscle, and rumen of cattle from

208  the farmGTEx database (https://www.farmgtex.org/). Among these cis-eQTLs, more

209  than 58% had no classification as potential functional variants (Categories 1-5; Fig. 4A
210  and Supplemental Table 2). Moreover, only a small fraction of cis-eQTLs (~2.60%) in
211  each tissue were scored as high and moderate functional confidence variants (Category
212 1 and 2 variants; Fig. 4B,C). These results indicated that cis-eQTLs could primarily
213  serve as marker loci, but were unlikely to be functional variants that affect transcription.
214  In addition, this analysis provided a proof-of-concept that Functional Confidence
215  scoring system could be used to assess potential regulatory function in cis-eQTL
216  datasets and score for functional confidence.

217 We further validated Functional Confidence scoring system variant
218 identification and functional confidence scoring by genomic prediction with high and
219  moderate functional confidence variants (Category 1 and 2 variants) in pigs. We
220  assessed the predictive reliability of estimated breeding values (EBVs) for two traits,
221  average daily gain (ADG) and backfat thickness (BF) in a large white population
222  (n=874) using a genomic BLUP model with DMU software (38). EBVs were based on
223  four different genomic relationship matrices constructed by four scenarios of SNP
224 markers, including three scenarios using high and moderate functional confidence
225  variants from muscle, liver, or adipose, as well as one scenario that used 11k randomly
226  selected variants from whole genome sequence of pig (Table 4). Overall, the predictive
227  reliability of EBVs for ADG and trait BF was similar among the three scenarios using

228  high and moderate functional confidence variants (~0.31-0.38), whereas the predictive
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229  reliability of EBVs was lowest in the scenario using 11K random SNPs (~0.27), despite
230  containing the highest number of SNP markers (11000). Notably, predictive reliability
231 was highest in the scenario based on variants detected in adipose (~0.38), despite using
232  the fewest markers (3861 SNPs). Predictive reliability of EBVs generated with
233  Category 1 and 2 variants from liver was higher than that of functional confidence
234 variants from muscle. Ultimately, the predictive reliability of EBVs increased 23%~46%
235  for the three tissue types by using high and moderate functional confidence variants
236 compared to EBVs based on randomly selected SNP markers. This analysis further
237  validated the use of Functional Confidence scoring system for screening functional

238  variants in genomic data of livestock.

239  Development of the Integrated Functional Mutation database for screening

240  candidate functional variants in livestock species

241  Inorder to facilitate screening for candidate functional variants in livestock species, we
242  integrated genomic variants with epigenomic datasets in a single database, the
243  Integrated Functional Mutation (IFmut) database. This database contains 65124531
244  potential functional variants from the genomes of pig, cattle, sheep, and chicken (Fig.
245  5A), as well as the 538 aforementioned epigenomic datasets from 19 tissues and 12 cell
246 lines across the four species (Fig. 5B). In addition, the IFmut database

247  (http://www.ifmutants.com:8210/#/home) has a user-friendly web interface that

248  enables users to query variants of interest, different genomic regions, or browse
249  epigenomic signal viewers.

250 In the first module, users can use a "Quick Search" function on the homepage to
251  search for a specific dbSNP ID or search specific genomic regions for a variant of
252  interest. Details, such as genomic location, conversion type, and functional confidence
253  score (defined in the following section) about the queried variant, if stored in the [Fmut
254  database, are then listed at the bottom of the homepage (Fig. 5C). Clicking on an
255  SNVID in the search hits will direct the user to a new page containing information about

256  the regulatory feature(s) associated with queried variant of interest (Fig. 5D). In the
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257  third module, users can search for “Affected motif” to facilitate hypothesis generation
258  about the potential effects of a variant on TF binding. Searches in this module return
259  logos plots of conservation of the potentially affected TF motif(s) and a table containing
260 the predicted effect on TF binding, and the affected gene symbol of the TF motif etc.
261  (Fig. SE,F). In the fourth module, the "JBrowse" features allows users to view ATAC-
262  seq, Dnase-seq and ChIP-seq (H3K37ac and TFs) signals or Hi-C interaction heatmaps
263  (for Pig) around the variant of interest, as well as nearby genes (Fig. 5G). For this
264  purpose, each epigenomic dataset in the [Fmut database is accompanied by BigWig and
265  genome annotation files that can be loaded in the right sidebar of JBrowse (Fig. 5G;
266  Supplemental Fig. 2), allowing users to examine epigenomic signals or annotation data
267  around queried variants in greater detail.

268 To facilitate further exploration of potential functional variants, [Fmut also
269  provides hyperlinks to other databases: (1) For variants in pigs and cattle, users can click

270  on hyperlinked SNVIDs to access the IAnimal database (https://ianimal.pro/), which

271  contains additional information, such as genotype and major allele frequency (Fig. SH).
272 (ii) Clicking on the “TAD/TAD Boundary” feature of IFmut entries that contain
273  topologically associating domain (TAD) information related to genomic variants in pig
274  will also direct users to the [Animal database, allowing a subsequent search for genes
275  within that TAD or TAD boundary (Fig. 51). (ii1) Since ChromHMM Chromatin States
276  uses epigenomic information (such as ChIP-Seq data for various histone modifications)
277  across one or more human cell types to facilitate annotation of non-coding genome
278  regions, this function can be used for comparative genomics analysis to identify
279  regulatory feature-containing regions. The "ChromHMM Chromatin States" section in
280  the IFmut database can thus be used to map variant-containing genomic regulatory
281  regions in the four livestock species to corresponding chromatin regions in the human

282  hg38 genome (https://genome-asia.ucsc.edu/; Fig. 5J) by LiftOver (39).

283 It should be noted that IFmut also incorporates the details of functional
284  confidence scoring for each variant and provides the tool for scoring novel variants. For
285  such variants that are not yet included in IFmut, and are the subject of a user query, a

286  dialog box will prompt the user to categorize their variant using an embedded “Variant
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287  scoring tool" (Fig. 6A). Upon clicking the "OK" button, a window is displayed
288  containing the classification results for the variant of interest (Fig. 6A). Queried SNPs

289  can also be loaded into JBrowse to visualize the relevant epigenetic data (Fig. 6B).

290 Discussion

291  Previous studies have shown that the majority of SNPs and small InDels are located in
292  non-protein-coding genomic regions (7, 40-44), and thus interpreting whether and how
293  a variant may affect function remains considerably challenging (45-47). Evaluating
294  perturbation effects of variants on TF binding sites in TF ChIP-seq data is a
295  demonstrably effective way for identifying potential functional variants in the human
296  genome (/9). However, available TF ChIP-seq data is still comparatively lacking in
297  livestock, posing an obstacle for this approach of screening functional variants in
298  regulatory genomic features. To overcome this limitation, we compiled the IFmut
299  database of candidate SNP and small InDel functional variants in or near TF binding
300 sites in ATAC-seq/Dnase-seq and H3K27ac ChIP-seq datasets.

301 ATAC-seq/Dnase-seq analyses can largely capture TF binding footprints in full
302 range of open chromatin regions across the genome, and have been widely used for this
303 purpose in human and livestock research (48-52). At present, the TF binding sites
304  capturing in livestock were primarily relay on the ATAC-seq/Dnase-seq rather than the
305  TF ChIP-seq. Then our Functional Confidence scoring system used ATAC-seq/Dnase-
306 seq data to identify TF binding sites, which is different with the approach in
307 RegulomeDB based on TF ChIP-seq (/9). Overall, our scoring approach was more
308  suitable the current study of functional mutations in livestock for abundant ATAC-
309 seq/Dnase-seq datasets in these species, as well as the design idea of using the ATAC-
310 seq/Dnase-seq data to identify TF binding sites to rank functional mutations can also
311  be transplanted to related research works on other species.

312 Further, our scoring approach identified five main categories of candidate
313 functional variants in pig, cattle, sheep, and chicken. We primarily focused on SNP and

314  InDel variants in the High and Moderate confidence groups (Categories 1 and 2), since
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315 these variants were ranked based on their elevated likelihood of producing an effect in
316  livestock breeding and production. Genomic predictions with these High and Moderate
317  variants showed that Functional Confidence scoring could increase the predictive
318 reliability of EBVs in pigs compared to a larger set of randomly selected SNPs. These
319  findings suggested that our scoring system can guide the identification of important
320  variants, and could therefore drive advances in genetic improvement of livestock.

321 It is well-known that increasing the number of SNP markers can also increase
322  the predictive reliability of GEBVs (genomic EBVs (20) ). Nevertheless, in this study,
323  we found that genomic prediction with 11000 random SNPs from across the pig genome
324  resulted in markedly lower GEBYV reliability than that in some scenarios where even
325  only one third the number of High/Moderate confidence SNPs from IFmut were used.
326  Furthermore, this genomic prediction analysis also indicated that adipose tissue was
327  more strongly associated with average daily gain and backfat thickness than muscle or
328 liver. This finding might be at least partially explained by adipose function as the major
329  site of energy storage and insulation in pigs (53), and provides direct evidence that the
330 selection of candidate functional SNPs can guide genomic breeding efforts in pigs.
331 As variants play important roles in genomic breeding in livestock, a number of
332  sequencing-related databases have been developed for animal research, such as
333  AnimalQTLdb (54), Animal-ImputeDB (55), Animal-eRNAdb (56), and IAnimal (57),
334  and range from one omics data type to comprehensive multi-omics data collections.
335 However, tools for identifying candidate functional variants, visualizing relevant
336  evidence in epigenetics data, and scoring for confidence in their function are still
337  unavailable for mining these databases. We therefore designed the IFmut platform to
338  allow users to retrieve and explore genomic, and epigenetic data related to the possible
339 function of a variant, as well as a Functional Confidence scoring tool for assessing new
340  variants of interest identified by users alongside those in IFmut and across multiple
341  livestock species. Overall, the Functional Confidence classification data for SNPs and
342  small InDels in the four species in IFmut, along with the tools for further exploration,

343  can facilitate investigations of functional impacts of variants
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344  Methods

345  Data collection

346  Genome variants VCF data of pig (susScrl11), cattle (bosTau9), and chicken (galGal5)

347  were downloaded from ensemble database (http:/ftp.ensembl.org/pub/), genome

348  variants VCF data of sheep (oviAri4) was from NCBI Single Nucleotide Polymorphism

349  Database (https://ftp.ncbi.nih.gov/snp/organisms/archive/sheep 9940/VCFE/00-

350 All.VCF.gz). We also used whole-genome sequencing (WGS) data from 491 individual
351  pigs across 61 breeds generated in our previous study(29). QTL data of four livestock

352  were downloaded from Animal QTL database (https://www.animalgenome.org/cgi-

353  bin/QTLdb/). In cattle, we also downloaded the best variants cis-eQTL data from the

354  farmGTEx database (https://cgtex.roslin.ed.ac.uk/wp-

355  content/plugins/cgtex/static/rawdata/Full summary_statisitcs _cis eQTLs FarmGTEx

356 cattle_VO.tar.gz). The TF ChIP-seq, H3K27ac ChIP-seq, and ATAC-seq data in pig,
357 cattle, sheep, and chicken, Hi-C data in pig, and Dnase-seq in chicken were downloaded

358  from NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra/). A total of 579

359  raw epigenomic datasets were collected from multiple projects in NCBI, of which 75

360  datasets from pig were from our previous study (34).
361 Sequencing data analysis

362  To adhere to the ENCODE standard, we primarily refer to the analysis methods used in

363  our previous study for processing ChIP-seq and ATAC-seq data (34).
364  ChIP-seq

365  Mapping and Quality control

366 The ENCODE ChIP-seq pipeline (https:/github.com/kundajelab/chipseq pipeline)

367  was utilized to process the ChIP-seq datasets of the four species in a strict manner. The
368  raw reads from each dataset were aligned to the respective reference genome assemblies
369  (susScrll, bosTau9, oviAri4, galGalS) using BWA v0.7.17 (58). Subsequently, the

370 removal of low MAPQ reads (<25), unmapped reads, mate unmapped reads, not
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371  primary alignment reads, and duplicate reads wusing Picard v1.126

372 (https://broadinstitute.github.io/picard) and SAMTools v1.9 (59).

373 The read coverage of genomic regions between replicate filtered BAM files was
374  computed using the multiBamSummary bins function of deepTools v2.0 (60). A bin
375  size of 2 kb was used to assess genome-wide similarities. The resulting read coverage
376  matrix obtained from the multiBamSummary step was used to calculate the Pearson
377  correlation coefficients between two replicate filtered BAM files. The non-duplicated
378  BAM file of replicates with a Pearson correlation coefficient > 0.8 were merged, and
379  the remaining replicates with a correlation coefficient < 0.8 were excluded from further
380 analysis.

381  Identification of nucleosome free region

382 The HOMER (67) were utilized to detect nucleosome-free regions (NFR). The
383  makeTagDirectory command was used to generate tag directories for the H3K27ac IP
384  and input data using the merged non-duplicated BAM file obtained from the “Mapping
385  and Quality control” steps. Subsequently, the findPeaks command with the -nfr option
386  was applied to identify NFR peaks, requiring at least 10,000 peaks per data, and finally

387  excluding the scaffold regions.
388  Identification of TF binding sites and H3K27ac narrow peaks

389  The identification of TF binding sites and H3K27ac narrow peaks was carried out using
390 MACS2 v2.1.0 (62) and deepTools v2.0 (60), as described in greater detail in the

391  methods section of our previous study (34).
392  ATAC-seq
393  Mapping, quality control and peak calling

394 The ATAC-seq datasets of four species were processed following the ENCODE

395 ATAC-seq pipeline (https://github.com/kundajelab/atac_dnase pipelines). The

396  preprocessing steps included checking and trimming adapters using Cutadapt v1.14

397  (https://cutadapt.readthedocs.io/en/stable/). The ATAC-seq reads were then aligned to

398 the susScrll, bosTau9, oviAri4, and galGal5 reference genome assemblies using
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399 Bowtie2 v2.3.4.1. After alignment, low MAPQ reads (<25), unmapped reads, mate
400  unmapped reads, not primary alignments, reads failing platform, and duplicates were
401  removed using SAMTools vl.9 59) and Picard v1.126

402  (https://broadinstitute.github.io/picard) software. The mitochondrial reads were further

403  removed from the mapped BMA file using BEDTools v2.26.0 (63) to generate effective
404  reads, which were subsequently used for peak calling. MACS2 v2.1.0 (62) was
405 employed to call peaks for each replicate individually, using parameters: genome size
406  (-g), p-value threshold (0.01), peak model (--nomodel), shift size (--shift), extension
407  size (--extsize), and other options (--B, --SPMR, --keep-dup all, --call-summits). And

408  generate a data set of at least 10,000 peaks for further analysis.
409  Dnase-seq
410  Mapping, quality control and peak calling

411  For the Dnase-seq datasets of chicken, the ENCODE Dnase-seq pipeline

412 (https://github.com/kundajelab/atac_dnase pipelines) was followed. With the

413  'dnase_seq' parameter specified to indicate Dnase-seq data, and the others were
414  consistent with the above ATAC-seq analysis.

415  Identification of open chromatin region

416  In the peak calling step, peaks with P < 10~ were considered significant and selected
417  for further analysis. These significant narrow peaks were filtered based on replicates
418  with high Pearson correlation coefficients (R > 0.8). The peaks from these replicates
419  were merged using BEDTools v2.26.0 (63), requiring at least 50% overlap between
420 peaks in each replicate. The merged peaks represent open chromatin regions.
421  Furthermore, the BAM files from highly correlated replicates (R > 0.8) were merged to
422  generate signal tracks using MACS2 v2.1.0 (62). This step helps to visualize the signal

423  intensity and distribution of chromatin accessibility across the genome.
424  Identification of footprints in ATAC-seq and Dnase-seq

425  The footprint analysis was primarily performed as the following steps: (i) the board

426  peaks were called from the merged ATAC-seq or Dnase-seq data using the MACS2
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427 v2.1.0 broad module (62, 64); (ii) the broad peaks meeting the criteria of P < 10'% and
428 101° < P <103 overlapping OCR were merged with BEDTools v2.26.0 (63) as
429  significant broad peaks; (iii) the Hmm-based IdeNtification of Transcription factor
430  footprints (HINT) framework of Regulatory Genomics Toolbox (RGT) v0.13.2 (65)
431  was employed to analysis footprints using the significant broad peaks. The HINT
432  framework was utilized with specific parameters depending on whether ATAC-seq or
433  Dnase-seq data was used (--atac-seq or --dnase-seq) and considering paired-end
434  sequencing data (--paired-end). The organism information (--organism=) was also
435  specified; and (iv) the cutoff value for footprint score was determined as more than the
436  20% quantile of all footprint score generated by the HINT framework of GRT v0.13.2
437  (65).

438  Transcription factor motif mapping in genome function region

439  The transcription factor motif mapping was primarily performed as the following steps:
440 (1) OCR, NFR, TF binding sites and footprint in OCR regions were merged into a BED
441  file; (1) The fasta-get-markov command from the MEME  Suite
442  (https://github.com/cinquin/MEME) software was used to generate a .fa.bg file and
443  “bedtools getfasta” command generate .fa file corresponding .bed file of step (1); (iii)
444  The fimo command in MEME Suite (--max-stored-scores 5000000) used to map motif
445  in the genome; and (iv) the fimo mapped results of pig, cattle, sheep filtered by P <

446 5%10°, and chicken filtered by Pvalue < 5%107.
447  Prediction of transcription factor motif effects

448 In addition, potential functional variants (Categories 1-5) located within footprint
449  regions were analyzed using the motifbreakR (66) package in R v4.0. The motifDB
450  database, specifically JASPAR 2018 (67), was selected as the data source for predicting

451  the transcription factors to which the SNPs may bind.
452  Hi-C

453  The Hi-C data of two-week-old LW pigs were from our previous study (34), and the

454  other Hi-C data were downloaded from GEO under accession number GSE153452 at
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455  http://ncbi.nlm.nih.gov/geo, including the cells of pig from zygotes, 4 cell stage and

456  morula of in vitro fertilization (IVF), and pig embryonic fibroblasts (PEFs). These
457  downloaded data were processed using the HiC-Pro (version 2.11.1) pipeline to
458  produce the ICE normalization contact matrices (68). The insulation score of the ICE
459  matrix was calculated by using the following options: -is 480000 -ids 320000 -im
460 igrMean -ss 160000. Furthermore, the insulation method was utilized to define the

461  topologically associating domain (TAD) structure (insulation/boundaries).
462 Variants distribution statistics

463  SNPs and small InDels were annotated using ChIPseeker package in R v3.6.0, the
464  parameter of annotatePeak was setted that including level="transcript",
465  assignGenomicAnnotation=TRUE, genomicAnnotationPriority=c("Promoter",
466 "SUTR", "3UTR", "Exon", "Intron","Downstream", "Intergenic"), annoDb=NULL,
467  addFlankGenelnfo=FALSE,sameStrand=FALSE,ignoreOverlap=FALSE,

468  ignoreUpstream=FALSE,ignoreDownstream=FALSE). Next, the reference genome
469  file (fasta) and annotation files (gtf) were used with the snpEff v4.5 software to predict

470  the effects of SNPs on known genes (java -Xmx8g -jar snpEff.jar genome -i .bed).
471  The identification and filtering of pig variants.
472  Identification of SNP and small InDel in pig

473 A total of 491 whole-genome sequences from 61 pig breeds were obtained from our
474 previous study (29). The method of data processing was consistent with our previous

475  article (34).
476 Chromatin state discovery and characterization

477  The chromatin states of human genome (hg38) were downloaded from the NIH
478  Roadmap Epigenomics program

479  (https://egg?.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmM

480  odels/imputed12marks/). The genome coordinates of human genome chromatin states

481  were converted into those of pig genome (SusScr11), chicken genome (GalGal5), cattle
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482  genome (BosTau9), and sheep genome (OviAri4) by LiftOver, respectively. The
483  positions of SNPs from pig, chicken, cattle, and sheep were used to overlap with the
484  converted genome coordinates of chromatin states by BEDTools v2.26.0. In addition,
485  the converted genome coordinates of chromatin states with the same SNP were merged,

486  and the merged genome coordinates were transformed into those of human genome.
487  Performances of genomic predictions
488  Dataset

489  The phenotypic dataset used for genomic prediction were obtained from a national pig
490  nucleus herd in North China. In this study, we used phenotypic recordings for two
491  productive traits: 30-100 kg average daily gain (ADG) and 100 kg backfat thickness
492  (BF). All the phenotypic records for the traits were obtained at the same time point,
493  allowing a 10-kg deviation from the final bodyweight (100 + 10 kg). All of the
494  phenotypes were recorded between the year early 2018 and October 2022. Based on the
495  traced pedigree, there were 11 lines existing in such pig population. For each pig line,
496  DNA samples were collected from about 80 distantly related pigs and were sequenced
497 by DNBSEQ-T7 platform with an averaged 5 X coverage. In total, 874 pigs were
498  sequenced. After quality controls, which includes a genotype missing rate below 10%,
499  a call rate of SNPs above 90%, and a minimum allele frequency (MAF) above 1%,
500 18460807 (18000K) SNPs were kept and analyzed in the following study. Missing
501  genotypes were imputed using software Beagle version 5.3. Among the 874 sequenced
502  pigs, 872 pigs had phenotypes of ADG data, meanwhile 867 pigs had BF recordings.
503  Environmental factors including such as genders, herds, and physical units were

504  completely recorded.

505  Genomic Best Linear Unbiased Prediction (GLUP) models

506  The breeding values (EBV) for different traits were estimated using the following
507  GBLUP models:
508 y =Xb + Zu + e,

509  where y represents a column vector of phenotypic values for each trait; b represents a
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510  vector of fixed effects, including sex effect, herd effect and physical units effects; u
511  represents a vector of random additive genetic effects; e represents a vector of residual
512  effects. Matrices X and Z are corresponding design matrices associated with these
513  effects. The GBLUP model assumes a normal distribution for the random additive
514  effects and residual effects, as u ~ N(0, Go;2), where G is genomic relationship matrix
515  constructed as Vanraden method 1; e ~ N(0,I62), where I is an identity matrix. The

516  additive genetic variance and residual variance are denoted by ¢;? and 62, respectively.
517  Scenarios of constructing genomic relationship matrices

518 In this study, GBLUP models with four different genomic relationship matrices (&)
519  were used to estimate the GEBVs for both ADG and BF traits. Four different sets of
520  SNP markers were used for constructing the corresponding G matrix. In scenario 1,
521  sequenced SNP markers that were with top 1 and top 2 muscle scores (1+2 muscle,
522 10544 SNPs) were calculated the G matrix. Similarly, sequenced SNP markers that
523  were with top 1 and top 2 liver scores (1+2 liver, 6049 SNPs) and with top 1 and top 2
524  adipose scores (1+2 adipose, 3801 SNPs) were used for constructing G matrices in
525  scenarios 2 and 3, respectively. In scenario 4, 11000 (11K) randomly selected SNP
526  markers were used for constructing & matrix. Scenario 4 were repeated for three times

527  in the study.

528 Predictive Reliabilities

529 The mean predictive reliabilities of GEBVs were determined by employing the
530 subsequent formula (Mrode, 2005):
2 SEP?
531 re=x1-=—9/N,
g

532  where 2 is reliability of GEBVs and i denotes an individual animal i; SEP represents

533 the standard error that is associated with the predicted GEBVs; ng represents the

534  additive genetic variance and N is the number of used animals.

535  Data access

536  All track of ATAC-seq, ChIP-seq (H3K27ac and TFs) and Hi-C, as well as the candidate

537  functional wvariants and their Functional Confidence score are available at
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719  Figure 1. Genomic distribution of variants and their predicted effects on annotated genes and
720  epigenomic datasets collection in livestock. (4) Percent distribution of variants in different
721  regions in the susScrll reference genome. (B) Regions within genome predicted to be affected
722 by variants based on annotated genes in the susScrll; black dots indicate regions within a gene
723  predicted to be simultaneously affected a variant. (C) Distribution of variants in the bosTau9
724  reference genome. (D) Predicted effects of cattle variants based on annotated genes in the bosTau9
725  genome assembly. (E) Statistical summary of epigenomic datasets for the four species. Histogram
726  of total numbers of datasets obtained for each species; empty columns (left) are raw data and
727  filled columns (right) show number of datasets after filtering and quality control. Bubble size
728  represents number of different epigenetics datasets; outer circles, raw data; inner circles, cleaned
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729  data. (F) Statistical summary of epigenetics datasets for different tissue types in the four species.
730  Empty histograms (left) are number of tissue types with raw datasets; filled histograms (right) are
731  number of tissue types with cleaned datasets. Bubble size indicates number of different tissues
732  represented in each data type; outer circles are raw datasets; inner circles are cleaned datasets.
733 (G-J) Summary of different quality-controlled epigenomic datasets and represented tissue types
734  in (G) pig, (H) cattle, (1) sheep, and (J) chicken. AEC, aortic endothelial cells; BLN, bronchial
735 lymph node; ESC, embryonic stem cells; MG, mammary gland; PBAEC, primary bovine aortic
736  endothelial cells; RM, renal medulla; and RPEC, rumen primary epithelial cell. AM, alveolar
737  macrophage; EEC, esophagus epithelium cells; and REC, rumen epithelium cells. LBC,
738 lymphoma B-cell; NC, neural crest; RC, retinal cell.
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739  Figure 2. Statistical summary of candidate functional variants and their distribution in genomic
740  regulatory features in four livestock species. (4) Total number of candidate functional variants
741  distributed in each of 7 regulatory features, including narrow peaks in H3K27ac, open chromatin
742  region (OCR), footprints in OCR, nucleosome free regions (NFR), recognition motifs in
743  significant transcription factor (TF) peaks in ChIPseq, and TF binding sites, or associated with
744 no regulatory features in epigenomic data from (4) pig, (B) cattle, (C) sheep, and (D) chicken.
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Figure 3. Confidence scoring of candidate functional variants. (4) Illustration of design principle

of Functional Confidence scoring system. (B-E) Statistical summary of candidate functional variant

distribution among confidence subcategories in (B) cattle, (C) sheep, (D) chickens, and (E) pigs.

Bar at the top shows the proportional distribution of main confidence categories among total

candidate functional variants for each livestock species. (F) Number of candidate functional variants

in each subcategory filtered by minor allele frequency (MAF>0.047) from 491 whole genome

sequencing datasets in pigs.


https://doi.org/10.1101/2024.02.06.578787
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.06.578787; this version posted February 21, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A B Categories 1 and 2 variants

100.0% - -

45.0%7 —

25.0%] ‘

260% 2.62%

2.58%

6.0%

4.0%

2.56%
|

2.54%
|

€z,
Py
252%

MCategory1 WCategory2 MCategory3 M Category4 MCategory5 = Other

Chr1:2,052k-2,072k (bos Tau9)

v

H3K27ac

[2,20] i
| :I%w IJ. Ll

ATAC
[2,20]

Liver l
cTCF i £ oo ; a

2,20 L .
220 | ") da ‘ @ i

eQTL fell into Category 1 or 2 functional confidence variants

eQTL not fell into Category 1 or 2 functional confidence variants

TMEM508

753  Figure 4. Assessment of cis-eQTL data from cattle using [Fmut. (4) Distribution of cattle cis-
754  eQTLs from 8 tissues (adipose, hypothalamus, kidney, liver, lung, muscle, rumen and spleen) in
755  different Functional confidence categories assigned by IFmut. (B) Proportion of cis-eQTLs
756  classified as high or moderate confidence candidate variants (Categories 1 and 2) in all cis-eQTLs.
757 (C) Example of visualizing high and moderate confidence cis-eQTLs around the TMEM508 gene
758  in epigenomic data from cattle in JBorwse tool.
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Figure 5. Overview of the Integrated Functional Mutation (IFmut) database. (4) IFmut home
page, containing information about the four livestock species. (B) Graphic summary of datasets
available in IFmut organized by search type. (C) Example of search results generated with the
"Quick Search" function, including variant chromosomal location, conversion type, and
confidence score. (D) Variant-associated regulatory features in the SNVID query results of Quick
Search are linked to pages containing information such as motif affecting, TAD/boundary, and
ChromHMM of human genome conservation region, which are further linked to source data,
external databases, etc. (E) Clicking the “Image” link in the “Affected motif” column in (D) takes
the user to logos plots of nucleotide conservation in TF recognition motif(s) potentially affected
by a queried variant. (F) Clicking “Table” in the “Affected motif” column in (D) takes the user
to a page containing the predicted effect on TF binding, and the affected gene symbol of the TF
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770  motif etc. details about the potentially affected TF motif(s). (G) The track view of variant through
771  "JBrowse" function in (D). This function will bring the user to track views and feature
772  visualization for regions containing the queried variants in ATAC-seq and ChIP-seq (H3K37ac)
773  data, Hi-C interaction heatmaps (for pig), and nearby genes. (H) Clicking on SNVID hyperlinks
774 in (D) brings the user to the IAnimal database (https://ianimal.pro/) to obtain additional

775  information, such as genotype and major allele frequency in pig or cattle. (1) A subsequent search
776  for genes within topologically associating domains (TADs) or TAD boundaries that contain user
777  queried variant provides links to information about those genes in the IAnimal database
778  (https://ianimal.pro/). (J) Users can also perform comparative genomics between predicted

779  variant-affected regions in livestock and corresponding chromatin regions in the human hg38

780  reference genome mapped using LiftOver.
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781  Figure 6. Functional confidence scoring and epigenomic data visualization functions in IFmut for
782  user analysis of novel candidate variants. (4) Functional Confidence Scoring tool in IFmut. For
783  variants of interest not stored in IFmut, users are prompted with the option to conduct Functional
784  Confidence scoring using the tool in IFmut. (B) Epigenomic data visualization to assess novel
785  variants. To examine the evidence underlying the [Fmut functional confidence score for a variant of
786  interest, users can follow a link to the JBrowse tool showing epigenomic tracks, TAD regions, and

787  nearby genes.
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Table 1. Number of regulatory features detected in livestock species.

Regulatory feature pig cattle sheep chicken
Basic regulatory feature
NFR 200,450 328,909 58,655 103,504
OCR 441,818 780,224 418,560 600,364
Narrow H3K27ac peaks 163,307 162,841 57,167 69,527
Footprints in OCR 2,318,229 4,002,427 978,982 3,157,063
Total non-redundant 352,763 804,593 474,751 1,026,316
TF binding site-related features
Footprint-matching motifs 125,500 1,352,480 253,476 1,098,796
Partial motif-containing footprints 198,272 1,569,613 374,664 680,374
Motifs in significant peaks 1,354,404 24,540,298 15,242,424 2,962,352
TF binding sites 43,007 182,643 136,538 135,362
Total non-redundant 451,212 2,783,299 2,443,102 428,545
NFR, nucleosome-free regions; OCR, open chromatin regions.
Table 2. Genomic coverage of regulatory features.
Regulatory feature pig cattle sheep chicken
Basic regulatory feature (bp)
NFR 60,641,955 95,978,174 9.085.698 33,571,036
OCR 300,233,553 324,314,161 186,787,025  309.414.106
Narrow H3K27ac peaks 700,812,854 608,126,611 117,598,663 229,512,492
Footprints in OCR 93,287,631 127,134,565 24,974,332 151,709,670
Total non-redundant 787,386,263 794,764,318 287,920,733 441,600,747
TF binding site-related features (bp)
Footprint-matching motifs 3,295,980 22,900,815 4,146,394 18,530,843
Partial motif-containing footprints 7,771,203 46,493,819 9,943,498 30,423,419
Motifs in significant peaks 20,463,073 135,948,968 53,057,694 50,400,477
TF binding sites 31,158,919 332,861,617 55,897,125 100,867,511
Total non-redundant 51,963,305 391,146,808 104,501,330 107,662,441

NFR, nucleosome-free regions; OCR, open chromatin regions.
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Table 3. Variant classification scheme for scoring system in [Fmut database.

Categorization Scheme

Category Description
High possibility of affecting transcription factor binding
la QTL + OCR + NFR + Footprints in OCR + Footprint-matching motifs
1b OCR + NFR + Footprints in OCR + Footprint-matching motifs
lc QTL + OCR + NFR + Part motif-containing footprints
1d OCR + NFR + Part motif-containing footprints
Moderate possibility of affecting TF binding
2a QTL + OCR + Footprints in OCR + Footprint-matching motifs
2b OCR + footprint in OCR+ Footprint-matching motifs
2¢ QTL + OCR + Part motif-containing footprints
2d OCR + Part motif-containing footprints
Low possibility of affecting TF binding
3a OCR + NFR + Footprints in OCR
3b OCR / NFR + Motifs in significant peaks
Minimal possibility of affecting TF binding
4 OCR / NFR / Footprints in OCR / TF binding significant peaks
Likely to be associated with gene expression
5 H3K27ac significant peaks

QTL, quantitative trait loci; NFR, nucleosome-free regions; OCR, open chromatin regions

Table 4. Predictive reliability of EBV for traits ADG and BF.

Scenarios SNP numbers ADG BF

11k random 11,000 0.268 (0.014) 0.265 (0.015)
muscle 10,544 0.319 0.316

liver 6,049 0.348 0.346
adipose 3,801 0.380 0.378

Numbers within the parentheses are the standard errors of the reliability.
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