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Indicators of a data-deficient taxa: combining bird and environmental data enhances
predictive accuracy of wild bee richness

ABSTRACT

Widespread declines in wild bee populations necessitate urgent action, but there remains
insufficient data to guide conservation efforts. Addressing this data deficit, we investigated the
relative performance of environmental and/or taxon-based indicators to predict wild bee
richness in the eastern and central U.S. Our methodology leveraged publicly available data on
bees (SCAN and GBIF data repository), birds (eBird participatory science project) and land cover
data (USGS Cropland Data Layer). We used a Bayesian variable selection algorithm to select
variables that best predicted bee richness using two datasets: a semi-structured dataset
covering a wide geographical and temporal range and a structured dataset covering a focused
extent with a standardized protocol. We demonstrate that an indicator based on the
combination of bird and land cover data was better at predicting wild bee richness across broad
geographies than indicators based on land cover or birds alone, particularly for the semi-
structured dataset. In the case of wild bees specifically, we suggest that bird and land cover
data serve as useful indicators to guide monitoring and conservation priorities until the quality
and quantity of bee data improve.
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INTRODUCTION

There is an urgent need to protect populations of wild bees, as concerns grow about their
decline and the risk of losing the ecological roles and ecosystem services they provide
(Bartomeus et al., 2013; Cameron and Sadd, 2020; Grixti et al., 2009; IPBES, 2016; Zattara and
Aizen, 2021). Unfortunately, conservation action continues to be stymied by the paucity of
rigorous information on bee populations and communities (Rousseau et al., 2023; Winfree,
2010). Despite several initiatives to fill data gaps (e.g., Droege et al., 2016; Woodard et al.,
2020) and increased numbers of observations submitted to participatory science projects like
iNaturalist, wild bees are likely to remain data deficient in the near term. When facing such
information needs, a common approach has been to develop indicators that can be used to
understand populations or communities (Chase et al., 2000; Fleishman et al., 2005), evaluate
environmental conditions (Bryce et al., 2002; Burger, 2006; Hilty and Merenlender, 2000; Niemi
and McDonald, 2004), and/or inform management (Pérez-Fuertes et al., 2016; Petrou and
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Petrou, 2011; Terrigeol et al., 2022). Indeed, previous research demonstrates the usefulness of
indicators based on a wide range of taxa, including mammals (Chase et al., 2000; Tognelli, 2005;
Yong et al., 2016), butterflies (Fleishman et al., 2005; Rossi and Van Halder, 2010), fish (Roset et
al., 2007), and birds (Basile et al., 2021; Chase et al., 2000; Drever et al., 2008). However, less is
known about the relative effectiveness of different approaches to developing indicators and,
specifically, whether they can be reliably built with environmental or taxon-based variables
(Carmel and Stoller-Cavari, 2006; Mandelik et al., 2012).

Environmental indicators or surrogates of biodiversity can include metrics describing
ecosystems or landscapes, such as vegetation indices (e.g., NDVI), habitat heterogeneity,
structural complexity, land use cover, or topography (Heink and Kowarik, 2010; Niemi and
McDonald, 2004; Sowiriska-Swierkosz, 2020). The underlying rationale for using environmental
surrogates is sound, given that aspects such as land cover classes, can reflect habitat or
landscape conditions that affect species. One clear advantage of environmental surrogates is
the ease with which one can access a variety of remotely sensed data representing broad
spatial extents and different time periods (e.g., including infrared; Nagendra, 2001; Rocchini et
al., 2015). However, the resolution and detail of remotely-sensed data are often coarse and
insufficient to describe ecological attributes required by any given species. In particular,
satellite imagery is unlikely to capture microhabitat features, species interactions (e.g., the
presence of competitors or predators), or land management practices (Galbraith et al., 2015;
Rocchini et al., 2015). These limitations might be resolved, in part, by using data on other
species that may capture multiple dimensions of habitat as well as species interactions better
than environmental surrogates (Fleishman et al., 2018; Rodrigues and Brooks, 2007, but see
Mandelik et al., 2012).

Taxon-based indicators use data on a single species, an assemblage of species, or an ecological
community as proxies to represent other species or indirectly describe aspects of the
environment that are difficult to measure directly (Bal et al., 2018; Landres et al., 1988). These
indicators are most effective when based upon species that are relatively common, easily
detected, and cost-effective to sample (Carignan and Villard, 2002; McGeoch, 1998). Among
animal taxa, invertebrates have been used as proxies for environmental health (Siddig et al.,
2016) while birds are typically used to assess biodiversity and environmental quality (Fraixedas
et al., 2020; Johnson, 2007; Mekonen, 2017). Advantages of using birds is that they are
common, easy to survey, strongly associated with habitat and landscape attributes, and are
affected by processes operating across multiple scales (Carignan and Villard, 2002; Gardner et
al., 2008; Ikin et al., 2014; Niemi et al., 2004). Moreover, the proliferation of participatory
science projects like eBird, have made birds unrivaled in terms of data availability over time and
space and at low cost (Kosmala et al., 2016; McKinley et al., 2015; Munson et al., 2010;
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78 Theobald et al., 2015). Though single species have been successfully used as proxies (Bustos-
79  Baez and Frid, 2003; De Caceres et al., 2010; Favreau et al., 2006; Halme et al., 2009), indicators
80 based on species assemblages are generally recommended and considered to perform better
81 (De Caceres et al., 2012; Dufréne and Legendre, 1997; Sewell and Griffiths, 2009; Valente et al.,
82  2022), especially when species collectively represent a range of life histories, habitats, and
83  sensitivities to habitat modifications and disturbances (Carignan and Villard, 2002; Fleishman et
84  al., 2018, 2005). These assemblages of individual species can represent multiple taxa, as with
85 Management Indicator Species used by USDA Forest Service (Unkel, 1985; e.g., Moseley et al.,
86  2010). In contrast, indicators built from community metrics, like species richness, have had
87 limited success at characterizing patterns of species of interest (Eglington et al., 2012; Wolters
88 etal., 2006).
89
90 Surprisingly few examples exist for indicators that combine environmental and species
91 indicators, despite the potential to leverage the advantages of each. Ferris and Humphrey
92  (1999) alluded to using indicator species in combination with habitat structures as ‘potential
93 indicators of biodiversity’, however, to our knowledge, Fleishman et al. (2018) was first to
94  document that a combination of environmental variables and indicator species best explained
95  variation in species richness.
96
97  Here we investigate which combination of environmental and taxon-based data best predicts
98  species richness of wild bees in the eastern and central U.S.. Concern about wild bees continues
99 torise as populations decline, species are extirpated, and critical habitat resources are lost, yet
100 data deficiencies still limit our ability to detect and respond to changes. The convergence of
101  urgency to act and limited data upon which to base actions makes bees a group for which
102 indicators are likely to be valuable. Previous research used expert-identified and remotely-
103  sensed land cover classes to indicate wild bee abundance across the U.S. (Koh et al., 2016;
104  Lonsdorf et al., 2009). However, many habitat resources used by bees, such flowering plants or
105  ground characteristics (Antoine and Forrest, 2021; Patricio-Roberto and Campos, 2014), are not
106 amenable to detection by satellites (Galbraith et al., 2015). Likewise, a variety of stressors,
107 including pesticides (Janousek et al., 2023; Kennedy et al., 2013; Main et al., 2020) and climate
108 change (Hung et al., 2021; Janousek et al., 2023), may not be evident from remotely-sensed
109 data. Because many bird species are sensitive to multiple spatial scales (e.g., microhabitat,
110 stand, landscape, and region; Frey et al., 2016; Ikin et al, 2014; Saab, 1999) and land
111  management practices (Butler et al., 2010; Jansen and Robertson, 2001), we hypothesized that
112  combining bird and land cover data would best predict the resources, habitats, and landscapes
113  that are associated with diverse bee communities. Here, we compared the performance of
114 indicators of bee richness that were constructed from data on birds, land cover, or a
115 combination of both. Our intention was to develop a tool to guide monitoring, land
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116  management, and conservation efforts for bees across large spatial scales until sufficient bee
117  data becomes available.

118

119

120 METHODOLOGY

121

122 Bee, bird, and land cover data

123

124  We used publicly-available and field-based bee and bird data collected in the eastern and

125 central regions of the US (Figure 1) to predict species richness of wild bees. We compared the
126  relative performance of models including predictors that were based on land cover, bird, or bird
127  plus land cover data using bee data from both structured and semi-structured datasets.

128

129  The structured dataset consists of data collected using a rigorous protocol and contains

130 information about the bees and associated survey effort (Kelling et al., 2019). It is represented
131 by the U.S. Geological Survey data (Droege and Maffei, 2023), which contains protocol and

132  effort information and could be standardized as the number of bee species per trap in each

133 survey. We selected records of wild bees (excluding honeybees (Apis mellifera)) associated with
134  the Bee Inventory and Monitoring Laboratory protocol, which used nets and 3.25 and 12 oz pan
135  traps (Droege et al., 2016). We used surveys where at least 90% of the specimens were

136 identified, and excluded records with missing species identification or with geographic

137  uncertainty exceeding 3 km. We further restricted the temporal range to five years (2011 to
138  2015) and the geographical extent to a few states in eastern U.S (Figure 1). This produced a

139  dataset with 48,654 bee records, representing 345 species and 1,583 surveys distributed across
140 390 3x3 km grid cells. We computed the average number of species per survey and trap for

141  each grid cell, as our standardized measure of bee richness.

142

143  The semi-structured dataset was sourced from Chesshire et al. (2023), and supplemented with
144 2021 records from Global Biodiversity Information Facility (GBIF; GBIF.org, 2022) and Symbiota
145  Collections of Arthropods Network (SCAN). Records were collected from 2007 to 2021 in the
146  central and eastern U.S. using a wide range of survey methods and effort The 2021

147  supplemental data were subject to the same checks, filters, and species name validations as
148  described in Chesshire et al. (2023). We also removed records that were duplicate, lacked

149  species identification, location, or date, or for which uncertainty about geographic location

150 exceeded 3km. This gave us a dataset of 476,584 bee records, representing 792 species across
151 26,673 3x3 km grid cells. For each grid cell, we calculated the number of species per survey,
152  where a survey was defined by a unique combination of latitude, longitude, and date. Surveys
153  with only one bee, as was the case for most iNaturalist submissions, were excluded as were grid
154  cells with only one survey and fewer than 30 total bee records (Luan et al., 2020; Stockwell and
155  Peterson, 2002; Wisz et al., 2008). For each grid cell, we calculated the mean number of species
156  per survey as a standardized metric of bee richness.
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157

158  Bird data were extracted from the eBird Basic Dataset (EBD; eBird Basic Dataset, 2022), which
159  consists of bird species checklists submitted by volunteers and subsequently reviewed by

160  experts (Lagoze, 2014; Sullivan et al., 2014). Only records in grid cells associated with bee data
161 in each dataset, were extracted. We selected checklists collected during the bird breeding

162  season (mid-May to mid-August) using stationary or traveling protocols lasting five to 300

163  minutes. We excluded surveys that did not record counts for all species and those submitted by
164  observers who had submitted fewer than three checklists within our dataset. Bird species

165 abundance data were standardized, within each dataset, accounting for checklist variation in
166  survey effort, time of day, and protocol (supplementary materials S1). We fit a Generalized

167  Additive Model (GAM) for each species separately. The response was the species count per
168 checklist and predictors were: survey duration, survey distance, time the observation started,
169 and protocol. For each checklist and dataset, we calculated species-specific residuals on the log
170  scale from this average relationship. This allowed us to characterize whether checklists

171  recorded high or low species counts, accounting for the checklist effort. For each species and
172  dataset, we then averaged across all checklists within a grid cell, to calculate a mean residual
173  per grid cell, where a positive residual indicates grid cells where a species was more abundant
174  than expected.

175

176  To avoid constructing an indicator based on rare species, we established prevalence thresholds
177  to ensure that models included only those bird species that were detected in at least 20% in the
178  grid cells, per dataset (McPherson et al., 2004) and had a breeding distribution covering at least
179  40% of each study area. The reason for this is that rare species are (by definition) rarely

180 observed and therefore more likely to cause overfitting rather than true associations in our
181 models. One exception to these thresholds were grassland obligate species, for which several
182  were included despite being slightly below the 20% prevalence, because we were especially
183  interested in agricultural landscapes and due to a priori ecological expectations. We excluded
184  all records from species that are typically detected as flyovers (e.g., many raptors and some
185 aerial feeders, supplementary material S2) because they could not be linked to local habitat
186  conditions. A total of 79 bird species were considered in our models with the semi-structured
187  dataset and 72 with the structured dataset.

188

189  Land cover data were sourced from Cropland Data Layer (CDL), a geo-referenced 30-meters
190 resolution raster, originally obtained from satellite, and categorized into crop-specific land

191  covers (USDA National Agricultural Statistics Service Cropland Data Layer, 2021). We

192  aggregated the CDL from 120 to 45 categories relevant to bee ecology (following Koh et al.,
193  2016) and calculated the percentage of each land cover per 3x3 km grid cell. In our models, we
194  considered only the most common land cover predictors that had a prevalence of at least 20%
195  within each study area. We used data from the 2021 CDL in association with the semi-

196  structured dataset analysis and from 2013 for the structured one.

197

198 Modeling
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199

200 We modeled bee richness within each 3x3 km grid cell, separately for each dataset. Modeling
201  with the semi-structured dataset incorporated 79 bird species and 21 land cover variables from
202 2,585 grid cells that contained data on bees, birds, and land covers and met our threshold for
203  analysis. The structured dataset included 72 bird species and 20 land cover variables across 194
204  grid cells.

205

206  After scaling each variable, we used a Bayesian variable selection process from the R package
207  leaps (Miller and Lumley, 2020) to select the best predictors of bee richness using three

208 different sets of candidate predictor variables: (a) land cover only, (b) birds only, or (c) a

209 combination of land cover and birds (Figure 1). For each set of predictors we created 100 sub-
210 models, containing 10 predictors each. We calculated the predicted bee richness within each
211  grid cell by averaging the bee richness predictions from these 100 sub-model predictions. This
212  created three modeled predictions of bee richness, each created with a different set of

213  candidate predictor variables. Sub-models with a large number of potential predictors took a
214  prohibitively long time to run, therefore we used a variable subset selection process to

215  empirically remove predictors that were unlikely to be useful in predicting bee richness

216  (supplementary materials S3). We conducted a sensitivity analysis to ensure that this variable
217  selection process would not impact the results (supplementary materials S3). We also assessed
218  the presence of multicollinearity among predictors in each sub-model using variance inflation
219  factors (VIF). No sub-models had predictors with a Variance Inflation Factor (VIF) of 5 or higher,
220  suggesting minimal multicollinearity (Akinwande et al., 2015).

221

222  We assessed the accuracy of our three models separately for each dataset using a five-fold

223  cross-validation process. We re-ran the modeling procedure with each of five subsets of 80% of
224  data, each time creating 100 sub-models and averaging over sub-model predictions to produce
225 modeled predictions for each grid cell within the 20% validation data. This ensured that we
226  were assessing predictions using independent data to prevent positive conclusions being driven
227 by overfitting to the modeled data. We repeated this process five times to create predictions
228  for every grid cell in the original dataset. We repeated the whole procedure for models

229  constructed from each of the three sets of predictor variables: (a) land cover only, (b) birds
230 only, or (c) a combination of land cover and birds.

231

232  We compared observed to predicted values of bee richness within each grid cell (plot in

233  supplementary material S4) using a correlation coefficient. We statistically compared the

234  correlation coefficients between observed and predicted bee richness, for models constructed
235  from each of the three sets of predictor variables — land cover only, birds only, birds & land
236  cover. We used the correlation coefficient tests proposed by Hittner et al., (2003) and available
237  through the R package cocor (Diedenhofen and Musch, 2015), to determine which set of

238  variables best predicted observed bee richness, within each dataset.

239
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240 The best set of variables was used to predict bee richness across the study area associated with
241  each dataset. In order to do this, we needed estimates of relative bird abundance in all grid
242  cells, not only those with eBird checklists, therefore we used the estimated relative abundance
243 per species per grid cell from eBird Status Data Products (Fink et al., 2022). The bee richness
244  point estimates and associated map represent the mean prediction from the 100 sub-models,
245  at each location. For the bee richness uncertainty from the model selection process, we

246  calculated a 90% confidence interval of the bee richness predictions from the 100 sub-models,
247  at each location. Since the bee richness values are relative, the confidence interval range was
248 normalized by the range of point estimates across the entire study extent. This scaled

249  uncertainty reflects the percentage of the variation across models at a given location, relative
250 to the full range of variation across point estimates within all locations.

251

252

253  RESULTS

254

255  The combination of bird and land cover data yielded the most accurate predictions of bee

256  richness using either the semi structured data (Table 1; semi-structured data model fit R? =

257  0.14, validation R? = 0.14, n = 2585 grid cells) or structured data (model fit R? = 0.28, validation
258 R?=0.21, n =194). Plots of observed and predicted values for these analyses are available in
259  the supplementary material (S4).

260

261  The inclusion of both land covers and bird species significantly improved correlation coefficients
262 by >15% compared to using either land cover or birds alone. These improvements were

263  significant for the semi-structured dataset, with the model with both land cover and birds being
264  better than land cover only (p < 0.001) and birds only (p < 0.001). For the structured dataset,
265  the model with both land cover and birds was significantly better than the model with land

266  cover only (p = 0.007), but did not show a significant improvement over the model with birds
267  only (p =0.35). Model fit for birds and land cover was 2x better and significantly improved (p =
268  0.01) using the structured dataset compared with semi-structured dataset (Table 1).

269

270  Focusing on the models with both birds and land cover predictors, the semi-structured and

271  structured datasets had 9 and 5 land cover variables, respectively, and 20 and 26 birds that
272  were selected in at least one of the 100 sub-models (Table 2 and Supplementary material S5).
273

274  Those land covers and bird variables that were selected in all 100 sub-models typically had a
275 large effect size, based on their mean coefficients. Five variables were selected within all 100
276  sub-models using the semi-structured dataset - deciduous forest, barren land, double crop, low-
277  density urban, and Carolina Wren - and two with the structured dataset, grain and Gray Catbird
278 (Table 2 and Supplementary material S5). With the exception of low-density urban landscapes,
279  the most selected variables were positively correlated with bee richness (Table 2;

280 supplementary material S5).

281
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282  In our study area, bee richness was generally higher on the East Coast along the Appalachian
283  Mountains and lower in the Midwest, particularly around lowa (Figure 2A). Uncertainty in

284  predicted bee richness was lowest around North and South Dakota, lllinois, and along the

285  Atlantic coast, while it was highest near West Virginia, eastern Kentucky, and southern Missouri
286  (Figure 2B).

287

288

289  DISCUSSION

290

291 Tools for guiding the conservation of data-deficient taxa often include environmental or taxon-
292  based indicators. Though only one type of variable typically is used to create an indicator (but
293  see Fleishman 2017), our results indicate that combining data from both the environment and
294  other taxa may significantly improve the prediction accuracy and, thus, may better inform

295  conservation actions. Unlike previous work that relied upon land cover data to predict bee

296 abundance (Koh et al., 2016; Lonsdorf et al., 2009), we found that bird data added value over
297  land cover alone and improved our ability to predict species richness of wild bees. The

298  usefulness of birds is not surprising, given that they are known to be an effective indicator

299  species for other taxa (Chase et al., 2000; Fleishman et al., 2018, 2005; Rodriguez-Estrella et al.,
300 2019; Thomson et al., 2007).

301

302  Several factors may explain why the combination of birds and land cover variables predicted
303  beerichness better than using either land cover or birds alone. First, bird and land cover

304 variables likely offer complementary insights into habitat quality. A broad category of land

305 cover, such as ‘deciduous forest’, usually includes a wide range of floristic composition, habitat
306  structure, patch configuration, age, and land management practices (Milam et al., 2022; Taki et
307 al.,, 2013; Ulyshen et al., 2023; Urban-Mead et al., 2021). For example, numbers of flowering
308 plants that attract bees are often greater in early-successional than mature forests. Likewise,
309 forests in which understories were replaced by grass (e.g., wooded parks) are unlikely to

310 provide nesting habitat to ground-nesting bees. In such cases, the presence or abundance of
311  particular bird species (e.g., open woodland species like Chipping Sparrow (Spizella passerina),
312 forest-understory species like American Redstart (Setophaga ruticilla) or Wood Thrush

313  (Hylocichla mustelina)) can provide additional information to better identify habitats favored by
314  bees. Indeed, the presence of fruit-eating bird species, such as Gray Catbird (Dumetella

315  carolinensis), as predictors highlight the importance of forests containing flowering shrubs and
316 trees for bee communities (Inari et al., 2012; Ramalho, 2004). Second, individual land cover
317 variables may be blind to habitat juxtaposition or the co-occurrence of different habitats in
318 close proximity. For example, while ‘double crops’ may provide sufficient flower resources,

319 bees also may require easy access to less disturbed habitat for nesting (e.g. ‘idle cropland’,

320 ’grass pastures’, or ‘deciduous forests’) that are better indicated by bird species that nest in
321 trees but forage in open habitats. Third, birds and bees select their habitat based on resources
322  available across multiple scales (Diaz-Forero et al., 2013; Hatfield and LeBuhn, 2007; Orians and
323  Wittenberger, 1991; Pardee and Philpott, 2014; Rollin et al., 2019; Thompson and Mcgarigal,
324  2002). As such, birds are likely to incorporate multi-scale information relevant to bee


https://doi.org/10.1101/2024.02.14.580016
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.14.580016; this version posted February 18, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

325  population that would not be available through land covers alone. For instance, the presence of
326  species like Orchard Oriole (/cterus spurius) can signal the availability of open woodlands,

327  orchards, woody hedgerows, and flowering plants used for nesting and foraging resources by
328 orioles and wild bees alike. Fourth, the combined bird and land cover variables selected as

329 predictors represent a wide range of habitats, which suggest that a higher bee richness may be
330 associated with heterogeneous landscapes (Andersson et al., 2013; Mallinger et al., 2016;

331 Montagnana et al., 2021) that include multiple types of nesting substrates to accommodate
332  ground and cavity nesters and a diversity of flower resources, from crops, shrubs, and trees.
333

334  The geographic pattern of wild bee richness predicted by our indicators (Figure 2A) is consistent
335  with previous reports that wild bee richness and/or abundance is highest in landscapes

336 characterized by a mosaic of deciduous forest and low-intensity agriculture and lowest in areas
337 dominated by intensive agriculture, such as the Midwest (Figure 2; Kennedy et al., 2013; Koh et
338 al., 2016). Consistent with the results from Koh et al., (2016), we found high levels of

339  uncertainty in our predictions in certain regions, particularly in areas like the Appalachian and
340 Ozark Mountains (Figure 2B). Given that many bee species require forest habitats during

341  particular life stages (Hanula et al., 2016; Roberts et al., 2017; Smith et al., 2021; Urban-Mead
342 etal., 2021), we were not surprised to find large positive effects of deciduous forests and

343  Carolina Wrens, a species associated with gaps in deciduous forest (Haggerty and Morton,

344  2020). Also unsurprising were the negative associations we detected between bee richness and
345 intensive agricultural crops, such as corn and alfalfa. Corn monocultures are known to have low
346  beerichness (Gay et al., 2024), in part because of intensive management practices like tilling
347 and pesticide applications, whereas alfalfa is used by relatively few bee genera (Rollin et al.,
348  2013). Importantly, we recognize that species richness does not necessarily indicate

349  conservation value. High species richness could result from communities comprised mainly of
350 generalists and common species, whereas areas of low richness may be home to specialized
351 and rare species might warrant more conservation attention (Bogusch et al., 2020; Raiol et al.,
352  2021; Rousseau et al., 2023; Winfree, 2010). For these reasons, establishing conservation

353  priorities is best done in consultation with experts or, ideally, after ground-truthing with field
354  surveys.

355

356 Using one taxon as an indicator for another requires considering ecological context, such as
357 threats affecting both groups, species interactions, and the spatial and temporal scales at which
358 they utilize their habitat. In our case, the breeding territory size and season of most birds align
359  well with the timing and habitat size requirements of many bees. That said, we recognize that
360 bees may require unique resources., For instance, ground-nesting bees may exhibit preferences
361 for specific below-ground resources (Antoine and Forrest, 2021) that may not be well indicated
362 by birds. Additionally, bees are likely influenced by micro-habitats at a finer scale than birds,
363  such as the availability of small bare ground patches. Lastly, the breeding season of birds may
364 include different density-dependent processes compared to bees, where a higher abundance of
365 birds is not always correlated with higher habitat quality (Johnson, 2007). While the association
366  of certain bird species with bee richness may be intuitive, including all bird species a priori in
367 our analysis provided insights on novel relationships between these birds, bee richness, and the
368 habitat they occupy.
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369

370  Our findings also provide insight into the influence of structured versus semi-structured data on
371 results. The improved predictions we generated using the structured dataset are likely due to
372  differences in data quality and scale compared to the semi-structured dataset. The structured
373  dataset included protocol and effort information, enabling us to generate more precise bee
374  richness estimates across space (Johnston et al., 2021; van Strien et al., 2013). Additionally, the
375 use of a limited number of years in the structured dataset minimizes variation in bee and bird
376  species detection due to temporal changes in climate or land cover. The comparatively narrow
377  geographic scope of the structured dataset likely resulted in more consistent species-habitat
378  associations across the study area and, consequently, improved model fits (Rollinson et al.,

379  2021; Rousseau and Betts, 2022). Focusing on a smaller geographical area also increased the
380 likelihood of more bird species having their breeding distribution covering larger portions of the
381 study area. This may be a reason the birds-only model performed relatively better using the
382  structured than semi-structured dataset. Lastly, the model fit using the semi-structured dataset
383 may have been lower because the sample size was much larger and represented a more

384  extensive area in which several regions lacked bee data.

385

386  Conclusion

387

388 Recent drastic declines in insect biodiversity (Butchart et al., 2010; Montgomery et al., 2020;
389  Wagner, 2020), underscore a need to use all available information to conserve data-deficient
390 taxa. Despite increases in data availability from sources like satellites or participatory science
391 projects, few have investigated the extent to which integrating data sources may improve the
392  usefulness of indicators of taxonomic groups with limited data. We demonstrated that by

393 combining multiple tools, we can achieve better predictions of bees, which are a data-deficient
394  taxa, but also provide vital ecosystem services. Until more bee data becomes available, our

395  results could be used to guide monitoring efforts, improve conservation of bees through land
396 conservation, and recommend land management practices known to promote healthy bee

397 populations.
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Fig. 1. Schema of our methodology. (A) We considered bird species
and land cover, to predict bee richness. (B) We used field data from
two bee datasets - a semi-structured and structured datasets and
summarized them over 3x3 km grid cells, across eastern and midwest
U.S.. (C) We compared three sets of variables - land cover only, birds
only, and birds and land cover. (D) For each set of variables, we
created 100 sub-models using a Bayesian variable selection process.
We considered model fit and validation to identify the set of variables
that best predicted bee richness. We statistically compared model fit,
for each dataset.
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Fig. 2. Predicted bee richness using birds and land cover variables. (A) The dark blue
represents locations where a relatively higher bee richness is expected, compared to
other locations within our study extent. (B) The scaled uncertainty associated with bee
richness for each grid cell, where dark color represents higher uncertainty.
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Table 1. Comparison of model fit and associated five-fold validation coefficient of determination
among the three sets of variables: land covers only, birds only, and birds & land covers. The
model fits are compared among two datasets: data covering the midwest and eastern USA and
subset of high quality data covering eastern USA.

Region & dataset Model fits Land cover Birds Birds & land
only only cover
Semi-structured dataset Model fit - R2 0.11 0.11 0.14
Semi-structured dataset 5-fold validation - R2 |0.11 0.10 0.14
Structured dataset Model fit - R2 0.12 0.24 0.28
Structured dataset 5-fold validation - R2 |-0.005 0.14 0.21

Table 2. List of predictors selected at least once in each of the 100 models per variables set -
land covers only, birds only, and birds & land covers - and their associated mean estimate,
standard deviation in the estimates, and number of models in which they were selected.
Predictor variables are sorted according to frequency of inclusion in “birds & land cover”

models.

Mean of estimates, SD (# of models)

Predictor variables Land cover Birds Birds & land
only only cover

Intercept 4.76,0.00 (100) 4.76,0.00 (100) 4.76, 0.00 (100)

Double crop 0.51, 0.03 (100) 0.37,0.01 (100)

Urban low-density

Barren

Deciduous forest

Carolina Wren, Thryothorus ludovicianus
Idle cropland

Common Yellowthroat, Geothlypis trichas
Black-capped Chickadee, Poecile atricapillus

Blue Jay, Cyanocitta cristata

-0.79, 0.15 (100)
0.48, 0.06 (98)

0.47,0.09 (63)

0.35, 0.04 (81)

0.85, 0.08 (100)

-0.37, 0.04 (68)
-0.37, 0.05 (49)

-0.46, 0.05 (95)

-0.55, 0.05 (100)
0.60, 0.02 (100)
0.60, 0.05 (100)
0.64, 0.09 (100)
0.31,0.04 (72)
-0.36, 0.06 (67)
-0.40, 0.04 (60)

-0.36, 0.05 (51)
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Gray Catbird, Dumetella carolinensis

Ruby-throated Hummingbird, Archilochus
colubris

Alfalfa

Open water

Scarlet Tanager, Piranga olivacea
Warbling Vireo, Vireo gilvus
Dickcissel, Spiza americana

Orchard Oriole, Icterus spurius
European Starling, Sturnus vulgaris
Grass pasture

Chipping Sparrow, Spizella passerina

American Crow, Corvus brachyrhynchos

Red-bellied Woodpecker, Melanerpes
carolinus

Rose-breasted Grosbeak, Pheucticus
ludovicianus

Corn

Northern Cardinal, Cardinalis cardinalis
White-breasted Nuthatch, Sitta carolinensis
Downy Woodpecker, Dryobates pubescens
American Redstart, Setophaga ruticilla
Yellow-throated Vireo, Vireo flavifrons
Mixed forest

Urban high-density

Coniferous forest

-0.39, 0.05 (77)

-0.39, 0.06 (100)

0.10, 0.08 (6)

-0.47,0.14 (58)

-0.39, 0.07 (87)
-0.38,0.11 (53)

-0.33, 0.09 (45)

0.42, 0.05 (90)

-0.26, 0.04 (8)

0.48, 0.08 (90)
-0.41, 0.04 (95)
-0.29, 0.03 (36)

0.35, 0.04 (78)

0.33,0.04 (51)

0.26, 0.02 (12)

-0.31,0.06 (2)

-0.18 (1)

-0.61, 0.07 (100)
-0.31, 0.03 (10)
-0.31,0.01 (8)

-0.24,0.02 (7)
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0.32, 0.04 (45)

-0.28, 0.02 (41)
-0.29, 0.02 (37)
-0.27,0.02 (24)
0.29, 0.03 (23)
-0.30, 0.03 (20)
-0.27, 0.02 (18)
0.27,0.02 (14)
0.25, 0.02 (6)

0.24, 0.02 (5)

0.24,0.01 (3)

0.24,0.01 (3)

-0.34,0.03 (3)

-0.27, 0.03 (2)
-0.27 (1)
-0.33 (1)
-0.32 (1)
-0.26 (1)
-0.29 (1)

-0.26 (1)
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Herbaceous wetland

Developed open space

Urban medium-density

Bean

Grain

Woody wetland

Shrubland

Grass

Orchard

Wood Thrush, Hylocichla mustelina
Cliff Swallow, Petrochelidon pyrrhonota
American Robin, Turdus migratorius
Yellow-billed Cuckoo, Coccyzus americanus
Blue Grosbeak, Passerina caerulea
Song Sparrow, Melospiza melodia
American Goldfinch, Spinus tristis

Brown Thrasher, Toxostoma rufum

House Sparrow, Passer domesticus

-0.29, 0.07 (36)
0.27,0.03 (20)
-0.39, 0.14 (20)
-0.31, 0.12 (18)
-0.22, 0.04 (18)
-0.09, 0.08 (7)
0.09, 0.01 (5)
0.01, 0.01 (4)

0.03, 0.01 (4)

0.37,0.07 (36)
0.26, 0.02 (29)
-0.37,0.10 (11)
0.27,0.02 (11)
0.29, 0.05 (6)
-0.28,0.02 (4)
-0.22 (1)

0.17 (1)

-0.25 (1)
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