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Abstract. Cis-regulatory elements (CREs), such as promoters and en-
hancers, are DNA sequences that regulate the expression of genes. The
activity of a CRE is influenced by the order, composition and spacing of
sequence motifs that bind to proteins called transcription factors (TFs).
Synthetic CREs with specific properties are needed for biomanufactur-
ing as well as for many therapeutic applications including cell and gene
therapy.

Here, we present regLM, a framework to design synthetic CREs with
desired properties, such as high, low or cell type-specific activity, using
autoregressive language models in conjunction with supervised sequence-
to-function models. We used our framework to design synthetic yeast
promoters and cell type-specific human enhancers. We demonstrate that
the synthetic CREs generated by our approach are not only predicted to
have the desired functionality but also contain biological features similar
to experimentally validated CREs. regLM thus facilitates the design of
realistic regulatory DNA elements while providing insights into the cis-
regulatory code.

Keywords: Sequence modeling · Sequence Design · Gene Regulation ·

Large Language Models.
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1 Introduction

Cis-regulatory elements (CREs), such as promoters and enhancers, are DNA
sequences that regulate gene expression. Their activity is influenced by the pres-
ence, order, and spacing of sequence motifs [22] that bind to proteins called tran-
scription factors (TFs), similarly to how words and phrases define the meaning
of a sentence. Synthetic CREs with specific properties are needed for biomanu-
facturing as well as numerous therapeutic applications including cell and gene
therapy; for example, to maximize activity of a therapeutic gene in the target
cell type.

Such CREs are often designed manually based on prior knowledge [9]. Recent
studies have used directed evolution [18, 20] and gradient-based approaches [16,
13, 10] for CRE design, in which supervised ‘oracle‘ models are trained to predict
the activity of a CRE from its sequence, and are then used to edit sequences
iteratively until the desired prediction is achieved. However, such approaches
are not truly generative and do not necessarily learn the overall sequence dis-
tribution of the desired CREs. Instead they may only optimize specific features
that have high predictive value. Consequently, the resulting CREs may be out-
of-distribution and unrealistic, leading to unpredictable behavior when they are
experimentally tested in a cell.

Autoregressive language models, such as Generative Pre-trained Transformer
(GPT) can produce realistic content in natural languages [5]. Here, we present
regLM, a framework to design synthetic CREs with desired properties, such as
high, low or cell type-specific activity, using autoregressive language models in
conjunction with supervised models. Although masked language models have
been used to embed or classify DNA sequences [12, 7, 2, 8, 23], to our knowledge
this is the first time language modeling has been used for DNA in a generative
setting. We show that synthetic CREs generated by our approach are diverse
and realistic, with biological features similar to experimentally validated CREs.

2 Results

2.1 regLM adapts the HyenaDNA framework for CRE generation

Several transformer-based foundation models for DNA have been developed [12,
7, 2, 8, 23]. However, these methods are based on masked language modeling
which is difficult to use for sequence generation. In contrast, the recent Hye-
naDNA foundation models [14] are single-nucleotide resolution autoregressive
models trained on the human genome, and are hence suitable for regulatory el-
ement design. These models are based on the Hyena operator [15], which uses
implicit convolutions to scale sub-quadratically with sequence length.
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regLM builds on the HyenaDNA [14] framework to perform generative mod-
eling of CREs with desired properties using prompt tokens. This takes advantage
of the resolution and computational efficiency of the HyenaDNA model. Further,
the ability to fine-tune pre-trained models which have already learned regulatory
features enables even design tasks which lack sufficient labeled data for training.

Fig. 1. Schematic of regLM. A, B) DNA sequences are prefixed with a sequence of
prompt tokens representing functional labels. C) A HyenaDNA model is trained or
fine-tuned to perform next token prediction on the labeled sequences. D) The trained
model is prompted with a sequence of prompt tokens to generate sequences with desired
properties. E, F) A sequence-to-function regression model trained on the same dataset
is used to check and filter the generated sequences. G) The regulatory content of
generated sequences is evaluated.

Given a dataset of DNA sequences labeled with their measured activity (Fig.
1A), we encode the label in a sequence of categorical tokens (‘prompt tokens’),
which is prefixed to the beginning of the DNA sequence (Fig. 1B). We train
or fine-tune a HyenaDNA model to take the processed sequences and perform
next token prediction beginning with the prompt tokens (Fig. 1C). This formu-
lation allows us to use any prior knowledge on sequences in the model explicitly.
Once trained, the language model can be prompted with the sequence of tokens
representing any desired function. The model, now conditioned on the prompt
tokens, generates a DNA sequence one nucleotide at a time (Fig. 1D). In parallel,
we train a supervised sequence-to-activity regression model on the same dataset
(Fig. 1E), and apply it to the generated sequences to select those that best
match the desired activity (Fig. 1F). This combined approach allows us to use
the regression model as an oracle like previous model-guided approaches, while
the language model ensures that the generated sequences have realistic content.
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Finally, we provide several approaches to evaluate the generated sequences as
well as the model itself (Fig. 1G).

2.2 regLM generates yeast promoters of varying strength

Training and evaluating a regLM model on yeast promoter sequences

We applied the regLM framework to a dataset of randomly generated 80 base
pair (bp) DNA sequences and their measured promoter activities in yeast grown
in complex and defined media [4, 20]. We prefixed each sequence with a two-
token label, wherein each token ranges from 0 to 4 and represents the promoter
activity in one of the media (Fig. S1). For example, the label 00 indicates that
the sequence has low activity in both media, while 04 indicates low activity in
complex medium and high activity in defined medium (Fig. 2A).

A regLM model trained to perform next nucleotide prediction on this dataset
reached 31% mean accuracy on native yeast promoters and 33.8% accuracy on
the test set, compared to 25% expected by chance (Fig. S2). Accuracy reduced
when we randomly shuffled the labels across sequences (Fig. 2B, Fig. S3; One-
sided Mann-Whitney U test p-value=8.8x10-37 for native promoters, p<10-250

for test set), indicating that the model learned to use the information encoded
in the prompt tokens.

Within the test set, we observed higher accuracy in motifs for known yeast
TFs (Fig. S4A; One-sided Mann-Whitney U test p-value=5.3x10-77). Accuracy
increased with the abundance of the motif in the dataset (Fig. S4B, Pearson’s
rho=0.54, p-value=1.2x10-11). Putting these observations together, we asked
whether the model learned to associate specific motifs with categories of pro-
moter activity. For each motif, we calculated the relative abundance of the motif
in strong promoters (label 44) vs. weak promoters (label 00). We also calculated
the ratio between the model’s accuracy within the motif when the motif was
present in strong promoters vs. weak promoters. The strong correlation between
these two metrics (Fig. S4C, Pearson’s rho=0.87, p-value=4.2x10-42), indicates
that the model has learned to associate the prompt tokens with motifs that are
consistent with the corresponding promoter activity; for example, when it ob-
serves the prompt 44, the model is more accurate at predicting motifs that tend
to occur in strong promoters.

Generating synthetic yeast promoters We generated promoters of defined
strength by prompting the trained regLM model with labels 00, 11, 22, 33, and
44. Generated sequences were distinct from each other and from the training set,
having a minimum edit distance of 25 bp from training sequences. Supervised
regression models trained on the same data as the language model (Fig. S5) were
used to discard generated sequences whose predicted activity did not match the
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prompt. Only 1.1% of the generated sequences were discarded.

Fig. 2. A) Schematic of the experiment. B) Boxplot showing the mean accuracy of the
trained regLM model on test set sequences, before and after randomly shuffling the
labels among sequences. The dashed line represents the accuracy of 0.25 expected by
chance. C) Predicted activity of regLM generated promoters, compared to promoters
from the test set with the same label. D) Fraction of regLM promoters prompted with
different labels that contain the TF motifs most strongly associated with promoter
activity in the test set. E) Example of a regLM generated strong promoter. Height rep-
resents the per-nucleotide importance score obtained from the paired regression model
using ISM. Motifs with high importance are highlighted. F) Fraction of G/C bases in
strong promoters generated by different methods. G) Fraction of generated promoters
whose nearest neighbor based on k-mer content is a validated promoter from the test
set, for different methods. H) UMAP visualization of real (Test Set) and synthetic
strong promoters, labeled by cluster membership. I) Cluster distribution of strong pro-
moters generated by different methods. J) Boxplots showing the ratio between the
log-likelihood of the motif sequence given label 44 (high activity) vs. label 00 (low
activity) for activating or repressing TF motifs inserted in random sequences. Motifs
were selected based on TF-MoDISco results. In F, G, and I, asterisks indicate signif-
icant differences from the test set, and Evolution (V) represents synthetic promoters
generated by Vaishnav et al. (2022) using Directed Evolution.
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Independent regression models trained on fully separate data from the lan-
guage model (Fig. S6) predicted that regLM generates stronger promoters when
prompted with higher labels, and that the activity of the generated promot-
ers matches that of held-out test promoters with the same label (Fig. 2C). The
abundance of TF motifs in the generated promoters was strongly correlated with
their abundance in the test set; in other words, when regLM was prompted with
the label 44 its generated sequences were more likely to contain motifs for acti-
vating yeast TFs that are often seen in strong promoters (Fig. S7, Fig. 2D).

In addition to motif abundance, we also examined per-base importance us-
ing In silico mutagenesis (ISM). Using TF-MoDISco [17], we identified motifs
for known activator (ABF1, REB1, RAP1, RSC3, SFP1, STB3) and repres-
sor (UME6) TFs with high importance in both the test set and the generated
promoters, indicating that regLM generates motifs that contribute strongly to
regulatory activity (Table S1, Fig. 2E; Fig. S8,9).

regLM generates promoters with diverse and realistic sequence con-

tent To assess the biological realism of regLM-generated promoters relative to
CREs generated by other methods, we compared 200 putative strong promoters
generated by regLM (prompted with label 44) to sequences of similar predicted
activity (Fig. S10) generated by five approaches (Directed evolution, Ledidi [16],
AdaLead, FastSeqProp, and Simulated Annealing) as well as synthetic strong
promoters generated in another study [20]. For a fair comparison, we performed
all five model-guided methods using the regression model trained on the same
dataset as regLM as an oracle. All sets of synthetic promoters were compared to
known strong promoters from the test set using Polygraph [11]. Below, we use
Evolution (V) to refer to synthetic promoters generated by Vaishnav et al. [20]
using Directed Evolution.

GC content (the percentage of G or C nucleotides in a sequence) is a useful
biological metric to evaluate the realism of synthetic sequences. regLM pro-
moters were most similar to test set promoters in GC content, whereas other
approaches produced sequences with lower GC content (Fig. 2F; Kruskal-Wallis
p-value 6.8x10-172; Dunn’s post-hoc p-values 3.8x10-69 (Evolution vs. Test Set),
1.7x10-70 (Evolution (V) vs. Test Set), 2.5x10-15 (Ledidi vs. Test Set), 1.6x10-27

(AdaLead vs. Test Set) 4.1x10-11 (FastSeqProp vs. Test Set) 3.3x10-5 (Simulated
Annealing vs. Test Set).

We counted the frequency of all k-mers of length 4 in all promoters. No k-mers
were differentially abundant (defined as having Mann-Whitney U-test adjusted
p-value < 0.05) in regLM promoters with respect to test set promoters, compared
to 27-122 differentially abundant k-mers in the promoter sets generated by other
methods (Table S2). When we matched each sequence to its nearest neighbor
based on their k-mer frequencies, over 60% of regLM promoters were matched to
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a test set promoter, unlike other methods (Fig. 2G). regLM-generated promoters
were the most difficult to distinguish from the test set using simple classifiers
based on k-mer frequency (Table S2).

We repeated the above analyses using the frequency of yeast TF binding
motifs in all promoters (Methods). regLM, along with FastSeqProp and Simu-
lated Annealing, returned no differentially abundant motifs with respect to the
test set (Table S2). regLM-generated promoters were the most likely to have a
test set promoter as their nearest neighbor based on motif frequency (Table S2).
regLM-generated promoters were also the most difficult to distinguish from the
test set using simple classifiers based on motif frequency (Table S2).

To assess realism at the level of regulatory syntax, we examined combinations
of motifs present in the generated sequences. We first computed the frequencies
of pairwise combinations of motifs. Out of 835 motif pairs that were present in
over 5% of any group of promoters, none were differentially abundant in regLM
promoters with respect to test set promoters. In contrast, 1-141 motif pairs were
differentially abundant in the other sets of synthetic promoters (Table S2). Mo-
tifs in regLM generated promoters also tended to occur in similar positions as
in the test set (Table S2).

We examined their distance and orientation between paired motifs in each
group of promoters. For each motif pair, we counted the fraction of occurrences
of the pair in which both motifs were in the same orientation, in each group of
synthetic promoters as well as the test set. We found that the same-orientation
fractions for motif pairs in regLM generated promoters showed the highest Pear-
son correlation with those in the test set (Table S2). We also tested whether the
distance between motifs in these pairs was significantly different in synthetic pro-
moters relative to the test set. regLM generated promoters had the fewest pairs
with significantly different distance (FDR-adjusted two-sided Mann-Whitney U-
test p-value less than 0.05; Table S2).

To assess whether larger combinations of co-occurring motifs are shared be-
tween real and synthetic promoters, we performed graph-based clustering of
real and synthetic strong promoters [19] based on their TF motif content. This
revealed 10 clusters (Fig. 2H) corresponding to different combinations of co-
occurring TF motifs (Fig. S11). All 10 clusters were represented in regLM pro-
moters in similar proportion to their abundance in the test set; in contrast, the
sets of sequences generated by other methods had skewed cluster representation,
suggesting a tendency to converge upon specific transcriptional programs (Fig.
2I; Chi-squared p-values 2.6x10-14 (Evolution vs. Test Set), 3.6x10-54 (Evolution
(V) vs. Test Set), 1.3x10-68 (Ledidi vs. Test Set), 1.0x10-11 (AdaLead vs. Test
Set) 4.1x10-3 (FastSeqProp vs. Test Set) 2.8x10-3 (Simulated Annealing vs. Test
Set).
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Finally, we embedded all the real and synthetic promoters in a latent space
defined by the final transformer layers of the independent regression models. The
distance between sequences in this latent space incorporates not only differences
in the frequency of important motifs, but all of the regulatory syntax learned
by the regression model. Within this latent space, regLM promoters were still
the most likely to have a test set promoter as their nearest neighbor, and the
most difficult to distinguish from the test set (Table S2). Together, this evidence
demonstrates comprehensively that regLM has learned many aspects of the yeast
regulatory code.

Interrogating the trained regLM model reveals species-specific reg-

ulatory grammar To learn whether interrogating the trained regLM model
could reveal regulatory rules of yeast cells, we selected motifs for activating and
repressing yeast TFs based on TF-MoDISco results (see Methods) and inserted
each motif into 100 random DNA sequences. We used the trained regLM model
to compute the likelihoods of the resulting sequences (P(sequence | label)) given
either label 44 (strong promoter) or 00 (weak promoter). For each synthetic
promoter, we defined a log-likelihood ratio as follows:

log(LR) = logP (sequence|label = 44)− logP (sequence|label = 00)

A positive log-ratio indicates that the model has learned the motif is more likely
to occur in sequences with label 44 than 00, whereas a negative log-ratio in-
dicates the opposite. We observed that sequences containing activating motifs
tend to have positive log-likelihood ratios whereas sequences containing repres-
sive motifs tend to have negative log-likelihood ratios (Fig. 2J).

We also calculated the per-base log-likelihood ratios on all promoters in the
test set and found a significant positive correlation with the ISM scores de-
rived from regression models (Fig. S12) further supporting our assertion that
the language model has learned regulatory syntax, and suggesting that the log-
likelihood ratio can be used as a nucleotide-level or region-level score to interpret
these models.

2.3 regLM generates cell type-specific human enhancers

We trained a regLM model on a dataset of 200bp human enhancers and their
measured activity in three cell lines (K562, HepG2 and SK-N-SH) [10] with the
aim of designing cell type-specific human enhancers. Each sequence was prefixed
with a sequence of 3 prompt tokens, each ranging from 0 to 3 and representing
the measured activity of the enhancer in one of the 3 lines (Fig. S13). For exam-
ple, label 031 indicates that the sequence has low activity in HepG2 cells, high
activity in K562 cells, and weak activity in SK-N-SH cells (Fig. 3A).
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Here, instead of training a model from scratch, we could fine-tune a pre-
existing HyenaDNA model that had already learned regulatory information from
the human genome [14]. The trained model had a mean per-nucleotide accuracy
of 45% on the test set. Despite the extreme rarity of cell type specific enhancers
in the training set (enhancers with labels 300, 030 or 003 comprised only 0.16% of
the training set), accuracy remained high on cell type specific enhancers (33.4%).

We used the trained regLM models to generate enhancers with activity spe-
cific to each cell line by prompting them with the labels 300 (HepG2-specific),
030 (K562-specific) and 003 (SK-N-SH specific). Generated sequences had a min-
imum edit distance of 21 nucleotides with reference to the training set. Using
the regression models trained on the same dataset (Fig. S14) we selected the 100
regLM generated enhancers predicted to be most specific to each cell line.

Independent regression models (Fig. S15) predicted that the regLM gener-
ated elements are not only have cell type-specific activity, but in fact are more
specific than the majority of enhancers with the corresponding label in the test
set (Fig. 3B). In 2 of 3 cell types, regLM generated enhancers reach a level of
specificity similar to previous synthetic cell type-specific enhancers [10] (Fig.
S16), that were designed using model-guided approaches explicitly intended to
maximize activity far beyond the range observed in the training set.

Since the test set contains very few enhancers with this level of cell type speci-
ficity, we did not evaluate the realism of the synthetic enhancers by quantitative
comparisons of sequence content to the test set. However, we noted that motifs
for known cell type-specific TFs occurred at higher frequency in regLM-generated
enhancers of the appropriate specificity. For example, the motif for the erythro-
poietic TF GATA2 occurs at higher frequency in enhancers designed by regLM
to be specific to K562 cells, whereas motifs for the liver-specific HNF4A and 4G
factors occur at higher frequency in HepG2-specific synthetic enhancers (Fig.
3C). TF-MoDISco on per-base ISM scores yielded common motifs for cell type-
specific TFs in the test set and in the generated enhancers (HNF1B, HNF4G,
HNF4A for HepG2, and GATA2 for K562; Fig. 3D, E; Fig. S17, 18). We did
not observe motifs for neuron-specific TFs among the TF-modisco outputs for
SK-N-SH cells but instead general enhancer-associated factors such as AP-1.
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Fig. 3 A) Schematic of the experiment. B) Predicted activity of cell type specific
human enhancers generated by regLM, compared to real cell line-specific human en-
hancers from the test set, in 3 cell lines C) Fraction of regLM-generated enhancers con-
taining selected cell type-specific TF motifs. D) Sequence of a HepG2-specific regLM-
generated enhancer. E) Sequence of a K562-specific regLM-generated enhancer. Height
is proportional to per-nucleotide attribution scores from the independent regression
model using ISM. Motifs with high importance are highlighted. F) Predicted activ-
ity of real and regLM-generated cell type-specific enhancers, using a model trained on
LentiMPRA data. G) Predictions of a binary classification model trained on ATAC-seq
from 3 cell lines, on real and regLM-generated cell type-specific enhancers. H) Predic-
tions of a binary classification model trained on pseudobulk scATAC-seq from 203 cell
types, on real and regLM-generated cell type-specific enhancers. Color intensity rep-
resents the average prediction across all sequences in the group. "mean" represents
the average of all remaining cell types. I) Predictions of a classification model trained
to classify genomic DNA into chromatin states defined by the fullstack chromHMM
annotation, on real and regLM-generated cell type-specific enhancers. Color intensity
represents the average prediction across all sequences in the group. Acet = acetyla-
tions, BivProm = bivalent promoter, EnhA, EnhA1, EnhA2 = Enhancers, EnhWk =
Weak enhancers, GapArtf = Assembly gaps and artifacts, HET = heterochromatin,
PromF = Flanking promoter, ReprPC= Polycomb repressed, Quies = Quiescent, TSS
= Transcription start site, Tx = Transcription, TxWk = Weak transcription, TxEnh
= Transcribed Enhancer, TxEx = Exon & Transcription, znf = ZNF genes

We used several independent models to further validate the predicted cell
type specificity of the HepG2- and K562- specific synthetic enhancers. First,
we trained a regression model on lentiviral MPRA data from HepG2 and K562
cell lines [1] , and applied it to our designed enhancers. The model predicted
that the designed enhancers for K562 and HepG2 would still have cell line spe-
cific activity even in the context of lentiviral integration (Fig. 3F). Next, we
trained binary classification models on chromatin accessibility data [6] from cell
lines and predicted that the designed elements would have cell type specific
chromatin accessibility (Fig. 3G). In addition, a model trained on chromatin
accessibility in numerous fetal and adult human cell types predicted that the
designed elements would also maintain cell type-specific accessibility in related
cell types (Fig. 3H). Finally, we trained a model trained to classify DNA ele-
ments into chromatin states defined by the ChromHMM full-stack annotation
[21]. This model predicted that most of the regLM generated enhancers belong
to enhancer-associated chromatin states (Fig. 3I). We also ran all of these models
on synthetic elements designed by [10] selected to have similar predicted activity
to the regLM generated enhancers (Fig. S19), and found that the regLM gener-
ated enhancers showed comparable cell type specificity based on all predictions
(Fig. S20, S21, S22, S23). Together, these diverse predictions greatly increase
our confidence in the validity of regLM-generated enhancers.
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3 Discussion

We demonstrate that the regLM framework successfully learns the regulatory
code of DNA in different species and cell types, and generates diverse, realistic
CREs with desired levels of activity in silico. Evaluation of synthetic sequences
shows high concordance between the regulatory rules implemented in the se-
quences and known regulatory syntax. In the future, generated sequences can be
experimentally validated to assess their function and safety.

While realistic sequences may help ensure predictable behavior in the ge-
nomic context, one weakness of our approach is that language models may learn
correlated features in natural genomes that are not actually necessary for regu-
latory function. This can reduce functionality and be a weakness for mechanistic
understanding. Larger training sets including randomly generated, mutated and
non-genomic sequences will help mitigate this problem [3].

In conclusion, regLM can be easily adapted for numerous other biological
tasks, such as codon optimization for mRNA. Our work suggests many directions
for future research, such as improving prompt engineering and model interpre-
tation for this novel architecture.

4 Methods

4.1 Training regLM models

HyenaDNA[14] is a decoder-only, sequence-to-sequence architecture consisting
of a stack of blocks. Each block comprises a Hyena operator [15], followed by
normalization and a feed-forward neural network. For human enhancers, we fine-
tuned the pre-trained foundation model ‘hyenadna-medium-160k-seqlen‘. This
model has 6.55 million parameters and is trained to perform next token predic-
tion on the human genome. For yeast promoters, we trained from scratch a Hye-
naDNA model with the same architecture as ‘hyenadna-medium-160k-seqlen’.

For yeast promoters, the HyenaDNA model was trained for 100 epochs on 1
NVIDIA A100 GPU using the AdamW optimizer with cross-entropy loss, learn-
ing rate of 3x10-4 and batch size of 2048. Validation loss and accuracy were
computed every 2000 steps and the model with highest validation accuracy was
saved.

For human enhancers, the pre-trained HyenaDNA model was fine-tuned for
16 epochs on 1 NVIDIA A100 GPU using the AdamW optimizer with cross-
entropy loss, learning rate of 10-4 and batch size of 1024. Validation loss and
accuracy were computed every 100 steps and the model with highest validation
accuracy was saved. During training, examples with each label were sampled
from the training set with a weight inversely proportional to the frequency of
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the label, allowing the model to focus on cell type-specific enhancers that were
extremely rare.

4.2 Generating synthetic CREs using regLM

Yeast promoters The regLM model trained on yeast promoters was prompted
to generate 1000 sequences each with labels 00, 11, 22, 33, and 44. Generated
promoters were filtered using the regression model trained on the same data. For
each medium, we first used the regression model to predict the activity of all
sequences in its training set, and computed the mean and standard deviation of
predicted activity for training sequences with each class token (0, 1, 2, 3, and 4).
We then used the same model to predict the activity of all generated promoters
in both media. We discarded generated promoters whose predicted activity in
either medium was more than 2 standard deviations from the mean predicted
activity of promoters with the same token in the training set. We performed
this procedure separately for complex and defined media. We then randomly
selected 200 synthetic promoters of each generated class (00, 11, 22, 33, and 44)
to compare with other methods.

Human Enhancers The regLM model trained on human enhancers was prompted
to generate 1000 sequences each with tokens 300 (HepG2-specific), 030 (K562-
specific), and 003 (SK-N-SH specific). Generated enhancers were filtered using
a regression model trained on the same data. We first filtered the generated se-
quences using absolute thresholds consistent with the prompted labels (predicted
activity greater than 4 in the target cell type and less than 0.2 in the off-target
cell type). Next, we estimated the cell type specificity of each sequence as the
difference between its predicted activity in the target cell type and its maximum
predicted activity in off-target cell types. Based on this, we selected the 100 most
specific regLM-generated enhancers for each cell type.

4.3 In silico evaluation of synthetic yeast promoters

K-mer content The frequency of all subsequences of length 4 (4-mers) was
counted in each real or synthetic promoter. Each sequence was thus represented
by a 256 dimensional vector. To calculate the fraction of real nearest neighbors,
we matched each sequence to its nearest neighbor out of all real and synthetic
sequences. For each group of synthetic CREs, we calculated the proportion of se-
quences whose nearest neighbor was an experimentally validated CRE from the
test set. To compute classification performance, we trained a Support Vector Ma-
chine (SVM) to distinguish each set of synthetic sequences from the reference set
based on their k-mer frequencies. The Area Under the Receiver Operator Curve
(AUROC) for each SVM was reported as a measure of classification performance.

Transcription factor motif content Position Probability Matrices (PPMs)
were downloaded from the JASPAR 2024 database in MEME format. 170 PPMs
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for yeast were selected using the filters Species="Saccharomyces cerevisiae" and
Versions="Latest version". 755 PPMs were selected for humans using the filters
Species="Homo sapiens" and Versions="Latest version".

Pairwise correlations between motifs were also downloaded from the JASPAR
2024 database. Motifs were clustered based on their pairwise Pearson correla-
tions using agglomerative clustering with a distance threshold of 0.1. For clusters
consisting of 2 motifs, the motif with higher information content was chosen as
the cluster representative and the other was discarded. For clusters containing
more than 2 motifs, the motif that had the highest average Pearson correlation
to the other cluster members was selected as the representative and the others
were discarded. This resulted in a filtered set of 140 motifs for yeast and 464 for
human.

Reading the MEME files, conversion of PPMs to PWMs and sequence scan-
ning were performed using the pymemesuite package, with a uniform background
frequency and the default pseudocount of 0.1.

To compute nearest neighbors and distances efficiently, PCA was performed
on the motif frequency matrix for human enhancers and the top 50 principal com-
ponents were selected. Thus each sequence was represented by a 50-dimensional
vector. Each sequence was matched to its nearest neighbors in this vector space
and the proportion of real nearest neighbors for each group of synthetic CREs
was calculated as described above. Classification performance was calculated as
described above.

Model-based embeddings Real and synthetic CREs were embedded in a
model-defined latent space by passing them as input to the model and taking the
output of the terminal transformer layer. For yeast promoters, the transformer
layers of each regression model had an embedding size of 768. We concatenated
the embeddings from the models trained on two media, resulting in an embedding
vector of size 1536 for each sequence. Each sequence was matched to its nearest
neighbors in this vector space and the proportion of real nearest neighbors for
each group of synthetic CREs was calculated as described above. Classification
performance was calculated as described above.

4.4 Interpretation of the regLM model trained on yeast promoters

regLM is trained to perform next token prediction, i.e. for each position in a
DNA sequence, regLM predicts the probability of all possible bases (A, C, G
and T) conditioned on the previous bases as well as the initial label. Thus, we
can obtain the likelihood of an observed sequence conditioned on its initial label
(P(sequence | label)) as the product of probabilities of the base observed at each
position.
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To assess whether regLM has learned the function of a given motif, we gen-
erated 100 random DNA sequences and inserted the consensus sequence for the
motif at the center of each. We prefixed each sequence with label 00 (low ac-
tivity) and used the trained regLM model to predict the probability of each
base in the motif. We calculated the likelihood of the motif conditioned on the
sequence being labeled with 00 (P (sequence|label = 00)). We then prefixed all
100 sequences with the label 44 (high activity in both media) and repeated the
procedure, calculating the likelihood of the motif conditioned on the sequence
being labeled with 44 (P (sequence|label = 44)).

We refer readers to the Supplementary Methods for more details on data
processing, model training, model parameters, and running benchmark methods.

5 Code Availability

regLM is available at https://github.com/Genentech/regLM along with docu-
mentation and a tutorial for use. Model weights and code to perform the experi-
ments in this paper are linked to from the GitHub repository. Experiments were
performed using Python v3.8, PyTorch v1.13.0 and PyTorch Lightning v1.8.2.

References

1. Agarwal, V., Inoue, F., Schubach, M., Martin, B.K., Dash, P.M., Zhang, Z., Sohota,
A., Noble, W.S., Yardimci, G.G., Kircher, M., et al.: Massively parallel character-
ization of transcriptional regulatory elements in three diverse human cell types.
bioRxiv (2023)

2. Benegas, G., Batra, S.S., Song, Y.S.: DNA language models are powerful zero-shot
predictors of genome-wide variant effects (Apr 2023)

3. de Boer, C.G., Taipale, J.: Hold out the genome: A roadmap to solving the cis-
regulatory code. bioRxiv pp. 2023–04 (2023)

4. de Boer, C.G., Vaishnav, E.D., Sadeh, R., Abeyta, E.L., Friedman, N., Regev, A.:
Deciphering eukaryotic gene-regulatory logic with 100 million random promoters.
Nat. Biotechnol. 38(1), 56–65 (Jan 2020)

5. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., Others: Language models are few-
shot learners. Adv. Neural Inf. Process. Syst. 33, 1877–1901 (2020)

6. Consortium, E.P., et al.: An integrated encyclopedia of dna elements in the human
genome. Nature 489(7414), 57 (2012)

7. Dalla-Torre, H., Gonzalez, L., Mendoza-Revilla, J., Carranza, N.L.,
Grzywaczewski, A.H., Oteri, F., Dallago, C., Trop, E., Sirelkhatim, H., Richard,
G., Skwark, M., Beguir, K., Lopez, M., Pierrot, T.: The nucleotide transformer:
Building and evaluating robust foundation models for human genomics (Mar
2023)

8. Fishman, V., Kuratov, Y., Petrov, M., Shmelev, A., Shepelin, D., Chekanov, N.,
Kardymon, O., Burtsev, M.: Gena-lm: A family of open-source foundational models
for long dna sequences. bioRxiv pp. 2023–06 (2023)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2024. ; https://doi.org/10.1101/2024.02.14.580373doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.14.580373
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 Lal et al.

9. Fornes, O., Av-Shalom, T.V., Korecki, A.J., Farkas, R.A., Arenillas, D.J., Mathe-
lier, A., Simpson, E.M., Wasserman, W.W.: Ontarget: in silico design of minipro-
moters for targeted delivery of expression. Nucleic Acids Research p. gkad375
(2023)

10. Gosai, S.J., Castro, R.I., Fuentes, N., Butts, J.C., Kales, S., Noche, R.R., Mouri,
K., Sabeti, P.C., Reilly, S.K., Tewhey, R.: Machine-guided design of synthetic cell
type-specific cis -regulatory elements. bioRxiv (Aug 2023)

11. Gupta, A., Lal, A., Gunsalus, L.M., Biancalani, T., Eraslan, G.: Polygraph: A soft-
ware framework for the systematic assessment of synthetic regulatory dna elements.
bioRxiv pp. 2023–11 (2023)

12. Ji, Y., Zhou, Z., Liu, H., Davuluri, R.V.: DNABERT: pre-trained bidirectional
encoder representations from transformers model for DNA-language in genome.
Bioinformatics 37(15), 2112–2120 (Aug 2021)

13. Linder, J., Seelig, G.: Fast activation maximization for molecular sequence design.
BMC Bioinformatics 22(1), 510 (Oct 2021)

14. Nguyen, E., Poli, M., Faizi, M., Thomas, A., Birch-Sykes, C., Wornow, M., Patel,
A., Rabideau, C., Massaroli, S., Bengio, Y., Ermon, S., Baccus, S.A., Ré, C.: Hye-
naDNA: Long-Range genomic sequence modeling at single nucleotide resolution.
ArXiv (Jun 2023)

15. Poli, M., Massaroli, S., Nguyen, E., Fu, D.Y., Dao, T., Baccus, S., Bengio, Y.,
Ermon, S., Ré, C.: Hyena hierarchy: Towards larger convolutional language models
(Feb 2023)

16. Schreiber, J., Lu, Y.Y.: Ledidi: Designing genomic edits that induce functional
activity (May 2020)

17. Shrikumar, A., Tian, K., Avsec, Ž., Shcherbina, A., Banerjee, A., Sharmin, M.,
Nair, S., Kundaje, A.: Technical note on transcription factor motif discovery from
importance scores (tf-modisco) version 0.5. 6.5. arXiv preprint arXiv:1811.00416
(2018)

18. Taskiran, I.I., Spanier, K.I., Christiaens, V., Mauduit, D., Aerts, S.: Cell type
directed design of synthetic enhancers (Jul 2022)

19. Traag, V.A., Waltman, L., Van Eck, N.J.: From louvain to leiden: guaranteeing
well-connected communities. Scientific reports 9(1), 5233 (2019)

20. Vaishnav, E.D., de Boer, C.G., Molinet, J., Yassour, M., Fan, L., Adiconis, X.,
Thompson, D.A., Levin, J.Z., Cubillos, F.A., Regev, A.: The evolution, evolvability
and engineering of gene regulatory DNA. Nature 603(7901), 455–463 (Mar 2022)

21. Vu, H., Ernst, J.: Universal annotation of the human genome through integration
of over a thousand epigenomic datasets. Genome biology 23, 1–37 (2022)

22. Wittkopp, P.J., Kalay, G.: Cis-regulatory elements: molecular mechanisms and
evolutionary processes underlying divergence. Nature Reviews Genetics 13(1), 59–
69 (2012)

23. Zhou, Z., Ji, Y., Li, W., Dutta, P., Davuluri, R., Liu, H.: Dnabert-2: Effi-
cient foundation model and benchmark for multi-species genome. arXiv preprint
arXiv:2306.15006 (2023)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2024. ; https://doi.org/10.1101/2024.02.14.580373doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.14.580373
http://creativecommons.org/licenses/by-nc-nd/4.0/

