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F3A-GAN: Facial Flow for Face Animation with

Generative Adversarial Networks
Xintian Wu, Qihang Zhang, Yiming Wu, Huanyu Wang, Songyuan Li, Lingyun Sun, and Xi Li*

Abstract—Formulated as a conditional generation problem,
face animation aims at synthesizing continuous face images from
a single source image driven by a set of conditional face motion.
Previous works mainly model the face motion as conditions
with 1D or 2D representation (e.g., action units, emotion codes,
landmark), which often leads to low-quality results in some
complicated scenarios such as continuous generation and large-
pose transformation. To tackle this problem, the conditions are
supposed to meet two requirements, i.e., motion information
preserving and geometric continuity. To this end, we propose a
novel representation based on a 3D geometric flow, termed facial
flow, to represent the natural motion of the human face at any
pose. Compared with other previous conditions, the proposed
facial flow well controls the continuous changes to the face.
After that, in order to utilize the facial flow for face editing,
we build a synthesis framework generating continuous images
with conditional facial flows. To fully take advantage of the
motion information of facial flows, a hierarchical conditional
framework is designed to combine the extracted multi-scale
appearance features from images and motion features from flows
in a hierarchical manner. The framework then decodes multiple
fused features back to images progressively. Experimental results
demonstrate the effectiveness of our method compared to other
state-of-the-art methods.

Index Terms—Conditional generation, motion, continuity, fa-
cial flow, hierarchical conditional framework

I. INTRODUCTION

A
S an important and challenging problem, face animation

[1]–[5] aims at automatically synthesizing continuous

face images from a single source image. It is formulated as a

conditional generation problem that given a set of conditional

variables describing face motion (e.g., expression or pose),

the synthesis system is able to transform a source face image

to the corresponding target images. For different types of

conditions, this kind of condition-driven model has a wide

range of applications in virtual actors generation (landmark

[6], [7]), and talking face generation (audio, text [8]–[12])

Considering the pipeline of such a conditional generative

model for face animation, previous works mainly model the

face motion in shape or expression using different representa-

tion such as 2D landmark [3], [13]–[15], 1D action units [1],

[2] or emotion codes [16]–[18]. Despite their success in gener-

ating good results, some limitations still remain when adopting
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Fig. 1. Diagram of our proposed method. Given the source and target
image, we reconstruct their 3D face models and do interpolation to generate
the intermediate face models. The facial flows are constructed through a
subtraction operation on each pair of models. Then, the conditional synthesis
framework automatically generates continuous face images driven by the
continuous facial flows.

these conditions. Firstly, as mentioned above, conditions based

on emotion codes only model the discrete expression while

a natural face is supposed to lie in a continuous manifold.

Secondly, these conditions may not benefit some special poses

(e.g., a face profile) because 1D or 2D representation leads

to low-quality results including the representation accuracy

and geometric structure in such situations. As a result, the

synthesized images are still with artifacts or even irregular

shapes. Therefore, in order to deliver a continuous sequence

with more realistic effects, the conditions are supposed to meet

two factors. One is the motion information preserving, i.e.,

recording the realistic face motion, the other is the geometric

continuity, i.e., morphing the face continuously. To achieve

these two goals, an intuitive idea is to directly perform 3D

face modeling [19] due to the fact that human faces change

continuously in 3D space. In addition, modeling the geometry

is also very important to preserve the shape consistency when

morphing the face.

To this end, we propose a novel representation (see Fig. 1)

based on a 3D geometric flow to represent the natural motion

of the human face, namely facial flow. It is constructed based

on a 3D prior model 3DMM [20], which is introduced in our

work to reconstruct the 3D geometric information from a 2D
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Fig. 2. Illustration of using 2D landmarks and 1D action units (AUs) in profile
images. The 2D landmarks are represented as a 2D landmarks heatmap with
size of W ×H × 68 on 68 landmark points, where W and H are the width
and height of the images. The profile landmark heatmaps indicate that it is
difficult to distinguish between different facial features (e.g., mouth, nose, and
face outline). In (a), the results of AU values show that different expressions
have similar AU activations in the profile pose. In (b), the results indicate that
similar expressions corresponds to different AU activations.

face image through a linear transformation. The facial flow

maps the face shape from a 2D plane to a 3D surface and

is computed by storing the difference between two 3D face

shapes into a 3-channel map. Compared with existing methods

(see Fig. 2) in the literature, it is capable of better handling the

two above requirements (i.e., motion information preserving,

geometric continuity) in face animation. Firstly, by using 3D

face reconstruction techniques, we model the flow in 3D space

to preserve the face motion at any pose. Secondly, due to the

linear continuity of the 3DMM parameter space, the facial flow

well controls the continuous change to the face shape through

parameters interpolation.

After constructing the facial flow, there exists another prob-

lem: how to use the facial flow for image editing? To cope with

this problem, we build a conditional GAN-based framework

so that the source image can be guided by the facial flow

in the feature space. To fully take advantage of the driven

motion information from facial flow, we propose a hierarchical

conditional framework, which extracts the features from image

and flow branches separately. Then, it merges them at multiple

scales in a hierarchical manner to guarantee both the low-level

texture information and high-level semantic information in the

fused results. All the multi-scale features are decoded back to

images progressively.

We combine the two stages mentioned above as a workflow,

termed F3A-GAN, for face animation. It is capable of realizing

various face animation tasks such as continuous face genera-

tion, expression reenactment, pose reenactment, etc. Also, it

is worth mentioning that our method realizes the continuous

generation in a non-recursive way (see Fig. 1). We achieve

the one-to-one generation of subsequent images from the first

image to resist the error accumulation.

The contributions of this work can be summarized as

follows:

• We propose a brand-new representation — facial flow for

face animation. It is a dense geometry-aware map containing

3D motion information for natural face movement.

• We propose a hierarchical manipulation strategy in a condi-

tional GAN-based facial framework. It combines the multi-

scale features of images and flows together hierarchically

and decodes the features back to images progressively.

• F3A-GAN is capable of realizing various face animation

tasks and experimental results show our scheme outperforms

other synthesis methods in terms of both the visual quality

and the diversity of generation.

II. RELATED WORK

A. Conditional GANs in Face Manipulation

Face manipulation [16], [17], [21]–[28] is aimed at manip-

ulating a single face image to a target face image driven by

conditional motion information. Many early works [29]–[31]

use AAM [32] or 3DMM [20] to morph the face with artificial

motion. These methods usually lack realism of the images

because synthesis systems edit the face in high-dimensional

pixel space, which is difficult to achieve. Recently, GANs

[33]–[41] are widely used to generate fake images because of

their powerful generating ability. Therefore, many conditional

GAN-based methods [1], [2], [42], [43] have been widely

studied in this task, and are grouped into several categories

according to the types of conditions:

Firstly, Ding et al. [16] and Tang et al. [22] changed a

face image to target expression conditioned on an emotion

state. Choi et al. [17] proposed StarGAN to perform to-

image translation for multiple domains conditioned on fa-

cial semantic attributes, generating different faces in hair,

expression, gender, etc. Secondly, in order to address the

limitation of discrete representation used above, Pumarola

et al. [1] (GANimation) took advantage of AUs to generate

anatomically-aware expression in a continuous domain. Based

on it, Tripathy et al. [2] added pose parameters in conditions

for expression and pose reenactment. Thirdly, Qiao et al. [13]

and Kossaifi et al. [14] added geometric constraints to the

generative networks to maintain the face shape. Specifically,

they extracted the sparse landmark points of the target face and

transformed them into a spatial heatmap as a condition. These

methods are capable of generating face images under arbitrary

expression and pose but fail in some special cases such as face

profile. Also, transferring the landmark from another person

directly tends to output a deformed face.

B. Continuous Generation

Different from face manipulation, the face animation task

requires the animator not only to be able to generate faces of

arbitrary expression but also to ensure continuous generation.

In the following, we mainly depict several methods about the

latter, which can be roughly divided into two categories:

Firstly, continuous generation can be achieved through

a conditional generative network with a set of continuous

parameters as conditions. Among them, action units (AUs)

are widely used to model the anatomical face movements

of a human expression. They are anatomically related to

the contractions of specific facial muscles. Many existing

facial expression synthesis works [1], [2], [44] generate the

new faces of target expression through GANs with the input

concatenation of source face images and target AUs.

Secondly, recurrent neural networks (RNN) are incorporated

into generative networks for video generation because they

process the sequence data effectively. Tulyakov et al. [45]

proposed mocogan to generate a video clip by sequentially

generating video frames from decoupled content vectors and
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motion vectors. Songsri-in et al. [3] (MotionGAN) proposed

an LSTM-based generator and generated a face video from

a single face image with an LSTM block element-wisely

added to each frame generation. However, they are still not

conducive to large-scale face transformation. This is because

RNNs are weak in modeling long-term dependency. LSTM-

based methods do not alleviate this problem well.

C. 3D Face Reconstruction

The methods mentioned above learn an intrinsic repre-

sentation of the shape and appearance of the faces in 2D

space. Recently, 3D information is incorporated into deep

generative techniques for fine-grained face manipulation. Geng

et al. [46] took advantage of 3DMMs for face morphing and

utilized GANs to integrate the face into the final output image.

Ververas et al. [47] transformed an input face image into a new

one according to continuous values of a statistical blendshape

model of facial motion. It took advantage of the 3DMM

parameters as conditions for conditional synthesis framework.

Our method is similar to these but the difference is that we use

the 3D model as prior guidance for the generative networks

instead of fitting a large 3DMM parameter space based on a

large amount of data.

To extract the 3D information from 2D images, 3D face

reconstruction techniques are studied to reconstruct a face

from an image into a 3D form (or mesh). Blanz et al. [20]

proposed a linear parametric 3DMM to model the shape and

texture of 3D faces. It is learned from 3D scan of human

heads with principal component analysis and expressed as a

point cloud. Due to its linearity, a reconstructed model can be

morphed through controlling the parameters as well.

To fit the 3D model from an image, conventional methods

[48], [49] obtain the proper parameters by iteratively solving

the optimization problem. This process is relatively inefficient,

and not suitable for real-time 3D face reconstruction. Song

et al. [50] proposed a RBF network modeling the intrinsic

relationships between 3D models and 2D images to replace

the iterative operation. Recently, CNN-based models are used

to regress the 3DMM parameters due to their powerful fitting

ability. Yi et al. [51] trained a CNN supervised by the ground-

truth 3D annotations (e.g., parameters, 3D points), which are

expensive to collect. Tu et al. [52] proposed a 2D-assisted self-

supervised learning (2DASL) method that effectively estimates

the 3D face without any 3D labels. Besides, instead of trans-

forming the image to the parameter space, some works directly

learn a complete 3D facial structure from image pixels. [53]

performed a direct regression of a volumetric representation

of the 3D face shape while [54] proposed a UV position map

to record the position information of the 3D face.

III. APPROACH

In this section, we introduce the proposed F3A-GAN to

realize photo-realistic animation. Our model can be learned

through a two-stage training scheme. In Section III-A, we

explain how to estimate the facial flow between any paired

images with a CNN-based facial flow constructor. In Sec-

tion III-B, we introduce a hierarchical conditional framework

3DMM

끫殖끫毀
∆끫殖 = 끫殖끫毀 − 끫殖끫殴

… …

끫欆끫殆끫毀 + (1− 끫欆)끫殆끫毂 3DMM

… …

끫殖끫毂끫殖끫殴

끫殆끫毀 끫殆끫毂
끫歸끫毀 끫歸끫毂

Fig. 3. Illustration of the continuous facial flow generation. We reconstruct
the source and target 3D face model {Xs, Xt} from the corresponding input
paired images {Is, It}. Then, intermediate models are obtained by linear
interpolation of 3DMM parameters.

to manipulate a source face image with given facial flows. In

Section III-C, we describe the training settings of these two

stages.

A. Facial Flow Constructor

We propose a facial flow constructor to estimate the inter-

mediate continuous facial flows between a source Is and a

target It face image of the same identity for face animation.

Since the facial flows are generated in a one-to-one mapping

way, in the following, we first discuss how to estimate a single

facial flow and then extend it to continuous facial flows.

1) Single facial flow estimation: To estimate a facial flow f

between Is and It, we first reconstruct the source Xs and target

Xt face models of the corresponding face images through a

learnable CNN, named 3DMM regressor. Then, we record the

3D motion between Xt and Xt in a 2D spatial map.

In order to preserve the 3D geometric information, f is

represented as a 2D map recording the 3D motion in {x, y,

z} axis in {R, G, B} channel, respectively. We take advantage

of the 3DMM as a base model to fit a 3D face model from

a 2D face image of any expression and pose. In specific, a

morphable 3D face model can be formulated as:

X = s ∗R ∗ (X +Aidαid +Aexpαexp) + t, (1)

where X ∈ R
3N×1 is a 3D face model containing N ver-

tices. Each vertex represents its coordinates (x, y, z) in three-

dimensional space. X ∈ R
3N×1 is the mean shape of BFM

[55] template model. Aid ∈ R
3N×K is the identity base, usu-

ally extracted from the first K principal components of facial

scans with neutral expression and αid is the corresponding

identity parameter. Aexp ∈ R
3N×L is the expression base,
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Facial Flow Output

Fig. 4. Diagram of our hierarchical conditional framework, which is a two-stream network. In the image stream, Tenc and Tdec are combined as an auto-
encoder to extract the appearance features of the input image. In the flow stream, Tflow aims to extract the geometric motion information from facial flows
for driving manipulation.

usually extracted from the first L principal components of the

discrepancy between neutral and expressive facial scans, and

αexp is the corresponding expression parameter. R ∈ R
3×3

is the rotation matrix constructed from Euler angles r ∈ R
3.

t ∈ R
3 is the translation vector and s ∈ R represents the

scale scalar. The collection of all the model parameters is set

as P = {αid, αexp, r, t, s}. Through editing the coefficients in

P , a face model of any expression and pose can be obtained.

To align the 2D image with the 3D model, X is often projected

onto a 2D image plane through:

X2D = Pr ◦X, (2)

where, ◦ is the matrix multiplication, Pr is the orthographic

projection matrix

(

1 0 0
0 1 0

)

.

Once we construct the 3D face models {Xs, Xt} from the

source and target images {Is, It}, we can easily calculate the

difference Xs − Xt to represent the natural face motion in

3D space. However, all 3D points concatenated as a vector

is not feasible for CNN processing and the flattened shape

will lose the geometry. Therefore, we propose an image-like

representation, which is also represented as a 2D map to store

the information of this motion vector. In our settings, we use

three flows {fx, fy, fz} to save the motion along x,y,z axis,

respectively. For each point dis = {xi
s, y

i
s, z

i
s} ∈ Xs, and dit =

{xi
t, y

i
t, z

i
t} ∈ Xt, the motion along x, y, z axis will be ∆xi

st =
xi
s−xi

t, ∆yist = yis−yit and ∆zist = zis−zit . Then, we traverse

each 3D point and project them onto the 2D plane according to

the depth of z dimension. As Fig. 1(Top) shows, the 3D motion

{∆xst,∆yst,∆zst} is stored in three channels {R,G,B} of

the facial flow map. Note that if two 3D points overlap on

the x-y plane, we keep the one with larger depth value in z

dimension, which is visible to the observers.

2) Continuous facial flows generation: We convert the

continuous natural movement of the face into the interpolation

in 3DMM parameter space. Specifically, given Is and It, our

3DMM regressor is able to estimate their 3DMM parameters

Ps and Pt, respectively. As illustrated in Fig. 3, the interme-

diate parameters can be linearly interpolated between the Ps

and Pt well through Eq. (3) since the 3DMM parameter space

is a linear space.

Pm = θPs + (1− θ)Pt, (3)

where Pm is the parameters of any frame in the middle, θ is

the interpolation coefficient. Based on this, the intermediate

face model Xm can be reconstructed through Eq. (1) and the

3D motion is calculated as {∆xsm,∆ysm,∆zsm}. Then, the

intermediate facial flow is represented in the same way men-

tioned above. After estimating each facial flow individually,

we apply them to the source image for continuous generation.

This will be discussed in detail in the next subsection.

B. Hierarchical Conditional Framework

We seek to estimate a mapping function T : (Is, f) → It
that transfers a source face image to a target face image with

a conditional facial flow. In this section, we will describe the

network architecture of our hierarchical conditional framework

as follows:

1) Framework overview: Rethinking the pipeline of condi-

tional GANs, we claim that the generator implicitly fuses the

images and given conditions together to obtain new features.

Since it is difficult for the network to learn such a mapping

by directly concatenating images and driven flows as inputs,

we try to extract their features separately and fuse them

explicitly. As illustrated in Fig. 4, the framework is a two-

stream network, which consists of an image encoder Tenc
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Fig. 5. The architecture of our hierarchical manipulation module. The encoder
features hl

enc of input images are normalized with the generated scale γ and
bias β parameters from the features hl

flow
extracted from facial flows. Then,

the normalized features are multiplied by the decoder features hl
dec

. In order
to enhance the performance of the decoder, we follow [57] to generate the
output images progressively with a fade-in strategy. In specific, we perform
deconvolution and upsampling operations on hl

out at the same time to double
the resolution.

and an image decoder Tdec in the image stream, and a flow

driver Tflow in the flow stream. On the one hand, Tenc and

Tdec aim to learn the appearance representation of an RGB

image through self reconstruction. Given an input image, Tenc

extracts its multi-level features, and Tdec tries to decode them

back to itself. On the other hand, Tflow aims to learn the

geometric motion representation of the given facial flow. It

utilizes the extracted motion features to reenact the appearance

features of the source image through a manipulation module

hierarchically, which will be described in the following.

2) Hierarchical manipulation module: Tenc and Tflow ex-

tract features of different levels for the source image and

conditional flow. In order to fully integrate the semantic

information between different layers, we propose a hierar-

chical manipulation module embeddable in each layer and

transitionable across layers. Specifically, in each layer, the

appearance features henc from Tenc and motion features hflow

from Tflow of the same resolution are combined through the

spatially-adaptive normalization (SPADE) [56], which is able

to maintain the spatial (i.e., geometric) information and widely

used in style transfer. Then, inspired by [57], we transfer the

learned generative ability from the deeper layer to shallower

layer with a fade-in strategy. For example, given features of

the l-th layer, the normalized output can be expressed as:

hl
out = hl

dec · (γ(h
l
flow)

hl
enc − µ(hl

enc)

σ(hl
enc)

+ β(hl
flow)), (4)

where µ and σ are the learnable parameters of the instance

normalization, γ is the new generated scale parameters and β

is the new bias. We combine the appearance features of the

decoder together with element-wise multiplication. The output

image is then formulated as α · Convl−1(DeConv(hl
dec)) +

(1 − α) · Convl−1(Up(hl
dec)), where Conv, DeConv, Up

denote the convolution kernel, deconvolution kernel and linear

interpolation upsampling, respectively.

C. Training

Our model is learned through a two-stage training scheme.

In this section, we will describe the training settings of these

two stages in the following.

1) 3DMM Regressor training: Our goal is to train a CNN-

based 3DMM regressor to reconstruct the 3D face model of

each frame in a video dataset. However, obtaining an accurate

3DMM regressor requires a large amount of training faces with

3D annotations, which are unaffordable in the video dataset.

Training with a landmark consistency loss Llm [52] does not

perform well in continuous frames and easily suffers from a

problem of mode collapse.

To remedy the problem analyzed above, we propose a new

training scheme to deal with sparse representation. Specif-

ically, we introduce an image dataset with 3D annotations

to warm up the network training. As for the task of 3D

face reconstruction, we assume that conducting supervised

learning with image datasets is relatively easy to achieve

a good performance. Therefore, we first train our 3DMM

regressor with a labeled image dataset and then transfer it

to the unlabeled video dataset for self-supervised finetuning.

Such a warm-up setting provides a better start point for the

subsequent training.

Landmark loss Llm. The sparse landmark loss is utilized

in most of the CNN-based methods and is defined as

Llm = ||wlm · (X2D[:,L]− M̂)||1, (5)

where X2D is the projected face shape from an estimated 3D

face model X , L is the indices of the landmark points in

the 3D face model, M̂ is the ground-truth landmark points

(we also use superscript ∧ to indicate ground truth in the

following), wlm is the weighted coefficients over different

landmark points. We have increased the learning weights for

the features that are difficult to learn such as eyes and mouth.

Shape loss Lshp. Directly learning various parameters at

the same time will increase the training difficulty because the

entire 3DMM parameter space is complicated. Therefore, we

restrict the space by incorporating the ground-truth parameters.

To this end, we optimize the identity parameter and expression

parameter with Lshp, which is defined as

Lshp = ||Aidαid +Aexpαexp −Aidα̂id −Aexp ˆαexp||1. (6)

Transformation loss Ltr. In addition, we regress the

geometric transformation parameters {r, s, t} directly. Ltr is

defined as

Ltr = ||r − r̂||1 + ||s− ŝ||1 + ||t− t̂||1 (7)

In general, we train the 3DMM regressor with the following

combined loss. In the warm-up training process, we conduct

loss Lwarm for supervised pretraining and in the subsequent

training process, we conduct loss Lsub for self-supervised

finetuning. Specifically, they are defined as

Lwarm = Lshp + λ1Llm + λ2Ltr + λ3Lreg, (8)

Lsub = Llm + λ3Lreg, (9)

where λ’s are the weighting coefficients for different losses.

Lreg is a regularization loss that we add L1 regularization to
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Fig. 6. Qualitive comparison of continuous face generation by GANimation and MotionGAN. In these examples, we do interpolation on the corresponding
conditions between two images Is (first column) and It (second column) to generate the intermediate continuous images (from third column to the last
column).

regularize the identity and expression coefficients, which will

prevent reconstructing a deformed face.

2) Conditional Framework training: As introduced in Sec-

tion III-B, we follow the pipeline of conditional GANs and

propose a two-stream generator to manipulate a given face

image with a target condition. Similar to other training settings

of GANs, we adopt triplet data {Is, It, f} and a combined loss

in an adversarial manner to train our conditional framework.

Each loss will be described in detail as follows.

Weighted Pixel Loss Lwp. Generally, an auto-encoder is

optimized with a pixel-to-pixel loss for self-reconstruction. In

order to enable the image stream to be expression-aware for

face images, we adopt a weighted pixel loss to facilitate the

network to pay more attention to the local facial features like

eyes, nose, and mouth. We box out the facial feature according

to landmark points and add higher weights on the mask of

these areas. A weighted mask w is then multiplied by the

input image and the generated image. This loss is expressed

as

Lwp = ||w · (T (Is, f)− Ît||1, (10)

Adversarial loss Ladv . Adversarial loss is widely used in

generation tasks. In our setting, a PatchGAN discriminator D

is used to measure the difference in distribution between two

domains. Thus, the loss function can be expressed as

Ladv = D(Ît)−D(T (Is, f)), (11)

Perceptual loss Lperc. In order to keep the consistency of

Ît and T (Is, f), we use the perceptual feature loss to shorten

the discrepancy between these two in all layers. In addition,

this loss can speed up the training process as well as reduce

the blurring. Therefore, our perceptual loss is defined as

Lperc = ||Tenc(T (Is, f))− Tenc(Ît)||1, (12)

Total loss. The complete loss function is obtained as a

weighted combination of each loss defined above, which is

defined as

Ltot = Ladv + λ4Lwp + λ5Lperc. (13)
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X2Face
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X2Face

(a) Self-reenactment (b) Cross-reenactment

Fig. 7. Qualitative results of self-reenactment and cross-reenactment on Voxceleb2 dataset. For self (a) / cross (b) identity reenactment, we randomly select
few target images with the same / different identity as source image to drive the model generation. Each row indicates the generated images of the same
method.

IV. EXPERIMENTS

This section provides a thorough evaluation for our frame-

work. We first introduce the experimental setup in our method,

including datasets, evaluation metrics and compared models.

Then we compare our model against current competing tech-

niques in the task of face animation and demonstrate our

model’s ability to deal with any-pose transformation and self /

cross identity reenactment. Finally, we analyze our framework

by conducting ablation studies on our proposed facial flow and

network architectures. The implementation details and more

experimental results are shown in the supplemental material.

A. Experimental Setup

1) Dataset: We introduce three datasets used in our exper-

iments as follows.

300VW: We use 300VW dataset [58]–[60] for training and

testing on face animation task. It is a face video dataset

containing 114 videos with 104 people. All the frames in

videos are cropped according to the head area with a size of

128× 128. Each image is labeled with the coordinates of 68

landmark points. We preprocessed the dataset by filtering out

videos with poor image quality or a single expression, leaving

90 videos about 83 people in all. We randomly select 91000

paired images in the entire dataset for training and testing,

respectively. In qualitative experiments, we randomly sample

images in the whole dataset for manipulation.

300W-3D: Since there are no 3D annotations in 300VW

dataset, to improve the performance of constructing facial

flow, we introduce 300W-3D dataset. It is an image dataset

with 3D annotations of 300W [61]–[63] samples processed by

[64]. Specifically, each image in 300W-3D dataset is annotated

with 3DMM parameters including illumination, color, texture,

shape, expression, and pose parameters. To align it with

300VW dataset, we detected the faces and box them out with

a size of 128× 128. Then, we recalculated the translation and

scale parameters to align the 3D face model with 2D face

image.

Voxceleb2: In order to verify the effectiveness of our

method, we also conduct several experiments on a larger

dataset — Voxceleb2 [65]. It is a publicly available video

dataset containing more than 6000 celebrities extracted from

YouTube, one million voice clips utterances. To speed up

training, we only select 1000 identities for training and 119

identities for testing, each of which contains 10 videos for

training. In all, we select 840100 paired images in the training

set for training and 94466 paired images in the testing set for

testing.

2) Metrics: We conduct the experiments and evaluate our

method on the following metrics. To evaluate the quality of the

generated images, we use Mean Average Error (MAE), Mean

Square Error (MSE) measuring the image similarity, Structure

Similarity (SSIM) [66] measuring the luminance, contrast

and structure similarity, Fréchet-Inception Distance (FID) [67]
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TABLE I
QUANTITATIVE EVALUATION OF SELF-REENACTMENT AND CROSS-REENACTMENT ON VOXCELEB2 DATASET. UPWARD/DOWNWARD POINTING ARROWS

CORRESPOND TO METRICS THAT ARE BETTER WHEN THE VALUES ARE HIGHER/LOWER.

self-reenactment cross-reenactment

Method MSE ↓ PSNR ↑ SSIM ↑ FID ↓ CSIM ↑ PRMSE ↓ AUCON ↑ CSIM ↑

X2Face [25] 0.0116 21.0045 0.7641 22.3558 0.8988 5.0072 0.8527 0.8468

pix2pixHD [24] 0.0550 13.4783 0.4904 35.9628 0.6996 2.2493 0.8744 0.6130

Ours 0.0100 21.7062 0.7426 28.8662 0.9082 3.6960 0.8445 0.8450

TABLE II
QUANTITATIVE EVALUATION OF SELF-REENACTMENT ON 300VW

DATASET. UPWARD/DOWNWARD POINTING ARROWS CORRESPOND TO

METRICS THAT ARE BETTER WHEN THE VALUES ARE HIGHER/LOWER.

MAE ↓ MSE ↓ CSIM ↑ PRMSE ↓

GANimation 0.1923 0.0966 0.8992 6.6313
MotionGAN 0.1815 0.0889 0.9211 6.1409

Ours-flow 0.0165 0.0008 0.9821 0.7215

Ours-landmark 0.0171 0.0010 0.9801 0.7619
Ours-aus 0.0689 0.0139 0.8961 5.0906

Tos 0.0340 0.0035 0.9158 1.5368
Tnp 0.0329 0.0036 0.9561 1.1984
Tsl 0.0277 0.0025 0.9502 1.1495

measuring the perceptual realism, Peak Signal to Noise Ratio

(PSNR) measuring the signal energy error between generated

images and ground-truth images.

Under the scenario of cross-identity reenactment, we utilize

other metrics to evaluate the model performance since ground-

truth images are not provided. Cosine Similarity (SSIM) is

used to measure the identity preservation of the generated

images. It is calculated by the cosine distance between two

embedded vectors generated by the pre-trained face recogni-

tion model (VGGFace) [68] on input images and generated

images. Following [28], we compute PRMSE, the root mean

square error of the head pose to measure the pose error, and

AUCON, the ratio of identical action units to measure the

expression error between the driving and generated images.

Both the action units and head pose are estimated through

OpenFace toolkit [69].

3) Compared models: On the 300VW dataset we com-

pare our method against two current conditional-GAN based

methods with different conditions. GANimation [1]: it is

capable of generating a wide range of continuous emotions and

expressions for a given face image with action units as condi-

tions. MotionGAN [3]: given a set of landmarks heatmaps

of continuous frames as conditions, it takes advantage of

LSTMs to map such a series of landmarks to images. For a

fair comparison, we reproduce these two methods on 300VW

datasets.

On the Voxceleb2 dataset we compare our method against

two other system. X2Face [25]: it consists of an embedding

network for mapping the input face to an embedded face, and a

driving network for generating a sampler to map the embedded

face to the target face. We reused the released pre-trained

model on Voxceleb1 for evaluation. Pix2PixHD [44]: it learns

a mapping translating the input label map to the output face

TABLE III
METRICS DESCRIPTION.

Abbreviation Description

MAE/MSE measuring the image similarity between
PSNR measuring the image signal energy error
SSIM measuring the structure similarity
FID measuring the perceptual realism

CSIM measuring the identity preservation
PRMSE measuring the pose error
AUCON measuring the action units error

image with a coarse-to-fine generator. We follow [27] and set

the landmark heatmap as the input label map. Since no pre-

trained models on Voxceleb dataset are released, we trained

the model from scratch on Voxceleb2 dataset.

B. Continuous Generation

We compare our model against other methods on both

the 300VW and Voxceleb2 dataset for continuous generation.

Fig. 6 illustrates the results of 300VW dataset and more

results on Voxceleb2 dataset can be seen in Section II in the

supplemental material. Given any two face images {Is, It} of

the same identity, we verify the difference of these methods

by interpolating the intermediate sequence frames. Each row

indicates the generated continuous frames between the given

source face image and the target one.

It can be seen that our method outperforms the other two

on the quality results because the proposed facial flow has

dense geometric-aware characteristic and provides abundant

information for generating faces of any expression and pose.

Moreover, our method is able to generate continuous face

images performing changes on both expressions and poses

while maintaining the source identity relatively well. As for

the compared methods, on the one hand, GANimation cannot

output faces with pose changes since action units only model

the expression action of the human face. Additionally, data-

driven methods on action units recognition encountered a

performance bottleneck and thus the values of action units

extracted by some expressions are not accurate enough. This

leads to a fail case as shown in the first person in Fig. 6. On the

other hand, MotionGAN is capable of generating good results

on the neighbor frames but fails in large-pose transformation.

As illustrated in the last few columns of each second row,

the face pose is preserved but details on face expression are

missing.
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source target ours 끫殎끫毀끫毀 끫殎os끫殎np

Fig. 8. Visualization results of the manipulated output images based on
different architectural variants. We do ablation study on the architectural
variants of our proposed method. Here, Tnp represents the framework without
progressive generation, Tsl corresponds the framework only manipulates the
image in single layer, and Tos stands for the one-stream framework.

C. Self-Reenactment

In this subsection, we show the comparison results quali-

tatively and quantitatively under the self-reenactment setting

i.e., reenacting the input face using the driving face of same

identity. As shown in Fig. 7-(a), our method synthesizes more

accurate and realistic images. As for two compared methods,

X2Face is on par with ours but fails to transform well in large

pose (See the first and third image of the 1st row on the upper-

left part). Additionally, Pix2PixHD is able to transform the

pose and expression well but fails to keep the identity since

it has poor generalization ability for unseen identities. This

is due to that input of pix2pixHD is only the target sparse

landmark heatmap without any appearance information of the

source identity. More examples can be seen in Section II in

supplemental material.

Moreover, quantitative results on Voxceleb2 and 300VW

dataset can be seen in Table I-(left part) and Table II, re-

spectively. In Table I, we test the test set with five metrics,

MSE, PSNR, SSIM, FID, CSIM. It can be seen that our

method outperforms pix2pixHD on each metric and is on par

with X2Face. Although X2Face is slightly better than us in

FID and SSIM, it is prone to errors when performing pose

transformation. It could be the reason that X2Face transforms

pixels in image-level while ours drives the image with facial

flow in feature-level. Our method also outperforms it in MSE,

PSNR, CSIM in image quality estimation. In Table II, the

quantitative results also indicate that our model generate high-

quality images, and the high CSIM and low PRMSE values

indicate that our model is able to keep the identity and pose

relative well.

D. Cross-Reenactment

Another interesting aspect in face manipulation is the ability

to transfer the pose or expression of other identity to the

source one, named cross-reenactment. In fact, it is difficult

to get the ground-truth images of the source identity with

Facial flow

Landmark

Action Units

&

Euler Angle

Source Frame1 Frame2 Frame3 Frame4 Frame5 Frame6

Facial flow

Landmark

Action Units

&

Euler Angle

Fig. 9. Comparison results of conditions study. In these examples, we also
do interpolation on different conditions. For each source image, the first row
is animated with facial flow as conditions, the second row is with landmark,
and the third row is with action units. Images in the leftmost column are
the ground-truth source images, while images demonstrated from the second
column to the last column are synthesized by the hierarchical conditional
framework.

target expression from the driven identity. Previous works have

studied this as a cycle-consistency problem [1], [70], training

a cyclegan with unpaired data. However, this will increase a

lot of extra calculations in the training process because two

generators are needed in this setting. Our method only needs

a forward generator, which was trained with paired data of

the same identity. Although the generator has not seen the

cross-id data when training, we can also easily achieve the

cross-id reenactment due to the disentanglement of 3DMM

parameters. As introduced in Section III-A, 3DMM parameters

P consists of shape parameters αid, expression parameters

αexp, pose parameters r and other transformation parameters.

Given source and target images of different identities, when

αid is fixed, we can substitute αexp and r selectively from

the driven image to generate a new facial flow for the source

identity. Thus, a source face with generated facial flow can be

sent into F3A-GAN for cross identity reenactment.

Fig. 7-(b) and Table I-(right part) show the qualitative

and quantitative results of cross-reenactment on Voxceleb2

dataset, respectively. Whether in self-reenactment or cross-

reenactment, our method is able to transform the pose and

expression well. In Table I-(right part), X2Face keeps the

identity well but fails to keep the pose since it cannot adapt

to large pose transformation well. Pix2pixHD is able to

transform the pose and expression well but fail to maintain

the identity. Our method achieves the trade-off between pose

transformation and identity preservation.

Moreover, our method is able to reenact the input image

in a controllable manner, i.e., performing expression or pose

reenactment only. Please see the qualitative results in Section

II in supplemental material.
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source target gen
gen 

noise(std=0.01)
flow

flow+

noise(std=0.01)

gen 

noise(std=0.1)

flow+

noise(std=0.1)
prediction

prediction+

noise(std=0.01)

prediction+

noise(std=0.1)

Fig. 10. Qualitative results of facial flows with different degrees of noise on Voxceleb2 dataset. The 1st and 2nd column refers to the source and target
ground-truth image. The 3rd, 6th, 9th column refers to the prediction of 3D face landmarks with noise. Red: ground truth from [66]. White: predictions of
the 3DMM regressor model. The 4th, 7th, 10th column refers to the flow with noise. The 5th, 8th, 11th column refers to the generated images with noise.

E. Ablation Study

Our method consists of two main components, Facial Flow

Constructor and Hierarchical Conditional Framework. We

make ablation study on both of them including the comparison

on condition selection and architectural variants.

1) Conditions Study: Prior models such as action units and

landmark are widely used in face animation. We compare

our proposed facial flow with these two conditions under our

framework. To unify the input format, we spatially replicate

the action units vector (17-d) and then channel-wisely concate-

nate it with the replicated Euler angle vector (3-d) to form an

input tensor (H×W ×20). For landmarks, we follow [3] and

transform it to a spatial heatmap (H ×W × 1).

Compared results can be seen in Fig. 9. As it shows in

the third row, conditional frameworks based on action units

and Euler angles fail to generate the right face with the left

face as input. This might be the reason that the 3-d vector

is too sparse to model the whole pose transformation. For

the others, conditions based on geometric prior including

landmark heatmaps and our proposed facial flow adapt to the

large-pose transformation well under our proposed framework.

However, as highlighted in the red box, we observe that weird

eyes (shorter eye spacing) are generated in the second row of

the first example. This is because that linear interpolation in the

2D plane will produce landmarks that do not conform to the

real face movement, which will be solved in facial flow. Also,

it could be seen from the second example that our proposed

condition beats the others.

Moreover, we calculated the quantitative results on different

conditions in Table II. The results show that the proposed

facial flows outperform action units and landmarks in each

metrics since we model the dense geometric information in

facial flows for better representation. The proposed facial flows

are able to better maintain the pose and identity.

2) Architectural Variants: There exists some other archi-

tectural variants in our proposed framework. We compare the

TABLE IV
QUANTITATIVE RESULTS OF FACIAL FLOWS WITH DIFFERENT DEGREES OF

NOISE ON VOXCELEB2 DATASET. IT EVALUATES THE ROBUSTNESS OF THE

WHOLE SYSTEM BASED ON FACIAL FLOWS.

MAE↓ LMAE↓ PSNR↑ SSIM↑ CSIM↑

Ours 0.0571 0.0066 21.7062 0.7426 0.9082

noise (std=0.01) 0.0584 0.0092 21.5099 0.7333 0.9056

noise (std=0.1) 0.0880 0.0554 18.1745 0.5521 0.7988

quality results in Fig. 8 and analyze them one by one in the

following.

One-stream manipulation Tos. We adopt the concatenation

between input images and conditions directly and present

a one-stream transformer. In Tos, the convolutional filters

process the information from images and facial flows at the

same time, which tend to learn the average of these two

instead of their independent information. This will increase

the training difficulties and lead to artifacts. However, in our

method, a two-stream network structure can better extract the

dynamic and static features simultaneously.

Single layer manipulation Tsl. In order to verify the effec-

tiveness of the hierarchical manipulation strategy, we present a

compared manipulation framework that only manipulates the

features in the latent space. As the results show, single layer

manipulation is also capable of manipulating the source face

to the target one but fail to preserve the details in ears and

hair. This is because semantic features in high-level layers lack

detailed information.

Non-progressive manipulation Tnp. We also train the

network without progressive manipulation. The network output

the final image of 128 × 128 size directly. As shown in the

fourth column in Fig. 8, the framework without progressive

strategy outputs images of accurate expression and pose but

lower quality.

Moreover, we calculated the quantitative results on different
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Fig. 11. Visualization results of the generated output images with facial
flow components along different axis. We named the facial flow components
along the x, y, z axis in the three-dimensional space x-flow, y-flow, z-flow,
respectively. Every three rows correspond to a sample. The first row shows
the changes of x-flow while the second row is for y-flow. The third row shows
our synthesized images generated by the conditional framework taking facial
flows as conditions.

model architectures in Table II. The lower MAE and MSE

metrics illustrate that the two-stream and progressive training

strategies of our method enables the model to generate high-

quality images.

F. Analyzing Facial Flow

In this subsection, we analyze the smoothness and continuity

of the proposed facial flow qualitatively, and estimate its

impact on the whole system. Firstly, since the expression

and pose changes are finally reflected in the 2D image,

we visualize the flow map in x, y axis. As shown in the

first example in Fig. 11, the man is performing his head’s

movement from left to right, so his most motion happens in

x axis. We can observe the obvious bright pattern in x-flow

picture indicating large motion in this axis. Contrarily, the

woman in the second sample keeps her head fixed so little

motion can be seen from the x-flow picture. While she is

opening her mouth, we can observe a bright pattern in her lips

area in y-flow picture. Upon her lips is darker than the mean

color while below shallower which indicated the separation of

two lips. Our facial flow can represent the motion information

in high fidelity and guarantee the synthesized results with great

geometrical accuracy.

Secondly, we conduct noise analysis on the 3DMM parame-

ter regressor model. Specifically, we perform different degrees

of noise i.e., gaussian noise with std=0.01 and std=0.1, on the

parameters extracted from 3DMM regressor model and show

the corresponding results of the whole system in Table IV

and Fig. 10. As shown in Fig. 10, when the extracted facial

flow describes the expression and pose of the target image

accurately, the generated image is consistent with the target

one (See the 3rd-5th columns). When adding noise on the

3DMM parameters, the expression and pose information in

facial flow will be distorted, and it will cause the system to

generate images with inconsistent goals. The impact of adding

different degrees of noise is listed in Table IV. The generated

images deviate gradually away from the ground truth as added

noise increases.

V. CONCLUSION

In this paper, we propose a two-stage framework — F3A-

GAN for face animation. F3A-GAN consists of two main

components: 1) facial flow constructor for estimating a facial

flow between a source and a target face image; 2) hierarchical

conditional framework combining the facial flow and source

image for target image generation. The facial flow inte-

grates two superior factors, i.e., natural motion and geometric

continuity into a spatial map. The hierarchical conditional

framework combines the appearance features in the image

stream and motion features in the flow stream hierarchically

and outputs the images progressively. With the linearity and

disentanglement of our facial flow, the framework is capable of

synthesizing continuous images well and controlling the pose

or expression reenactment. Experimental results show that our

method outperforms other synthesis methods in terms of both

the visual quality and the diversity of generation.

ACKNOWLEDGEMENT

The authors would like to thank Bin Li for his valuable

suggestions.

REFERENCES

[1] A. Pumarola, A. Agudo, A. M. Martinez, A. Sanfeliu, and F. Moreno-
Noguer, “Ganimation: One-shot anatomically consistent facial anima-
tion,” Int. J. Comput. Vis., vol. 128, no. 3, pp. 698–713, 2020.

[2] S. Tripathy, J. Kannala, and E. Rahtu, “Icface: Interpretable and con-
trollable face reenactment using gans,” in Proc. WACV, pp. 3385–3394,
2020.

[3] K. Songsri-in and S. Zafeiriou, “Face video generation from a single
image and landmarks,” arXiv preprint arXiv:1904.11521, 2019.

[4] J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt, and M. Nießner,
“Face2face: Real-time face capture and reenactment of rgb videos,” in
Proc. CVPR, pp. 2387–2395, 2016.

[5] A. Siarohin, S. Lathuilière, S. Tulyakov, E. Ricci, and N. Sebe, “First
order motion model for image animation,” in Proc. NeurIPS, pp. 7137–
7147, 2019.

[6] R. Wu, X. Gu, X. Tao, X. Shen, Y.-W. Tai, and J. Jia, “Landmark assisted
cyclegan for cartoon face generation,” arXiv preprint arXiv:1907.01424,
2019.

[7] S. T. Ho, V.-T. Nguyen, and T. D. Ngo, “Interpolation based anime face
style transfer,” in Proc. MAPR, pp. 1–6, IEEE, 2020.

[8] L. Chen, R. K. Maddox, Z. Duan, and C. Xu, “Hierarchical cross-modal
talking face generation with dynamic pixel-wise loss,” in Proc. CVPR,
pp. 7832–7841, 2019.

[9] H. Zhou, Y. Liu, Z. Liu, P. Luo, and X. Wang, “Talking face generation
by adversarially disentangled audio-visual representation,” in Proc.

AAAI, vol. 33, pp. 9299–9306, 2019.
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Supplementary Material:
“F3A-GAN: Facial Flow for Face Animation with Generative

Adversarial Networks”

Xintian Wu, Qihang Zhang, Yiming Wu, Huanyu Wang, Songyuan Li, Lingyun Sun and Xi Li

I. IMPLEMENTAION DETAILS

The network training in our method is a two-stage learning scheme. In this section, we will describe the architectural and

training details of the networks in the following.

A. 3DMM Regressor

We train a CNN-based 3DMM regressor to obtain the 3DMM parameters of input images and then fit the 3D face models

with these regressed parameters. We extend the encoder in PRNet [54] with two fully connected layers to predict 3DMM

parameters because we need to generate various facial flows through manipulating the 3DMM parameters.

We train such a CNN regressor in a semi-supervised manner with labeled image dataset (300W-3D) and unlabeled video

datasets (300VW / voxceleb2). To specifically implement the training process, we train the network for 20 epochs, using Adam

optimizer with a learning rate of 0.0001, beta1 0.9, beta2 0.999 and batch size 256. In the loss Llm, we increased the weight

mask by 10 times in the mouth area and 5 times in the eyes area. The super parameters λ1, λ2, λ3 are set to be 10, 1, 1e-3.

B. Conditional Framework

The hierarchical conditional framework consists of an encoder Tenc and decoder Tdec in the image stream, and a flow

driver Tflow in the flow stream. The Tenc and Tdec are combined as an auto-encoder manner. We mainly made the following

modifications to the traditional auto-encoder structure. Firstly, we replace the pooling layers with stride convolutional layers

in Tenc and utilize stride deconvolutional layers in Tdec for feature resolution doubling because the pooling layers will cause

CNNs to lose translation invariance. Secondly, the encoder structure in Tflow is similar to that in Tenc but with fewer channels.

Thirdly, in order to ensure the independence of a single image transformation, all the Batch Normalization layers are replaced

by the Instance Normalization layers because the latter only performs normalization operations on a single image. Last, we

set PReLU as the activation layers to improve training stability.

Both the generator and the discriminator were trained progressively with 40 epochs. For other settings, we used an Adam

optimizer with learning rate 1e-4, beta1 0.5, beta2 0.999, and batch size was set as 64. In order to allow the discriminator to

be more fully trained for metric learning, every 2 optimization steps of the discriminator we performed a single optimization

step of the generator. The weight coefficients for Ltot were set as λ4 = 100, and λ5 = 10.

II. QUALITATIVE RESULTS ON GENERATION

In this section, we show more results in three test scenarios, continuous image generation , self and cross identity reenactment

and controllable reenactment. Fig. S-1 illustrates more examples of continuous generation through our method. The results

show that our method is able to anime the source image for generating continuous images smoothly. Fig. S-3 illustrates more

examples of self and cross identity reenactment through our method.

Moreover, we also report the qualitative results in controllable reenactment in Fig. S-2. It demonstrates multiple manipulation

outputs controlled by expression or pose only. The results reveal the controllable ability of our method. For instance, in

expression reenactment, although the driven faces perform different poses from the source one, they only transfer the expression

successfully while maintaining the pose well, and vice versa.
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source target frame1 frame2 frame3 frame4 frame5 frame6 frame7 frame8

Fig. S-1: Qualitive results of our method on continuous face generation. In these examples, we do interpolation on the

corresponding conditions between two images Is (first column) and It (second column) to generate the intermediate continuous

images (from third column to the last column).

(a)  Expression Reenactment

Source

Image

Driving

Image

(b)  Pose Reenactment

Source

Image

Driving

Image

Fig. S-2: Qualitative results of our proposed methods in controllable face reenactment on 300VW dataset. (a) illustrates

expression reenactment for various source image (first column) and driving image (first row). (b) illustrates the pose reenactment.
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(a) Self-reenactment (b) Cross-reenactment
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Fig. S-3: Qualitative results of self-reenactment and cross-reenactment on Voxceleb2 dataset. For self (a) / cross (b) identity

reenactment, we randomly select few target images with the same / different identity as source image to drive the model

generation. Each row indicates the generated images of the same method.
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III. GOOD AND BAD CASES

Finally, we push the limits of our framework and discuss the model limitations. We demonstrate both the good cases (top-

rows) and bad cases (bottom-rows) in Fig. S-4. In good cases, the generator is able to output the translation results with

driven expression and pose well. For the first row in Fig. S-4-top, although the 3D face model does not model the glasses, the

generator can imagine the correct position of the glasses. For the second row, even in the case large-pose transformation, the

output result seems to be transformed correctly. For the third row, it can also transfer the expression and pose from different

identity. In bad cases, we analyze the limitations of our framework. Since all the 3D scans for 3DMM are with eyes open, it

is difficult for a 3DMM to fit a face with eyes closed. As shown in the first and second row in Fig. S-4-bottom, the generator

cannot generate images with eyeball moving and eyes closing. In addition, there still exists an overfitting problem that in some

cases, the method cannot reenact well. For example, a poor output is demonstrated in the third row. In fact, the girl in the

video hardly rotates her head and this leads to many redundant training pairs. We will try to solve this problem by introducing

few-shot learning in future study.

Fig. S-4: Good and bad cases. Cases on top of the dotted line are good cases while bellow are bad cases. In all cases, from

left to right, we represent the source image Is, the target image It, the reconstructed source 3D face model Xs, the target

model Xt, the facial flow f and the generated output T (Is, f).


