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Abstract

Traumatic brain injury (TBI) survivors face debilitating long-term psychosocial consequences,
including social isolation and depression. Acute TBI modifies neurovascular physiology and
behavior but a gap in our understanding are the chronic physiological implications of altered

brain perfusion on behavioral activities, particularly social interactions.

We investigated longitudinal functional vascular networks across the brain for 2-months post-
TBI and its impact on social behavior. Adult C57/BL6 male mice received a moderate cortical
TBI. Behavior (foot-fault, open-field, 3-chamber social preference) was assessed at baseline,
3-, 7-, 14-, 30-, and 60-days post injury (dpi) followed by magnetic resonance imaging (MRI,
9.4T). Anatomical MRI (T2-weighted), dynamic susceptibility contrast (DSC) perfusion
weighted MRI (PWI) were acquired at each temporal epoch. After the final 60dpi MRI, animals
underwent transcardial perfusion fixation to map angioarchitecture. MRI data were analyzed
using standardized protocols followed by cross-correlations between social behavior, cerebral

perfusion, and vascular metrics.

Social behavior deficits at 60dpi emerged as reduced interaction with a familiar cage-mate
(partner). We observed multiphasic decrements in cerebral blood flow (CBF) encompassing
lesion and perilesional cortex where acute reductions at 3-14dpi partially recovered by 30dpi,
followed by significant reductions in perfusion at 60dpi. The CBF perturbations extended
antero-posteriorly from the ipsilateral TBI impact site but also adulterated contralateral brain
regions. CBF reductions impacted regions known to regulate social behavior including
hippocampus, hypothalamus, and rhinal cortex. Alongside perfusion deficits at 60dpi, social
isolation in TBI-mice emerged with a significant decline in preference to spend time with a
cage mate. Cortical vascular density was also reduced corroborating the decline in brain

perfusion and social interaction.

Thus, the novel temporal neurovascular loss, and subsequent recovery followed by chronic
decrements are broadly reflected by social interaction perturbations. Our correlations strongly
implicate a linkage between vascular density, cerebral perfusion, and social interactions, where
early evaluation can potentially predict long-term outcomes. Thus, our study provides a
clinically relevant timeline of alterations in functional vascular recovery that can guide research

for future therapeutics.
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Introduction

Traumatic brain injury (TBI) afflicts an estimated 70 million people across the world annually
with both age and sex as important determinants of severity and outcomes."? Mild to moderate
TBI are the most common type of injuries among civilians, professional sports personnel, and
military service members.> % Behavioral, physiological and psychosocial deficits persist for
extended periods after the initial injury and include depression, post-traumatic stress, sleep,
Alzheimer’s disease, and dementia related disorders amongst others.>® Despite advances in our
understanding of the pathophysiological processes underlying TBI, there is a gap in the linkage
between behavioral outcomes and cerebrovascular alterations following TBI.

Social interactions are impaired after TBI with reductions in interpersonal communication,’

10. 1T and is evident in children'® 3 and adults.'* ' Social

time with friends and families,
behavior is also diminished in adult mice after a single!® ! or repeated-mild TBL'®!* and in
pediatric models of TBI.?® Social isolation in rodents reflects increased neuropathology after
TBI,?' however, increased social interaction post-injury is known to facilitate recovery.??
Lacking are studies that examine how TBI modifies sociability and its relationship to disrupted
cerebrovascular morphology and function.

We and others have reported acute vascular alterations following TBI spanning chronically

2325 and global reductions in cerebrovascular reactivity and tone.?*"

reduced microvasculature,
28 TBI induced changes in the vasculature are associated with motor and cognitive behavioral
deficits,?® 3 while others have reported no change at long-term after injury.*! Autism spectrum
(ASD) subjects, which manifest deficits in social interactions, exhibited CBF reductions that
correlated with the severity of behavioral alterations.’® Further, intranasal treatment with

oxytocin increased blood flow across social processing brain regions®* and monitoring vascular

metrics has been proposed as a biomarker for social interactions.>

To address the paucity of knowledge linking physiological CBF, underlying angioarchitecture,
and social behavior deficits after moderate TBI, we undertook a longitudinal study in adult
male mice. Specifically, we tested the hypothesis that long-term cerebrovascular deficits
facilitate social dysfunction. We report that temporal vascular flow and morphology initially
recover but ultimately decline by 2 months post TBI which are mirrored by social interaction
deficits . Our novel study provides the basis for future preclinical and clinical interventional

studies targeting social psychopathologies following acquired moderate TBI.
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Materials and methods

Animals

All experiments were conducted using ARRIVE guidelines and animal use was approved by
the University of California Irvine Animal Care and Use Committee. Adult C57/B6 male mice
(JAX#000664, 2-3months old) from Jackson Laboratory were group housed with 12hour
light/dark cycle in ventilated cages and acclimated for a minimum of 7d after arrival. Male
C57BL/6 mice underwent either sham surgery (n=11) or a moderate TBI (n=9) followed by
longitudinal behavior and perfusion MRI across a 60d post injury (dpi) time course (Fig. 1A,
B). A subset of sham and TBI mice (n=6/group) were relegated for behavior. Two of nine TBI
mice died at 30dpi. Sham and TBI mice maintained similar weight profiles (Supplementary

Fig. 1).

Traumatic brain injury (TBI)

TBI with controlled cortical impact (CCI, Fig. 1A) was induced as previously reported? > and
detailed in the supplementary materials. Briefly, anesthetized (isoflurane 1-3%) mice were
maintained at 37°C and then placed in a stereotaxic device. Under aseptic conditions, a scalp
incision was made, underlying connective tissue retracted and a Smm craniotomy (bregma AP
—1.25cm, ML +1.25c¢m) was performed to expose the brain. A 1.5mm impactor tip was zeroed
to pial surface and electromagnetic impactor was discharged (Leica, NeuroscienceTools,
O’Fallon) with the following parameters: 1mm depth, 200ms dwell-time, speed Sm/s.
Extravascular bleeding was immediately wicked away and the skin was sutured closed without
replacing the bone. Buprenorphine (100ng/g body weight, intramuscular) was injected, and
mice were returned to a warmed chamber until ambulatory. Sham mice underwent anesthesia

exposure for the same duration.

Behavioral Paradigms

Mice were carefully handled to habituate with experimenter 1-2 days before testing.’
Behavioral testing sequentially included foot-fault (FF), open-field (OF), 3-chamber social
preference (3Ch) tests prior to each magnetic resonance imaging (MRI) session for a subgroup

of animals (n = 12 for baseline, 3, 7, 14 and 30dpi, n = 16 at 60dpi). Mice in their home cages
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were acclimatized to the behavior room for 5-10 min before onset of testing. Mice were allowed
to rest for 10min in their home cage between testing paradigms. All apparatus were disinfected
before and after each mouse. Extended behavioral details are delineated in the Supplementary

materials.

Foot-fault (FF)

Mice were individually placed at one end of a grid (47.5 x 29.5cm, 25 beams, 1.5cm apart) and
allowed to walk freely until they reached home cage at the other end of the grid or 120seconds,
whichever occurred first. Foot slips through the grid were manually counted by two blinded

experimenters.
Open Field (OF)

Mice were placed in the center of an open field arena (30 x 30cm?) and allowed free exploration

for 10min (top view webcam recording).

3-Chamber Social Preference (3Ch)

Our 3Ch test utilized a known cage-mate (partner) being placed inside a wireframe enclosure
in one of the peripheral chambers and alternated between each session®’. The peripheral
chambers were connected to the central chamber (15.5 x 28.50cm?) with manual sliding doors.
The test mouse was placed in the central chamber with closed doors for Smin and then doors
were opened to allow free access to both peripheral chambers for 10min. The behavior was

video recorded for offline analysis.

Behavior Analyses

All semi-automated image analyses or manual scoring were blinded to injury condition. We
utilized multiple software, including Fiji*® for OF and 3Ch, and AnimalTA*’ for OF animal
tracking to estimate speed and distance. Videos were cropped to isolate the identical regions of
interest (ROIs) for OF and 3Ch (Supplementary Fig. 2). FIJI’s image adjust algorithm was used
with automated minimum threshold for animal (red) and background (dark) detection, to
generate binary masks. Thresholded stacks were averaged as heat-maps (Fiji), with pixel-
intensity representing time*° allowing measurement of time spent in partner vs no-partner
chambers, termed relative partner-preference (RPP). Manual scored behavior utilized BORIS*!
to derive, a) absolute partner-interaction time (API) defined as total time the test mouse was

facing the cylindrical enclosure with the partner mouse, and b) relative partner-interaction time
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(RPI), defined as the ratio of time spent interacting with (pointed towards) partner enclosure

vs. total interaction time across both partner and non-partner enclosures.

MRI

In vivo longitudinal MRI was performed (Fig. 1B) at baseline and after TBI induction (3, 7,
14, 30, 60dpi) on a horizontal 30cm bore, 9.4Tesla MR scanner (Bruker Avance) equipped
with a 72mm diameter volume excitation RF coil. Our perfusion weighted imaging (PWI) MRI
methods are published* and described in more detail in the supplementary materials.
Succinctly, mice were anesthetized (2% isoflurane) and tail veins were cannulated to facilitate
contrast injection (0.1mmol/kg Gadoterate Meglumine diluted with sterile saline, Dotarem,
Guerbet, Princeton, NJ). Mice were then placed in MRI and the following sequences were
acquired: T2-weighted (T2), T1-weighted images (T1), PWI during which Gd was infused
(1ul/g body weight), and susceptibility-weighted MRI (Supplementary Table 1 for MRI

sequence details).

MRI Image Analysis

Detailed MRI processing methods are reported in Supplementary materials. PWI MRI was
processed using Jim software (V9.1, Xinapse Systems Ltd, Essex, UK) using the Brain
Perfusion tool to automatically derive the arterial input function (AIF) curves which were
manually reviewed for typical AIF profiles. AIF curves from each sham mouse across all six
time points were averaged for a group average AIF* and used to calculate cerebral blood flow
(CBF, ml/100g-tissue/min) and cerebral blood volume (CBV, %tissue).** TBI animals used
individual AIF curves to calculate CBF and CBV to account for variability due to injury. In
Jim software an in-house mouse atlas was applied to CBF and CBV parametric maps, values

were extracted and summarized in Excel.

Vessel Painting and Analyses

To visualize cortical angioarchitecture we utilized our vessel painting protocol as previously
reported  (see  supplementary  materials).>>  Briefly, 1,1'-Dioctadecyl-3,3,3',3'-
Tetramethylindocarbocyanine Perchlorate (Dil, D282, Invitrogen, Carlsbad) was delivered via
intracardiac injection prior to,) infusion was performed prior to transcardial fixative perfusion

at 60dpi and brains were extracted after 24hr post fixation, rinsed in 4% PFA for 24hours and
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stored in PBS+0.02% sodium azide until microscopic acquisition. All animals had successful

staining of the cortical vasculature (n=8 TBI, n=11 sham).

Vascular image acquisition and analysis protocols have been previously published.?*** Briefly,
the bilateral axial cortices were imaged at 2X magnification using an epifluorescent wide-field
microscopy ( BZ-X810, Keyence Corp., Osaka) and 10x magnification images of the middle
cerebral artery (MCA) of the ipsilateral hemisphere. Classical vascular analysis for vessel
density, junctional branch points, total end points, and average and total vessel length were

obtained using the Fiji plugin, Angiotool.*

Analysis focused on lesion and perilesional regions
(see Fig. 4A). Fractal analyses for vascular complexity was also performed using Fiji Fraclac

plugin to obtain local fractal dimensions (LFD).

Statistics

Behavioral indices, MRI, and vessel painting derived values were imported into MS-Excel.
MRI data were filtered for outliers using interquartile ranges. Statistical testing, Pearson’s
correlation coefficient estimations, and plotting were performed using MS-Excel or Prism 9.0
(GraphPad, San Diego). Scatter plots used box and whisker graphs with mean and error bars
(minimum to maximum values) where the box bounding represents 25th and 75th percentiles.
In line graphs error bars are plotted as standard error of mean (SEM). Two-way ANOVA
(2wANOVA) with Tukey’s Post hoc test was used for statistical comparisons, unless specified
otherwise. Statistical significance was noted at *p<0.05, **p<0.01, or ***p<0.001, with

trending as p<0.1.
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Results

Long-term reduction in social behavior after TBI

Social behavior using a 3Ch paradigm with cage-mate mice illustrate similar relative partner-
preference (RPP) at 3dpi but dramatic reductions at 60dpi (Fig. 1C, Supplementary Fig. 3A-
D). Semi-automated quantitative image analyses confirmed a significant RPP decrease in cage-
mate interaction (2wWANOVA, Injury: F(1,60)=5.02, *p=0.029) with significant post-hoc
reductions in TBI animals at 60dpi (4dj. **p=0.002) (Fig. 1D, Supplementary Fig. 4). Manual
video scoring confirmed similar RPP profiles (Supplementary Fig. 3A-D). The social deficits
were independent of motor deficits, as evident by FF and OF tests, confirming comparable
speeds with higher exploratory drive likely reflecting increased risk-taking behavior in TBI-

mice vs. shams (Fig. 1E-H).
Increased exploratory behavior after TBI

Increased risk-tasking in TBI mice was evident with significantly reduced OF periphery
activity as early as 14dpi through to 60dpi relative to shams (Fig. 1E, F) 2wANOVA, Injury,
F(1,61)=3.80, p=0.056; Timepoints, F(5,61)=3.64, **p=0.006). Post-hoc, sham mice spent
more time in periphery at 14dpi compared to baseline (**p=0.008). Ratio of time spent in

center/periphery found no significant differences (Supplementary Fig. 3F).

TBI mice exhibited higher speeds and distance travelled from 7dpi onwards across all the
timepoints with significant ‘time X injury’ interactions for speed (Fig. 1G-H, Supplementary
Fig. 3E-H); (Fig. 1G, average speed, 2WANOVA, Injury, F(1,61)=6.44, *p=0.014; Timepoint,
F(5,61)=1.91, p=0.1, Interaction F(5,61)=2.99, *p=0.018); (Fig 1H, total distance,
2wANOVA, Injury, F(1,61)=14.4, ***p=0.0003; Timepoint, F(5,61)=1.28, p=0.28,
Interaction F(5,61)=1.01, p=0.42). TBI animals had significantly reduced speed at 3dpi
(Adj. *p=0.045) but elevated at 7dpi (4dj. *p=0.027) and 60dpi (Adj. *p =0.027) vs. sham mice.
Distance travelled was elevated at 7dpi (4dj. *p=0.017), 14dpi (4dj. *p=0.048), and 60dpi
(4dj. *p=0.022) for TBI vs. sham mice.
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Early sensorimotor deficits post-TBI recover with time

Sensorimotor failures assessed using FF testing were increased in TBI compared to sham mice
at 3dpi (Supplementary Fig. 5, IWANOVA, F=3.99, p<0.001, Post hoc 3dpi TBI vs. Sham,
*#¥p=0.001), with return to baseline between 7-60dpi (Fig. 1I, rmANOVA, F(4.28, 11.8)=4.28,
*p=0.035, post-hoc: 3- vs 7dpi *p=0.012, 3- vs 60dpi p=0.064).

CBF dysfunction mirrors social behavior deficits

Structural T2WI in TBI mice exhibited early edema which resolved over time (3-7dpi) with
subsequent cortical thinning at the impact site (14-60dpi; Fig. 2A). Lesion volumes were
initially elevated during the edematous phase and then stabilized to ~10mm? or ~4% of brain
volume (Fig. 2B, C). CBF exhibited regional and global declines that gradually recovered over
the initial 30dpi, but then steeply declined at 60dpi (Fig. 2A, D). CBF at the cortical impact
site in TBI mice had acute reductions at 3dpi, modest recovery during 7-30dpi, followed by
precipitous CBF declines at 60dpi (Fig. 2D, mixed effect IwWANOVA, slice#1: F(2.993,
24.55)=3.71, *p=0.02, 3- vs 7dpi *p=0.036, and 3- vs. 30dpi *p=0.046; slice#4: F(2.66,
23.38)=5.20, Tukey’s post-hoc: Bn vs 7dpi *p=0.031, Bn vs 14dpi ***p<0.001, Bn vs 30dpi
*p=0.036, and Bn vs. 60dpi **p=0.006). TBI induced CBF perturbations extended beyond the
impact site to adjacent and distant ipsilateral cortical and subcortical regions (Fig. 2A, E) where
CBF heatmaps highlight the regional multiphasic nature of physiological recovery. Like the
injury site profile (Fig. 2D), distant regions reflected an initial CBF decline at 3dpi, transient
recovery at 7-30dpi with a subsequent decline at 60dpi (Fig. 2E). We then examined the
relationship between social behavior (RPP) and CBF at 60dpi which demonstrated positive
correlations in regions involved in exploratory and social behavior (Fig. 2F-H). Hippocampal
CBF was trending positively correlated to RPP (Fig. 2F, p=0.08, R’=0.30) and was significantly
correlated in the entorhinal cortex (Fig. 2G, *p=0.04, R’=0.30), but not in somatosensory cortex
(Fig. 2H, p=0.28, R°=0.12). Thus, TBI elicits a dynamic profile of tentative recovery followed

by regional reductions that correlated to indices of social isolation.

Cortical and sub-cortical progression of CBF dynamics post-TBI

We next investigated regional CBF profiles as a function of distance from the impact site (Fig.
3A). The lesion site CBF was significantly lower across the 60dpi epoch, reflecting protracted
neurovascular damage after TBI (Fig. 3B, Injury, F(1,105)=8.36, **p=0.005, Timepoints,

9
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F(5,105)=2.51, *p=0.035). After an initial decline, lateral perilesional (somatosensory) cortex
CBF progressively increased above shams (Fig. 3C, Injury, F(1,106)=4.47, *p=0.037,
Timepoints, F(5,106)=3.77, **p=0.003). Post hoc, CBF at 3dpi was acutely reduced after
injury (**p=0.004). Longitudinally for TBI animals, CBF at 3dpi was lower compared to 30dpi
(*p=0.026) and 60dpi (**p=0.003), and 14dpi CBF was lower vs. 60dpi (*p=0.042) in TBI
animals, demonstrating a multiphasic pattern with long-term increment after initial decline.
Notably, the recovery by 30dpi was reflected as similar CBF in the sham and TBI animals.
Medial perilesional (retrosplenial) cortex also had significant reductions in CBF across time
(Fig. 3D, Injury, F(1,107)=23.0, ***p<0.001, Timepoints, F(5,107)=3.06, *p=0.013). CBF in
TBI mice was reduced relative to shams at 3 (*p=0.028), 14 (*p=0.011), and 60dpi (*»p=0.021).

Hippocampus exhibited reduced CBF across the 60dpi period in TBI mice (Fig. 3E, Injury,
F(1,106)=14.3, ***p<0.001, Timepoints, F(5,106)=3.10, *p=0.012) with significant
reductions compared to shams at 14 (*p=0.037) and 60dpi (*p=0.016). CBF within the cortical
regions adjacent to injury (somatosensory, auditory) showed complementary temporal
dynamics. In somatosensory cortex TBI mice had reduced CBF spanning the entire
experimental period whilst shams had temporal reductions but were not significantly different
albeit there was a significant group effect (Fig. 3F, Injury, F(1,106)=10.40, **p=0.002,
Timepoints, F(5,106)=1.88, p=0.104). TBI CBF was significantly lower relative to shams at 3
(*p=0.012) and 14dpi (*p=0.04). In the adjacent auditory cortex but more distant from TBI
site, CBF increased over the first 30dpi but then declined at 60dpi (Fig. 3G, Injury,
F(1,104)=9.31, **p=0.003, Timepoints, F(5,104)=2.63, *p=0.028) with significantly reduced
CBF in TBI mice only at 60dpi (*p=0.035).

Even more distant from the TBI site, two ventrolateral cortical regions (piriform, ento-ecto-
peri-rhinal) exhibited similar declines at 60dpi (Fig. 3H, 1), with no significant injury vs time
interactions. Piriform cortex was significantly reduced at 60dpi (Post-hoc, Sham vs TBI
*p=0.025) with trending reductions in the rhinal cortices (ento, ecto, peri) at 60dpi (Post-hoc,
Sham vs TBI, p=0.076).

Subcortical regions such as thalamus and hypothalamus are involved in social behavior (Fig.
3J, K).* Sham animals showed higher thalamic CBF than TBI mice at baseline (Fig. 3J, Injury,
F(1,104)=10.0, **p=0.002, Timepoints, F(5,104)=4.57, ***p<0.001, Post hoc, baseline
*p=0.013, 60dpi *p=0.027). Hypothalamus had no temporally significant CBF changes
(F(5,103)=1.56, p=0.177) but significant differences across injury conditions (F(1,103)=7.73,
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*#p=0.006) with TBI mice having lower CBF at baseline (*p=0.017) and 14dpi (*p=0.032)

compared to shams.

Reduced cortical angioarchitecture coincides with social behavior

decrements at 60dpi

We previously reported recovery of cortical vasculature by 30dpi after TBI.?® Surprisingly, at
60pdi we observed broad vascular decrements that mirrored CBF reductions (Fig. 4). At TBI
site (lesion), vessel junctions had a trending reduction (p=0.068) in TBI mice compared to
shams (Fig. 4B), while vessel density was significantly decreased (p=0.002, Fig. 4C)
accompanied by significantly increased vascular endpoints (p=0.0001, Fig. 4D). Average
vessel length was unaltered between sham and TBI mice (Fig. 4E). Fractal analysis confirmed
reduced vascular complexity that mirrored reduced vessel density (Fig 2F, G). Maximum local
fractal dimension (LFD) was significantly reduced at the lesion (p=0.0001) and the peri-lesion
sites (p=0.047) compared to shams (Fig. 4H, 2-tailed-Mann-Whitney Test). Thus, impaired
angioarchitecture at 60dpi provides an anatomical basis for our observed physiological and

behavioral decrements.

Further linkage wvascular anatomy and longitudinal social behavior was assessed via
correlations. Vascular metrics at 60dpi were correlated across temporal social behavior (Fig.
41). Broadly, sham animals had progressively positive correlations between vessel density and
average vessel length against absolute partner-interaction (API) across the 60dpi time course
but were negatively correlated in TBI mice (Fig. 4I). Total vessel endpoints were strongly
correlated (i.e. more vascular fragmentation) with API while maxLFD negatively correlated
(Fig 41, top row). Both RPI (manual) and RPP (automated) were identical with opposite
correlations being observed between groups (Fig. 41, middle, bottom rows). Interestingly, at 7-
and 60dpi, maxLFD had positive correlation with relative partner-interaction for sham but
negative correlation with TBI. In sum, TBI mice had opposite correlation trends compared to
shams, especially at 60dpi, and the correlation trends across time would suggest that TBI-
induced social behavior deficits soon after the injury have predictive potential for long-term

vascular decrements.
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Cerebrovascular volumes (CBV) mirror CBF

Cerebral blood volume (CBV) measurements exhibited early post injury declines spanning
14dpi with latent recovery at 30dpi followed by a robust decline at 60dpi (Fig. 4J). CBV in the
lesion cortex across time points showed a trending change (F(5,104)=2.20, p=0.059) and were
significantly different across injury conditions (sham vs TBI, F(1,104)=7.27, **p=0.008,
interaction — ns) (Fig. 4K). Shams had higher CBV compared to TBI at baseline (**p=0.006)
and at 14dpi (*p=0.033). The medial perilesion cortex exhibited significantly different CBV
across time (F(5,102)=3.76, **p=0.004) and injury (F(1,102)=24.2, ***p<0.001, interaction —
ns) with elevated CBV in sham mice compared to TBI at baseline (*p=0.015), 3 (**p=0.007),
7 (*p=0.048), and 14dpi (**p=0.005) (Fig. 4L). Baseline CBV for sham animals was higher
compared to 30dpi (*p=0.044).

CBV in the lateral perilesional cortex (Fig. 4M) was significantly different across timepoints
(F(5,101)=3.68, **p=0.004) and injury conditions (F(1,101)=6.87, *p=0.010) with significant
interactions (F(5,101)=3.54, **p=0.005). CBV was initially lower for TBI mice vs. shams at
baseline (***p<0.001) and 3dpi (**p=0.003) but progressively increased whereas, CBV
decreased with time in sham mice (Baseline vs. 3dpi: *p=0.047, 7dpi: *p=0.013, 14dpi:
**p=0.002, 30dpi: **p=0.008, 60dpi: **p=0.002). At 60dpi TBI mice had elevated CBV
compared to 3dpi (**p=0.002) indicating persistent CBV increases after injury.

Spatiotemporally dispersed effects of TBI

The relationship between ipsi- and contralateral brain regions and their CBF was assessed for
temporally related patterns (auto-correlation) and interactions between region and CBF (cross-
correlations) (Fig. 5A). Broadly, TBI at 3dpi resulted in lower autocorrelations of CBF to
ipsilateral compared to contralateral brain regions (Fig. SA, top panel), which contrasts to the
uniform bilateral correlations in shams. Early ipsilateral CBF dysregulation in TBI animals
recovered by 30dpi (Fig. 5A, middle panel), which coincides with vascular recovery.?
However, at 60dpi when both CBF and vessel density are reduced, CBF auto-correlations
across multiple brain regions are dramatically reduced (Fig. SA, bottom panel) in stark contrast
to sham mice that exhibit strong bilateral CBF auto-correlations, as would be expected in

healthy mice. These findings confirm the prolonged secondary consequences of TBI on blood
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flow across broad portions of the brain, including those distant from the injury and mirror

angioarchitecture.

We next probed if early CBF dynamics (3-30dpi) predict the imminent secondary vascular
damage late after injury (60dpi). Correlations between longitudinal CBF (Baseline—60dpi) and
vascular metrics measured within lesion cortex at 60dpi (Fig. 5B) demonstrate distinct
longitudinal correlation patterns in sham and TBI mice. Roughly, in TBI mice the correlations
suggest an initial negative correlation(s) between vessel density and length that increasingly,
with time become strongly correlated by 60dpi. These observations are opposite in vessel
endpoints and vascular complexity measures (LFD). Thus, early (3-7dpi) blood flow and
vascular disruption are not synchronized whereas the low CBF and loss of the vascular network
are tightly correlated at 60dpi. In summary, CBF measures after TBI may reflect altered

vascular morphology.

Neurovascular function corresponds to social behavior decrements

To capture associations between cerebrovascular function (CBF, CBV) and social behavior
longitudinally after TBI, we undertook correlations across bilateral regions. This approach
demonstrated strong linkage of RPI to ipsi- and contralateral cerebrovascular decrements
across social behavior related brain regions (ipsilateral, Fig. 6A-C; contralateral, Fig. 6G-I). In
general, the correlation matrices, as evident in similar heatmaps between ispi- and contralateral
regions were remarkably consistent. When all regional correlations were averaged we observed
distinct signatures that separated TBI mice from shams (Fig. 6B-F, H-L). TBI induced
ipsilateral CBF and CBV changes strongly which correlated with RPI and API but was
negatively correlated in sham mice. Compared to CBF, the CBV changes exhibited the
strongest correlations on both ipsi- and contralateral brain regions (e.g. Fig. 6C, I). In summary,
CBF vs. RPI/API correlations increase from 3- 30dpi but then decline by 60dpi while sham
animals show opposite trajectories (Fig. 6B, E). CBV correlation profiles with RPI/API have
progressive negative correlations in shams whereas TBI mice have persistent positive
correlations (Fig. 6C, F). Similar correlational directionality was observed between CBF/CBV
and RPI/API in contralateral brain regions (Fig. 6 G-L). Profiles showing API correlated with
ipsilateral (Fig. 6D-F) and contralateral (Fig. 6J-L) Hence, early correlations between behavior

and CBF predict long-term physiological deficits.
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Discussion

We investigated longitudinal and dynamic evolution of behavior and vascular
physiology across 2-months post-TBI (Fig. 1). Our study is the first preclinical TBI study to
demonstrate reduced social preference between familiar cage-mates when vascular functions
decline. The key findings are: 1) a late decline (60dpi) in sociability of TBI animals while motor
and exploratory behavior recover; ii) longitudinal CBF (Figs. 2, 3) identifying a novel
multiphasic recovery profile with delayed 60dpi global decline in perfusion that also
encompasses brain regions processing social behavior; ii1) angioarchitecture exhibits vascular
damage at 60dpi, including reduced vessel density and increased fragmentation (Fig. 4); iv)
vascular and social behavior correlations displayed pronounced negative correlations early
after TBI but progressively become positively correlated by 60dpi; iv) regional correlations
confirmed dynamic bilateral CBF changes across the brain after a unilateral TBI, (Fig. 5) that
becomes predominately perturbed ipsilaterally; and v) unique correlation patterns between
behavior and vascular physiology emerge in TBI animals (Fig. 6). In summary, our study for
the first time links how cerebrovascular physiology contributes to decline in social interactions
after TBI in male mice. Our findings also suggest that monitoring social behavior early after
brain injury may predict long-term neurovascular damage, providing a putative avenue for

therapeutic interventions.

Neuropsychological disabilities, including sociability issues are being increasingly
recognized after TBI in adults*’ and children.*® Subjects often exhibit the inability to recognize

4950 impaired verbal and non-verbal communication,’ and

affective facial expressions,
diminished empathy,’! culminating into decreased time spent with friends and families.
Interestingly, brain regions regulating social behavior are common between rodents and
primates.’> 33 Feature content of socially transferred food preference memory is known to
decline after systems consolidation,*® and social isolation elicits similar pathophysiology in
healthy rodents as in humans.>* A few studies, in preclinical models of TBI, have explored
social dominance and interaction behavior.? 3 Our observation of behavioral recovery at
30dpi corroborates a recent study that showed lack of social deficits at 30dpi in mice with
repeated mTBI.>® Consistent with the previous literature we also found TBI animals cover

longer distances than the shams, at higher relative speed.’’ Preferentially exploring and

frequenting the center of the open-field arena suggests an inclination for taking risks, a well-
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documented behavior observed in rodents and human subjects after TBI.>3*° However, long-

term social isolation among familiar individuals post-TBI has not been studied.

In chronic TBI, cognitive impairments and social isolation often precede the debilitating
prolonged consequences of injury among human subjects that parallel Alzheimer’s-related
signatures,®! depression, and suicidal tendencies.®? Our novel approach captures the long-term
social interaction deficits between familiar mice as observed in head-injured human subjects.®*
%4 In the classic Crawley’s 3-chamber test,?”- % a test mouse interacts with a combination of un-
familiar mice and a novel object where the social performance reflects combined effect of novel
entity and neophobia.®® An adult frontal TBI model showed increased preference for familiar
mice in 3-chamber task, however, longitudinal transition of social behavior in same animals
was not investigated.!® Our temporal study demonstrated, in TBI mice, no initial sociability
deficits but at chronic time points the emergence of a decline in voluntary preference of a
known animal i.e. their cage-mate partner. This decrement in sociability of TBI mice was
accompanied by decreased anxiety and increased exploration consistent with increased risk

behavior, as previously reported.®’

Numerous studies have sought to link altered behavior to inflammation®® and neuronal cell
death® as underlying mechanisms. Surprisingly, there are limited investigations into how
cerebrovascular morphology and function are linked after TBI to behavioral deficits. A recent
study in TBI subjects found significant associations at ~2yrs post injury between decreased

perfusion and psychoemotional outcomes (i.e. anxiety).”

Neurovascular coupling implies a
link between task-evoked cellular metabolic demands and blood flow to the activated brain
region.”! Social recognition associated cellular networks require protein synthesis and includes
cAMP responsive element-binding protein (CREB) for transcriptional consolidation.””* Adult
human TBI leads to resting hypoperfusion in many task-related brain regions years after injury
and is similar to that reported in TBI rodent models.*" * In our study we also found early
hypoperfusion that recovered by 30dpi but then rapidly declined in virtually every brain region.
Interestingly at 60 dpi, we find reduced CBF in dorsal hippocampal (dHpC) whose subregions
are necessary for spatial exploration (CA1) and social interaction (CA2).”. Reduction in
interaction with familiar in comparison to novel conspecifics in chronic-TBI could be driven
by corticotrophin signaling from PFC to lateral septum.”® Two months after the injury,
reduction in intrinsic excitability and decreased synaptic output of somatostatin neurons in
layer V of orbito-frontal cortex has been reported’’, consistent with long-term behavioral

78,79

deficits as shown in ours and other studies. could arise from the TBI-associated neuronal
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damage in cortex, dorsal hippocampus and thalamus Future studies can shed more light on the
neural underpinnings of similar TBI comorbidities. Along this rationale, our data captures a
delayed decline in overall neurovascular functional health and maintenance in brain regions
associated with social behavior. Our results show reduced regional CBF post TBI with a novel
multiphasic pattern of intermittent recovery at 7 and 30dpi, worsening of blood flow at 14dpi
and a delayed decline at 60dpi. Interestingly, we observe similar longitudinal profiles for RPP

and CBF measurements in social behavior relevant brain regions.

Our results are consistent with previous studies showing acute and chronic hypoperfusion and
behavior deficits in both clinical and preclinical TBI.%"- 882 Several studies have demonstrated

57,84 and humans.®® The primary

recovery of behavior performance after TBI in rats, 3 mice,
finding of many studies is that social, anxiety and cognitive behavioral domains worsen with
increasing time. A similar progressive decline in brain perfusion long-term has been reported.
Human studies report CBF recovery by 3 weeks post injury, with linkage to improved
neurological outcomes.®® Grohn and colleagues noted biphasic hypoperfusion with transient
recovery followed by a second hypoperfusion epoch over two weeks after TBI, that relates to
changes in vascular density.®” Others have also noted protracted CBF reduction in rodents has
been shown to last up to 1 year post TBL®® Our current study and previous observations
demonstrated perfusion recovery at 30dpi >° that was reflected by recovery of vascular density.

In our study the consistent decrement in CBF at 60dpi relates to reduced vascular density and

complexity which thereby exacerbates behavioral deficits.

In support of our study, previous findings noted focal TBI elicits longitudinal global
cerebrovascular deficits underlying large-scale brain network effects, likely leading to
protracted social deficits.®® Bilateral CBF reductions, similar to our observations, have been
seen in human mTBI subjects for prefrontal cortex, putamen, and hippocampus, while reduced
CBF in cortex and caudate putamen is associated with depressive symptoms, and in
hippocampus with anxiety.”” Consistent with the previous human studies, we also observe

1.”° Decreased thalamic dendrite complexity in rats also

thalamic pathophysiology after mTB
shows recovery by 4-weeks post mTBL®' corroborated by corresponding vascular and

functional perfusion recovery in our study that then to collapses by 60dpi.

TBI results in immediate damage to focal and distant cerebrovascular morphology that then
partially recovers.?® 2> %> The subsequent secondary cellular and molecular cascades after
moderate to severe TBI result in long-term deficits including hemorrhage, edema, reduced
CBF, vasospasms, blood-brain disruptions, coagulopathy, and chronic inflammation.”**>
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Surprisingly, we observed a second period of vascular loss at 60dpi despite vascular recovery
by 30dpi.?® The late diminished vessel characteristics mirrored reduced CBF virtually across
all brain regions compared to shams. Thus, initial vascular recovery is transient and is not well
integrated within the brain parenchyma as stable neurovascular units.’® °7 Structural vascular
abnormalities in human TBI subjects exhibit microvessels with flattened, reduced lumina and
longitudinal folds in the pial, cortical, and capillary zones.?% *® In lateral fluid percussion rodent
models there also is microvascular recovery which does not mirror healthy control
vasculature.” ¥ As noted previously, we observed identical recovery profiles after TBI?® which
then rapidly degrade by 60dpi. Vascular density was also increased at 14dpi after repeated TBI
concomitant with diminished CBF, cerebrovascular reactivity, and neuronal activity.'% In adult
and pediatric human subjects after TBI, CBF and CBV decline.*’- !°! Broadly, TBI in clinical
and preclinical studies suggest that dynamic vascular density alterations lead to chronic

reductions in brain responsivity and perfusion.

It is noteworthy that there are regional variations, particularly in corelative preclinical studies.
For example, hippocampal vessel density does not vary with declining CBF whereas increases
in CBF and vessel density were reported in ipsilateral thalamus 8-months after TB1.2%3!:47 The
authors reported that poor spatial exploration performance correlated with increased thalamic
vessel density. Griffiths and colleagues reported no changes in cortical or hippocampal CBF
or CBV 6mo after mild TBI despite cognitive decrements.!”? Similar findings have been

reported in individuals with mild’%and in moderate severe TBI.!%?

Our correlations measure the interdependent blood flow across brain regions highlighting
bilateral effects specific to TBI animals. Specifically, global blood flow correlations were
reduced at 3dpi with recovery by 30dpi followed by a dramatic decline at 60dpi. The
correlations of longitudinal behavior to 60dpi vascular metrics provided an early-stage
behavioral marker to predict the imminent long term neurovascular damage from TBI. Finally,
our correlations between social behavior, blood flow and blood volume in brain regions
exhibited unique patterns for TBI animals at 3, 30- and 60dpi. Similar behavioral correlations

to CBF were found in mTBI.'%?

The strengths of our study are, i) longitudinal in vivo assessments of behavior alongside
cerebrovascular function after TBI which provide a continuous view of how recovery is
modulated; ii) behavioral tests across multiple domains (motor, exploratory, social) but with
novel social preference for familiar cage mates, an observation reported in human subjects yet
underexplored in preclinical models; iii) our extended observation window to 2months post-
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TBI which is equivalent to ~7 years in humans!®*, iv) novel multiphasic global evolution of
brain perfusion after injury in the same subjects; v) novel CBF autocorrelations across whole
brain regions demonstrating remission of cerebrovascular pathophysiology at 30dpi but
recurrence at 60dpi; vi) the loss of structural vascular networks underlie CBF and social
behavior deficits; and vi) correlations across behavior and cerebrovascular physiology
providing a predictive assessment of imminent long-term pathophysiology underlying TBI
comorbidities.

There are several limitations of our current study. They include: i) absence of female mice
perfusion and behavioral data. Female gender is underrepresented in clinical and most pre-
clinical research studies and emerging studies suggest that women of the same age group
(compared to men) are more susceptible to adverse consequences of TBL!% To fill this gap we
are currently investigating the long term physiological and behavioral pathology post-TBI in
female mice; i1) some of the variance in our measurements can be attributed to the modest
number of replicates (n=6-8/grp/time) but exhibited sufficient statistical power particularly in
light of our longitudinal assessments; iii) limited anatomical resolution from the perfusion-
weighted MRI measurements. Due to the rapid acquisition techniques in-plane resolution was
250um/pixel which provide sufficient resolution for regional brain assessments using manual
segmentations based on the Allen brain atlas!%. Future studies will address these limitations
by combining high-resolution optical with magnetic resonance imaging. MRI does provide a
powerful non-invasive and longitudinal global assessment of pathophysiology that is not
feasible with other techniques; and iv) baseline CBF variations between sham and TBI groups
before injury were noted in some but were not different in regions involved in social behavior

(hippocampus, piriform, auditory, rhinal cortices).

Conclusions and Future Directions

In conclusion, our study for the first time demonstrates the cerebrovascular underpinnings of
emerging social behavioral deficits after chronic TBI. Social interactions among familiar mice
long after a TBI were reduced with concurrent longitudinal physiological reductions in CBF
and CBV. A steep decline in CBF at 60dpi in social behavior related brain regions, was
observed in hippocampus and rhinal cortex. The loss of angioarchitecture at 60dpi provides the
basis for precipitous declines in CBF and social behavior. Further, our correlations point to
broad linkage between impairments in vascular metrics, CBF, CBV, and social behavior

metrics. We suggest that such correlations may have predictive value for obtaining early
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estimates of long-term damage, and potentially informing the optimal treatments. In addition

107-109

to pharmacological interventions, enriched environments with monitored exercise and

110

virtual environments are deemed helpful during chronic TBI recovery in rodents' " and humans

HL 12 including virtual social networks.!'® Future investigations, in addition to assessing
influence of sex should investigate how vascular smooth muscle attributes are modified by TBI

15

14 and how pericytes regulate blood flow.!!"> Finally, chronic TBI sequelae such as BBB

dysfunction, TGFf signaling, and neuroinflammation also contribute to the long-term sequelae
injury. While our study in a rodent preclinical model hints at the linkage between
neuropsychological outcomes modulated by brain perfusion, continued investigations are
needed to improve our understanding of the longitudinal implications TBI and how we might

best intervene to improve patient outcomes.
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Figure 1. Chronic social and exploratory behavior changes following TBI. (A) Cortical
contusion injury (CCI) in adult male mice centered at somatosensory and motor cortices. (B)
Behavioral and MRI experimental timeline with vessel painting at 60 days post injury (dpi).
(C) Heat maps of 3-chamber social behavior utilized a known cage-mate mouse (partner) and
illustrate increased cumulative time spent by sham (top) and TBI mice (bottom row) at 3 and
60dpi (D) Relative partner-preference (RPP) is significantly reduced at 60dpi in TBI (red
circles) relative to sham mice (black squares) (2wANOVA - Injury factor - F(1,60)=5.02,
*p=0.029, Tukey’s post-hoc 60dpi. sham vs TBI - ** p=0.002). (E) Open-field arena schematic
(left) with center and periphery zones. Heatmap of average time spent at 3- and 60dpi for sham
(top row) and TBI animals (bottom row) illustrates increased center time after TBI. (F) Sham
mice (black, squares) spent significantly more time in periphery at 14dpi vs. baseline
(2wANOVA: F(5,61)=0.006, Tukey’s post hoc **p=0.008) but reduced time in TBI mice
(Injury factor, 2wANOVA, F(1, 61)=3.80, p=0.056). (G) TBI mice in open field exhibited
increased average speed compared to shams (2wWANOVA, injury factor, F(1, 61)=6.44,
*p=0.014). (H) Total distance travelled in open field was also significantly increased in TBI
mice vs shams (2wANOVA, injury factor, F(1, 61)=14.4, ***p=0.0003) at 7, 14 and 60dpi
(*p<0.05). () Sensorimotor tests in TBI mice at 3dpi exhibited increased foot-faults with
modest longitudinal recovery. (dpi - days post injury, CCI - Cortical contusion injury, TBI -
Traumatic brain injury, partner - cage mate mouse, CBF - cerebral blood flow, Bn - baseline,
bright asterisk on coronal and axial view of the brain - TBI impact site.)
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Figure 2. Cerebral blood flow (CBF) recovers but declines at 60dpi. (A) Representative
T2-weighted anatomical MR images and CBF maps (ml/100g-tissue/min) from the same TBI
mouse illustrates transient decrements, recovery and then followed by precipitous decline at
60dpi. Edema at 3dpi at the impact site (asterisk) resolves and is followed by moderate tissue
loss 14-60dpi. (B) Lesion volume (mm?®, red; % brain volume, black) edema increases and
stabilizes after edema resolution (1IwWANOVA — Lesion Volume, F(2.17, 18.4)=5.43, Geisser-
Greenhouse’s e=0.541, *p=0.013, Tukey’s post-hoc 3- vs. 30dpi *p=0.47; Lesion/Cerebrum
volume, F(2.18, 18.5)=5.37, Geisser-Greenhouse’s €=0.544, *p=0.013, Tukey s post-hoc 3- vs.
30dpi *p<0.05). (C) Brain 3D-reconstruction in a TBI mouse (3dpi) illustrates edematous
lesion (red). PWI MRI data were collected from four 1mm thick coronal slices. (D) Temporal
evolution (Basline-60dpi) of CBF at lesion site across antero-posterior slices with acute
reductions at 3dpi, recovery followed by declines at 60dpi. (E) CBF heatmap depicting
longitudinal CBF changes for each slice (columns) with brain regions (rows) sorted by distance
from TBI impact site. Statistical significance (t-test TBI vs Sham) is noted (* p<0.05, **
p<0.01, *** p<0.001) as are trending p-values. Reduced CBF was evident in anterior slices but
increased in posterior slices distant from TBI site. (F-H) Correlations between 60dpi CBF and
relative partner preference (RPP) in sham and TBI mice in social exploration related brain
regions (dorsal hippocampus p=0.08, R>=0.30 (F), entorhinal cortex p=0.04, R*=0.46 (G) and
somatosensory cortex (p=0.28, R>=0.12, (H)).
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Figure 3. Longitudinal CBF dynamics in brain regions. (A) Representative regions of
interest (ROIs) on a coronal MRI. (B) CBF at lesion cortex shows overall significant difference
across both timepoints (6-sessions 0-60dpi, F(5,105)=2.51, *p=0.035) and injury condition
(Sham vs. TBI, F(1,105)=8.36, **p=0.005). (C) Increased CBF in lateral peri-lesional cortex
of TBI mice was significant across timepoints (F(5,106)=3.77, **p=0.003) and injury
conditions (F(1,106)=4.47, *p=0.037) and interactions (¥(5,106)=2.51, *p=0.034). (D) Medial
peri-lesion cortex CBF was significantly reduced across time (F(5,107)=3.06, *p=0.013) and
injury condition (£(1,107)=23.0, ***p<0.001, interaction—ns). (E) CBF profile in dorsal
hippocampus was significantly different across time (F(5,107)=3.10, *p=0.012) and injury
condition (F(1,107)=14.3, ***p<0.001, interaction—ns). (F) Somatosensory cortex showed
stable CBF across all timepoints (F(5,106)=1.88, p=0.104, ns) with higher overall longitudinal
trend for shams compared to TBI animals (injury factor, F(1,106)=10.4, **p=0.002,
interaction—ns). (G) Auditory cortex profiles were significantly different across time
(F(5,107)=3.16, *p=0.011) and injury condition (F(1,107)=12.7, ***p<0.001, interaction—ns).
(H) Piriform cortex reported stable CBF profiles across timepoints (F(5,105)=1.20, p=0.316,
ns) and injury condition (F(1,105)=1.86, p=0.175, ns and post-hoc comparisons identified
significantly lower CBF at 60dpi in TBI vs sham mice(*p=0.025). (I) Rhinal cortices (ento,
ecto, peri) showed an overall similar CBF trend across time (£(5,106)=2.11, p=0.069, trending)
and injury condition (£(1,106)=2.13, p=0.147, ns). Post-hoc comparison found a trending
decline at 60dpi for TBI vs sham (p=0.076). (J) CBF in thalamus was significantly different
across timepoints (F(5,104)=4.57, ***p<0.001) and injury condition (#(1,104)= 10.0,
**p=0.002, interaction—ns). (K) Hypothalamus found stable CBF profiles across time
(F(5,103)=1.56, p=0.177) with significantly different perfusion across injury conditions
(F(1,103)=7.73, **p=0.006). (numbers in regional titles denote the PWI slice data were
extracted from)
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Figure 4. Vascular networks at 60dpi are perturbed. (A) Axial cerebral vasculature is
reduced in TBI (right) compared to sham (left) mice in vessel networks encompassing the
middle cerebral artery (MCA). Green circle = peri lesion ROI, blue circle = lesion ROI, yellow
asterisk = impact site. (B) Number of vessel junctions were reduced within the TBI lesion
(»=0.068) (red circles) compared to shams (black squares). (C) Lesion site vessel density in
TBI mice was significantly (**p=0.002) reduced compared to shams but not in peri-lesional
cortex. (D) Vessel end points were significantly increased at TBI lesion site compared to shams
(***p=0.0001). (E) Average vessel length was unaltered between sham and TBI mice. (F, G)
Fractal analysis identified a leftward shift (reduced vessel complexity) in local fractal
dimension (LFD) histograms in the lesion (F) and in peri-lesion (G) sites. (H) Maximum local
fractal dimension (LFD) was significantly reduced in lesion (***p=0.0001) and peri-lesion
sites (*p=0.047) for TBI mice relative to shams (B-H: 2-tailed-Mann-Whitney-Test). (I)
Vascular network parameters at 60dpi were correlated to temporal social outcomes across sham
and TBI mice, with opposite correlations between groups. Top row — Absolute partner-
interaction-time (API), middle row — Relative partner-interaction time (RPI), bottom row —
Relative partner-preference (RPP). (J) Transient decrements in cerebral blood volume (CBV,
% tissue) over the first 14dpi recovers by 30dpi but is followed by a dramatic 60dpi decrease.
(K) Lesion cortical CBV was low initially but slowly increased after 30dpi (F(5,104)=2.20,
p=0.059). CBV profiles were significantly different across time but not injury condition (sham
vs TBI, F(1,104)=7.27, **p=0.008, interaction—ns). (L) Medial peri-lesion cortex had
significantly reduced CBV across timepoints (F(5,102)=3.76, **p=0.004) and injury condition
(F(1,102)=24.2, ***p<0.001, interaction—ns). (M) CBV in lateral peri-lesion cortex has a
similar trajectory as lesion cortex with significant differences across temporal (F#(5,101)=3.68,
**p=0.004) and injury condition (£(1,101)=6.87, *p=0.010), and interactions (F(5,101)=3.54,
*#p=0.005). TBI animals had higher CBV at 60dpi (**p=0.002).
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Figure 5 Temporal relationships between cerebral blood flow (CBF) across brain regions.
(A) Temporal CBF correlation coefficients across brain regions highlight global alterations due
to TBI (right panel) resulting in loss of CBF auto-correlations at the injury site at 3dpi that
moderately recovers by 30dpi but is greatly perturbed at 60dpi unlike shams (left panel). This
dysregulation also spreads to the contralateral hemisphere at 60dpi in TBI mice. (B) Temporal
CBEF correlations to vascular network measures at 60dpi further confirm an initial recovery.
However, delayed cerebrovascular structural deficits contributes to the declining brain
perfusion. At 60dpi, vessel density in lesion cortex and longitudinal CBF across ipsi- and
contralateral brain regions in TBI animals show mostly negative correlations at 3-30dpi
followed by positive correlations at 60dpi. In contrast, sham animals show highly positive
correlations at 14dpi and low mixed correlations at other time points. Vessel length vs. CBF
correlations are negative for sham animals across all timepoints but positive for TBI animals
at 60dpi. Total end points and CBF correlations in sham animals also exhibited mostly mixed
correlations except 14dpi with negative correlations. Conversely, TBI animals show positive
correlations at 3- and 30dpi, negative ipsilateral correlations for 7-60dpi, and negative
contralateral correlations at 7dpi, but positive contralateral CBF correlations at 14-60dpi.
maxLFD and CBF correlations were negative for sham animals unlike TBI animals with
positive correlations at 7-14dpi, negative at 30dpi, and positive again at 60dpi. Abbreviations:
Med — Medial, Lat — Lateral, Ctx — Cortex, Hpc — Hippocampus, CaudPut — Caudate putamen,
Thal — Thalamus, Hypoth - Hypothalamus
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Figure 6. Neurovascular physiology in social behavior associated brain regions . (A-C)
Correlation coefficients of relative partner interaction (RPI) to CBF and CBV across ipsilateral
social behavior associated brain regions in TBI and sham mice at 3, 30, and 60dpi (columns).
Regionally averaged correlation coefficients are illustrated in B, C. (B) TBI animals exhibit
the opposite correlations at 30dpi with strong positive correlations unlike negative correlations
in shams for RPI vs. CBF. (C) In TBI mice RPI vs. CBV show strong correlations across time
in contrast to shams having negative correlations with behavior. (D) Correlations of absolute
partner interaction (API) with ipsilateral CBF and CBV exhibit a virtually identical (compared
to RPI) set of regional correlations between sham and TBI animals. (E) API vs. CBF
correlations exhibit identical trends as RPI vs. CBF correlations for both sham and TBI animals
with the largest divergence at 30dpi. (F) API vs. CBV correlations are elevated in TBI mice
compared to reduced strength correlation patterns in shams. (G) Correlation coefficients of RPI
vs. CBF and CBYV across contralateral brain regions behavior have the same temporal patterns
as the ipsilateral brain regions. (H) Contralateral CBF vs. RPI at 30dpi have increased
correlations in TBI mice but reduced in shams with no overt differences at 3 or 60dpi. (I) As
in the ipsilateral regions, RPI vs. CBV correlations were strongly positive in TBI mice but
greatly reduced temporally in shams (J) API correlation to contralateral CBF and CBV were
strong across all regions in TBI but not shams. (K) API vs. CBF correlations in shams were
negative compared to TBI animals showing stable moderate positive correlations. (L) API vs.
CBYV correlation patterns were strongly positive for TBI mice but predominately negative in
sham animals. Abbreviations: Med — Medial, Lat — Lateral, Ctx — Cortex, Hpc — Hippocampus,
CaudPut — Caudate putamen, Thal — Thalamus, Hypoth - Hypothalamus
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