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It has recently been shown that f(T") gravity has w + 1 physical degrees of freedom (d.o.f.)
in n dimensions, contrary to previous claims. The simplest physical interpretation of this fact is that
the theory possesses a scalar d.o.f. This is the case of f(R) gravity, a theory that can be understood
in the Einstein frame as general relativity plus a scalaron. The scalar field that represents the
extra d.o.f. in f(7T') gravity encodes information about the parallelization of the spacetime, which is
detected through a reinterpretation of the equations of motion in both the teleparallel Jordan and
Einstein frames. The trace of the equations of motion in f(7') gravity shows the propagation of
the scalar d.o.f., giving an accurate proof of its existence. We also provide a simple toy model of
a physical system with rotational pseudoinvariance, like f(T") gravity, which gives insights into the
physical interpretation of the extra d.o.f. We discuss some implications and unusual features of the
previously worked out Hamiltonian formalism for f(T") gravity. Finally we show some mathematical
tools to implement the Hamiltonian formulation in the Einstein frame of f(7") gravity, which exhibits
some problems that should be addressed in future works.

I. INTRODUCTION

Gravitational theories based on a spacetime with absolute parallelism are extensions of general relativity (GR)
that are being thoroughly studied in the literature. They intend to solve the main problems of cosmology like the
hypothesis of dark matter, the accelerated expansion of the Universe and the inflation paradigm, as well as theoretical
problems of general relativity like the emergence of singularities, and the quest for a quantum field theory of gravity.
Although teleparallel and modified teleparallel theories of gravity have a long history, their applications in the realm of
cosmology started to being considered just recently in the context of teleparallelism d la Born-Infeld [1]. The original
motivation of this work was to obtain an early accelerated expansion of the Universe without resorting to an inflaton
field. This scheme addresses the problems of general relativity at the high-energy regime, which has been studied and
discussed to some extent in subsequent work [2-8]. The article [1] is a particular case of the so-called f(T") gravity,
a slight variation of teleparallel models that has also been proposed as an alternative explanation of the late-time
accelerated expansion of the Universe [J]. Since then, there has been a growing interest in this kind of theories [10—14]
and several other gravity models based in parallelized spacetimes have been developed [15-50]. Modified teleparallel
theories of gravity on all its forms are expected to be an effective theory of a more fundamental physical theory valid
at energy regimes near the Planck energy.

There is one issue about f(7T') gravity that has given rise to disputes in the literature: the fact that it is not
invariant under local Lorentz transformations of the tetrad field. This fact is usually interpreted as the selection
of preferred frames that parallelize the spacetime, which implies that the theory contains extra degrees of freedom
(d.o.f.) if compared with GR. Although this issue could be tackled by replacing the standard Weitzenbock connection
with a general one to obtain a covariant version of the theory [51-53], the number of d.o.f. would remain unchanged
since the same dynamical equations should be expected in such covariant versions of f(T) gravity.

A recent work has established that f(T") gravity contains one extra d.o.f. compared with the teleparallel equivalent
of general relativity (TEGR) in arbitrary dimension [12]. Although there could be many physical objects possessing a
single degree of freedom, the easiest interpretation would be that the theory is equivalent to the teleparallel equivalent
of general relativity plus a scalar field minimally coupled to it. However, a very known fact is that f(T) gravity
does not possess the analog of an Einstein frame, at least not in the way that it occurs in f(R) gravity [15,
Therefore, it is timely to discuss the interpretation of the physical degrees of freedom of f(T') gravity in the light of
its f(R) counterpart. We will analyze whether the scalar field interpretation is valid both in the teleparallel Jordan
and Einstein equivalent frames and look for further insights in their respective Hamiltonian formulations.
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This work is organized as follows. In Sec. II we will review the basics of f(R) gravity and the interpretation
of the additional degree of freedom on this theory, together with the definition of the Jordan and Einstein frames.
In Sec. IIT we will introduce the TEGR and its simplest generalization, f(T') gravity. In Sec. IV we will analyze
the issue of the extra degree of freedom in f(7T) gravity through the comparison of the teleparallel Jordan and the
Einstein frames actions and their equations of motion. In Sec. V we will present a mechanical system with rotational
pseudoinvariance, which is useful to exemplify several uncommon features of f(T") gravity and will help to understand
the physical meaning of the extra d.o.f. In Sec. VI we will discuss some features of the Hamiltonian formalism for
f(T) gravity developed in [12]. In Sec. VII we will introduce the Hamiltonian formalism for the teleparallel Einstein
frame and discuss the doability of the Dirac-Bergmann algorithm in two different approaches. Finally we will dedicate
Sec. VIII to the conclusions.

II. f(R) GRAVITY

One of the most studied and simplest modifications of general relativity consists in replacing the GR Lagrangian
R with a function f(R) of the scalar curvature. Such a gravitational theory is described by the action

5= _i /d% V=G F(R) + Smatter, (1)

where k = 8rG. In (1) and throughout this work we adopt the convention (+, —, —, —) for the metric signature. The
variation of the action (1) gives rise to the following fourth-order dynamical equations

1
3 f(R) 9w — ViV — g Olf(R) = & Tuvs (2)
where f'(R) = df /dR and T, is the matter stress-energy tensor. We see that f’(R) acts as a renormalization of the
gravitational constant , and therefore only functions satisfying f/(R) > 0 should be considered; besides it should be
f"(R) > 0 in order to avoid instabilities [54-57].

Taking the trace of the equations of motion (2) we can see that the Ricci scalar R is dynamically determined by
the trace T of the energy-momentum tensor 7,, through the second-order equation

f(R)YR-2 f(R)+30f(R)=xT (3)

f'(R) Ry —

(in four dimensions). While Einstein’s equations imply that R vanishes in vacuum, this equation possesses nontrivial
propagating solutions in vacuum, so suggesting the existence of a new degree of freedom related to R [or f'(R)]. The
presence of additional degrees of freedom in f(R) gravity is foreseeable, since the Cauchy data for the higher (fourth)
order of the differential equations involve more functions to be chosen on the Cauchy surface. The issue of how many
new degrees of freedom are involved in f(R) gravity can be better understood in the so-called Jordan frame, which
we proceed to review.

A. Jordan frame

Equations (2) are fourth-order differential equations for the metric. But, alternatively, one could regard the set
(2), (3) as second-order equations for the metric and the scalar object f'(R). Without any harm let us change the
notation to

o= f(R), V(o)=Ro—f(R), (4)
to rewrite Egs. (2) as [58]
1 K Guv 1
R;w - 5 9uv R= E 7:111 - ﬁ V(¢) + E [VMV,,¢ — Guv D¢] (5)
Equation (4) defines the Legendre transform of f(R). Therefore one also obtains
R=V'(¢). (6)

Equations (5) and (6) can be recognized as the dynamical equations associated with the action

Suelg o = ~5 [ ' V=G [0 R=V(6)] + St @



(which resembles a Brans-Dicke action with wpp = 0 and a nontrivial potential). By varying the action (7) with
respect to ¢ one gets Eq. (6), which says the scalar ¢ is a function of the scalar curvature R. This result implies
that the Lagrangian in (7) is dynamically equivalent to the Legendre transform of the function V' (¢); then, it can be
rewritten as a function of R uniquely:

f(R)=¢ R—=V(¢), (8)

which completes the full circle of the equivalence between the actions (7) and (1). In fact, Eqgs. (4), (6) and (8)
contain the entire mechanism of the Legendre transform and its inverse (f” # 0 in order that the transformation be
invertible). The action (7) is said to be the Jordan frame representation of f(R) gravity.

Notice that one can use the result (6) to write the trace of Eq. (5) as a wave equation for a self-interacting scalar
field ¢:

30¢-¢" [0 V() =r T. 9)

From this perspective, ¢ looks like a scalar field minimally coupled to the metric g,,, but coupled to the matter. On
the other hand, Egs. (5) are Einstein equations sourced by the matter and the scalar field. Thus, f(R) gravity can
be rephrased as a scalar-tensor theory with second-order dynamical equations [59-61]. As dynamical equations for
the metric g,,, Eqgs. (5) keep all the symmetries contained in Einstein equations '; so, they describe two d.o.f. in four
dimensions. Besides, there is one extra d.o.f. described by the second-order equation (9).

B. Einstein frame

An even clearer understanding of the extra scalar degree of freedom in f(R) gravity is achieved by working in the
so-called Einstein frame. In this representation the extra d.o.f. is distilled in the action as a scalar field possessing
its own kinetic term. This goal is attained by means of a conformal transformation of the metric together with a
redefinition of the scalar field:

G — Guv = & Guv- ¢—+é=v§gm¢ (10)
(then it is \/—g = ¢~ 21/=7). Thus, applying the relation for the scalar curvatures of conformally related metrics
¢R:R—ggﬂ” 9,In¢ d,Inp —3 Oln g, (11)
the action Sy in (7) is rewritten as
S (G, ¢) = d%wﬁg<—£+%@W%$@$_W@>+&mm7 (12)

where the new potential U(¢) is

V(9) _ f(R) =R f(R)
2k @2 2k f'(R)?

U(¢) = (13)

The action (12) describes a tensor field g,, governed by Einstein equations and a minimally coupled scalar field ¢Z
governed by a Klein-Gordon equation that includes a self-interaction [62-65]. Therefore, the Einstein frame has the
virtue of explicitly showing the extra d.o.f. at the level of the action, since Sgr is the sum of the Einstein-Hilbert
action and the scalar field action. Of course §,, and ¢ are not the original tensor and scalar fields; but it does not
matter for the purpose of counting degrees of freedom. Anyway, once the Einstein frame dynamical equations are
solved, one can always return to the original metric g,, by means of Eq. (10) .

Our very aim is to investigate whether the issue of the extra d.o.f. in f(T) gravity can be addressed in analogy
with the f(R) gravity case. For this, we will introduce f(T") theories of gravity and its progenitor, the teleparallel
equivalent of general relativity.

1 In particular, the automatic conservation of Tuv is guaranteed.



III. TELEPARALLEL AND f(7T) GRAVITY
A. Teleparallel gravity

In order to build a dynamical theory for a field of orthonormal frames, we begin by defining a manifold M and a
basis of vectors {e,} in the tangent space T,,(M). We also define a dual basis {E®} in the cotangent space T, (M)
such that E*(e,) = 5. If expanded in a coordinate basis,

e, =¢el 0y, E"=E] dz", (14)
the duality relationships are written as

E; el =05, el Ej =dl. (15)
We will use Greek letters u,v,... =0, ...,n—1 for spacetime coordinate indices and Latin letters a,b,...=0,...,n—1

for tangent space or Lorentz indices. A wvielbein is a basis that encodes the metric structure through the following
relation:

g =nw E*®E"; (16)
then the inverse expression
€q - e = g(€q,ep) = 7ap (17)
states that the vielbein is an orthonormal basis. In n = 4 we have a vierbein or tetrad. The expressions (16) and (17)
can be alternatively written in coordinate language as
Guv = nabEZESu Nab = Yuve€hy €y - (18)

This notation also implies that /=g = det(E?) = F, and also e = det(e/) = E~'. We can construct a dynamical
theory for the spacetime through the tetrad field, since it encodes the metric tensor and henceforth the geometry of
the spacetime. To get equations of motion equivalent to Einstein equations we use the TEGR action,

1
S=_— /d% E T + Spatter, (19)
2K
where T is a local Lorentz pseudoinvariant made up of the torsion of the Weitzenbock connection
T, =¢y (8,,Eg —0,E7) . (20)
In terms of this torsion, T is written as
=1, 5", (21)
where the object S, is called the superpotential and is given by
| Zg— 1 v 1% v 1 [ed 14 1 oV
S :—Z(T“p—T‘;—Tp“)+§To“5p—§Ta . (22)

GR and TEGR are equivalent theories because the GR Lagrangian R differs from the TEGR Lagrangian in a boundary
term,

R=-T+2ed,(ETH), (23)
where R is the Ricci scalar of the Levi-Civita connection associated with the metric (18) and 7" = 7%, is the vector

part of the torsion.
By varying the action (19) with respect to the tetrad field we obtain the following dynamical equations:

deduE ey S\ +4ey TO, S —el T==2re, T,", (24)

which prove to be equivalent to Einstein equations for the metric (18). In particular, the trace of (24) in four
dimensions is

2¢ B2 O, (Ee) S =~k T, (25)
where 7 is the trace of the energy-momentum tensor. However it can be proven that
2e B0, (FE ey SM)=-T+2ed,(ETH). (26)
Therefore it results
—T+2e0,(ETH)=—xrT. (27)

The lhs is R, as we know from the Lagrangian equivalence (23). Thus we retrieve the trace of Einstein equations.



B. f(T) gravity

The teleparallel equivalent of general relativity can be utilized as an underlying framework for a more general class
of modified gravities. The simplest choice is to generalize the TEGR Lagrangian through an arbitrary function of the
torsion scalar T'; this gives rise to the so-called f(T') gravity. The action for this theory is given by

1
S[E,LU;] = % /d417 E .f(T) + Smatter; (28)
where T is the Weitzenbock or torsion scalar, which is quadratic in first-order derivatives of the tetrad field. This
fact alone implies that the equations of motion of this theory will always be second order, which is an advantage over
other modified gravities [as metric f(R) gravity]. In fact, by varying the action (28) with respect to the tetrad, it
results [20]

4e0u(f'(T)E ey S\™) +4 f'(T)ey T\ S — e f(T) = =26 eg T,". (29)

Equation (29) shows that f/(7T") renormalizes the gravitational constant £ and the volume E. It has been known since
the beginning of the theory that the action of f(T") gravity and their equations of motion are sensitive to local Lorentz
transformations in the tangent space of the spacetime manifold: given a tetrad E® that solves Eqs. (29), the Lorentz
transformed tetrad B¢ = A“l;(a:)E“ will not necessarily solve them. The departure from the local Lorentz invariance
can be already recognized in the action; the torsion scalar 7" is invariant under global Lorentz transformations of the
tetrad, but local transformations will provide it with terms containing derivatives of the Lorentz matrices A“:l (x). For
TEGR this fact is harmless; according to Eq. (23), T is equal to —R —which depends only on the (locally invariant)
metric— plus a boundary term which is the responsible for the lack of local invariance. But a boundary term is
irrelevant for the dynamics in the TEGR action (19). On the contrary, the most general functional form f in (28)
is not linear; thus the four-divergence term remains encapsulated in f, and the local Lorentz invariance is definitely
lost.

C. The premetric formulation of TEGR

We will find useful in later sections and future work to rewrite several mathematical objects by getting rid of the
metric tensor in favor of the tetrad field and the Minkowski metric. As it was firstly introduced in [66], the TEGR
Lagrangian can be written in a compact form like

1
L=ET=3 EJ,FE, O, et e! efy e} M,V (30)
where Mabwdf is the supermetric, the Lorentz invariant tensor given by

M bcedf -9 Nab nc[dnf]e 4 5([ld77f][c($§] +8 5([16,,76][d65]. (31)

a

This object is nothing more than a constitutive tensor, that is the object that relates the excitation field and the field
strength of any physical theory [67, 68]. This result can be derived alternatively by writing both 1%, and S ' in the
premetric formalism. Observing that

T, = e (0.E; — 0,E}}) = 0,5 e ¢f e} By By (5 0¢ — 6 0), (32)
we can rewrite the superpotential S defined in (22) as

S =B 0,E5 ef e) et e S, e, (33)

where we have defined
Sadbecf = Tad ne[bnc]f _ nf[bég] 62 + ne[bég] 5({ +2 62 nc[e&(J;] —_92 62 nb[e&(J;]' (34)

Performing the corresponding algebra, it is not difficult to check that, up to a factor E, the multiplication of (32)
and (34) gives (30). This is in virtue of the simple result

Sbadc'fe - Sbadefc = Mabcedf' (35)



We will need for later to rewrite the four-divergence d,,(ET*), that distinguishes the (Levi-Civita) curvature scalar
from the torsion scalar. This is written as

Ou(ETH) = 0u(E g" el (0,E, — 0, E)). (36)

Taking into account that 9, F = Ee{)BMEg, and replacing the metric tensor by its tetrad counterpart, in the end it is
obtained

1
B=ed,(ETH) = §8HE3 (9PEE’\ el ef el e? Babcedf + 0,0,E ejelel (6§an — (5277bd), (37)
where the analog of the constitutive tensor for the four-divergence is written as

B, =49t s 5 4 e oldsf w4y sleod) v 4 5¢ yelds]), (38)
ab a vb a b a b a b

Remarkably this object does not have the same antisymmetry properties as Mabwdf .

D. Approaches on the degrees of freedom of f(T) gravity

While in f(R) gravity the increase of the number of degrees of freedom manifests itself through the increase of the
order of the differential equations, in f(7T') gravity the dynamical equations remain as second-order equations. Instead,
the f(T') dynamical equations have less gauge freedom than the TEGR equations, because not all the local Lorentz
transformations of the tetrad are symmetries of the dynamics. Less gauge freedom implies more genuine degrees of
freedom.

There are several approaches to the question of the number and nature of the degrees of freedom of f(T') gravity,
which do not necessarily coincide with their outcomes. The Hamiltonian analysis of f(T) gravity presented in [23],
based on Maluf’s Hamiltonian formulation of TEGR [09], gives n — 1 extra d.o.f. for f(T) gravity in arbitrary
dimension. In [32] it is performed a simple Hamiltonian analysis based on the number of pairs of Lorentz constraints
that would become second-class. The authors establish that f(T') gravity might have five, four or two d.o.f. based on
the possibility that six, four or two Lorentz constraints become second-class. The enforcement of the vanishing of the
Riemann tensor through the introduction of Lagrange multipliers has been analyzed with detail in [50]. This strategy
attempts to avoid a particular choice of the spin connection but adds a large quantity of Lagrange multipliers that
are nevertheless determined at the end of the procedure. Other approaches that need further development in order
to give a characterization of the degrees of freedom are the study of the remnant group of local Lorentz symmetries

[34], the null tetrad approach [33, 38] and the discussion on the covariantization of the theory [51-53], among others.
Finally, the recent work performed in [42] suggests that there exists only one additional degree of freedom in arbitrary
dimension. The counting of d.o.f. obtained in this work is not the same as the one presented in [23], nor falls in any of

the categories sketched in [32]. However, if the theory has one rightful extra d.o.f., it could be similar to the scalaron
that appears in f(R) theories of gravity. We will discuss the possibility of finding a scalar d.o.f. in the equations of
motion of f(T') gravity in the next section.

IV. THE EXTRA DEGREE OF FREEDOM OF f(7T) GRAVITY
A. Jordan frame

The previous discussions, and the comparison with f(R) gravity in Sec. II, could suggest taking a look at the Jordan
action as a way to understand the nature of the extra degree of freedom. This approach is successful in f(R) gravity
because it decouples the equations at the same time that it reduces their differential order. However, in f(T') gravity
the equations of motion (29) are already second order. Besides, by tracing them we do not succeed in isolating the
dynamics of some scalar degree of freedom; in fact, in four dimensions the trace is

¢ BY 0u(J (1) B e} $\")+ ['(1) T = (T) = 5 T. (39)

that can be rewritten as

e du(f'(T) EE} 62 S\ = f1(T) 62 SHOE; + f(T)T - f(T)=—5T. (40)

K
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Let us now consider the dynamics in the Jordan frame, which is defined by the Legendre transform
¢=f(T), V(¢)=T¢—f(T), (41)
also implying that it is
T=V'(¢). (42)
Thus the dynamical equations (29) read 2

2Kk »
ZT:_?GQ\,T)\ tea 5 (43)
which keep the structure of TEGR field equations, except for the renormalizations of the gravitational constant x and
the volume E, and the term ¢~V (¢) playing the role of a local cosmological constant. Equations (43) and (42) can
be obtained by varying the action

497 e Ou(PE ey S\")+4ey TG, S —e V(g)

SelEg o) = o [ dt B 16T = V() + Snatier (44)

In particular, Eq. (42) results from varying with respect to ¢, which means that the Lagrangian is dynamically
equivalent to the Legendre transform of V(¢), and so it is a function f(T) such that ¢ = f/(T"). Thus, the action (44)
is dynamically equivalent to the action (28).

Let us now analyze the trace of the dynamical equations. In four dimensions it results that S/ = T,* = T*.
Besides, it is e)S""9,E% = eéS)\”Va[MEl‘j] = 5,""T*,,/2 = T/2. Then the equation for the trace becomes

2 ¢ 0,(f(T)ET") + f(T) T =2 f(T) = —r T. (45)
ie.,
2 TH, f/(T) +2 f/(T)e 0(E T + f(T)T —2 f(T) = —k T. (46)
From Eq. (23), 269, (ET*) can be substituted with R + T'. By writing Eq. (45) in terms of ¢ one gets
2 TH9,p+2 V($) + ¢R = —kT. (47)

In TEGR it is ¢ = 1 and V(¢) = 0, and the former equation just implies R = —x T [cf. Eq. (27)]. So, in principle,
Eq. (47) could be interpreted as describing the propagation of a mode that was not present in TEGR, like Eq. (3)
in f(R) gravity. The existence of an extra degree of freedom is connected to the loss of a gauge symmetry. In fact,
TEGR dynamics is invariant under local Lorentz transformations of the tetrad because the Lagrangian T in (19)
differs from R in a four-divergence [see Eq. (23)], R being invariant under local Lorentz transformations of the tetrad
field since it only depends on the metric. Thus TEGR is not a dynamical theory for the tetrad but for the metric.
Instead the gauge symmetries of the action (28) are reduced to those of T, which does not remain invariant under
a general local Lorentz transformation. Such a remnant gauge symmetry of f(T') gravity has an on-shell character.
Notice that the invariance of T' implies the invariance of ¢ in Eq. (42). On the other hand, according to Eq. (23), the
invariance of T is equivalent to the invariance of the four-divergence ed,(ET*). Under local Lorentz transformations
of the tetrad field, ed,(ET") transforms as

e 0u(E TH) — ¢ 0u(E g" A%, ef(0,(A% EL) — 8, (A% EY)))
= ¢ ET") +ed,(E g"(E" ¢, 0,A% — A%,0,A%)); (48)

for infinitesimal transformations

o o 1 o
A%y =0 — 5 o9 (x) (Mgn)*, + O(c?), (49)

2 These equations have a nontrivial antisymmetric part 2S[p“V] Ou¢ = —KT[py), where the rhs could be different from zero if the matter
were coupled in a nontrivial way to the tetrad field. In Ref. [52] the lhs has been obtained from another procedure, where the action
is varied with respect to an “inertial” spin connection. This procedure has been used to find the spin connection in cosmological and
spherically symmetric spacetimes in [53].



where the generators M, are the traceless matrices (Mqh)“/b = (5;/ Mhb — 5;‘;/ Tgb, it Tesults
1 v
e (ETH) — e 0u(ETH) — 3¢ Ou(E g" Eb (el npy — € ng) 9,0") + O(c?). (50)

By replacing g""Eb nnp, = el , and noticing that (ef eh — el er) 8H6p09h = (0, we obtain that the remnant gauge
symmetry is generated by those Lorentz transformations that fulfill [cf. Eq. (32) in Ref. [31]]

Ou(E (eh ey —ebep)) D, = 0. (51)

To finish this subsection, we will notice that Eq. (47) could admit solutions ¢ = constant [i.e., T = const, according to
Eq. (42)]. In such a case Egs. (43) look like TEGR equations with peculiar gravitational and cosmological constants.
Remarkably more than one solution of this type could be found for the same potential V() [i.e., for the same function

)] [A0]-

B. Einstein frame

Let us examine whether the issue of the number of degrees of freedom in f(T') gravity can be better understood
in the so-called Einstein frame. We prevent the reader from possible confusion clarifying that in this work we will
refer to the ”Einstein frame” representation of f(T') gravity as the action that results from applying a conformal
transformation to the Jordan frame action of f(7T') gravity. This is a somehow forced terminology, since it is common
knowledge that the outcome of such conformal transformation is not the TEGR action plus a scalar field, as it would
be desired given that a similar fact happens in f(R) gravity. We follow the standard procedure and start from the
Jordan frame action (44), which could be regarded as the particular case wgp = 0 of a sort of Brans-Dicke teleparallel
action of the form

1
Sup =5 [ @0 E [T +wmp 67 0" 0,0 0,6~ V(O)] + Smater (52)
Now we will consider a change of dynamical variables by performing a local conformal transformation of the tetrad:
E% =Q(z) ES, e =" (x) e, (53)

so it is £ = Q4F and é = Q%e. It is well known that the action (44) will transform as [15, 35]
1 . . .
§=5- /d4x Elp(Q2T-4Q3T"9,0-60Q7* 3" 9,00,Q) —Q* V() (54)

(we can disregard Sp,qtter since we are only interested in the number of gravitational degrees of freedom). We will
choose the conformal factor € to have a minimal coupling between ¢ and the torsion scalar 7. The choice ¢ = Q2
converts the action (44) into

5= / do B {T 267 T Do~ 3 67 " 0 Do~ ¢-QV<¢>>} : (55)

In this action it would be desirable to have the canonical form for the kinetic term; therefore it is convenient to
redefine the scalar field to a new field i such that

Y =V3 Ing, (56)
and the action (55) is rewritten as
_1 i polp o 2 L _
5_2/1/de {T \/gﬁuz/}T 5 9 oY O U(w)}, (57)
where the potential is U(¢)) = ¢~2V (¢). After an integration by parts the action reads
1 P A 2 PN 1
=— [da B |T+-=v¢eéd,(ET") — = "™ LY — .
S=g [ B T4 v e0 BT~ 5 9" 00 00 - V()| (59)

This action exhibits an ordinary teleparallel theory together with a phantom scalar field. However there is also an
annoying term that (nonminimally) couples the ordinary gravity to the scalar field. So, the Einstein frame in f(T)
gravity is unable to cleanly separate the extra degree of freedom, as it effectively happens in f(R) gravity.

Although we have already shown a rather strong evidence in favor of an extra degree of freedom in f(T') gravity,
the issue can be definitely solved within the formalism for constrained Hamiltonian systems, as it was done in a recent
publication [42]. We can gain some insight into this formalism by looking at how it works in a simple toy model, as
we are going to show in the next section.



V. MODIFYING A MECHANICAL SYSTEM WITH ROTATIONAL PSEUDOINVARIANCE

A. Pseudoinvariant rotational Lagrangian

Some features of f(7T') gravity can be mimicked by deforming the mechanical Lagrangian

1/ 3\ |z
L=- <—+:) +AZ+4
z

= —U(z2), (59)

IINIRSIR

where z and Z are complex conjugate canonical variables and A and A are complex conjugate constants. This
Lagrangian can be rewritten as

1 (d, , _\° d — _
L_5 <Eln(zz)) +E(A Inz+ A Inz) — U(2Z), (60)

so it just provides a dynamics to the combination zZ, since the total derivative term is irrelevant in Lagrange equations.
This means that the evolution of the phase z/|z| is not determined by Lagrange equations. We can notice this fact
also at the level of the symmetries of the Lagrangian, which is pseudoinvariant under local rotations:

z— ey 7z etz — L L4ia(A-A). (61)
We can recognize some features that resemble the TEGR theory. In fact, the TEGR Lagrangian is pseudoinvariant
under local Lorentz transformations of the tetrad; so it can only govern the dynamics of the metric, but it is unable to
determine the “orientation” of the tetrad. The analogy is not complete because the boundary term in this toy model
just contain first derivatives of the canonical variables, differing from the boundary term in Eq. (23) which is second
order in derivatives of the tetrad.

Now let us pass to the Hamiltonian formalism and look for the constraint algebra. The canonical momenta are
defined as

oL 1(z =z oL 1 (z =z —
pz:_.—_<i+§+A); pzz—;—:<i+§+A>, (62)
0z z\z 7Z 0z Z\z Z
from which it is easily seen the primary constraint
GV =zp, —A—Zp:+A=0, (63)
which fulfills
{GW, 2z} = 0. (64)
The canonical Hamiltonian is
. =\ 2
. - 17z =z _ 1 _ —\2 _
H=:p,+zZpzs— L= 3 (;—i—%) +U(2z) = 3 (zp.—A+zps —A) +U(22), (65)
while the primary Hamiltonian results
1 —
Hy== (2p.— A+Zps—A)° + U(27) + u(t) GV, (66)

8

where u(t) is a Lagrange multiplier. We verify that GW evolves without leaving the constraint surface:

GV ={GW HY==(z2p.—A+Zp:—A) {GY 2 p. — A+Z pz — A} =0. (67)

I

Therefore, no secondary constraints appear. There is a unique first-class constraint; so one degree of freedom is
removed, and the system is left with just one genuine degree of freedom [70]. Equation (64) reveals that zZ is the
gauge invariant (observable) associated to the physical degree of freedom.
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B. Modified pseudoinvariant rotational Lagrangian

Let us deform the theory by replacing the pseudoinvariant Lagrangian with a function of itself:

L=f(L). (68)

This new theory is dynamically equivalent to the one governed by the Jordan frame Lagrangian that includes an
additional dynamical variable ¢:

L=¢L-V($) (69)
In fact, the dynamical equation for ¢ is
L = V(). (70)

So, the dynamics says that £ in Eq. (69) is the Legendre transform of V(¢); therefore, £ is a function f(L) (each
choice of V' equals a choice of f). The canonical momenta are

GV =r=—"Z~x0, (71)
o
pz—?(f+i+A), pz—?<3+§+A>, (72)
z Z \ 2
thus one gets the constraint
GV=z2p.—Adp—Zps+A¢ ~ 0. (73)

Then the modified system has two noncommuting primary constraints:

(M, W} = —A+ A (74)
The canonical Hamiltonian is
Hmipatipe—L= oo (2po= 0 A+Tpe= 0 T +0 U(R) + V(0), (75)
and the primary Hamiltonian is
H, = H+u"(t) GV +u(t) GV, (76)

where v™ and u are Lagrange multipliers. We must evaluate the evolution of the primary constraints to look for
secondary constraints:

Ggrl) = {Ggrl)vﬂp} = {7‘-77-[20}
_ e tTr) L T s Vi) +ult) (A7)

842 8
—1-5 - (£-2) Vo) + ) (a-7), (7)
G ={aW H,} = —u" (A-A). (78)

Thus, the consistency of the constraints with the evolution can be obtained by choosing the Lagrange multipliers as

L(t) — V' (g(t)) 1(2(t) ?(f))' (79)

2(t)  =z(t)

Therefore the system has no secondary constraints; the only constraints G(*) and G4 are second-class [see Eq. (74)].
So, they remove only one degree of freedom [70]; there are two genuine degrees of freedom among the variables (z,z, ¢).

u” =0, u(t):—A_Z 3
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Notice that, differing from f(7T) gravity, no gauge freedom is left in this system since both Lagrange multipliers have
been fixed; so the primary Hamiltonian completely determines the evolution of the variables. In particular, the
evolution of ¢ is frozen:

o={p,Hy} =u" =0. (80)

Coming back to the Lagrange equations, let us use for L the form (60); then by varying £ with respect to 2z and z
one obtains

d d ) ;o d B

& (s5m6) =—a0' (), S04 =0 1)
So, we retrieve the result that ¢ is constant. Besides zZ obeys the same dynamical equation of the nondeformed
theory. In particular the magnitude

H= % (% 1n(zz))2 +U(2) (82)

is a constant of motion. Since ¢ is constant, then the dynamical equation for ¢, i.e. Eq. (70), implies that L is
constant. From Egs. (70), (59) and (82) we obtain that the evolution of the phase of z is determined by the dynamics
through the first-order equation

%(A nz+7 %) = _% (% 1n(zz)) U 4 V() = 2 U(25) + V'(6) — H. (83)

At the initial conditions, the choice of ¢ is the way one chooses the initial velocity of the phase. Due to the remaining
global rotational symmetry, the initial value of the phase is irrelevant. This equation can be also obtained in the
Hamiltonian formalism by computing the Poisson bracket between A Inz+ A InZz and H,, and then substituting the
momenta and the Lagrange multipliers with (72) and (79).

In sum, the system described by the Lagrangian (69) has two degrees of freedom: one of them is |z|? = 2Z whose
dynamics does not differ from the one described by the Lagrangian (60); in both cases we arrive to the conserved
quantity H in Eq. (82). Once the evolution of |z| is determined by the choices of the initial value |z(¢,)| and the
constant of motion H, Eq. (83) determines the evolution of the phase of z, which is the remaining degree of freedom.
In this equation, the value of the constant ¢ is connected to the initial value of the derivative of the phase of z; there
is no other physics associated with ¢ over and above the one related to the phase of z.

In analogy with f(7T') gravity, ¢ could be then regarded as a variable carrying information about the orientation of
the tetrad, which would be partially determined by the dynamical equations.

| 2

VI. HAMILTONIAN FORMALISM AND FRAME DEPENDENCE

The Hamiltonian formalism for f(7") gravity, starting from the (scalar-torsion) Jordan frame formulation of the
theory, was presented in full detail in [42]. There are several unusual features of this physical system that deserves
a comment. In most Hamiltonian constrained systems the identification of secondary constraints is a rather trivial
enterprise, and there is no need to calculate the left and right null eigenvectors of the matrix of Poisson brackets
among constraints. However, in the Hamiltonian formalism for f(7') gravity we have to pay close attention to this
point, which makes the theory an atypical example of a constrained Hamiltonian system.

After following the Dirac-Bergmann algorithm for f(7T) gravity one is led to a set of first-class ®; and second-class
constraints x4 organized in the following way (see definitions at [12]):

e n first-class constraints ®. = Ggl) coming from the absence of Eg in the Lagrangian,

e n—1 first-class constraints ®; = GEQ) associated with the spatial diffeomorphisms (supermomentum constraints),

~(1)

@ — 1 first-class constraints ®,, = G,/ associated with the Lorentz algebra,

e one first-class constraint &y = ééz)associated with the temporal diffeomorphism (super-Hamiltonian constraint),
and

e two second-class constraints: x. = GS}’, coming from the absence of ¢ in the Lagrangian, and x = a“bél(lt)
associated with the Lorentz algebra.



12

This classification is obtained after a redefinition of the original Lorentz constraints that maximizes the number of
vanishing Poisson brackets in the algebra of constraints. In fact, in terms of the original constraints, the nonvanishing
Poisson brackets involve the Lorentz constraints and the super-Hamiltonian constraint; they are

(G, a0} = F,
(G, GV = Fy. (84)

Since Fyp and Fy are functions of the canonical coordinates and momenta, they could vanish at particular points of
the phase space. So, let us suppose that Fpy; is not zero in some neighborhood of the constraint surface. Then we can

change the basis of the constraint algebra by combining the original Lorentz constraints Gl(lt) in the following way:
~(1 1
G((Jl) = G((Jl)7
Gl = Fou Gy — Foz GY,

o) e (M
G(n 2)(n—1) — Fon G(n72)(n71) = Fin-2)(n-1) Gor' - (85)
Besides, we replace the super-Hamiltonian constraint G(()2) with
G — Ry G2 F, G (36)
Thus the only nonvanishing Poisson brackets will be

{GS, GV} = Fr. (87)

In this way we have two second-class constraints y 4, the remaining constraints being first-class. The matrix Aap =
{XAu XB }7

a® g (g Gin 0 Fy
Aup = {Gx7, T 7015 b — , (88)
({G&”,Géﬁ)} (G, G5 ~Fo 0

is a 2 x 2 invertible matrix. The choice that égll) be the odd second-class Lorentz constraint is completely arbitrary
and any linear combination of the form

x=a"Gy) (89)

can be chosen to be the second-class one (but a® F,;, must be different from zero). This is because the Dirac-Bergmann
algorithm does not determine a particular linear combination to be second-class. However the arbitrariness of the
choice does not affect the conclusions.

The equations assuring the consistency of the evolution of the first-class constraints result to be trivial, while the

ones for the second-class constraints x4 = (GS,”, égll)),

!
{xa,H.} + Aapu® =0, (90)
can be satisfied by properly choosing the Lagrange multipliers v™ and u":
ut =0,  Fou® = Fy, (91)

which is comparable to Eq. (79) in Sec. V. Therefore, when passing from TEGR to f(T') gravity as described in the
Jordan frame, one of the first-class constraints associated with the Lorentz algebra becomes a second-class constraint
paired with G,(Tl). As was shown in the toy model of the previous section, this fact amounts to the retrieval of a degree
of freedom that took part in the gauge freedom of the TEGR theory. Concretely, the invariance under local Lorentz
transformations is partially lost since a linear combination of their generators is no longer a gauge transformation. In
other words, some feature of the tetrad orientation has passed to be governed by the dynamics and now forms part
of the set of genuine degrees of freedom together with the metric degrees of freedom.

For defining the set of first-class Lorentz constraints (85) we had to assume that at least one of the Fy; is nonvanish-
ing. However, there could be points on the constraint surface where all the Fy;, vanishes. In this case, the consistency
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of the Dirac-Bergmann algorithm could impose two different outcomes: Fj also vanishes identically and the theory
has the same d.o.f. as TEGR, or F is a constraint and the algorithm continues. Although, for obtaining a meaningful
number of d.o.f.; the algorithm is not allowed to extend too much, as we will argue next. Let us reasonably assume

that neither G,(f) nor G become second-class and thus they remove 2n d.o.f. But X of the n(n —1)/2 Lorentz con-
straints could still become second-class due to the pairing with the same amount of second-class constraints. Besides,
there could appear additional Y first-class constraints (f.c.c.) and Y3 second-class constraints (s.c.c.). The counting
of d.o.f. would go in the following way:

1
number of d.o.f. = n? 4+ 1 — (number of f.c.c.) — E(number of s.c.c.)

:n2+1—(2n+g(n—1)—X—|—Y1)—%(2X—|—Yz) (92)

n(n — 3) 1
=———+1-Y - Y,
5 + 15t

The case of f(T') gravity falls in the category X = 1, since there is only one constraint G,(Tl) that pairs up with one
Lorentz constraint to become second-class. If we are in a particular point of the phase space where all the Fy;, are zero,
the Poisson bracket among GQ’ and G((l? would vanish on shell, but some of the Gt(l? could still become second-class
due to the appearance of new constraints represented by X. In this case the algorithm would require Fy to weakly

vanish on shell and become a constraint. If it were first-class, then Y7 = 1, Yo = 0; thus Eq. (92) would reproduce

the number of d.o.f. of TEGR. Instead, if both Fj and GS}’ are second-class and they originate at least one new
first- or two second-class constraints, the counting of d.o.f. will give a meaningless answer: less d.o.f. than TEGR!.
This, of course, is an unacceptable result, and the only reasonable possibility is that the pair Fy, GS,” is second-class
and removes one d.o.f. to give the TEGR result. In this case, the time stability of Fjg should be proved calculating
its Poisson algebra with the remaining constraints; however it is a very involved calculation which may require an
improved Hamiltonian formalism.

Finally, it is worth mentioning a puzzling feature in the Hamiltonian constraint of Eq. (86), since the second term

of this expression may have a cubic dependence on the canonical momenta. This is easily seen because G((Jll) is
linear in the momenta, but Fjy depends on the torsion scalar and is therefore quadratic in the momenta. The cubic

dependence of é((f) is the price to be paid for getting a first-class Hamiltonian constraint. This fact can be traced to
the pseudoinvariance of the TEGR Lagrangian, which implies that the f(T') action breaks the local Lorentz invariance.
This is an unusual feature for a Hamiltonian system, and it could lead to instabilities since the Hamiltonian could be
unbounded from below [71, 72].

VII. HAMILTONIAN APPROACH IN THE TELEPARALLEL EINSTEIN FRAME

Since the conformal transformation that leads from the Jordan frame to the Einstein frame is a canonical transfor-
mation, one should expect the same number of d.o.f. in both the Jordan and Einstein frames. Nonetheless this mere
verification could throw light on the issue of the meaning of the extra d.o.f. However this exercise will indeed reveal
the intricate Hamiltonian structure of f(T') gravity in the Einstein frame. Let us start from a gravitational theory
whose action is

SiEL vl = 5 [ o B (T4 ZwB - 3 0,0 Vv +U)). (93)

We get rid of the hatted fields in the action and start working directly under the assumption that the teleparallel
Einstein frame is our theory for describing the gravitational phenomena. In this formulation it is simple to see that
the Hamiltonian procedure is not applicable, since the term B, as we have written it in Eq.(37), has an explicit
dependence on second-order time derivatives on the tetrad field. In this case we need to resort to Ostrogradsky’s
choice for canonical variables and momenta. It is well known that Lagrangians having higher-order time derivatives
might suffer from the Ostrogradsky instability [71, 72], although as we will prove later, in our case we can get rid of
this obstruction by means of an integration by parts. However, motivated by a deeper understanding in this subject,
it will be interesting to first explore this approach. Ostrogradsky’s definitions of canonical momenta are given by

oL oL oL

-9 , PH=_—""_ 94
ED) " 3(ad0ED) (4)

I = ,
‘ © 9(E)
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that are associated to the canonical variables E}; and & = O0oE}, respectively. Within the premetric formalism

developed in Sec. III, they can be easily computed; the result is

2
" = E9,E} €2 e ¢, e]’} (M cedf 4 7 Cedj) ~ 7 Ao E €Y et 9] (64 nbe — ¢ nb?) (95)

and

2
Pl = 7 ) E ep el e (67 n* — 55 0. (96)

There is also a canonical momentum associated with the scalar field i, given by

oL ov

It is clear that there appear n primary constraints P9 ~ 0. Besides, (95) can be rewritten as a primary constraint
using (97), which is

) 2 . 2 00
" =kF Ef\ el ? C' 8f—|—E &Ei eg el e} e? (Mabwdf + —\/31/) Babmdj) + —\/g (—io T+ _g - 11/)) Ele, 0 gor —et g%,
J g l

(98)
where
- 2 - 4
Cpl =€l e (M i 4 g BV — — o (T sl +ed ol o)+ nee alds]l + o nfles) ) 99
ab c “d ab \/gw ab \/g 1/} ( n n ) ( )
As depicted in [72], Egs. (95), (96) and (97) should be used to write the canonical Hamiltonian
He =1} &+ P 0&, +m 0o — L (100)

in terms of the canonical variables (Ea Uy, &5, Py, 7) and their spatial derivatives. According to the formalism,
the acceleration Aﬁ = 8080Ez should be solved as a function of the canonical variables from the second equation in
Eq. (94); thus, IT* will not enter in the expression for Aj,. Therefore, H. will depend on IIZ only through the first
term of Eq. (100), which is a linear in II# (in this higher-order formalism, £ is a canonical variable). This means
that H. is unbounded from below and we might be in the presence of some sort of instability, although briefly we will
see that we can circumvent this issue resorting to an equivalent representation.

However, the Lagrangian in Eq. (93) is linear in the acceleration A, = 0000 Ey; = 0o&;; . Therefore the definition
of P! does not allow one to solve the acceleration in terms of the canonical variables but leads to a constraint [cf.
Eq. (96)]. Thus, the acceleration will remain as a Lagrange multiplier in the canonical Hamiltonian (100), which will
be subsumed in the respective Lagrange multiplier of the primary Hamiltonian.

Ostrogradsky’s procedure can be avoided by performing an integration by parts in (93); thus we will work with the

action

2 1
SIEL U = o [l B (T= 2o 1 0= 5 ¢ V0 Vb 4 U ) ). (101)
V3 2
In this case, the canonical momenta associated with the tetrad field results
2
It = E 0,E} 2 et ef) e} M,V — 7 E 0,9 €) ¥ et [n?est —nbesd), (102)
while the canonical momentum for the scalar field is
2
= B g™ 00— —= E 9,EL ¢ ef ¢ [n"'5% —n°d). (103)
V3
It is easy to see that both canonical momenta include canonical velocities do Ej; and dot) in their definitions. Therefore,
the procedure to write the canonical Hamiltonian in terms of the canonical variables will be more intricate than the
one developed for TEGR in Ref. [66]. Let us solve for dpyp in (103):

2 A

01
__ € 9 ) P bdsc . cbsd
801/) - gOO ™ gOO 811/} \/g 00 8 E)\ eb 8 ed [ 50, 77 6(1]' (104)
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After replacing this result in (102) and performing some arrangements, the following expression is obtained:

~ . ; 4 .
E; I = E QE ¢} C, +E oK, e} <62 ely M,V + eV €Y el el [necod — nedse) it o — nhgél{])

3900 c g
+ 2w 60 60 [ ce(sd _ cdée] + 2 E 6’¢ 60 _ei +€O 901' [ ceéd _ cd(se] (105)
\/ggoo c €N 0g =17 04 \/g % d c c gOO N 0q =N 0Oql
where
~ . . 4 .
e ced, ce c e
Cl =l ey MY 4 34 e e b ef) [n°e of —n°? 5e)n?t o — "9 o]]. (106)

Apart from looking for primary constraints, the next obvious step would be to write the canonical Hamiltonian
associated with (101). It can be attempted by means of the Moore-Penrose pseudoinverse method introduced in [66]
in order to invert the matrix (106). For this, it would be useful to know whether its eigenvalues and eigenvectors
are the same obtained for Cabef in TEGR; however the answer is negative. Moreover, the structure of eigenvalues
and eigenvectors is more complicated, and it may require to develop advanced mathematical techniques in order to
find them. The fact that the matrix (106) is not the same than the one in TEGR is intriguing and puts forward
the question whether the teleparallel Einstein frame can genuinely be interpreted as TEGR plus a scalar field. The
answer to this interesting question calls for further research.

Finally we can attempt to obtain the primary constraints of this theory by multiplying Eq. (105) by the eigenvectors
Vjgle = 625; and Vignle = dgNhe — OpMge- The first one gives the trivial constraint

GV =10 ~ 0. (107)

For the second set of eigenvectors v gh“’e, it is easy to check that they are null eigenvectors of C'abef , i.e. they satisfy

U|gh‘eC = 0, as they are also for the matrix Cabef in TEGR [66]. Using this result in (105), the following constraints
are obtained:

G =2 e I, Ef +4 E 0;EY f) ¢!, ¢ n+ 7 i) (el e — el el). (108)

The appearance of an extra term with respect to the TEGR case changes drastically the Lorentz algebra, as this term
has a nonvanishing Poisson bracket with the G o s It is not difficult to prove that

4 . .
aﬂ/] [Hab Héd - Hcd H};b] ) (109)

(1
{Gab)u G( } = Nvd G + Nac Gl(yd — Noe Gz(zd — Nad G \/g

where

Hy,, = egeob - egeom Hcd = eoezd - ege (110)
These two terms reflect the departure from Lorentz invariance, since they do not vanish in the most general case.
However, unlike the teleparallel Jordan frame case, here the theory seems to present full Lorentz violation. That is,

none of the Lorentz constraints seems to be first-class, then one might be tempted to conclude that this leads to the

counting of d.o.f. of [23]. Nevertheless, there is still another Poisson bracket {Ggl), G((l?} to be taken into account,
which gives

{GM,GY)} = 7 pel(eled) — eed). (111)

The noncommuting character of Ggl) was expected, since gauge transformations of the tetrad in the form 0E§ = €
are no longer symmetries of the Lagrangian due to the dependence on JpEf§ in the coupling term proportional to
T"9,1 in the action (101) (see Sec. V of [66]). Henceforth, the counting of d.o.f. in this frame requires a rigorous
analysis of the time evolution of all constraints with the primary Hamiltonian, a point that needs to be investigated
in future work.
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VIII. CONCLUSIONS

We have analyzed the issue of the d.o.f. in f(T) gravity from several perspectives. For the sake of a comparison,
we first reviewed the interpretation of the additional d.o.f. in f(R) gravity in both Jordan and Einstein frames.
Analogously, the study of the equations of motion and its trace in f(T') gravity reveals evidence of a unique additional
d.o.f. in the teleparallel Jordan and Einstein frames. To mimic the essential features of f(T") gravity, we have exhibited
the Hamiltonian dynamics of a simple toy model with pseudorotational invariance. The nonlinear deformation of this
toy model shows the appearance of a scalar degree of freedom ¢, whose value is connected to the initial value of the
derivative of the phase of the complex canonical variable z. Analogously, in f(T) gravity the scalar d.o.f. is connected
with the proper parallelization of the spacetime.

Concerning our previous work on the extra d.o.f. of f(T) gravity [12], we have emphasized that such analysis can
depend on the point of the phase space under consideration. In fact, the Poisson brackets between constraints are
functions of the tetrad field and their canonical momenta. Thus, there could exist a point or a neighborhood of the
constraint surface where all the F,;’s in Eq. (84) were zero, which would dramatically change the counting of d.o.f.
In that particular points the consistency of our analysis would imply that Fy becomes a constraint, nonetheless if its
time consistency does not generate additional constraints, the theory would have the same number of d.o.f. as TEGR.
This could be suggesting that only some reference frames do manifest the extra d.o.f.; however it is still unclear the
conditions that they should accomplish.

Finally, we have just introduced two possible ways of applying the Hamiltonian formalism in the teleparallel Einstein
frame. In spite of appearances, the Einstein frame proves to be rather more involved than the Jordan frame. This is
because the term coupling the vector part of the torsion T# to the scalar field produces an intricate binding of the
canonical momenta, which result in serious difficulties for calculating the Hamiltonian.

It is clear that further research needs to be done in order to understand the implications of the additional d.o.f. of
the theory. A simple strategy to identify it would be to resort to solutions to f(T") gravity in 2+ 1 dimensions, where
neither TEGR nor GR possess genuine degrees of freedom. This issue will be addressed in future work [73].
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