

1 **Activated STING in the thymus alters T cell development and selection leading to autoimmunity**

2 **Authors:** Zimu Deng¹, Christopher S. Law¹, Santosh Kurra¹, Noa Simchoni¹, Anthony K. Shum^{1,2*}

3 **Affiliations:**

4 ¹Department of Medicine, University of California San Francisco, San Francisco, CA 94143

5 ²Cardiovascular Research Institute, University of California San Francisco, CA 94158

6 *Corresponding author. Email: anthony.shum@ucsf.edu

7 **Abstract:**

8 Classifying systemic inflammatory disorders as autoinflammatory or autoimmune provides insight into
9 disease pathogenesis and whether treatment should target innate molecules and their signaling
10 pathways or the adaptive immune response. COPA syndrome is a monogenic disorder of immune
11 dysregulation that leads to interstitial lung disease and high-titer autoantibodies. Studies show
12 constitutive activation of the innate immune molecule STING is centrally involved in disease. However,
13 the mechanisms by which STING results in loss of T cell tolerance and autoimmunity in COPA syndrome
14 or more common autoimmune diseases is not understood. Using *Copa*^{E241K/+} mice, we uncovered a
15 functional role for STING in the thymus. Single cell data of human thymus demonstrates STING is highly
16 expressed in medullary thymic epithelial cells (mTECs) involved in processing and presenting self-
17 antigens to thymocytes. In *Copa*^{E241K/+} mice, activated STING in mTECs triggered interferon signaling,
18 impaired macroautophagy and caused a defect in negative selection of T cells. Wild-type mice given a
19 systemic STING agonist phenocopied the selection defect and showed enhanced thymic escape of a T
20 cell clone targeting a self-antigen also expressed in melanoma. Our work demonstrates STING activation
21 in TECs shapes the T cell repertoire and contributes to autoimmunity, findings important for settings that
22 activate thymic STING.

23

24

25 **Summary:** Activation of STING in thymic epithelial cells shifts the T cell repertoire to promote
26 autoimmunity providing a new mechanistic link between innate and adaptive immunity.

31 **Introduction:**

32 The use of genetic sequencing to study monogenic inborn errors of immunity (IEI) has allowed
33 researchers to pinpoint specific molecular pathways defective in disease. These insights have enabled
34 the classification of immunological disorders into autoimmune and autoinflammatory diseases,
35 depending on whether the adaptive or innate arm of the immune system is dysregulated, respectively. In
36 practice, these disorders, as well as more common conditions with complex genetics such as rheumatoid
37 arthritis or systemic lupus erythematosus, exist on a spectrum between autoimmunity and
38 autoinflammation and many share features of both. Further investigation is needed to unravel the specific
39 mechanisms by which overactivation of the innate immune system in autoinflammatory conditions
40 reprograms the adaptive response to drive autoimmune disease (1).

41 COPA syndrome is a monogenic disorder of immune dysregulation that presents with interstitial
42 lung disease and high-titer autoantibodies (2). Patients may also have pulmonary hemorrhage, renal
43 disease and inflammation of small and large joints. Treatment of COPA syndrome involves high dose
44 immunosuppression which can decrease episodes of life-threatening alveolar hemorrhage and severity
45 of other clinical manifestations (3), although some patients develop end-stage pulmonary fibrosis that is
46 refractory to therapy and requires lung transplantation (4).

47 To define the mechanisms of COPA syndrome, we recently established a mouse model by
48 generating *Copa*^{E241K/+} knock-in mice that express one of the same *Copa* missense mutations as patients
49 (5). *Copa*^{E241K/+} mice spontaneously developed clinical and immunologic features of patients, including
50 interstitial lung disease and increased levels of activated, cytokine-secreting T cells. Bone marrow
51 chimera and thymic transplant experiments showed that expression of mutant COPA in the thymic stroma
52 was sufficient to cause a defect in negative selection of CD4⁺ T cells. Adoptive transfer of T cells
53 harvested from *Copa*^{E241K/+} mice into immunodeficient animals caused organ autoimmunity. Our data
54 suggested that a key step in the initiation of disease in COPA syndrome is a breakdown in central
55 tolerance. However, the mechanisms by which mutant COPA might lead to impaired thymic tolerance
56 remain unknown (5).

57 COPA is one of seven subunits of coat protein complex I (COPI) that mediates retrograde
58 movement of proteins from the Golgi apparatus to the endoplasmic reticulum (ER). Pathogenic missense
59 mutations that disrupt the WD40 domain of COPA impair the binding and sorting of dilysine-tagged client
60 proteins targeted for retrieval to the ER in COPI vesicles (2). We and others recently found that mutant
61 COPA causes mis-trafficking of the innate immune adapter molecule STING. STING is a signaling
62 receptor protein in the cytosolic DNA sensing pathway of cells (6–8). STING is activated by the second
63 messenger cyclic GAMP (cGAMP), a ligand generated by the enzyme cyclic GMP-AMP synthase (cGAS)
64 after it binds to double stranded DNA. Upon binding cGAMP or other cyclic dinucleotides, STING traffics
65 to the ER-Golgi intermediate compartment (ERGIC) and Golgi where it activates the kinase TBK1 to
66 induce type I interferons and other inflammatory cytokines. In COPA syndrome, defective retrieval of
67 STING by mutant COPA results in the accumulation of STING on the Golgi and persistent STING
68 signaling (6, 9, 10).

69 Although aberrant STING activation has been linked to several autoimmune diseases including
70 more common disorders such as rheumatoid arthritis and systemic lupus erythematosus (SLE) (11, 12),
71 the specific mechanisms by which STING leads to a loss of self-tolerance and autoreactive T cell
72 responses is not well understood. Similar to SLE, peripheral blood mononuclear cells from COPA
73 syndrome subjects exhibit a markedly elevated type I interferon stimulated gene (ISG) signature (13).
74 *Copa*^{E241K/+} mice phenocopy the type I interferon (IFN) activation observed in patients, not only in immune
75 cells, but also in the thymic epithelium (6). Remarkably, all the abnormal T cell phenotypes and interferon
76 signaling are completely reversed after crossing *Copa*^{E241K/+} mice to STING-deficient *Goldenticket* mice
77 (*Sting*^{gt/gt}). Taken together, our data suggests STING may have a functional role in the thymus that
78 predisposes to autoimmunity in COPA syndrome. In this study, we hypothesized that activation of STING
79 in the thymic epithelium leads to a break in self-tolerance by directly altering T cell development and
80 selection.

81 **Results:**

82 **Activated STING in thymic stroma of *Copa*^{E241K/+} mice upregulates interferons**

83 To assess whether STING has a functional role in the thymic stroma of *Copa*^{E241K/+} mice that
84 influences the development and selection of autoreactive T cells, we first sought to determine whether
85 we could detect activation of STING protein in TECs. We performed western blots of enriched TEC cell
86 populations and assayed for phosphorylated STING (pSTING). We found a significant increase in
87 pSTING in TECs of *Copa*^{E241K/+} mice in comparison to wild-type mice (**Fig. 1A**) and used confocal
88 microscopy to confirm that mTECs in *Copa*^{E241K/+} mice had evidence of pSTING (**Fig. 1B**). Consistent
89 with these results, we had shown previously that bulk RNA sequencing of sorted TEC populations from
90 *Copa*^{E241K/+} mice have an increase in *ifnb1* transcript levels, particularly in MHC-II^{high}CD80^{high} medullary
91 thymic epithelial cells (mTEC^{high}) (6). We performed deeper analysis of mTEC^{high} cell bulk RNA
92 sequencing data to determine whether other signaling outputs of STING were upregulated. Interestingly,
93 although *ifnb1* transcript was elevated in *Copa*^{E241K/+} mice, the cytokines *il6* and *tnf* that are downstream
94 of NF- κ B signaling were not (**Fig. 1C**). Because activated STING is also associated with cellular
95 senescence (14) and apoptosis (15), we examined tissue architecture of thymi by confocal microscopy
96 to assess whether there was evidence of thymic involution. Immunofluorescence staining with KRT5 and
97 KRT8 cell surface markers revealed that *Copa*^{E241K/+} mice appeared to have normal size and organization
98 of the cortical and medullary thymic epithelium (16) (**Fig. 1D**). Furthermore, the thymi from *Copa*^{E241K/+}
99 mice had normal medullary and cortical thymic epithelial cell (mTEC and cTEC) numbers, suggesting an
100 absence of an increase in cell death (**Fig. 1E**). Thus, constitutive activation of STING in thymic epithelial
101 cells appears to cause upregulation of IFNs but other STING-associated signaling outputs including NF-
102 κ B activation and cell death did not appear to be affected. These data align with prior work showing that
103 there are context (17) and cell-type specific effects of STING that are partially influenced by signal
104 strength (18).

105 ***Activated STING in thymic stroma increases post-selection thymocytes***

106 Having found that STING is activated in the thymic epithelium of *Copa*^{E241K/+} mice, we next wanted
107 to assess how STING influenced thymocyte development. As in our previous study (5), we observed that
108 *Copa*^{E241K/+} mice have an increase in single positive (SP) thymocytes (**Supplementary Fig. 1A**) and post-
109 selection thymocytes (**Supplementary Fig. 1B**). To assess whether activated STING triggered these

110 changes, we examined STING-deficient *Copa*^{E241K/+} mice (*Copa*^{E241/+} × *Sting*^{1gt/gt} mice) and found that the
111 increase in the thymocyte populations was completely reversed (**Supplementary Fig. 1A-B**). We next
112 used bone marrow chimeras to determine whether activated STING in the radioresistant stromal
113 compartment or the hematopoietic compartment caused the changes to the thymocyte populations,
114 recognizing that STING is expressed not only in T cells, but also other thymic antigen presenting cells
115 involved in selection (19, 20). We transplanted wild-type bone marrow into irradiated *Copa*^{E241K/+} mice
116 and found an increase in SP (**Fig. 2A**) and post-selection thymocytes (**Fig. 2B**) similar to unmanipulated
117 *Copa*^{E241K/+} mice. In contrast, the alterations to the thymocyte populations were reversed when wild-type
118 bone marrow was transplanted into irradiated *Copa*^{E241/+} × *Sting*^{1gt/gt} mice (**Fig. 2A-B**), suggesting that
119 STING exerts its influence on thymocyte populations from within the thymic stroma.

120 Having identified a role for STING in TECs, we next wanted to examine how its effect on interferon
121 signaling influenced thymocyte maturation. Our prior work suggested that higher type I IFN levels in
122 thymic epithelial cells of *Copa*^{E241K/+} mice imprints thymocytes with elevated interferon stimulated genes
123 (ISGs) and promotes an expansion of late-stage SP cells (6). To assess whether thymic epithelial STING
124 mediates these changes in *Copa*^{E241K/+} mice, we again examined bone marrow chimeras for reconstituted
125 thymocyte populations. First, we found that STING in thymic stromal cells of *Copa*^{E241K/+} mice
126 (**Supplementary Fig. 1C**) upregulated ISGs in thymocytes. We then used a flow cytometry staining
127 strategy that subsets increasingly mature SP cells into semi-mature (SM), mature 1 (M1), and mature 2
128 (M2) populations (21) (**Supplementary Fig. 1D**) Consistent with the results from above, we found that
129 loss of STING in the thymic stroma was able to reverse the expansion of M2 cells in the *Copa*^{E241K/+}
130 thymus (**Fig. 2C, Supplementary Fig. 1E**). Taken together, these data establish that chronic STING
131 signaling in thymic epithelial cells results in an increase in post-selection SP thymocytes and promotes
132 the expansion of late-stage SP thymocytes.

133 To dissect out how STING-mediated type I IFN signaling altered thymocyte development, we next
134 performed bone marrow chimeras using interferon receptor-deficient mice (*Ifnar*^{-/-}). We transferred bone
135 marrow from *Ifnar*^{-/-} mice into irradiated wild-type or *Copa*^{E241K/+} hosts. Loss of IFNAR on thymocytes
136 completely blunted the upregulation of ISGs caused by the *Copa*^{E241K/+} thymic stroma (**Supplementary**

137 **Fig. 2A**). However, the expansion of post-selection SP thymocytes was not fully rescued by IFNAR
138 deficiency, suggesting that chronic STING signaling altered thymocyte development through additional
139 mechanisms (**Supplementary Fig. 2B-C**). Although a growing body of work indicates transient STING
140 activation induces non-canonical autophagy (22, 23), the role of STING on autophagic function in TECs
141 has not been explored. Based on our observations in prior work (2, 5), we speculated that chronic STING
142 activation in TECs might actually impair macroautophagy (hereafter autophagy), a cellular process critical
143 for processing and presenting self-peptides to thymocytes, particularly during negative selection (24). We
144 reasoned that if persistent STING activation in *Copa*^{E241K/+} mice did indeed disrupt autophagic function in
145 TECs, this might account for the increase in post-selection SP thymocytes that persisted despite loss of
146 IFNAR on thymocytes.

147 **Chronic STING signaling in TECs impairs autophagy**

148 To investigate the role of chronic STING activation on autophagy in our model, we crossed
149 *Copa*^{E241K/+} mice to GFP-LC3 reporter mice (25) and measured GFP-LC3II⁺ by flow cytometry in TECs.
150 Interestingly, mTEC^{high} cells in *Copa*^{E241K/+} mice had a striking increase in the percentage of cells
151 expressing autophagosome-associated GFP-LC3II (**Fig. 3A**). To determine whether the increase in
152 autophagosomes reflected enhanced autophagy initiation or impaired autophagic flux, we expressed
153 wild-type and E241K mutant COPA in HEK293T cells that stably express STING. We cultured the cells
154 with and without bafilomycin A (BafA) which inhibits autophagosome/lysosome fusion (26). In cells
155 expressing wild-type COPA we observed an expected increase in LC3II levels after treatment with BafA.
156 In cells expressing E241K mutant COPA, however, we observed higher levels of LC3II at baseline that
157 did not increase in response to BafA treatment, consistent with impaired autophagic flux (**Fig. 3B**).

158 To evaluate autophagic function *in vivo*, we crossed *Copa*^{E241/+} mice with CAG-RFP-EGFP-LC3
159 tandem reporter mice so that we could quantitate autophagic flux in TECs by flow cytometry (27, 28).
160 Because EGFP is more sensitive than RFP to the acidic environment of autolysosomes, cells with higher
161 flux have less EGFP and thus an increased RFP/GFP ratio (**Fig. 3C-D**). Consistent with our data above,
162 *Copa*^{E241/+} mTEC^{high} cells had a lower RFP/GFP ratio than wild-type mTEC^{high} cells, indicating impaired
163 autophagic flux. In addition, the RFP/GFP ratio returned to wildtype levels in STING-deficient

164 *Copa*^{E241/+}/*Sting1*^{gt/gt} mice (**Fig. 3C-D**). Collectively, these findings indicate that chronic STING activation
165 impairs autophagic flux which may in turn alter the delivery of endogenous self-peptides to developing T
166 cells.

167 **Chronic STING activation in mTECs impairs T cell selection and alters the T cell repertoire**

168 Having found that chronic STING activation impaired autophagic flux in mTECs of *Copa*^{E241/+} mice,
169 we next wanted to examine the impact of this on repertoire selection of T cells in our model. Autophagy
170 in mTECs facilitates the loading of self-peptides onto MHC class II molecules for presentation to
171 thymocytes auditioning for selection (20, 24). To study this, we employed the RiP-mOVA/OT-II system to
172 study negative selection of T cells. RiP-mOVA mice express membrane bound ovalbumin (mOVA) as a
173 neo-self-antigen within mTECs and OT-II cells have a T cell receptor (TCR) specific for ovalbumin
174 peptide. Normally, when OT-II cells traffic through the thymus and encounter ova peptide presented by
175 MHC-II on mTECs, they undergo clonal deletion and die (29).

176 We transplanted bone marrow from OT-II mice into RiP-mOVA mice bred onto the *Copa*^{E241K/+},
177 *Copa*^{+/+}/*Sting1*^{gt/gt} and *Copa*^{E241K/+}/*Sting1*^{gt/gt} genetic backgrounds and analyzed clonal deletion of OT-II
178 thymocytes. In *Copa*^{E241K/+} mice, we found a defect in negative selection of CD4 T cells compared to wild-
179 type mice, characterized by an increase OT-II CD4 SP thymocytes (**Fig. 4A-B**). Remarkably, loss of
180 STING in *Copa*^{E241K/+}/*Sting1*^{gt/gt} mice restored the percentages of CD4SPs to levels comparable to wild-
181 type mice (**Fig. 4A-B**). We evaluated clonotypic CD4 SP cells for expression of cell surface CD5 and
182 intracellular Nur77, an immediate early gene rapidly up-regulated by TCR signaling (30). In OT-II cells
183 from *Copa*^{E241/+} mice, we found that CD5 and Nur77 were significantly lower than in both wild-type and
184 *Copa*^{E241K/+}/*Sting1*^{gt/gt} mice (**Fig. 4C, Supplementary Fig. 3A**). Because V β 5 and V α 2 expression
185 remained intact (**Fig. 4B**), this suggested the cells did not engage their TCR with peptide-MHC-II because
186 impaired autophagy in mTECs disrupted the proper processing and presentation of peptide antigen,
187 which overall lead to an increase in post-selection SP thymocytes that escaped negative selection.

188 To determine whether the defect in selection we observed was limited only to mOVA and OT-II
189 cells or could be applied more broadly, we first assessed the CD5 level on polyclonal SP thymocytes and
190 found SP thymocytes in *Copa*^{E241K/+} mice have a modest but significant drop in CD5 on SP cells

191 (Supplementary Fig. 3B), suggesting the selection of T cells across a broad range of specificities might
192 be affected. Next, we compared TCRV β chain profiles in WT and *Copa*^{E241K/+} mice and found a shift in
193 the TCRV β repertoire of CD4 SP and CD8 SP thymocytes in *Copa*^{E241K/+} mice, which were reversed in
194 *Copa*^{E241K/+}/*Sting1*^{gt/gt} mice (Supplementary Fig. 4C). Taken together, our findings suggest that chronic
195 STING activation causes a defect in negative selection of T cells and an overall shift in the immune cell
196 repertoire.

197 ***A systemic STING agonist increases autoreactive T cells in the thymus***

198 Having found that constitutive STING activation in thymic epithelial cells alters thymocyte
199 development and selection, we wondered if our findings might be applied more broadly outside the
200 context of the COPA syndrome model. Specifically, we sought to examine whether activation of STING
201 in the thymic stroma using a systemic STING agonist developed for clinical use (for instance, cancer
202 immunotherapy) would phenocopy our findings and promote the output of autoreactive T cell clones. To
203 study this, we turned to TRP-1 TCR Tg mice, an MHCII-restricted mouse model in which CD4 $^{+}$ T cells
204 recognize an epitope of the endogenous tyrosinase-related protein 1 (TRP-1) (31). TRP-1 protein is
205 expressed as a melanocyte self-antigen in medullary thymic epithelial cells and also in melanoma tumors.
206 Expression of TRP-1 in mTECs results in the deletion of TRP-1 specific T cells in the thymus and prevents
207 their escape into peripheral lymphoid organs (16, 32). Because our data suggested that activation of
208 STING in mTECs leads to a defect in negative selection, we set out to study whether systemic delivery
209 of a STING agonist would disrupt processing and presentation of the TRP-1 self-antigen to developing
210 thymocytes. To assess this, we treated TRP-1 TCR Tg mice (on a *Rag* $^{-/-}$ background) with the recently
211 reported diABZI STING agonist (33) every other day for 2 weeks (Supplementary Fig. 4A). After a brief
212 washout period, we assessed the thymus for the selection of TRP-1 specific T cells. In mice treated with
213 the diABZI STING agonist, we found a significant increase in the percentages of CD3 $^{+}$ V β 14 $^{+}$ T cells in
214 comparison to control mice treated with vehicle alone (Fig. 5A). An examination of CD3 $^{+}$ V β 14 $^{+}$ signaled
215 thymocytes showed significantly lower levels of cleaved caspase-3 in mice receiving the STING agonist,
216 consistent with a decrease in clonal deletion of anti-tumor T cells in treated mice (34) (Fig. 5B).

217 We assessed peripheral lymphoid organs for the presence of CD3⁺V β 14⁺ T cells. In lymph nodes
218 and spleen, there was a significant increase in CD3⁺V β 14⁺ T cells that escaped negative selection in the
219 thymus (**Fig. 5C**). To confirm that these T cells were functionally competent we next sought to determine
220 whether the cells were capable of mediating an anti-tumor immune response because although TRP-1
221 is a self-antigen, it is also expressed in B16 melanoma tumors. After the washout period, we isolated
222 secondary lymphoid organs from TRP-1 TCR Tg mice treated with STING agonist or control vehicle to
223 collect total CD3⁺V β 14⁺ T cells. From each treated mouse, we adoptively transferred harvested cells into
224 a *Rag1*^{-/-} mouse implanted with B16 melanoma tumor. We observed significant regression of tumors in
225 recipient mice that received CD3⁺V β 14⁺ T cells from STING agonist treated mice in comparison to tumors
226 in mice that received control cells (**Fig. 5E**). Taken together, activation of STING in the thymus
227 independent of COPA syndrome leads to the escape of self-antigen specific T cells that otherwise
228 normally undergo negative selection, findings relevant for other immunoregulatory disorders and in
229 patients receiving small molecule drugs to modulate STING signaling during cancer immunotherapy.

230 **STING is highly expressed in medullary thymic epithelial cells in humans**

231 Finally, although the *Copa*^{E241/+} mouse model closely phenocopies COPA syndrome in patients
232 and is a powerful model to study the disease (5, 6), we next wanted to directly determine the potential
233 relevance of thymic STING in human tissue and assessed the levels of STING transcript in human
234 thymus. We analyzed single cell RNA sequencing data from a human thymus cell atlas and found STING
235 was variably expressed depending on the specific cell type (35). Among stromal cells, STING was most
236 highly expressed in the thymic epithelium and exhibited significantly elevated expression in medullary
237 thymic epithelial cells (mTECs), including those directly involved in processing and presenting tissue
238 antigens to developing T cells (36) (**Figure 5F, Supplementary Figure 4C**). Interestingly, STING
239 transcript levels in human mTECs was higher than that found in thymic macrophages and more than
240 double the levels of monocytes or plasmacytoid dendritic cells (**Figure 5F, Supplementary Figure 4C**)
241 (10).

242 **Discussion:**

243

244 This work establishes that STING has a functional role in the thymic epithelium that can impact
245 thymocyte development and selection. We found that activation of thymic STING significantly upregulated
246 type I interferon signaling and unexpectedly impaired autophagic flux and the processing and
247 presentation of peptide antigens. The changes to the thymic epithelium mediated by activated STING
248 altered thymocyte maturation and caused both a defect in negative selection and shift in the T cell
249 repertoire. Importantly, we made these observations not only in the presence of pathogenic COPA
250 mutations that cause autoimmune disease, but also after administering a systemic STING agonist being
251 trialed for cancer patients. Thus, our data has broad implications for any setting that activates thymic
252 STING including not only the clinical scenarios we studied, but also in patients with systemic infections
253 or other more common autoimmune syndromes such as systemic lupus erythematosus (SLE).
254 Furthermore, these findings are relevant throughout the life span, given the recent landmark study that
255 showed the thymus modulates the risk of both cancer and autoimmunity in adults (37).

256 The major STING signaling output in thymic epithelial cells we identified was type I interferons.
257 There has been increasing interest to define how interferons in the thymus affect developing T cells,
258 especially after it was shown that TECs have high levels of constitutive *IFN-β* expression under
259 homeostatic conditions (38). Further investigation is needed to understand how interferon secretion in
260 the thymus is regulated, particularly given recent studies that suggest loss of interferon expression in the
261 thymus may lead to the generation of interferon autoantibodies that predispose to severe COVID-19 and
262 other infections (39). In addition to nucleic acid sensing molecules such as STING, the transcriptional
263 activator Autoimmune regulator (AIRE) may have a role in controlling interferon expression in TECs (40).

264 Interestingly, a number of different viruses, including severe acute respiratory syndrome
265 coronavirus 2 (SARS-CoV-2), have been shown to directly target the thymic microenvironment and infect
266 cells involved in thymocyte selection, including thymic epithelial cells (41, 42). Although we have not yet
267 shown it directly, our work suggests that systemic viral or bacterial infections have the potential to activate
268 thymic STING and alter T cell selection which could in theory trigger autoimmune disease. Indeed,
269 investigators have shown that viruses may disrupt central tolerance and promote autoimmunity by
270 reducing thymic epithelial cell numbers or the expression of tissue specific antigens (43). The activation

271 of STING (and possibly other nucleic acid sensing molecules) in the thymus demonstrates another
272 mechanism by which activation of an innate immune signaling pathway leads to loss of self-tolerance.

273 Our study has important implications for understanding COPA syndrome pathogenesis and
274 potentially other disorders that cause constitutive activation of STING (44, 45). COPA syndrome was
275 originally characterized as an autoimmune disorder given the presence of high titer autoantibodies and
276 the significant expansion and skewing of adaptive T helper cell subsets (2). Indeed, T cells appear to
277 have an important role in disease pathogenesis and COPA syndrome patients respond well to
278 mycophenolate moefitil, which significantly dampens adaptive immune cell subsets (3, 4). Future studies
279 might evaluate whether other patient populations including those with STING-associated vasculopathy
280 with onset in infancy (SAVI) also have alterations in T cell selection (45).

281 There has been an intense interest to modulate STING signaling therapeutically given its central
282 role in a broad range of biological contexts important to human health and disease (46). Our ability to
283 activate STING in the thymus with small molecules and alter T cell selection is highly relevant for cancer
284 treatment protocols that employ these drugs (47). We showed not only how STING agonists can enhance
285 anti-tumor T cell responses, but also pinpointed a potential mechanism by which STING agonists might
286 provoke autoimmune reactions. When administered with checkpoint inhibitors, STING agonists acting on
287 the thymus may predispose to immune related adverse events (48). In any case, we demonstrate the
288 critical importance of studying off-target effects of systemically administered STING therapeutics (49),
289 and our discovery of STING's functional role in the thymus will be similarly important to study in clinical
290 contexts that trial STING inhibitors.

291 Our study has limitations. Persistent activation of thymic STING lead to an expected increase in
292 type I interferons but it remains unclear why macroautophagic flux was impaired. Activation of STING
293 has been shown to induce non-canonical autophagy (22) although this degradation pathway is not known
294 to have a role in antigen processing and presentation. Future study is needed to understand how
295 persistent STING activation impacts STING-induced autophagy and whether it directly affects
296 macroautophagic function in TECs. Other questions requiring further exploration include understanding
297 whether type III interferons are involved in mediating thymic selection in our system. An analysis of

298 systemic STING agonists on other stromal and hematopoietic populations in the thymic environment is
299 also needed.

300 We uncovered an unexpected and novel role for STING in thymic epithelial cell function and
301 provide new insight into how STING shapes the T cell repertoire to contribute to autoimmunity and
302 immune dysregulation. These findings have important implications for any setting in which systemic
303 inflammation activates STING in the thymic stroma. This includes not only COPA syndrome, but
304 potentially other autoimmune diseases such as SLE. In addition, our findings have relevance for STING
305 agonist use in cancer or understanding how T cell responses might be altered during systemic infections
306 that activate thymic STING.

307

308 1. Szekanecz Z, et al. Autoinflammation and autoimmunity across rheumatic and musculoskeletal
309 diseases. *Nat Rev Rheumatol.* 2021;17(10):585–595.

310 2. Watkin LB, et al. COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-
311 mediated lung disease and arthritis. *Nat Genet.* 2015;47(6):654–660.

312 3. Tsui JL, et al. Analysis of pulmonary features and treatment approaches in the COPA syndrome. *ERJ*
313 *Open Research.* 2018;4(2):00017–02018.

314 4. Simchoni N, Vogel TP, Shum AK. COPA Syndrome from Diagnosis to Treatment A Clinician’s
315 Guide. *Rheum Dis Clin North Am.* [published online ahead of print: 2023].
316 <https://doi.org/10.1016/j.rdc.2023.06.005>.

317 5. Deng Z, et al. A Defect in Thymic Tolerance Causes T Cell-Mediated Autoimmunity in a Murine
318 Model of COPA Syndrome. *J Immunol Baltim Md 1950.* 2020;204(9):2360–2373.

319 6. Deng Z, et al. A defect in COPI-mediated transport of STING causes immune dysregulation in COPA
320 syndrome. *J Exp Medicine.* 2020;217(11):e20201045.

321 7. Mukai K, et al. Homeostatic regulation of STING by retrograde membrane traffic to the ER. *Nat*
322 *Commun.* 2021;12(1):61.

323 8. Lepelley A, et al. Mutations in COPA lead to abnormal trafficking of STING to the Golgi and
324 interferon signaling. *J Exp Medicine.* 2020;217(11):e20200600.

325 9. Mukai K, et al. Homeostatic regulation of STING by Golgi-to-ER membrane traffic. *bioRxiv.*
326 2020;503:2020.05.20.107664.

327 10. Kemmoku H, et al. Single-molecule localization microscopy reveals STING clustering at the trans-
328 Golgi network through palmitoylation-dependent accumulation of cholesterol. *Nat Commun.*
329 2024;15(1):220.

330 11. Wang J, et al. Accumulation of cytosolic dsDNA contributes to fibroblast-like synoviocytes-
331 mediated rheumatoid arthritis synovial inflammation. *Int Immunopharmacol.* 2019;76:105791.

332 12. An J, et al. Expression of Cyclic GMP-AMP Synthase in Patients With Systemic Lupus
333 Erythematosus. *Arthritis Rheumatol.* 2017;69(4):800–807.

334 13. Volpi S, et al. Type I interferon pathway activation in COPA syndrome. *Clin Immunol.*
335 2018;187:33–36.

336 14. Gulen MF, et al. cGAS–STING drives ageing-related inflammation and neurodegeneration. *Nature.*
337 2023;620(7973):374–380.

338 15. Gaidt MM, et al. The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell
339 Death Program Upstream of NLRP3. *Cell.* 2017;171(5):1110-1124.e18.

340 16. Khan IS, et al. Enhancement of an anti-tumor immune response by transient blockade of central T
341 cell tolerance. *Journal of Experimental Medicine.* 2014;211(5):761–768.

342 17. Liu X, et al. Context-dependent activation of STING-interferon signaling by CD11b agonists
343 enhances anti-tumor immunity. *Cancer Cell.* 2023;41(6):1073-1090.e12.

344 18. Gulen MF, et al. Signalling strength determines proapoptotic functions of STING. *Nat Commun.*
345 2017;8(1):1–10.

346 19. Hopfner K-P, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling.
347 *Nature Reviews Molecular Cell Biology.* 2020;21(9):501–521.

348 20. Ashby KM, Hogquist KA. A guide to thymic selection of T cells. *Nat Rev Immunol.* 2023;1–15.

349 21. Xing Y, et al. Late stages of T cell maturation in the thymus involve NF-[kappa]B and tonic type I
350 interferon signaling. *Nature Immunology.* 2016;17(5):565–573.

351 22. Gui X, et al. Autophagy induction via STING trafficking is a primordial function of the cGAS
352 pathway. *Nature.* 2019;567(7747):262–266.

353 23. Liu D, et al. STING directly activates autophagy to tune the innate immune response. *Cell Death
354 Differ.* 2019;26(9):1735–1749.

355 24. Nedjic J, et al. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for
356 tolerance. *Nature.* 2008;455(7211):396–400.

357 25. Mizushima N, et al. In vivo analysis of autophagy in response to nutrient starvation using transgenic
358 mice expressing a fluorescent autophagosome marker. *Mol Biol Cell.* 2004;15(3):1101–1111.

359 26. Klionsky DJ, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th
360 edition)1. *Autophagy*. 2021;17(1):1–382.

361 27. Li L, et al. New Autophagy Reporter Mice Reveal Dynamics of Proximal Tubular Autophagy. *J Am
362 Soc Nephrol*. 2014;25(2):305–315.

363 28. Gump JM, Thorburn A. Sorting cells for basal and induced autophagic flux by quantitative
364 ratiometric flow cytometry. *Autophagy*. 2014;10(7):1327–1334.

365 29. Anderson MS, et al. The cellular mechanism of Aire control of T cell tolerance. *Immunity*.
366 2005;23(2):227–239.

367 30. Stritesky GL, et al. Murine thymic selection quantified using a unique method to capture deleted T
368 cells. *Proceedings of the national academy of Sciences*. 2013;110(12):4679–4684.

369 31. Muranski P, et al. Tumor-specific Th17-polarized cells eradicate large established melanoma. *Blood*.
370 2008;112(2):362–373.

371 32. Bakhru P, et al. Combination central tolerance and peripheral checkpoint blockade unleashes
372 antimelanoma immunity. *Jci Insight*. 2017;2(18):e93265.

373 33. Ramanjulu JM, et al. Design of amidobenzimidazole STING receptor agonists with systemic
374 activity. *Nature*. 2018;564(7736):439–443.

375 34. Breed ER, Watanabe M, Hogquist KA. Measuring Thymic Clonal Deletion at the Population Level.
376 *J Immunol*. 2019;202(11):3226–3233.

377 35. Park J-E, et al. A cell atlas of human thymic development defines T cell repertoire formation.
378 *Science*. 2020;367(6480). <https://doi.org/10.1126/science.ayy3224>.

379 36. Kadouri N, et al. Thymic epithelial cell heterogeneity: TEC by TEC. *Nat Rev Immunol*.
380 2020;20(4):239–253.

381 37. Kooshesh KA, et al. Health Consequences of Thymus Removal in Adults. *N Engl J Med*.
382 2023;389(5):406–417.

383 38. Lienenklaus S, et al. Novel reporter mouse reveals constitutive and inflammatory expression of IFN-
384 beta in vivo. *J Immunol*. 2009;183(5):3229–3236.

385 39. Bastard P, et al. Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in
386 patients with APS-1. *J Exp Medicine*. 2021;218(7):e20210554.

387 40. Casanova J-L, Anderson MS. Unlocking life-threatening COVID-19 through two types of inborn
388 errors of type I IFNs. *J Clin Investig*. 2023;133(3):e166283.

389 41. Rosichini M, et al. SARS-CoV-2 infection of thymus induces loss of function that correlates with
390 disease severity. *J Allergy Clin Immunol*. 2023;151(4):911–921.

391 42. Albano F, et al. Insights into Thymus Development and Viral Thymic Infections. *Viruses*.
392 2019;11(9):836.

393 43. Bigley TM, et al. Disruption of thymic central tolerance by infection with murine roseolovirus
394 induces autoimmune gastritis. *J Exp Med*. 2022;219(3):e20211403.

395 44. Hirschenberger M, et al. ARF1 prevents aberrant type I interferon induction by regulating STING
396 activation and recycling. *Nat Commun*. 2023;14(1):6770.

397 45. Yin L, et al. Activated STING in a Vascular and Pulmonary Syndrome. *New Engl J Med*.
398 2014;371(6):507–518.

399 46. Garland KM, Sheehy TL, Wilson JT. Chemical and Biomolecular Strategies for STING Pathway
400 Activation in Cancer Immunotherapy. *Chem Rev*. 2022;122(6):5977–6039.

401 47. Hines JB, Kacew AJ, Sweis RF. The Development of STING Agonists and Emerging Results as a
402 Cancer Immunotherapy. *Curr Oncol Rep*. 2023;25(3):189–199.

403 48. Fenioux C, et al. Thymus alterations and susceptibility to immune checkpoint inhibitor myocarditis.
404 *Nat Med*. 2023;1–11.

405 49. Gajewski TF, Higgs EF. Immunotherapy with a sting. *Science*. 2020;369(6506):921–922.

406

407 **Acknowledgements:**

408 We thank Mark S. Anderson and Michael Waterfield for critical review of the manuscript. Han Yin and
409 Joe Germino for assistance with data handling. Microscope funding acknowledgment: UCSF Program
410 for Breakthrough Biomedical Research funded in part by the Sandler Foundation and the Strategic
411 Advisory Committee and the EVCP Office Research Resource Program Institutional Matching
412 Instrumentation Award.

413 **Funding:**

414 • National Institutes of Health grant R01AI168299 (CSL, SK, NS, AKS)

415 • National Institutes of Health grant R01AI137249 (ZD, CSL, AKS)

416 • Microscope funding acknowledgment: UCSF Program for Breakthrough Biomedical Research
417 funded in part by the Sandler Foundation and the Strategic Advisory Committee and the EVCP
418 Office Research Resource Program Institutional Matching Instrumentation Award

419 **Author contributions:**

420 • Conceptualization: AKS
421 • Methodology: ZD, CSL, AKS
422 • Investigation: ZD, CSL, SK
423 • Visualization: ZD, CSL, SK, NS
424 • Funding acquisition: AKS
425 • Project administration: ZD, AKS
426 • Supervision: AKS
427 • Writing – original draft: ZD, AKS
428 • Writing – review & editing: AKS

429 **Competing interests:** Authors declare that they have no competing interests.

430 **Materials and Methods:**

431 **Mice**

432 *Copa*<sup>E241K^{wt} mice were previously generated in our laboratory (5). The B6(Cg)-Ifnar1^{tm1.2Ees}/J (Ifnar1⁻),
433 B6.Cg-Tg(TcraTcrb)425Cbn/J (OT-II), C57BL/6J-Sting1^{gt}/J, C57BL/6-Tg(CAG-
434 RFP/EGFP/Map1lc3b)1Hill/J (CAG-RFP-EGFP-LC3), B6.129S7-Rag1^{tm1Mom}/J (Rag1⁻ KO), B6.Cg-
435 Rag1^{tm1Mom} Tyrp1^{B-w} Tg(Tcra,Tcrb)9Rest/J (RAG1⁻ B^w TRP-1 TCR) mice were acquired from the Jackson
436 Laboratory. GFP-LC3 transgenic mice (25) were provided by Jayanta Debnath. All mice were housed in
437 a specific pathogen-free facility at UCSF, and all protocols were approved by UCSF's Institutional Animal
438 Care and Use Committee.</sup>

439 ***Histology and confocal microscopy***

440 Isolated thymi were fixed for one hour in PBS with 4% PFA, cryopreserved overnight in 30% sucrose,
441 embedded in Tissue-Tek OCT (Sakura Finetek USA), and frozen sectioned at 10 μ m. Tissue sections
442 were stained with antibodies against phosphorylated STING (D8F4W, Cell Signaling Technology),
443 cytokeratin 5 (EP1601Y, Abcam), and cytokeratin 8 (EP1628Y, Abcam). Fluorescent conjugated
444 secondary antibodies were acquired from Thermo Fisher Scientific, and sections were counterstained
445 with DAPI (BioLegend). Images were captured with a CREST LFOV Spinning Disk/C2 confocal.

446 **Thymic epithelial cell isolation**

447 Thymic epithelial cells were isolated as previously described (6). In brief, isolated thymi from 4-week-old
448 mice were minced with razor blades on ice, digested three times (DMEM high glucose with 2% FBS, 100
449 µg/ml DNase I, and 100 µg/ml Liberase TM, Roche) or until no tissue fragments remained, and quenched
450 and washed with magnetic activated cell sorting buffer (PBS with 5 mg/ml BSA and 2 mM EDTA). Cells
451 were fractionated with a Percoll (Cytiva) gradient of densities 1.115, 1.065, and 1.0. Thymic epithelial
452 cells were isolated from the interphase of 1.065 and 1.0 densities and further analyzed by flow cytometry.

453 *RNA sequencing and data analysis*

454 RNA sequencing of murine thymic epithelial cells was previously generated (6). In brief, cDNA was
455 generated from isolated RNA with the Nugen Ovation method (7102-A01, Tecan), and a sequencing
456 library was created with the Nextera XT method (FC-131-1096, Illumina). Libraries were sequenced on
457 Illumina HiSeq4000 and resulting reads were aligned to ensembl build GRCm38.78 with STAR (v2.4.2a).
458 Read counts per gene were inputted to DESeq2 (v1.26.0) and resulting differential gene expression
459 profile was plotted with EnhancedVolcano (v1.18.0).

460 Human STING1 transcript expression was assessed with a publicly available cell atlas of human
461 thymus(35) (<https://doi.org/10.5281/zenodo.5500511>) and Python toolkits Scanpy (v1.9.4), pandas
462 (v2.0.3), and NumPy (v1.25.0).

463 **Flow cytometry and antibodies**

464 Single cell suspensions of thymocytes and splenocytes were prepared by mechanically disrupting the
465 thymus and spleen and passing the cells through 64 µm filters (Genesee Scientific). Following red blood
466 cell lysis (BioLegend), cells were maintained on ice in RPMI 1640 supplemented with 5% FBS. An aliquot
467 of each cell suspension was mixed with AccuCheck Counting Beads (PCB100, Invitrogen), analyzed by
468 flow cytometry, and total cell number was calculated according to manufacturer's protocol.

469 For evaluation of surface markers, cells were blocked with 10 µg/ml anti-CD16/32 for 15 minutes at room
470 temperature and then stained with indicated antibodies in FACS buffer (PBS with 2% BSA) on ice for one
471 hour.

472 For stimulation of intracellular cytokines, freshly isolated splenocytes were stimulated in RPMI 1640 with
473 5% FBS, 10 ng/ml PMA (Sigma-Aldrich), 1 μ g/ml ionomycin (Sigma-Aldrich), and 5 μ g/ml Brefeldin A
474 (Biolegend) at 37°C for four hours.
475 For intracellular staining, cells were first stained with Zombie Violet viability dye (BioLegend), surface
476 stained, fixed (PBS with 4% PFA), permeabilized (PBS with 0.2% saponin), and lastly stained with
477 antibodies against intracellular targets in the presence of permeabilization buffer overnight at 4°C.
478 Flow cytometry data were acquired on FACSVerse or LSRFortessa (BD Biosciences) and analyzed with
479 FlowJo v10.
480 Antibodies to the following were purchased from BD Biosciences: mouse TCR V β screening panel
481 (557004), V β 14 (14-2); BioLegend: CD3 (145-2C11), CD5 (53-7.3), CD19 (6D5), CD25 (PC61), CD45
482 (30-F11), CD62L (MEL-14), CD80 (16-10A1), EpCAM (G8.8), H-2 MHC class I (M1/42), I-A b MHC class
483 II (AF6-120.1), IFN γ (XMG1.2), Ly-51 (6C3), NK1.1 (PK136), TCR γ / δ (GL3), TNF α (MP6-XT22), V α 2
484 (B20.1), V β 5 (MR9-4); Cell Signaling Technology: cleaved caspase 3 (D3E9); Cytek Biosciences: B220
485 (RA3-6B2), CD4 (RM4-5), CD8 α (53-6.7), CD11c (N418), CD44 (IM7), CD69 (H1.2F3), F4/80 (BM8.1),
486 Gr-1 (RB6-8C5), TCR β (H57-597); Thermo Fisher Scientific: Nur77 (12.14); and UCSF's Hybridoma Core
487 Facility: CD16/CD32 (2.4G2). AccuCheck Counting Beads were purchased from Thermo Fisher
488 Scientific.

489 **Quantitative real-time PCR**

490 RNA was isolated with EZNA Total RNA kit (Omega Bio-tek) and reverse transcribed to cDNA with
491 SuperScript III and oligo d(T)₁₆ primers (Thermo Fisher Scientific). Quantitative PCR was performed on
492 a Bio-Rad CFX thermal cycler with TaqMan Gene Expression assays from Thermo Fisher Scientific:
493 Gapdh, Mm99999915_g1; Ifit1, Mm00515153_m1; Isg15, Mm01705338_s1.

494 **Immunoblotting and antibodies**

495 Cells were lysed in Cold Spring Harbor NP-40 lysis buffer (150 mM NaCl, 50 mM Tris, pH 8.0, and 1.0%
496 Nonidet P-40) containing protease and phosphatase inhibitors (PMSF, NaF, Na₃VO₄, and Roche
497 PhosSTOP). Lysates were cleared by centrifuging at 10,000 g for 10 min at 4°C, size separated on SDS-
498 PAGE gels, and wet transferred onto polyvinylidene fluoride membrane. Membranes were blocked in tris-

499 buffered saline with 0.05% Tween 20 (TBS-T) and 5% nonfat dry milk for 1 h at room temperature,
500 followed by overnight incubation at 4° C with primary antibodies diluted in TBS-T with 5% BSA.
501 Membranes were washed three times with TBS-T for 10 min, incubated with HRP-conjugated IgG
502 secondary antibody (Jackson Immunoresearch) for 1 h at room temperature, washed three times with
503 TBS-T for 10 min followed once with TBS for 10 min. Lastly bands were visualized with SuperSignal West
504 Femto Chemiluminescent Substrate (Thermo Fisher Scientific) and Bio-Rad's ChemiDoc MP imager.
505 Antibodies to the following were purchased from Cell Signaling Technology: LC3B (D11), Phospho-
506 STING (D8F4W); and Santa Cruz Biotechnology: GAPDH (6C5).

507 **Plasmids and transient transfection**

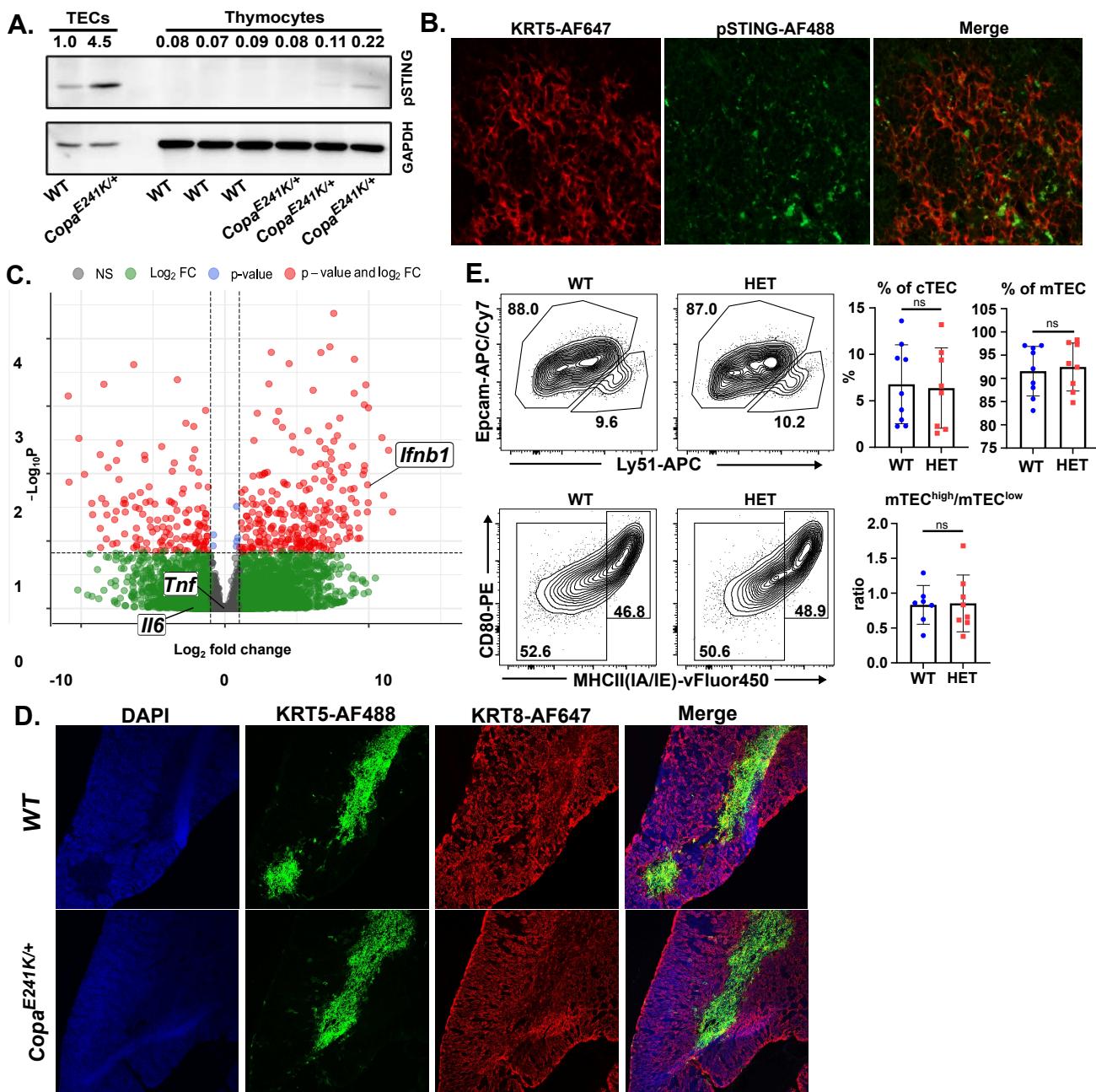
508 FLAG-tagged wild type and E241K human COPA expression plasmids were previously described(2).
509 EGFP-tagged human STING lentiviral plasmid was a gift from Dr. Tomohiko Taguchi (Tohoku University,
510 Sendai, Japan). HEK293T cells (ATCC) were seeded at 40-60% density, transiently transfected with
511 jetOPTIMUS reagent (Polyplus), and lysed 48 hours later for immunoblotting.

512 **Bone marrow chimeras**

513 Host mice aged 3-4 months old were fasted overnight and then depleted of bone marrow with two doses
514 (550 rads each, separated 12 h apart) of γ radiation. Donor bone marrow cells were isolated from femurs
515 and tibias of 8 weeks old, gender-matched mice. T cells were removed with CD90.2 antibody (30-H112,
516 BioLegend) and Dynabeads (65601, Thermo Fisher Scientific). Ten million bone marrow cells suspended
517 in 200 μ l of saline were intravenously transferred into each host. Chimeras were housed under specific
518 pathogen free conditions and analyzed 6 to 8 weeks after reconstitution.

519 **In vivo STING activation**

520 Beginning at 5-7 weeks of age, STING agonist diABZI compound 3 (ProbeChem) was administered
521 intraperitoneally (0.25 mg/kg) to *Rag1^{-/-} Tyrp1^{B-w/wt}* TRP-1 TCR mice every other day, seven times,
522 followed by seven days of rest. Mice were then euthanized to harvest cells from thymi and peripheral
523 lymphoid organs for analysis or adoptive transfer.


524 **Tumor challenge**

525 *Copa*^{E241K/wt} and wild type littermates were subcutaneously challenged with 1×10^5 B16-F10 melanocytes
526 (a gift from Dr. Lawrence Fong, UCSF) at the left flank. Tumor volume was estimated as length \times width²/2,
527 and a volume of 1,000 mm³ was classified as death for Kaplan-Meier survival analysis.
528 For adoptive transfers, *Rag1*^{-/-} mice were subcutaneously challenged with 5×10^4 B16-F10 cells at the
529 left flank on day 0. Mice received 500 rads of X-ray radiation (X-Rad320, Precision X-Ray Irradiation) and
530 125 µg of PD-1 antibody (CD279, BioXCell) i.p. on day 2. Total splenocytes from one *Rag1*^{-/-} *Tyrp1*^{B-w/wt}
531 TCR mice given STING agonist or vehicle, as described above, were transferred into one tumor
532 challenged *Rag1*^{-/-} mice on also on day 2. Mice received additional 125 µg of PD-1 antibody i.p. every
533 four days. Mice were euthanized sixteen to seventeen days following tumor inoculations.

534 **Statistical analysis**

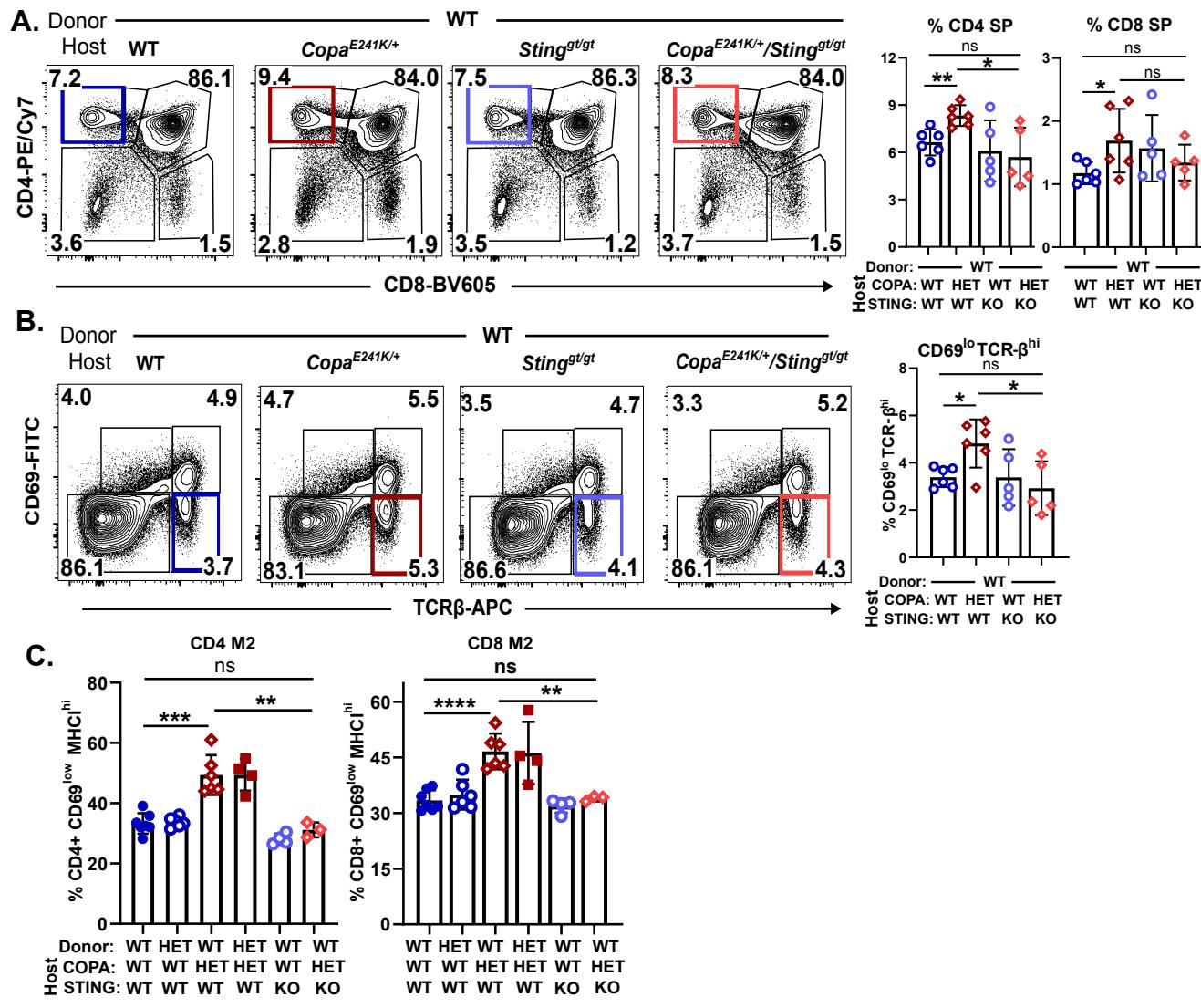

535 Data is presented relative to the mean of wild type or agonist treated. Statistical analysis was performed
536 with Prism 9 (GraphPad) or R 4.0.0 (R Foundation for Statistical Computing). Unpaired, parametric, two-
537 tailed Student's t-test or two-tailed Mann-Whitney U test was used where indicated. Log-rank test was
538 used for Kaplan-Meier survival analysis. P < 0.05 was considered statistically significant.

Figure: 1

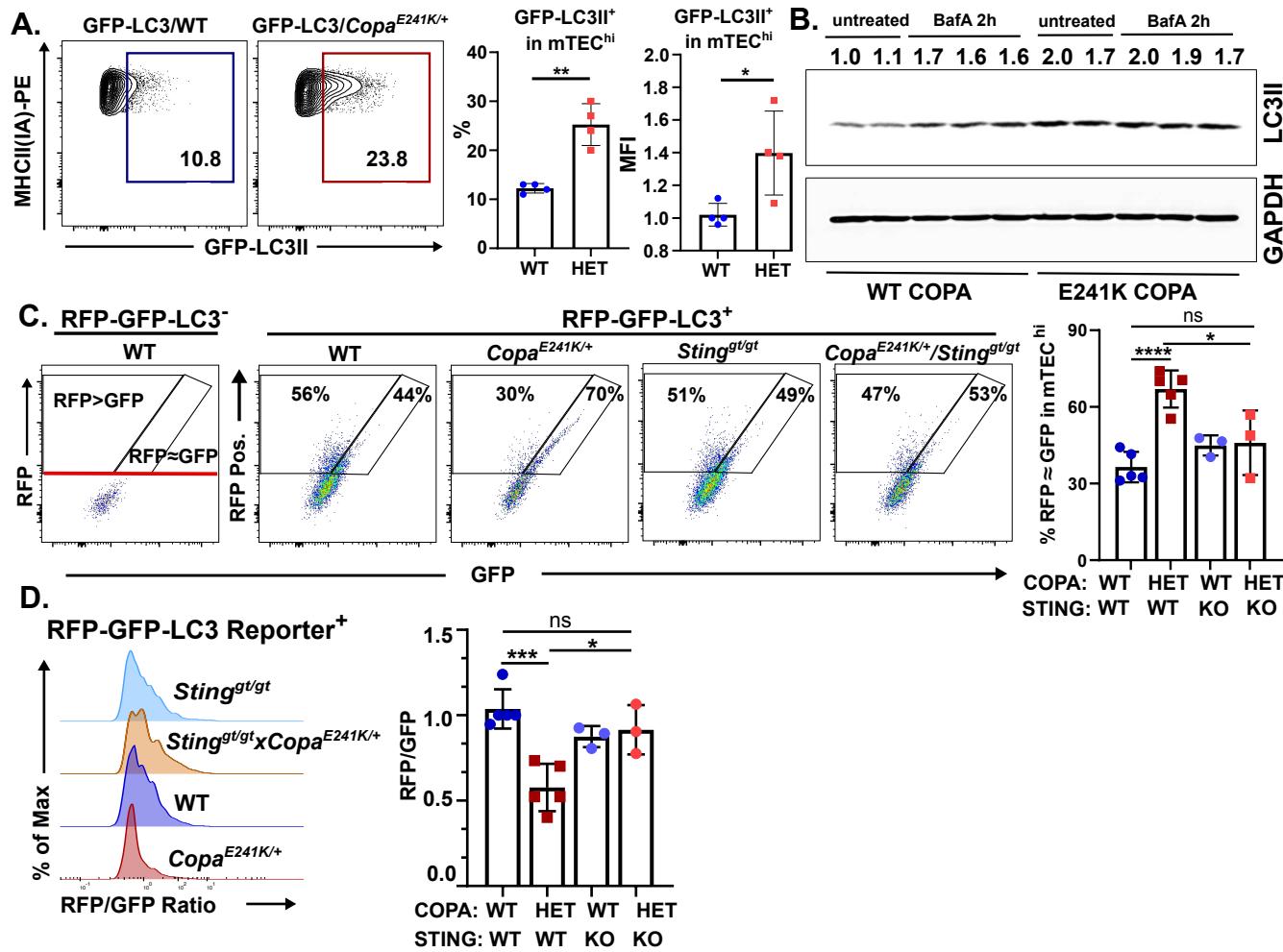

Figure 1. Activated STING in thymic stroma upregulates interferon signaling. (A) Representative immunoblot of phosphorylated STING (pSTING) in thymic epithelial cells (TECs) versus thymocytes with relative band density quantification. Data represents 2 independent experiments. (B) Immunofluorescence stain of keratin 5 (KRT5) and pSTING expression on thymic sections from *Copa^{E241K/+}* mice. (C) Volcano plot of RNA sequencing analysis of sorted medullary TECs (mTECs) from WT and *Copa^{E241K/+}* mice (n = 3 per genotype). (D) Immunofluorescence stain of KRT5 and keratin 8 (KRT8) on thymic sections from *Copa^{E241K/+}* and WT littermates. (E) Top left: flow cytometry of Ly51 vs EpCAM on TECs; top right: percentages of mTECs and cortical TECs (cTECs); bottom left: mTEC expression of CD80 and MHC-II; bottom right: ratio of mTEC^{high} versus mTEC^{low}. Data are mean ± SD. Unpaired, parametric, two-tailed Student's t-test was used for statistical analysis. p < 0.05 is considered statistically significant. ns: not significant.

Figure: 2

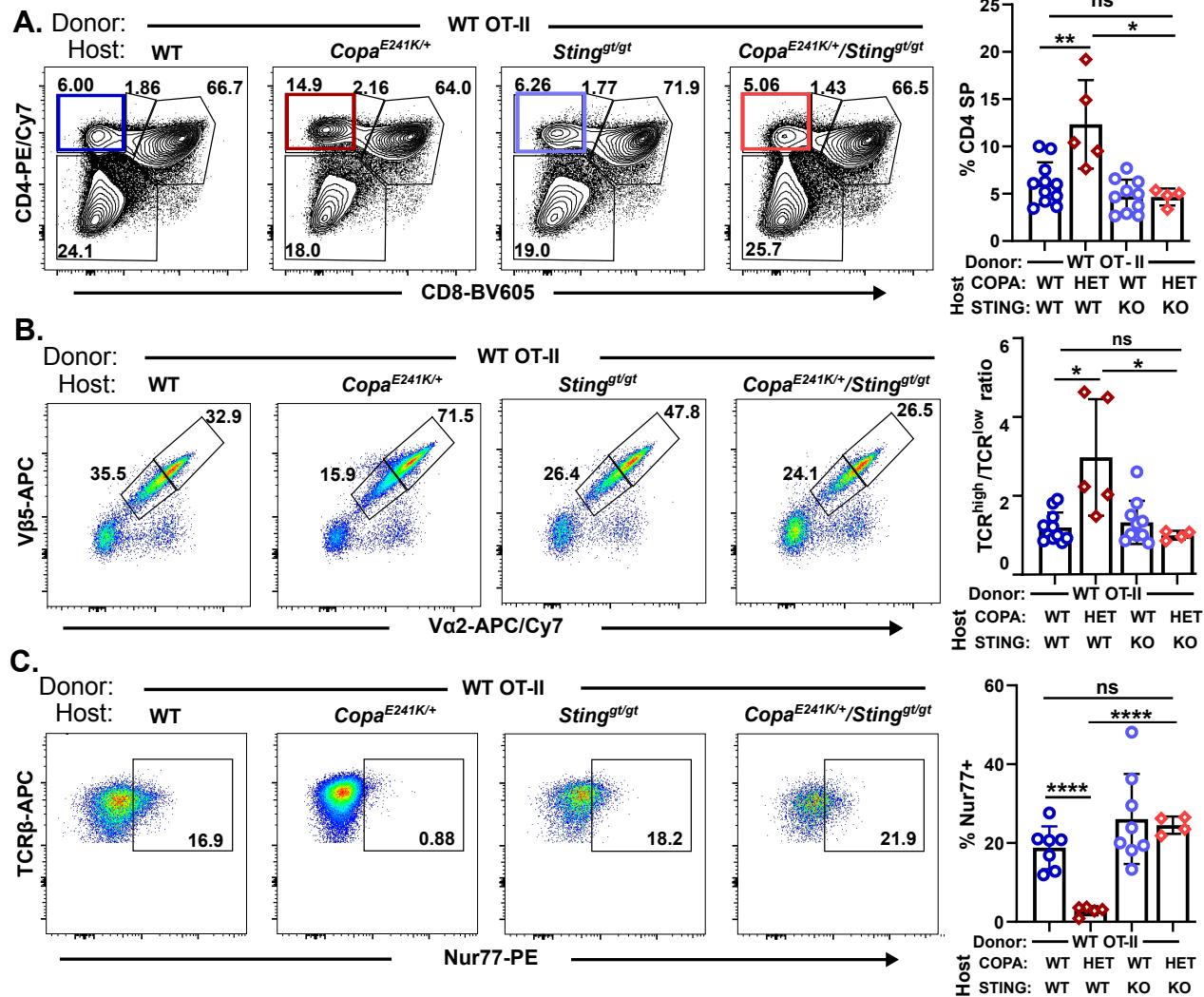

Figure 2. Activated STING in thymic stroma increases single positive thymocytes. (A) Left: representative flow plots of CD4 and CD8 on reconstituted thymocytes in bone marrow chimeras. Right: percentages of CD4 SP and CD8 SP thymocytes among the reconstituted thymocytes ($WT \rightarrow WT$, $n = 6$; $WT \rightarrow Copae^{E241K/+}$, $n = 6$; $WT \rightarrow Sting^{gt/gt}$, $n = 5$; $WT \rightarrow Copae^{E241K/+} \times Sting^{gt/gt}$, $n = 5$). (B) Left: representative flow analysis of CD69 and TCR β on reconstituted thymocytes in bone marrow chimeras. Right: percentages of $CD69^{high}TCR\beta^{high}$ and $CD69^{low}TCR\beta^{high}$ among the reconstituted thymocytes (C) Percentages of $CD69^{low}MHCII^{high}$ (mature stage 2: M2) among the reconstituted CD4 and CD8 single positive thymocytes. Flow strategy in Supplementary Fig. 1D. ($WT \rightarrow WT$, $n = 7$; $WT \rightarrow Copae^{E241K/+}$, $n = 6$; $Copae^{E241K/+} \rightarrow WT$, $n = 6$; $Copae^{E241K/+} \rightarrow Copae^{E241K/+}$, $n = 4$; $WT \rightarrow Sting^{gt/gt}$, $n = 4$; $WT \rightarrow Copae^{E241K/+} \times Sting^{gt/gt}$, $n = 3$). Data are mean \pm SD. Unpaired, parametric, two-tailed Student's t-test was used for statistical analysis. $p < 0.05$ is considered statistically significant. ns: not significant. HET: $Copae^{E241K/+}$, Sting KO: $Sting^{gt/gt}$.

Figure: 3

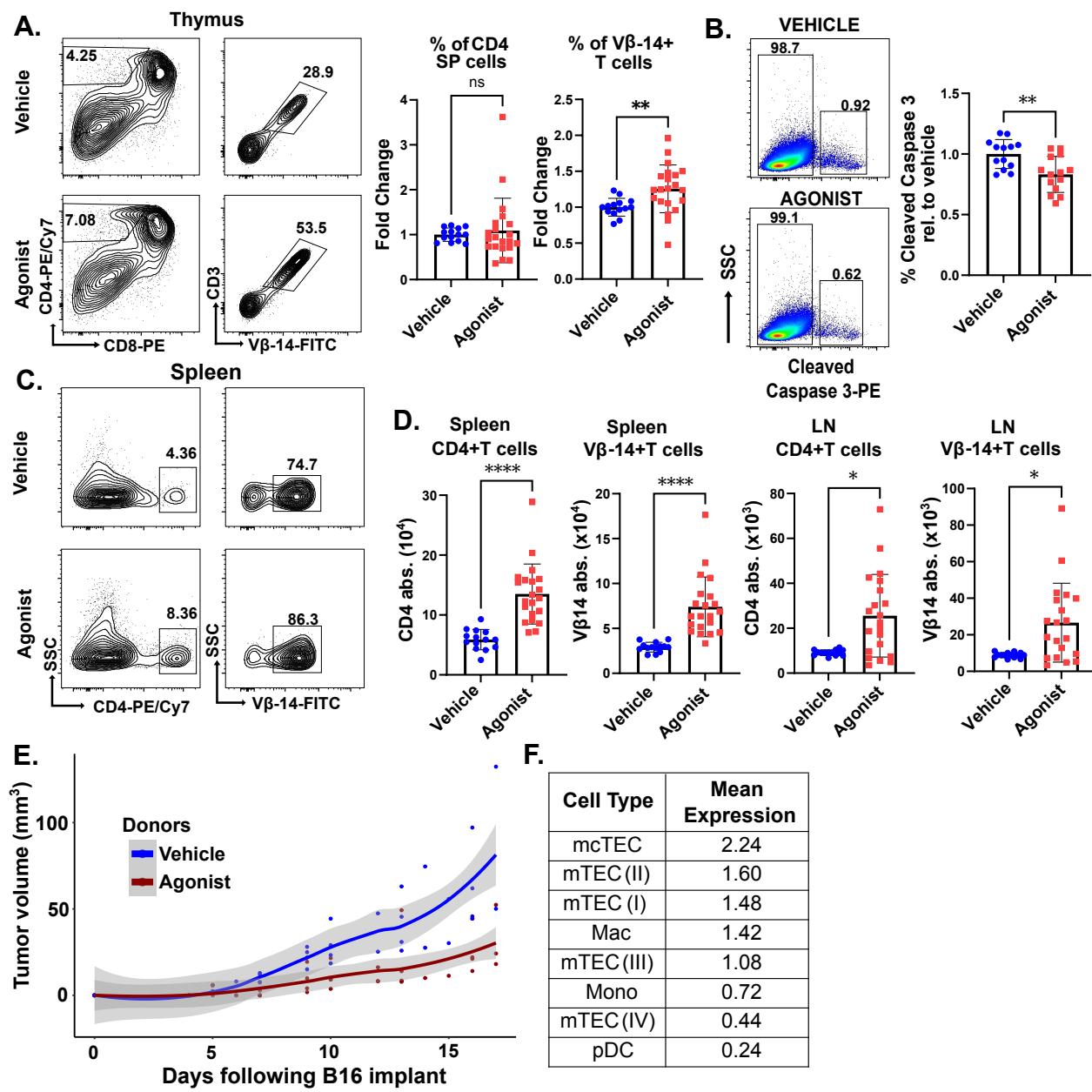

Figure 3. Constitutive activation of STING in the thymus impairs autophagic flux. (A) Left: Flow analysis of autophagosome-associated LC3 (LC3II) in mTEC^{high} from GFP-LC3 and GFP-LC3 × *Copa*^{E241K/+} mice. Right: percentage of LC3II-GFP+ population among total mTEC^{high} and GFP MFI in mTEC^{high}. (GFP-LC3 × WT, n = 4, GFP-LC3 × *Copa*^{E241K/+}, n = 4). (B) Representative immunoblot and densitometric analysis of LC3II following transient transfection of WT or E241K COPA in HEK293T cells that stably express STING. (C) Quantitation of autophagic flux in mTECs of CAG-RFP-GFP-LC3 tandem reporter mice. Left: flow cytometry of autophagosome-(RFP≈GFP) and autolysosome-associated (GFP<RFP) LC3 in mTECs. Right: percentage of mTEC^{high} with reduced autophagic flux (RFP-GFP-LC3 × WT, n = 5, RFP-GFP-LC3 × *Copa*^{E241K/+}, n = 5; RFP-GFP-LC3 × WT × *Sting*^{gt/gt}, n = 3, RFP-GFP-LC3 × *Copa*^{E241K/+} × *Sting*^{gt/gt}, n = 3). (D) Left: ratio of RFP/GFP fluorescence histogram in mTECs expressing LC3 tandem reporter; and right: mean RFP/GFP ratio in mTECs (RFP-GFP-LC3 × WT, n = 5, RFP-GFP-LC3 × *Copa*^{E241K/+}, n = 5; RFP-GFP-LC3 × WT × *Sting*^{gt/gt}, n = 3, RFP-GFP-LC3 × *Copa*^{E241K/+} × *Sting*^{gt/gt}, n = 3). Data are mean ± SD. Unpaired, parametric, two-tailed Student's t-test was used for statistical analysis. p < 0.05 is considered statistically significant. ns: not significant HET: *Copa*^{E241K/+}, *Sting* KO: *Sting*^{gt/gt}.

Figure 4

Figure 4. Activated STING impairs negative selection of T cells and alters the T cell repertoire. (A) Left: representative flow analysis of CD4 and CD8 on reconstituted thymocytes in bone marrow chimeras. Right: percentage of CD4 single positive thymocytes among the reconstituted thymocytes (OTII→Rip-mOVA × WT, n = 11; OTII→Rip-mOVA × *Copa*^{E241K/+}, n = 5; WT→Rip-mOVA × WT × *Sting*^{gt/gt}, n = 10; WT→Rip-mOVA × *Copa*^{E241K/+} × *Sting*^{gt/gt}, n = 4). **(B)** Left: flow analysis of Vβ5 and Vα2 in CD4 SP thymocytes. **(C)** Left: flow analysis of TCRβ and Nur77 expression in the reconstituted CD4 SP in the bone marrow chimeras. Right: percentage of Nur77+ population among CD4 SP thymocytes. (OTII→Rip-mOVA × WT, n = 7; OTII→Rip-mOVA × *Copa*^{E241K/+}, n = 5; WT→Rip-mOVA × WT × *Sting*^{gt/gt}, n = 8; WT→Rip-mOVA × *Copa*^{E241K/+} × *Sting*^{gt/gt}, n = 4). Data are mean ± SD. Unpaired, parametric, two-tailed Student's t-test was used for statistical analysis. p < 0.05 is considered statistically significant. HET: *Copa*^{E241K/+}, Sting KO: *Sting*^{gt/gt}, all host mice are Rip-mOVA background.

Figure 5

Figure 5. A systemic STING agonist increases autoreactive T cells in the thymus. (A) Left: CD4 and CD8 profile of thymocytes and CD3 and Vβ14 expression of CD4 single positive thymocytes in *Rag1*^{-/-} *Tyro1*^{B-w/wt} TCR mice treated with diABZI STING agonist or vehicle. Right: change in percentage of total thymic CD4 SP and Vβ14⁺ CD4 SP following STING agonist treatment (vehicle n = 14; agonist n = 21). (B) Left: cleaved caspase 3 on CD5^{high} TCRβ^{high} thymocytes in vehicle and agonist treated mice. Right: percentage of thymocytes undergoing clonal deletion in agonist treated mice relative to vehicle treatment (vehicle n = 13, agonist n = 14). Unpaired, parametric, two-tailed Student's t-test was used for statistical analysis. (C) Left: flow analysis of splenic CD4 SP Vβ14⁺ autoreactive T cells in vehicle and agonist treated mice. Right: absolute number of CD4 SP Vβ14⁺ autoreactive T cells. (D) Absolute number of inguinal CD4 SP Vβ14⁺ autoreactive T cells in vehicle and agonist treated mice (vehicle n = 14, agonist n = 21). (E) B16 melanoma growth in *Rag1*^{-/-} mice that received X-ray radiation, PD-1 antibody and adoptively transferred splenocytes from *Rag1*^{-/-} *Tyro1*^{B-w/wt} TCR mice treated with STING agonist or vehicle (vehicle n = 4, agonist n = 5). Locally estimated scatterplot smoothing with 95% confidence interval of B16 tumor growth over time. Data are mean ± SD. Two-tailed Mann-Whitney U-test was used for statistical analysis unless indicated above. p < 0.05 is considered statistically significant. ns: not significant. (F) Mean expression of *STING1* transcript in select cell types in human thymus.