
Indicators of a data-deficient taxa: combining bird and environmental data enhances 1 

predictive accuracy of wild bee richness 2 

 3 

ABSTRACT 4 

 5 

Widespread declines in wild bee populations necessitate urgent action, but there remains 6 

insufficient data to guide conservation efforts. Addressing this data deficit, we investigated the 7 

relative performance of environmental and/or taxon-based indicators to predict wild bee 8 

richness in the eastern and central U.S. Our methodology leveraged publicly available data on 9 

bees (SCAN and GBIF data repository), birds (eBird participatory science project) and land cover 10 

data (USGS Cropland Data Layer). We used a Bayesian variable selection algorithm to select 11 

variables that best predicted bee richness using two datasets: a semi-structured dataset 12 

covering a wide geographical and temporal range and a structured dataset covering a focused 13 

extent with a standardized protocol. We demonstrate that an indicator based on the 14 

combination of bird and land cover data was better at predicting wild bee richness across broad 15 

geographies than indicators based on land cover or birds alone, particularly for the semi-16 

structured dataset. In the case of wild bees specifically, we suggest that bird and land cover 17 

data serve as useful indicators to guide monitoring and conservation priorities until the quality 18 

and quantity of bee data improve. 19 
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 25 

INTRODUCTION 26 

 27 

There is an urgent need to protect populations of wild bees, as concerns grow about their 28 

decline and the risk of losing the ecological roles and ecosystem services they provide 29 

(Bartomeus et al., 2013; Cameron and Sadd, 2020; Grixti et al., 2009; IPBES, 2016; Zattara and 30 

Aizen, 2021). Unfortunately, conservation action continues to be stymied by the paucity of 31 

rigorous information on bee populations and communities (Rousseau et al., 2023; Winfree, 32 

2010). Despite several initiatives to fill data gaps (e.g., Droege et al., 2016; Woodard et al., 33 

2020) and increased numbers of observations submitted to participatory science projects like 34 

iNaturalist, wild bees are likely to remain data deficient in the near term. When facing such 35 

information needs, a common approach has been to develop indicators that can be used to 36 

understand populations or communities (Chase et al., 2000; Fleishman et al., 2005), evaluate 37 

environmental conditions (Bryce et al., 2002; Burger, 2006; Hilty and Merenlender, 2000; Niemi 38 

and McDonald, 2004), and/or inform management (Pérez-Fuertes et al., 2016; Petrou and 39 
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Petrou, 2011; Terrigeol et al., 2022). Indeed, previous research demonstrates the usefulness of 40 

indicators based on a wide range of taxa, including mammals (Chase et al., 2000; Tognelli, 2005; 41 

Yong et al., 2016), butterflies (Fleishman et al., 2005; Rossi and Van Halder, 2010), fish (Roset et 42 

al., 2007), and birds (Basile et al., 2021; Chase et al., 2000; Drever et al., 2008). However, less is 43 

known about the relative effectiveness of different approaches to developing indicators and, 44 

specifically, whether they can be reliably built with environmental or taxon-based variables 45 

(Carmel and Stoller-Cavari, 2006; Mandelik et al., 2012). 46 

  47 

Environmental indicators or surrogates of biodiversity can include metrics describing 48 

ecosystems or landscapes, such as vegetation indices (e.g., NDVI), habitat heterogeneity, 49 

structural complexity, land use cover, or topography (Heink and Kowarik, 2010; Niemi and 50 

McDonald, 2004; Sowińska-[wierkosz, 2020). The underlying rationale for using environmental 51 

surrogates is sound, given that aspects such as land cover classes, can reflect habitat or 52 

landscape conditions that affect species. One clear advantage of environmental surrogates is 53 

the ease with which one can access a variety of remotely sensed data representing broad 54 

spatial extents and different time periods (e.g., including infrared; Nagendra, 2001; Rocchini et 55 

al., 2015). However, the resolution and detail of remotely-sensed data are often coarse and 56 

insufficient to describe ecological attributes required by any given species. In particular, 57 

satellite imagery is unlikely to capture microhabitat features, species interactions (e.g., the 58 

presence of competitors or predators), or land management practices (Galbraith et al., 2015; 59 

Rocchini et al., 2015). These limitations might be resolved, in part, by using data on other 60 

species that may capture multiple dimensions of habitat as well as species interactions better 61 

than environmental surrogates (Fleishman et al., 2018; Rodrigues and Brooks, 2007, but see 62 

Mandelik et al., 2012).  63 

 64 

Taxon-based indicators use data on a single species, an assemblage of species, or an ecological 65 

community as proxies to represent other species or indirectly describe aspects of the 66 

environment that are difficult to measure directly (Bal et al., 2018; Landres et al., 1988). These 67 

indicators are most effective when based upon species that are relatively common, easily 68 

detected, and cost-effective to sample (Carignan and Villard, 2002; McGeoch, 1998). Among 69 

animal taxa, invertebrates have been used as proxies for environmental health (Siddig et al., 70 

2016) while birds are typically used to assess biodiversity and environmental quality (Fraixedas 71 

et al., 2020; Johnson, 2007; Mekonen, 2017). Advantages of using birds is that they are 72 

common, easy to survey, strongly associated with habitat and landscape attributes, and are 73 

affected by processes operating across multiple scales (Carignan and Villard, 2002; Gardner et 74 

al., 2008; Ikin et al., 2014; Niemi et al., 2004). Moreover, the proliferation of participatory 75 

science projects like eBird, have made birds unrivaled in terms of data availability over time and 76 

space and at low cost (Kosmala et al., 2016; McKinley et al., 2015; Munson et al., 2010; 77 
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Theobald et al., 2015). Though single species have been successfully used as proxies (Bustos-78 

Baez and Frid, 2003; De Cáceres et al., 2010; Favreau et al., 2006; Halme et al., 2009), indicators 79 

based on species assemblages are generally recommended and considered to perform better 80 

(De Cáceres et al., 2012; Dufrêne and Legendre, 1997; Sewell and Griffiths, 2009; Valente et al., 81 

2022), especially when species collectively represent a range of life histories, habitats, and 82 

sensitivities to habitat modifications and disturbances (Carignan and Villard, 2002; Fleishman et 83 

al., 2018, 2005). These assemblages of individual species can represent multiple taxa, as with 84 

Management Indicator Species used by USDA Forest Service (Unkel, 1985; e.g., Moseley et al., 85 

2010). In contrast, indicators built from community metrics, like species richness, have had 86 

limited success at characterizing patterns of species of interest (Eglington et al., 2012; Wolters 87 

et al., 2006).  88 

 89 

Surprisingly few examples exist for indicators that combine environmental and species 90 

indicators, despite the potential to leverage the advantages of each. Ferris and Humphrey 91 

(1999) alluded to using indicator species in combination with habitat structures as 8potential 92 

indicators of biodiversity9, however, to our knowledge, Fleishman et al. (2018) was first to 93 

document that a combination of environmental variables and indicator species best explained 94 

variation in species richness. 95 

 96 

Here we investigate which combination of environmental and taxon-based data best predicts 97 

species richness of wild bees in the eastern and central U.S.. Concern about wild bees continues 98 

to rise as populations decline, species are extirpated, and critical habitat resources are lost, yet 99 

data deficiencies still limit our ability to detect and respond to changes. The convergence of 100 

urgency to act and limited data upon which to base actions makes bees a group for which 101 

indicators are likely to be valuable. Previous research used expert-identified and remotely-102 

sensed land cover classes to indicate wild bee abundance across the U.S. (Koh et al., 2016; 103 

Lonsdorf et al., 2009). However, many habitat resources used by bees, such flowering plants or 104 

ground characteristics (Antoine and Forrest, 2021; Patrício-Roberto and Campos, 2014), are not 105 

amenable to detection by satellites (Galbraith et al., 2015). Likewise, a variety of stressors, 106 

including pesticides (Janousek et al., 2023; Kennedy et al., 2013; Main et al., 2020) and climate 107 

change (Hung et al., 2021; Janousek et al., 2023), may not be evident from remotely-sensed 108 

data. Because many bird species are sensitive to multiple spatial scales (e.g., microhabitat, 109 

stand, landscape, and region; Frey et al., 2016; Ikin et al, 2014; Saab, 1999) and land 110 

management practices (Butler et al., 2010; Jansen and Robertson, 2001), we hypothesized that 111 

combining bird and land cover data would best predict the resources, habitats, and landscapes 112 

that are associated with diverse bee communities. Here, we compared the performance of 113 

indicators of bee richness that were constructed from data on birds, land cover, or a 114 

combination of both. Our intention was to develop a tool to guide monitoring, land 115 
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management, and conservation efforts for bees across large spatial scales until sufficient bee 116 

data becomes available. 117 

 118 

 119 

METHODOLOGY 120 

  121 

Bee, bird, and land cover data 122 

  123 

We used publicly-available and field-based bee and bird data collected in the eastern and 124 

central regions of the US (Figure 1) to predict species richness of wild bees. We compared the 125 

relative performance of models including predictors that were based on land cover, bird, or bird 126 

plus land cover data using bee data from both structured and semi-structured datasets.  127 

 128 

The structured dataset consists of data collected using a rigorous protocol and contains 129 

information about the bees and associated survey effort (Kelling et al., 2019). It is represented 130 

by the U.S. Geological Survey data (Droege and Maffei, 2023), which contains protocol and 131 

effort information and could be standardized as the number of bee species per trap in each 132 

survey. We selected records of wild bees (excluding honeybees (Apis mellifera)) associated with 133 

the Bee Inventory and Monitoring Laboratory protocol, which used nets and 3.25 and 12 oz pan 134 

traps (Droege et al., 2016). We used surveys where at least 90% of the specimens were 135 

identified, and excluded records with missing species identification or with geographic 136 

uncertainty exceeding 3 km. We further restricted the temporal range to five years (2011 to 137 

2015) and the geographical extent to a few states in eastern U.S (Figure 1). This produced a 138 

dataset with 48,654 bee records, representing 345 species and 1,583 surveys distributed across 139 

390 3x3 km grid cells. We computed the average number of species per survey and trap for 140 

each grid cell, as our standardized measure of bee richness. 141 

 142 

The semi-structured dataset was sourced from Chesshire et al. (2023), and supplemented with 143 

2021 records from Global Biodiversity Information Facility (GBIF; GBIF.org, 2022) and Symbiota 144 

Collections of Arthropods Network (SCAN). Records were collected from 2007 to 2021 in the 145 

central and eastern U.S. using a wide range of survey methods and effort The 2021 146 

supplemental data were subject to the same checks, filters, and species name validations as 147 

described in Chesshire et al. (2023). We also removed records that were duplicate, lacked 148 

species identification, location, or date, or for which uncertainty about geographic location 149 

exceeded 3km. This gave us a dataset of 476,584 bee records, representing 792 species across 150 

26,673 3x3 km grid cells. For each grid cell, we calculated the number of species per survey, 151 

where a survey was defined by a unique combination of latitude, longitude, and date. Surveys 152 

with only one bee, as was the case for most iNaturalist submissions, were excluded as were grid 153 

cells with only one survey and fewer than 30 total bee records (Luan et al., 2020; Stockwell and 154 

Peterson, 2002; Wisz et al., 2008). For each grid cell, we calculated the mean number of species 155 

per survey as a standardized metric of bee richness. 156 
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  157 

Bird data were extracted from the eBird Basic Dataset (EBD; eBird Basic Dataset, 2022), which 158 

consists of bird species checklists submitted by volunteers and subsequently reviewed by 159 

experts (Lagoze, 2014; Sullivan et al., 2014). Only records in grid cells associated with bee data 160 

in each dataset, were extracted. We selected checklists collected during the bird breeding 161 

season (mid-May to mid-August) using stationary or traveling protocols lasting five to 300 162 

minutes. We excluded surveys that did not record counts for all species and those submitted by 163 

observers who had submitted fewer than three checklists within our dataset. Bird species 164 

abundance data were standardized, within each dataset, accounting for checklist variation in 165 

survey effort, time of day, and protocol (supplementary materials S1). We fit a Generalized 166 

Additive Model (GAM) for each species separately. The response was the species count per 167 

checklist and predictors were: survey duration, survey distance, time the observation started, 168 

and protocol. For each checklist and dataset, we calculated species-specific residuals on the log 169 

scale from this average relationship. This allowed us to characterize whether checklists 170 

recorded high or low species counts, accounting for the checklist effort. For each species and 171 

dataset, we then averaged across all checklists within a grid cell, to calculate a mean residual 172 

per grid cell, where a positive residual indicates grid cells where a species was more abundant 173 

than expected. 174 

  175 

To avoid constructing an indicator based on rare species, we established prevalence thresholds 176 

to ensure that models included only those bird species that were detected in at least 20% in the 177 

grid cells, per dataset (McPherson et al., 2004) and had a breeding distribution covering at least 178 

40% of each study area. The reason for this is that rare species are (by definition) rarely 179 

observed and therefore more likely to cause overfitting rather than true associations in our 180 

models. One exception to these thresholds were grassland obligate species, for which several 181 

were included despite being slightly below the 20% prevalence, because we were especially 182 

interested in agricultural landscapes and due to a priori ecological expectations. We excluded 183 

all records from species that are typically detected as flyovers (e.g., many raptors and some 184 

aerial feeders, supplementary material S2) because they could not be linked to local habitat 185 

conditions. A total of 79 bird species were considered in our models with the semi-structured 186 

dataset and 72 with the structured dataset. 187 

  188 

Land cover data were sourced from Cropland Data Layer (CDL), a geo-referenced 30-meters 189 

resolution raster, originally obtained from satellite, and categorized into crop-specific land 190 

covers (USDA National Agricultural Statistics Service Cropland Data Layer, 2021). We 191 

aggregated the CDL from 120 to 45 categories relevant to bee ecology (following Koh et al., 192 

2016) and calculated the percentage of each land cover per 3x3 km grid cell. In our models, we 193 

considered only the most common land cover predictors that had a prevalence of at least 20% 194 

within each study area. We used data from the 2021 CDL in association with the semi-195 

structured dataset analysis and from 2013 for the structured one. 196 

  197 

Modeling 198 
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 199 

We modeled bee richness within each 3x3 km grid cell, separately for each dataset. Modeling 200 

with the semi-structured dataset incorporated 79 bird species and 21 land cover variables from 201 

2,585 grid cells that contained data on bees, birds, and land covers and met our threshold for 202 

analysis. The structured dataset included 72 bird species and 20 land cover variables across 194 203 

grid cells.  204 

 205 

After scaling each variable, we used a Bayesian variable selection process from the R package 206 

leaps (Miller and Lumley, 2020) to select the best predictors of bee richness using three 207 

different sets of candidate predictor variables: (a) land cover only, (b) birds only, or (c) a 208 

combination of land cover and birds (Figure 1). For each set of predictors we created 100 sub-209 

models, containing 10 predictors each. We calculated the predicted bee richness within each 210 

grid cell by averaging the bee richness predictions from these 100 sub-model predictions. This 211 

created three modeled predictions of bee richness, each created with a different set of 212 

candidate predictor variables. Sub-models with a large number of potential predictors took a 213 

prohibitively long time to run, therefore we used a variable subset selection process to 214 

empirically remove predictors that were unlikely to be useful in predicting bee richness 215 

(supplementary materials S3). We conducted a sensitivity analysis to ensure that this variable 216 

selection process would not impact the results (supplementary materials S3). We also assessed 217 

the presence of multicollinearity among predictors in each sub-model using variance inflation 218 

factors (VIF). No sub-models had predictors with a Variance Inflation Factor (VIF) of 5 or higher, 219 

suggesting minimal multicollinearity (Akinwande et al., 2015). 220 

 221 

We assessed the accuracy of our three models separately for each dataset using a five-fold 222 

cross-validation process. We re-ran the modeling procedure with each of five subsets of 80% of 223 

data, each time creating 100 sub-models and averaging over sub-model predictions to produce 224 

modeled predictions for each grid cell within the 20% validation data. This ensured that we 225 

were assessing predictions using independent data to prevent positive conclusions being driven 226 

by overfitting to the modeled data. We repeated this process five times to create predictions 227 

for every grid cell in the original dataset. We repeated the whole procedure for models 228 

constructed from each of the three sets of predictor variables: (a) land cover only, (b) birds 229 

only, or (c) a combination of land cover and birds. 230 

  231 

We compared observed to predicted values of bee richness within each grid cell (plot in 232 

supplementary material S4) using a correlation coefficient. We statistically compared the 233 

correlation coefficients between observed and predicted bee richness, for models constructed 234 

from each of the three sets of predictor variables – land cover only, birds only, birds & land 235 

cover. We used the correlation coefficient tests proposed by Hittner et al., (2003) and available 236 

through the R package cocor (Diedenhofen and Musch, 2015), to determine which set of 237 

variables best predicted observed bee richness, within each dataset.  238 

 239 
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The best set of variables was used to predict bee richness across the study area associated with 240 

each dataset. In order to do this, we needed estimates of relative bird abundance in all grid 241 

cells, not only those with eBird checklists, therefore we used the estimated relative abundance 242 

per species per grid cell from eBird Status Data Products (Fink et al., 2022). The bee richness 243 

point estimates and associated map represent the mean prediction from the 100 sub-models, 244 

at each location. For the bee richness uncertainty from the model selection process, we 245 

calculated a 90% confidence interval of the bee richness predictions from the 100 sub-models, 246 

at each location. Since the bee richness values are relative, the confidence interval range was 247 

normalized by the range of point estimates across the entire study extent. This scaled 248 

uncertainty reflects the percentage of the variation across models at a given location, relative 249 

to the full range of variation across point estimates within all locations.  250 

 251 

 252 

RESULTS 253 

  254 

The combination of bird and land cover data yielded the most accurate predictions of bee 255 

richness using either the semi structured data (Table 1; semi-structured data model fit R2 = 256 

0.14, validation R2 = 0.14, n = 2585 grid cells) or structured data (model fit R2 = 0.28, validation 257 

R2 = 0.21, n = 194). Plots of observed and predicted values for these analyses are available in 258 

the supplementary material (S4).  259 

 260 

The inclusion of both land covers and bird species significantly improved correlation coefficients 261 

by >15% compared to using either land cover or birds alone. These improvements were 262 

significant for the semi-structured dataset, with the model with both land cover and birds being 263 

better than land cover only (p < 0.001) and birds only (p < 0.001). For the structured dataset, 264 

the model with both land cover and birds was significantly better than the model with land 265 

cover only (p = 0.007), but did not show a significant improvement over the model with birds 266 

only (p = 0.35). Model fit for birds and land cover was 2x better and significantly improved (p = 267 

0.01) using the structured dataset compared with semi-structured dataset (Table 1). 268 

 269 

Focusing on the models with both birds and land cover predictors, the semi-structured and 270 

structured datasets had 9 and 5 land cover variables, respectively, and 20 and 26 birds that 271 

were selected in at least one of the 100 sub-models (Table 2 and Supplementary material S5).  272 

 273 

Those land covers and bird variables that were selected in all 100 sub-models typically had a 274 

large effect size, based on their mean coefficients. Five variables were selected within all 100 275 

sub-models using the semi-structured dataset - deciduous forest, barren land, double crop, low-276 

density urban, and Carolina Wren - and two with the structured dataset, grain and Gray Catbird 277 

(Table 2 and Supplementary material S5). With the exception of low-density urban landscapes, 278 

the most selected variables were positively correlated with bee richness (Table 2; 279 

supplementary material S5). 280 

 281 
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In our study area, bee richness was generally higher on the East Coast along the Appalachian 282 

Mountains and lower in the Midwest, particularly around Iowa (Figure 2A). Uncertainty in 283 

predicted bee richness was lowest around North and South Dakota, Illinois, and along the 284 

Atlantic coast, while it was highest near West Virginia, eastern Kentucky, and southern Missouri 285 

(Figure 2B). 286 

 287 

 288 

DISCUSSION 289 

 290 

Tools for guiding the conservation of data-deficient taxa often include environmental or taxon-291 

based indicators. Though only one type of variable typically is used to create an indicator (but 292 

see Fleishman 2017), our results indicate that combining data from both the environment and 293 

other taxa may significantly improve the prediction accuracy and, thus, may better inform 294 

conservation actions. Unlike previous work that relied upon land cover data to predict bee 295 

abundance (Koh et al., 2016; Lonsdorf et al., 2009), we found that bird data added value over 296 

land cover alone and improved our ability to predict species richness of wild bees. The 297 

usefulness of birds is not surprising, given that they are known to be an effective indicator 298 

species for other taxa (Chase et al., 2000; Fleishman et al., 2018, 2005; Rodríguez-Estrella et al., 299 

2019; Thomson et al., 2007).  300 

 301 

Several factors may explain why the combination of birds and land cover variables predicted 302 

bee richness better than using either land cover or birds alone. First, bird and land cover 303 

variables likely offer complementary insights into habitat quality. A broad category of land 304 

cover, such as 8deciduous forest9, usually includes a wide range of floristic composition, habitat 305 

structure, patch configuration, age, and land management practices (Milam et al., 2022; Taki et 306 

al., 2013; Ulyshen et al., 2023; Urban-Mead et al., 2021). For example, numbers of flowering 307 

plants that attract bees are often greater in early-successional than mature forests. Likewise, 308 

forests in which understories were replaced by grass (e.g., wooded parks) are unlikely to 309 

provide nesting habitat to ground-nesting bees. In such cases, the presence or abundance of 310 

particular bird species (e.g., open woodland species like Chipping Sparrow (Spizella passerina), 311 

forest-understory species like American Redstart (Setophaga ruticilla) or Wood Thrush 312 

(Hylocichla mustelina)) can provide additional information to better identify habitats favored by 313 

bees. Indeed, the presence of fruit-eating bird species, such as Gray Catbird (Dumetella 314 

carolinensis), as predictors highlight the importance of forests containing flowering shrubs and 315 

trees for bee communities (Inari et al., 2012; Ramalho, 2004). Second, individual land cover 316 

variables may be blind to habitat juxtaposition or the co-occurrence of different habitats in 317 

close proximity. For example, while 8double crops9 may provide sufficient flower resources, 318 

bees also may require easy access to less disturbed habitat for nesting (e.g. 8idle cropland9, 319 

9grass pastures9, or 8deciduous forests9) that are better indicated by bird species that nest in 320 

trees but forage in open habitats. Third, birds and bees select their habitat based on resources 321 

available across multiple scales (Diaz-Forero et al., 2013; Hatfield and LeBuhn, 2007; Orians and 322 

Wittenberger, 1991; Pardee and Philpott, 2014; Rollin et al., 2019; Thompson and Mcgarigal, 323 

2002). As such, birds are likely to incorporate multi-scale information relevant to bee 324 
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population that would not be available through land covers alone. For instance, the presence of 325 

species like Orchard Oriole (Icterus spurius) can signal the availability of open woodlands, 326 

orchards, woody hedgerows, and flowering plants used for nesting and foraging resources by 327 

orioles and wild bees alike. Fourth, the combined bird and land cover variables selected as 328 

predictors represent a wide range of habitats, which suggest that a higher bee richness may be 329 

associated with heterogeneous landscapes (Andersson et al., 2013; Mallinger et al., 2016; 330 

Montagnana et al., 2021) that include multiple types of nesting substrates to accommodate 331 

ground and cavity nesters and a diversity of flower resources, from crops, shrubs, and trees. 332 

 333 

The geographic pattern of wild bee richness predicted by our indicators (Figure 2A) is consistent 334 

with previous reports that wild bee richness and/or abundance is highest in landscapes 335 

characterized by a mosaic of deciduous forest and low-intensity agriculture and lowest in areas 336 

dominated by intensive agriculture, such as the Midwest (Figure 2; Kennedy et al., 2013; Koh et 337 

al., 2016). Consistent with the results from Koh et al., (2016), we found high levels of 338 

uncertainty in our predictions in certain regions, particularly in areas like the Appalachian and 339 

Ozark Mountains (Figure 2B). Given that many bee species require forest habitats during 340 

particular life stages (Hanula et al., 2016; Roberts et al., 2017; Smith et al., 2021; Urban-Mead 341 

et al., 2021), we were not surprised to find large positive effects of deciduous forests and 342 

Carolina Wrens, a species associated with gaps in deciduous forest (Haggerty and Morton, 343 

2020). Also unsurprising were the negative associations we detected between bee richness and 344 

intensive agricultural crops, such as corn and alfalfa. Corn monocultures are known to have low 345 

bee richness (Gay et al., 2024), in part because of intensive management practices like tilling 346 

and pesticide applications, whereas alfalfa is used by relatively few bee genera (Rollin et al., 347 

2013). Importantly, we recognize that species richness does not necessarily indicate 348 

conservation value.  High species richness could result from communities comprised mainly of 349 

generalists and common species, whereas areas of low richness may be home to specialized 350 

and rare species might warrant more conservation attention (Bogusch et al., 2020; Raiol et al., 351 

2021; Rousseau et al., 2023; Winfree, 2010). For these reasons, establishing conservation 352 

priorities is best done in consultation with experts or, ideally, after ground-truthing with field 353 

surveys.   354 

 355 

Using one taxon as an indicator for another requires considering ecological context, such as 356 

threats affecting both groups, species interactions, and the spatial and temporal scales at which 357 

they utilize their habitat.  In our case, the breeding territory size and season of most birds align 358 

well with the timing and habitat size requirements of many bees. That said, we recognize that 359 

bees may require unique resources., For instance, ground-nesting bees may exhibit preferences 360 

for specific below-ground resources (Antoine and Forrest, 2021) that may not be well indicated 361 

by birds. Additionally, bees are likely influenced by micro-habitats at a finer scale than birds, 362 

such as the availability of small bare ground patches. Lastly, the breeding season of birds may 363 

include different density-dependent processes compared to bees, where a higher abundance of 364 

birds is not always correlated with higher habitat quality (Johnson, 2007). While the association 365 

of certain bird species with bee richness may be intuitive, including all bird species a priori in 366 

our analysis provided insights on novel relationships between these birds, bee richness, and the 367 

habitat they occupy. 368 
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 369 

Our findings also provide insight into the influence of structured versus semi-structured data on 370 

results. The improved predictions we generated using the structured dataset are likely due to 371 

differences in data quality and scale compared to the semi-structured dataset. The structured 372 

dataset included protocol and effort information, enabling us to generate more precise bee 373 

richness estimates across space (Johnston et al., 2021; van Strien et al., 2013). Additionally, the 374 

use of a limited number of years in the structured dataset minimizes variation in bee and bird 375 

species detection due to temporal changes in climate or land cover. The comparatively narrow 376 

geographic scope of the structured dataset likely resulted in more consistent species-habitat 377 

associations across the study area and, consequently, improved model fits (Rollinson et al., 378 

2021; Rousseau and Betts, 2022). Focusing on a smaller geographical area also increased the 379 

likelihood of more bird species having their breeding distribution covering larger portions of the 380 

study area. This may be a reason the birds-only model performed relatively better using the 381 

structured than semi-structured dataset. Lastly, the model fit using the semi-structured dataset 382 

may have been lower because the sample size was much larger and represented a more 383 

extensive area in which several regions lacked bee data. 384 

 385 

Conclusion 386 

 387 

Recent drastic declines in insect biodiversity (Butchart et al., 2010; Montgomery et al., 2020; 388 

Wagner, 2020), underscore a need to use all available information to conserve data-deficient 389 

taxa. Despite increases in data availability from sources like satellites or participatory science 390 

projects, few have investigated the extent to which integrating data sources may improve the 391 

usefulness of indicators of taxonomic groups with limited data. We demonstrated that by 392 

combining multiple tools, we can achieve better predictions of bees, which are a data-deficient 393 

taxa, but also provide vital ecosystem services. Until more bee data becomes available, our 394 

results could be used to guide monitoring efforts, improve conservation of bees through land 395 

conservation, and recommend land management practices known to promote healthy bee 396 

populations.  397 
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Fig. 1. Schema of our methodology. (A) We considered bird species 

and land cover, to predict bee richness. (B) We used field data from 

two bee datasets - a semi-structured and structured datasets and 

summarized them over 3x3 km grid cells, across eastern and midwest 

U.S.. (C) We compared three sets of variables - land cover only, birds 

only, and birds and land cover. (D) For each set of variables, we 

created 100 sub-models using a Bayesian variable selection process. 

We considered model fit and validation to identify the set of variables 

that best predicted bee richness. We statistically compared model fit, 

for each dataset. 
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(A) 

 
(B)  

 
Fig. 2. Predicted bee richness using birds and land cover variables. (A) The dark blue 

represents locations where a relatively higher bee richness is expected, compared to 

other locations within our study extent. (B) The scaled uncertainty associated with bee 

richness for each grid cell, where dark color represents higher uncertainty. 
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Table 1. Comparison of model 昀椀t and associated 昀椀ve‐fold valida琀椀on coe昀케cient of determina琀椀on 978 

among the three sets of variables: land covers only, birds only, and birds & land covers. The 979 

model 昀椀ts are compared among two datasets: data covering the midwest and eastern USA and 980 

subset of high quality data covering eastern USA.  981 

Region & dataset Model 昀椀ts Land cover 
only 

Birds 
only 

Birds & land 
cover 

Semi‐structured dataset Model 昀椀t ‐ R2 0.11 0.11 0.14 

Semi‐structured dataset 5‐fold valida琀椀on ‐ R2 0.11 0.10 0.14 

Structured dataset Model 昀椀t ‐ R2 0.12 0.24 0.28 

Structured dataset 5‐fold valida琀椀on ‐ R2 ‐0.005 0.14 0.21 

 982 

 983 

Table 2. List of predictors selected at least once in each of the 100 models per variables set ‐ 984 

land covers only, birds only, and birds & land covers ‐ and their associated mean es琀椀mate, 985 

standard devia琀椀on in the es琀椀mates, and number of models in which they were selected. 986 

Predictor variables are sorted according to frequency of inclusion in <birds & land cover= 987 

models. 988 

  Mean of es琀椀mates, SD (# of models) 

Predictor variables Land cover 

only 

Birds 

only 

Birds & land 
cover 

Intercept  4.76, 0.00 (100)  4.76, 0.00 (100)  4.76, 0.00 (100) 

Double crop  0.51, 0.03 (100) .  0.37, 0.01 (100) 

Urban low‐density ‐0.79, 0.15 (100) . ‐0.55, 0.05 (100) 

Barren  0.48, 0.06 (98) .  0.60, 0.02 (100) 

Deciduous forest  0.47, 0.09 (63) .  0.60, 0.05 (100) 

Carolina Wren, Thryothorus ludovicianus .  0.85, 0.08 (100)  0.64, 0.09 (100) 

Idle cropland  0.35, 0.04 (81) .  0.31, 0.04 (72) 

Common Yellowthroat, Geothlypis trichas . ‐0.37, 0.04 (68) ‐0.36, 0.06 (67) 

Black‐capped Chickadee, Poecile atricapillus . ‐0.37, 0.05 (49) ‐0.40, 0.04 (60) 

Blue Jay, Cyanoci琀琀a cristata . ‐0.46, 0.05 (95) ‐0.36, 0.05 (51) 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2024. ; https://doi.org/10.1101/2024.02.14.580016doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.14.580016
http://creativecommons.org/licenses/by/4.0/


Gray Catbird, Dumetella carolinensis .  0.42, 0.05 (90)  0.32, 0.04 (45) 

Ruby‐throated Hummingbird, Archilochus 
colubris . ‐0.26, 0.04 (8) ‐0.28, 0.02 (41) 

Alfalfa ‐0.39, 0.05 (77) . ‐0.29, 0.02 (37) 

Open water ‐0.39, 0.06 (100) . ‐0.27, 0.02 (24) 

Scarlet Tanager, Piranga olivacea .  0.48, 0.08 (90)  0.29, 0.03 (23) 

Warbling Vireo, Vireo gilvus . ‐0.41, 0.04 (95) ‐0.30, 0.03 (20) 

Dickcissel, Spiza americana . ‐0.29, 0.03 (36) ‐0.27, 0.02 (18) 

Orchard Oriole, Icterus spurius .  0.35, 0.04 (78)  0.27, 0.02 (14) 

European Starling, Sturnus vulgaris . .  0.25, 0.02 (6) 

Grass pasture  0.10, 0.08 (6) .  0.24, 0.02 (5) 

Chipping Sparrow, Spizella passerina .  0.33, 0.04 (51)  0.24, 0.01 (3) 

American Crow, Corvus brachyrhynchos .  0.26, 0.02 (12)  0.24, 0.01 (3) 

Red‐bellied Woodpecker, Melanerpes 
carolinus . ‐0.31, 0.06 (2) ‐0.34, 0.03 (3) 

Rose‐breasted Grosbeak, Pheuc琀椀cus 
ludovicianus . ‐0.18 (1) ‐0.27, 0.03 (2) 

Corn ‐0.47, 0.14 (58) . ‐0.27 (1) 

Northern Cardinal, Cardinalis cardinalis . ‐0.61, 0.07 (100) ‐0.33 (1) 

White‐breasted Nuthatch, Si琀琀a carolinensis . ‐0.31, 0.03 (10) ‐0.32 (1) 

Downy Woodpecker, Dryobates pubescens . ‐0.31, 0.01 (8) ‐0.26 (1) 

American Redstart, Setophaga ru琀椀cilla . ‐0.24, 0.02 (7) ‐0.29 (1) 

Yellow‐throated Vireo, Vireo 昀氀avifrons . . ‐0.26 (1) 

Mixed forest ‐0.39, 0.07 (87) . . 

Urban high‐density ‐0.38, 0.11 (53) . . 

Coniferous forest ‐0.33, 0.09 (45) . . 
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Herbaceous wetland ‐0.29, 0.07 (36) . . 

Developed open space  0.27, 0.03 (20) . . 

Urban medium‐density ‐0.39, 0.14 (20) . . 

Bean ‐0.31, 0.12 (18) . . 

Grain ‐0.22, 0.04 (18) . . 

Woody wetland ‐0.09, 0.08 (7) . . 

Shrubland  0.09, 0.01 (5) . . 

Grass  0.01, 0.01 (4) . . 

Orchard  0.03, 0.01 (4) . . 

Wood Thrush, Hylocichla mustelina .  0.37, 0.07 (36) . 

Cli昀昀 Swallow, Petrochelidon pyrrhonota .  0.26, 0.02 (29) . 

American Robin, Turdus migratorius . ‐0.37, 0.10 (11) . 

Yellow‐billed Cuckoo, Coccyzus americanus .  0.27, 0.02 (11) . 

Blue Grosbeak, Passerina caerulea .  0.29, 0.05 (6) . 

Song Sparrow, Melospiza melodia . ‐0.28, 0.02 (4) . 

American Gold昀椀nch, Spinus tris琀椀s . ‐0.22 (1) . 

Brown Thrasher, Toxostoma rufum .  0.17 (1) . 

House Sparrow, Passer domes琀椀cus . ‐0.25 (1) . 

 989 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2024. ; https://doi.org/10.1101/2024.02.14.580016doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.14.580016
http://creativecommons.org/licenses/by/4.0/

