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The Hamiltonian formulation of the teleparallel equivalent of general relativity (TEGR) is de-
veloped from an ordinary second-order Lagrangian, which is written as a quadratic form of the

coefficients of anholonomy of the orthonormal frames (vielbeins).

We analyze the structure of

eigenvalues of the multi-index matrix entering the (linear) relation between canonical velocities and
momenta to obtain the set of primary constraints. The canonical Hamiltonian is then built with
the Moore-Penrose pseudo-inverse of that matrix. The set of constraints, including the subsequent
secondary constraints, completes a first class algebra. This means that all of them generate gauge
transformations. The gauge freedoms are basically the diffeomorphisms, and the (local) Lorentz
transformations of the vielbein. In particular, the ADM algebra of general relativity is recovered as

a sub-algebra.

I. INTRODUCTION

The determination of the independent dynamical de-
grees of freedom is of the utmost importance in any field
theory, since it allows to exhibit the internal consistency
of the theory, and tackle the issue of the well-posedness
of the Cauchy problem. It also puts the theory into a dif-
ferent perspective, because it helps to find the minimal
number of variables specifying the state of the system,
so being vital for the quantization of the theory. Ac-
cording to the procedure due to Dirac II|]7 the number
of genuine degrees of freedom can be determined from
the algebra of the constraints among the canonical vari-
ables of the theory. The constraints firstly appear when
the canonical momenta are computed. These primary
constraints have to be consistent with the Hamiltonian
evolution of the system, which leads to secondary con-
straints, and so on. Finally, the set of all the constraints
is reclassified as first class and second class constraints,
depending whether their Poisson brackets are or not null
on the constraint surface in the phase space. First class
constraints generate gauge transformations; so, each of
them is related to a spurious degree of freedom. On the
other hand, second class constraints can be reorganized
as pairs of spurious conjugated variables. Thus, the num-
ber of genuine degrees of freedom can be computed as

#d.of. = # pairs of canonical variables

—+# first class constraints

1
~3 # second class constraints . (1)

A nice example is the Maxwell potential, described by
four dynamical variables A, that are governed by the
Lagrangian L[A,] o F\, F* (the field tensor F), is
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F\, = 0\A, — 0,A)). Since F, is anti-symmetric, then
0o Ay is not present in the Lagrangian. Thus the canon-
ical momentum 7° = 9L/(0pAp) identically vanishes;
it is a primary constraint. The consistency of the con-
straint 70 = 0 with the evolution requires the vanishing
of the Poisson bracket between 7° and the Hamiltonian;
this leads to the secondary constraint V;n? o« V;F% =0
(Gauss’s law). Both constraints are first class, since the
Poisson brackets between canonical momenta are iden-
tically null. Therefore, according to Eq. (), one real-
izes that the electromagnetic field has not four degrees of
freedom A,, at each event, but only two (electromagnetic
waves are transversal). At the level of the initial data,
the existence of constraints imply a restriction on the
spectrum of allowed initial configurations. Besides, the
absence of kinetic term for Ay in the Lagrangian implies
that the evolution of this dynamical variable, conjugate
to the first class constraint 7%, remains completely un-
determined. The same happens to the evolution of the
longitudinal component of the potential A, which also
remains undetermined as a consequence of the existence
of the first class constraint V;w*. Thus, 4y and A are
gauge freedoms. The former conclusions can also be de-
rived from a slightly modified Lagrangian. The integra-
tion by parts of one of the terms containing 9; Ay leads
to a surface term, which can be eliminated, plus the term
Ao V;F%. In such way, the spurious degree of freedom
Ap becomes a Lagrange multiplier whose variation leads
to the Gauss’s law constraint (any other presence of Ag
is captured in the canonical momenta 7¢) [J].

The canonical formulation of general relativity (GR)
relies on the widely spread formalism by Arnowitt, Deser
and Misner (ADM) [3], in which the spacetime is fo-
liated into a family of spacelike hypersurfaces that in-
duces a proper decomposition of the metric tensor g, .
The Einstein-Hilbert Lagrangian can be integrated by
parts to realize that the temporal sector of the metric
(the lapse N and the shift vector N;) is thrown into the
role of Lagrange multipliers associated to four first class
constraints (the super-Hamiltonian and super-momenta
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constraints). So written, the Lagrangian gives dynamics
only to the six components of the 3-dimensional metric
gi; on the spacelike hypersurfaces of the foliation; but
the canonical variables (g;;, 7) are still constrained by
the four first class constraints. Thus the gravitational
field contains only two genuine degrees of freedom. In
fact, apart from the undetermined evolutions of the four
Lagrange multipliers (N, N;), there are also four gauge
freedoms among the six components of g;; (gravitational
waves are transversal and trace-less). As a feature that
distinguishes GR from electromagnetism, the GR Hamil-
tonian vanishes because of the constraints. This feature
is typical of systems having a time hidden among their
canonical variables [4].

Early in the 1918, Weyl’s unsuccessful attempt of uni-
fying gravitation and electromagnetism introduced for
the first time the notion of gauge theories E] Einstein
himself tried ten years later the same unification idea,
but taking advantage of the sixteen components of the
tetrad field in order to include the electromagnetic field
E] Later he realized that the arbitrariness in the choice
of the tetrad comes from the set of local Lorentz trans-
formations that leave the metric unchanged, therefore
the extra degrees of freedom could not give account for
electromagnetism. However, he introduced the concepts
of teleparallelism that remain important until today, pre-
senting for the first time the teleparallel equivalent of gen-
eral relativity (TEGR), an equivalent formulation of gen-
eral relativity. In fact, although both theories have differ-
ent Lagrangian formulations, they are equivalent at the
level of the equations of motion. Nonetheless, they are
based on completely different Lagrangian constructions.
This is so because TEGR describes gravity as the effect
of torsion in the curvatureless Weitzenbock geometry;
the dynamical variables are not the components of the
metric g, but those of the field of orthonormal frames
~tetrads or vierbeins— e, (a and y are SO(3, 1) and coor-
dinate indices, respectively) [@, B] As a consequence, the
Hamiltonian formalisms of GR and TEGR are different
too. Among the articles treating the Hamiltonian for-
mulation of TEGR we specially mention Ref. [11]], which
introduces a set of auxiliary variables in a first order ap-
proach that lowers the order of the Euler-Lagrange equa-
tions (cf. [§, 19,19, [13]), and Ref. [10] that deals with an
enlarged set of variables and constraints to enforce the
vanishing of the curvature. The canonical formulation of
TEGR has been also stated in the geometric language of
differential forms [14, [15].

In this work we will put forward the Hamiltonian
formalism for TEGR in a way as close as possible to
the second order formalism of electrodynamics that was
sketched above. This work is organized as follows: in
Section [ we introduce the standard TEGR dynamics,
which is governed by a Lagrangian quadratic in the tor-
sion. In Section [Tl we show that the TEGR Lagrangian
can be reformulated as the quadratic inner product of
the anholonomy coefficients with respect to a superme-
tric that is defined in the tangent space. In Section [V

we obtain the set of primary and secondary constraints
that are equivalent to those of electrodynamics and GR
geometrodynamics. In Section [V] we study the gauge
transformations generated by these constraints (they will
prove to be first class). Compared with geometrodynam-
ics, TEGR has an additional gauge symmetry associ-
ated to local Lorentz transformations of frames, which
is the source of the constraints analyzed in Section [Vl
In Section [VIIl the (constrained) linear relations between
canonical momenta and velocities is inverted to build the
canonical TEGR Hamiltonian H; the procedure implies
a careful analysis of the eigenvector structure involved
in these linear relations, in order to build the respective
pseudo-inverse matrix. The entire set of n(n + 3)/2 con-
straints (n is the spacetime dimension) is consistent with
the evolution governed by H; besides, they are first class
as proven by the algebra of constraints computed in Sec-
tion[VIIIl In Section[[X]we summarize the main steps and
the achievements of the paper. The Appendix [A]l shows
some useful computations that are needed throughout
the work.

II. TEGR AND STANDARD LAGRANGIAN
FORMULATION

TEGR is a theory of gravity where the field of or-
thonormal frames plays the role of dynamical variable.
Let M be a manifold, {e,} a basis in the tangent space
T,(M), and {E®} its dual basis in the cotangent space
Ty(M) (i.e., if the 1-forms E* are applied to the vectors
e, one obtains E%(e;) = df). They can be expanded in
a coordinate basis as e, = ef 9, and E® = E} dz"; so
duality means that
el ES = of . (2)

a K _ sa
E#eb _5b7 v

Here and from now on, we will use Greek letters p, v, ... =
0,...,n — 1 for spacetime coordinate indices, and Latin
letters a,b,...,g,h = 0,...,n — 1 for Lorentzian tangent
space indices. A wielbein (vierbein o tetrad in n = 4
dimensions) is a basis encoding the metric structure of
the spacetime:

g = N B"®E", (3)
therefore,
E® - Eb = g(EaaEb) = TNab (4)

which means that the vielbein is an orthonormal basis.
In component notation, the former expressions look
b
Guv = Tab Ef; Eu ) Nab = YGuv 65 €Z , (5)

which implies that the relation between the metric vol-
ume and the determinant of the matrix Ef} is

Vgl = det[EY] = E . (6)



Since the vielbein encodes the metric structure of the
spacetime, one can formulate a dynamical theory of the
spacetime geometry by defining a Lagrangian for the viel-
bein field. In particular, there is a Lagrangian which
leads to dynamical equations for the vielbeins that are
equivalent to Einstein equations for the metric ] The
so called teleparallel equivalent of general relativity is
governed by the Lagrangian density

L = FET, (7)
where T is the torsion scalar
T = TPW Sp s (8)

which is made up of

TMVp = eaH (6VES _aPEg) ) (9)
and
17 . 1 174 174 174
s/ = 5 (K +n e T o) (10)
where
v M 1 7 7 1%
K" = §(Tp“ —T“p—i-T*;). (11)

In Lagrangian (@), the strength field T",, is the tor-
sion associated with the Weitzenbdck connection I, =
el' Oy E7, and KM is the contorsion [ﬂ] In geometric
language, torsion is the 2-form T¢ = dE® + w% A EY
, where the 1-form w is the spin connection. Weitzen-
béck connection is the choice w %, = 0, because it leads to
(T),, = (dE?),, = 0, B — 0,E} = Ej; Th, ,. Weitzen-
béck connection is metric compatible, since V,Ej =
o, By, — F,’)uEi = 0. Besides, from Eq. (@) we also get
that Vyeff = 0. This means that the vielbein is au-
tomatically parallel-transported along any curve. Fur-
thermore, the parallel-transport of any vector does not
depend on the path (it is absolute), since Weitzenbdck
connection has the remarkable feature that the curva-
ture R = dw? + w’ A w9 is identically zero. The
(Weitzenbock) covariant derivative of a vector is V, U =
V.(U%,) = e, 0,U% thus, vector U will be parallel
transported if and only if its components U® are con-
stant.

Although TEGR Lagrangian can be understood in
terms of the WeitzenbGck connection and its respective
torsion, it should be emphasized that the TEGR La-
grangian neither fixes the connection nor the vielbein; it
only determines the metric, as it is well known. Further-
more, whenever matter couples minimally to the metric,
as usual, the free particles will follow geodesics of the
(torsionless) Levi-Civita connection fﬁp. [ Setting aside

! However, Levi-Civita and Weitzenbdck connections are related
through the contorsion: Fﬁp = Fﬁp — K“Vp .

this point, we use to say that TEGR is a theory where
the gravitational effects are fully encoded in the torsion.
On the contrary, GR associates gravity to curvature; it
assumes that the spacetime is endowed with the torsion-
less Levi-Civita connection, whose curvature enters the
Einstein-Hilbert Lagrangian L = E R. The reason why
TEGR is indeed equivalent to GR is traced to the fact
that their respective Lagrangian densities differ in a sur-
face term:

—ER=ET-20,(ET/M), (12)
Even so the vielbein field contains n? components, while
the metric tensor has only n(n + 1)/2. However, TEGR
dynamical equations are invariant under local Lorentz
transformations of the vielbein, which involve (Z) gen-
erators. Such a gauge invariance means that (Z) =
n(n — 1)/2 degrees of freedom cancels out, which allows
that the theories turn out to be equivalent at the level of
the equations of motion.

III. TEGR LAGRANGIAN IN TERMS OF THE
VIELBEIN FIELD

With the aim of preparing the TEGR Lagrangian for
the study of its canonical structure, we will rewrite it
completely in terms of e#, E¢ and the derivatives 0, E¢.
This imply the removing of any presence of the metric
field, since such contributions hide a dependence on the
vielbein. We transform the scalar torsion into

1 v 1 17 14
T o= T, = g T, T, = TP, T, (1)

We note that all terms in T are quadratic in the anti-
symmetrized derivatives of the vielbein; writing term by
term one gets

1TWTP 71 Buw gyv oo e . 14
Z P pro T Z ngé g g By py ( )
then one replaces the expressions for the torsion tensor
and the metric in terms of the vielbein field and its
inverse Bt

%Tp MTe L, = Nab nldpfle g I E°, 6pEb)\ el el e e? )

(15)
After this procedure has been performed in all the terms,
the TEGR Lagrangian becomes

1
L=ET-= 5 E 9,E, 0,E" ek el ef e/f\ M,, i, (16)

where we call supermetric Mabcedf the emerging Lorentz
invariant tensor given by

M, = 2o e — a6l Tl s + 88l o))
a
(17)
The supermetric is antisymmetric in the pairs of indices
c—e and d— f, what implies that only the antisymmetric



parts of 9,E¢% and 8,\Ebp take part in the Lagrangian
(@@). Other properties of the supermetric are summa-
rized in the Appendix [A Tl

We remark that the index structure of the supermetric
is natural when we recognize in Eq. (I8) the anholon-
omy coefficients f¢,, which are defined by the commuta-
tor [eq, es] = fS, ec. In fact, by using the equations (2))
the coeflicients f{. can be rewritten as

foe =

which can be related to other geometrical magnitudes,
as the Weitzenbdck torsion and the Lie derivative of the
vielbein:

—ey er (OB —0,E)) = —2e el 0, Ey) , (18)

v]

foe = T(ec, &) = (Lo EY)(es) - (19)

In terms of these coefficients, the Lagrangian density
looks in a very elegant form:

1 ce
=B fo fh M,V (20)

L:
8

A similar expression for the Lagrangian can be found in
Ref. [@], where the anholonomy coeflicients are identi-
fied with a Yang-Mills-like field strength; however, that
Lagrangian still mixed tangent space and coordinate in-
dices. Instead, Lagrangian (20) does not involve coordi-
nate indices; it shows that supermetric MabCEdj is a rele-
vant geometric object in the (co-) tangent space structure
of the spacetime. We intend to analyze the Hamiltonian
structure of TEGR by starting from Lagrangian (TG}, 20I),
and following a canonical second-order procedure.

IV. SUPER-HAMILTONIAN AND
SUPER-MOMENTA CONSTRAINTS

We compute the canonical momenta by differentiating
the Lagrangian (I6) with respect to the time derivative
of the canonical variable Ej:

oL
M= ———— = E §,E% & e e e} M Y
6((90Eﬁ) P X d *“f ab
1
=g Belel fiy M~ . (21)

So, the Poisson brackets in TEGR are defined as

{A(t,x), B(t,y)} =

0A(t,x) B(t,y) JdA(t,x)0B(t,y)
] (6Es<z> STA(z) oM (z) 5Ez<z>> (22)

The brackets between fundamental canonical variables
are

{EL(t,x), W (ty)} = & 6 6(x—y) - (23)

Additional fundamental Poisson brackets, including F,
el etc., are summarized in Appendix [A4]

From Eq. 2I) we immediately get n trivial primary
constraints

G =1 =o, (24)
which are derived by noticing that € eV is symmetric in
¢ — e but Mabcedf is antisymmetric. Although we can-
not prove yet that they are first class (i.e. we do not
know yet whether they generate gauge transformations),
the electromagnetic analogue tells us that they mean the
E§’s are spurious gauge dependent variables, that would
become Lagrange multipliers if an integration by parts
were performed in the action. This is in line with the
spurious character of the temporal sector of the metric
tensor we have commented in Section I.

The primary constraints must be satisfied at any time.
In other words, if the system is on the constraint surface
at the initial time, it must remain there along the evo-
lution. If this consistency requirement were not accom-
plished, then it could be enforced by resorting to new
(secondary) constraints [20]. From a Hamiltonian per-
spective, the consistency of the primary constraints is
controlled by means of the primary Hamiltonian E]

= it [ e, @)

where H is the canonical Hamiltonian, u®(¢,x) are arbi-

trary functions, and qﬁfll) are all the primary constraints.
The consistency will be fulfilled if the Poisson brackets

{(b,(ll),Hp} are null on the constraint surface. This re-
quirement could be satisfied by properly choosing the
functions u*(¢,x); if not, new (secondary) constraints
will be needed to enforce it, and so on. Actually, in
TEGR we will find that all the Poisson brackets be-
tween constraints are null on the constraint surface. This
means that primary and secondary constraints are all
first class; they generate gauge transformations. Thus
the constraints will be consistent with the evolution if
their Poisson brackets with H vanish on the constraint
surface (i.e., if H is gauge invariant, as it should be ex-
pected).

In spite of the entire set of primary constraints was
not obtained yet, the evolution of constraints ([24) can
be analyzed at the level of the Euler-Lagrange evolution
equations,

oL oL

KGR -

By splitting the first term, one gets

0L oL
olll +0i———-——=—— = 0. 27
e T O 5@ By T 9Es 27)
Therefore, if the constraints ([24]) must be fulfilled at any
time, we obtain n equations — those having v = 0 — which
do not contain second-order temporal derivatives:
oL oL

8178(8ZE8‘) _8—%1 - 0 . (28)



Like the Gauss’s law in electromagnetism these equations
do not contain dynamics, but they constrain the dynam-
ics. Since the derivatives of the vielbein enter the La-
grangian only in antisymmetric combinations, then it is

oL oL .
8iéa(T_Eg) = —&W = —&-Ha. (29)

Thus, we have found n secondary constraints:

: oL
(’“)lel + 8—Eg‘ = 0 . (30)
We will prove that these constraints are consistent with
the evolution; so they do not generate new constraints.

For this, we will apply the derivative dy to the constraints
@0), and use the Eq. 1) to replace dpII:

,  OL oL oL
ao (01T + —) = —0,0, +0
0 ( dE¢ 7o(0;E¢) T M oES
oL oL
— _alajw + ayaum = 0 (31)

(we also use Eq. (Z0) in the last step). The null result
comes from the fact that d,E2 enters the Lagrangian in
antisymmetric combinations but the operators 9;0; and
0,0, are symmetric.

So far, we have got a set of constraints which is consis-
tent with the evolution. To write them in a fully canoni-
cal way, we have to compute the derivative dL/OE§ and
express it as a function of the momenta, the vielbein
and its spatial derivatives. This computation is made in
the Appendix [A2] where we obtain that the canonical
Hamiltonian density H (i.e., H = [dx H) takes part in
the results. These results are better understood when
projected on Ef and E}. Thus, we get the secondary
constraints written in canonical form:

G = H—0,(EST) ~ 0, (32)

G\ = 9B T — 0;(EL ITL) ~ 0 (33)

(the symbol = stands for equalities that are valid on the
constraint surface). The constraints ([B2) and [B3) are
equivalent to the super-Hamiltonian and super-momenta
constraints of the ADM formalism. While the ADM
Hamiltonian vanishes on the constraint surface, the
TEGR Hamiltonian does not. The reason can be traced
to the surface term in Eq. ([I2); in fact, according to
Eq. (32), H is not zero but a divergence (which became
a spatial divergence thanks to the constraints ([24))).

V. GAUGE TRANSFORMATIONS

We have already anticipated —although not proven yet—
that all the constraints will be first class. So, let us con-

sider the gauge transformations generated by G,(ll) and

GELQ). In general, the infinitesimal gauge transformation
generated by a first class constraint G is E]

SEO(tx) = / dy e(ty) {E%(t.%).G(t.y)} . (34)

Any transformation of the vielbein has to be accompa-
nied by a transformation of the basis {e,}, in order to re-
spect the duality relations E%(e;) = d7 of Eq. ([2)). There-
fore

E“(5ey) + 0E(e) = 0, (35)

dey = —eq ey 0B . (36)

According to Eq. ([34), any linear combination of primary
constraints €°(t, x) Ggl) generates a transformation that

only affects the temporal component of the 1-forms E¢,
SEG(t,x) = €(t,x) , (37)
(or 6E® = ¢*dt) which also implies [

Sey = —e*el e . (38)
Instead, the transformations generated by Ggf), G,(f) only
affect the spatial components of the forms E* (the canon-
ical Hamiltonian density H does not contain I12). Then,

the infinitesimal gauge transformations generated by G((f)
and any arbitrary combination {kG,(f) are respectively

SEL(t,x) = & B (t,x) + B 0;¢
=0;(Ey §) +£ 2 0pky (39)

SEMNt,x) = 8 OLE + B 0,¢%
= 0,(Ep ")+ &8 2 0.5 (40)

In these results there is a term resembling the gauge
transformation of the electromagnetic potential. How-
ever, they come together with a term related to the
Weitzenbock torsion T* = dE®. Both terms are needed
because, differing from the electromagnetic Lagrangian,
TEGR Lagrangian depends not only on the exterior
derivative of the field E® but on the field itself. Even
so, the whole result exhibits a clear geometric content,
which can be evidenced by means of the Lie derivative of
a p—form « along a vector &,

Lea = dla(9)] +da(g) - (41)

2 Since E = €ab...g E§ Ell’...Eg where e4p...4 is the Levi-

n—17
Civita symbol, we also obtain e% OF = e% €’ €ap...g E{’ thl
= —E de} cap...q Ell’...Egi1 = —F 662. Therefore e%E is

invariant under the transformation (B7).



In fact, the r.h.s. of Eqs. (89) and ({0) constitute the
spatial components of L:E“, where ¢ is the arbitrary vec-
tor field formed by the infinitesimal parameters £(¢,x),
€F(t,x). We notice that Eqs. (39) and ({@T) can be ex-
tended to the temporal component of the 1-forms E¢,
since any change of Ef is a gauge transformation. There-
fore, we have obtained that TEGR is insensitive to 2n in-
dependent gauge transformations of the vielbein on the
constraint surface, which are given by Eq. (37) and

SE® = LB . (42)

The derivative character of transformation (42]) together
with Eq. (B5) imply that

(5eb = Cgeb = [f, eb]. (43)

In turn, this last transformation leads to a change of the
anholonomy coefficients:

0fay = Lefay = E(fab) > (44)
as can be easily verified by using the Jacobi identity to
compute e, , 5] = [0eq, €]+ [ea, des).

We remark that the Lie derivative of any Lagrangian
~understood as the n— form L = L daz® A ... Ada™ 1,
where L is the Lagrangian density— is always a boundary
term. In fact, if o is a n—form in Eq. [IJ), then its Lie
derivative Lea is the exact form d[a(§)]. But in a theory
of gravity, like TEGR, this kind of (quasi-) invariance of
the Lagrangian comes from a symmetry of its dynamical
variables generated by a proper combination of the trivial
primary constraints and the secondary ones. In fact, the
change of the TEGR Lagrangian n—form,

1
L= Ef, £o MY da® A A da™ !
1
= g Ie £o My, Y EOA L AETT ) (45)

(we used that the vielbein is orthonormal to rewrite the
volume) under the gauge transformation ([d2) is equal to
its Lie derivative by virtue of Eqs. [@2)) and (@4):

1 .
OL = 0fé fo My Y BOA . AE"

1 .
+3 fo fo M,V SECA L AETT L
= LeL = d[L(S)] - (46)

VI. MORE PRIMARY CONSTRAINTS. THE
LORENTZ GAUGE GROUP

So far we have found the 2n constraints that reflect
the constraint structure of the ADM formulation of gen-
eral relativity. However, TEGR describes the n(n + 1)
components of the metric tensor through a n x n ma-
trix E};. The relation between both sets of dynamical

variables is given by the Eq. (&), which is invariant un-
der local Lorentz transformations of the vielbein. Since
we know that TEGR has dynamics only for the met-
ric, as is clear from the equivalence between TEGR and
Einstein-Hilbert Lagrangians expressed in Eq. ([I2)), the
local Lorentz symmetry has to be a property not only of
the relation (@) but the set of dynamical equations. Then,
we should find that Lorentz transformations in the tan-
gent space constitute a gauge group in TEGR. Therefore,
we will search for more primary constraints in Eq. (211 ).

Eq. ) is a system of n? equations that are not lin-
early independent. In the previous Section we have al-
ready shown that they contain a set of n constraints that
trivially emerge for © = 0. The existence of constraints
associated to the temporal coordinate index is a conse-
quence of the privileged character the temporal coordi-
nate plays in the canonical formalism. We expect that
the rest of the primary constraints are exclusively re-
lated to tangent space indices. Therefore, we will look
for constraints among the coordinate invariant combina-
tions I14 E; according to Eq. (2I)) they are

G B, = EC, o e? Q0ES + E 0;E{ €0 el e? Mab“df7
(47)
where C, °f is defined as

c bef = eg eg Mabcedf . (48)

a

To find constraints (relations among the canonical vari-
ables) in Eq. {T), we should find (vielbein-depending)
coeflicients v such that v IILE}, does not contain
canonical velocities. In other words, since the square
matrix e? is not singular, it should be

v, ¢, = 0. (49)

Notice that even the n trivial primary constraints Gél) =
Hg can be recovered in this way. In fact Gél) requires
coefficients v, . = e? 6% (the index between vertical bars

is a label for each independent set of coefficients), since
e? 63 T4 ES = IIj. On the other hand, these coefficients

satisfy Eq. ([@J), because qucedf is antisymmetric in c—e:

U|g|e CabEf = 62 e(cJ 62 MgbCEdf = 0. (50)

We will introduce an independent set of coefficients v%
leading to the primary constraints associated with the
Lorentz group. Let be the set of coefficients v% labeled
by gh

Vighfe = 20y Mne - (51)

Taking into account the form (7)) of the supermetric, we
obtain
0 .0 df 0 0 scdf _
Vjghf'e Cabef =2e; eq Nefn Mg]bce F— 4 €. ey 529{7 =0,
(52)



since 62’;’; is completely antisymmetric (see Eq. (AR)
for details of the calculation). The antisymmetric labels
gh classify n(n — 1)/2 new constraints. By combining

Eqgs. @), (52)) and ((AH)), one gets
0 = vyl (I8 Bf— B OEL 0 el e} M, ")
= 2 ) By +4 B0, o cjel . (53)

In the last line, A can be replaced with j due to the
antisymmetrization of the pair h — b. Besides, on the
constraint surface it is Hg = 0. So, we define the primary
constraints

GU) = 20 T Bf +4 E 0B €, €] el ~ 0. (54)

In Section [VIII] we will prove that these n(n —1)/2 con-
straints accomplish the Lorentz algebra. Besides, they
will be consistent with the evolution. The entire set
of constraints will prove to be first class. According to
Eq. (34)), the gauge transformation of the vielbein gener-

ated by a combination eghG((th) is

5Eﬂuxr:/dyﬂWuw{Eﬂuxxzmmn;myuf},

(55)
which can be extended to the component E§ by virtue
of the gauge transformation 1), so leading to the local
Lorentz transformation

SE® = €(t,%) (1en 6% — 1ieq 6f) E° . (56)

At this point, one could ask whether we have exhausted
the solutions to Eq. (EJ). We remark that C, “/ can
be rephrased as a symmetric n? x n? matrix by using a
notation that take pairs of flat indices a, b, ... to define a
multi-index A = ()%, such that the Eq. {AJ) becomes

vA Cap = 0 (57)
For this, we use the following indexation formulas for
a b
A=(0%,B=0"%8

A=(a—1)n+e,

so, A,B,..=1,...,
CABZ

B=@0b-1)n+f;  (58)
n?. Eq. (AI) implies the symmetry of

Cap = Cpa . (59)

Eq. (B1) means that there are as many linear constraints
as null eigenvalues the symmetric n? xn? matrix C 45 has.
The coefficients v4 = v® of the constrained combinations
v I B are the components of the respective eigenvec-
tors. So far we have found n+n(n —1)/2=n(n+1)/2
null eigenvalues. As we will see in the forthcoming sec-
tions, the other n(n — 1)/2 eigenvalues are different from

zZero.

3 The formula can be inverted by taking a = [A/n], so e = A —
n[A/n] — 1, where [ | means the integer part.

VII. TEGR CANONICAL HAMILTONIAN

We will fully exploit the multi-index notation intro-
duced at the end of the previous Section. For this, we
define a set of objects of n? components:

E’Bie} E.i,
s =1} E, ,

E§ =€} 0,E]
Py =E 8B} € e} ek M, Y. (60)

Thus the Lagrangian density () reads

L=< (Ia+Pay)(F*—ENH-U, (61)

1
2
where

. 1 o i . ced,
U= _5 E 61'Ej 6/€Elb €c eﬁ 62 elf Mab f' (62)

Therefore, the canonical Hamiltonian density turns out
to be

H

M ES—L = Ma B4 — L

1 a1
5 (M4 = Pa) B4 4 o (Iy + Pa) Ej' +U. (63)

To write H in a canonical way, the velocities EB must
be solved in terms of the momenta. Eq. [@Z) displays
the linear relation among velocities and momenta; this
equation now reads

Iy — Py = ECap (EP —EP) . (64)

In Eq. (64) EB cannot be straightforwardly solved be-
cause the matrix Cap is singular. Matrix Cap has
n(n + 1)/2 null eigenvalues, since there are n(n + 1)/2
primary constraints linear in the momenta. In spite of
the fact that C'4p is not invertible, we can still solve
the subspace of velocities that is orthogonal to the sub-
space of null eigenvalues. In fact, by using a proper basis
for splitting the subspace of null eigenvalues, C'y g would
look like

chs=(o ¢ ). (65)

In such a basis we would find n(n+1)/2 constraints 14 —
P4 = 0; besides, we would trivially solve n(n — 1)/2
relevant velocities,

EA—FE) = E~' DB (IIg — Pg) , (66)
where the matrix D’ is

(0 5) (67)

D= D= (00). (68)

@zo

0
0
and satisfies

01



Eq. (G6) declares null the n(n+1)/2 first velocities. This
causes no harm, since these velocities enter the Hamil-
tonian (G3)) as the coefficients of the primary constraints
IT4 — P4 = 0. So, the values of the n(n+1)/2 first veloc-
ities are irrelevant, because different choices modify the
Hamiltonian by terms proportional to the constraints.
Anyway this kind of terms are reintroduced in the pri-
mary Hamiltonian (23]).

Let us use the matrix N of change of basis to return
to the original basis: ¢’ = NCN~!. Then, the previous
equation becomes

N'DDNC=CN'DN=N"! ( 8 2 ) N. (69)

The r.h.s. is not the identity, but is a symmetric matrix.
Besides, the matrix

D = N 'DN (70)

satisfies that CDC = C' and DCD = D. Therefore D is
the Moore-Penrose pseudo-inverse of C'. We will use the
Eq. (66) in the original basis; so we must replace D’ with
D. Thus, we substitute Eq. (G60) in Eq. (63) to obtain
the canonical form of the Hamiltonian density:

1
H=5e (- PA)DAB(llg — Pp) 4+ 14 E§ + U, (71)

where e = E~! = det(e#). The canonical Hamiltonian is
the integral of H. We can remind the form (B2]) of the

constraint Géz) to write

H:/dxH:/de((f)Jr/EgHidSi. (72)

Then, the canonical Hamiltonian is a constraint plus a
boundary term. As a consequence, the set of first class
constraints will be automatically consistent with the evo-
lution.

A. Dimension n =3

Let us work with the matrix C4;,
CA - Caebf - 6 ed MUE) qehf7 (73)

where M9 gehf =1 Nge Mcbgdhf . Cap and C?; share
the eigenvectors of null eigenvalue (see the Appendix [A3]

for the forms of these matrices). The non-null eigenvalues
of C%; are

M=o =2 [(eg)” = (e1)” = (3)°] =2 9™ =\,
Az =—\. (74)

The case n = 3 is very simple because the matrix CAB
accomplishes

c4 0B, 09 =204, . (75)

This is a consequence of the fact that the non-null eigen-
values have the same absolute value. This means that
the pseudo-inverse of CAB is DAB =\"2 C’AB. Therefore,
the matrix DAB in Eq. ([TI) is

DAB = X2 AP = X2 ed e M, (76)

B. Dimension n > 3

In n = 4 dimensions, the matrix CAB has six non-null
eigenvalues; they are

AM=X=A3 =N =X
=2 [(eg)? — (e1)? — (e2)* — (e3)*] =2 g™ = X,
Ae=—2A. (77)
Since their absolute values are not equal, the pseudo-
inverse matrix D4 cannot be inferred in a so straight-
forward way as we did in n = 3 dimensions. In fact, ma-

trix C4; does not accomplishes the Eq. (73] when n > 3.
The eigenvector related to the odd eigenvalue is

A
’LUB = wa = —5 6?- + 6.(])0 ’I]bh 62 . (78)

In fact, in any dimension n, vector w? satisfies the eigen-

value equation

A B aghf, b
Cpw —eeMbe w’

—(n=2Aw® =—(n—-2) Awt. (79)

We will show that the pseudo-inverse of C’“}B can be for-
mulated as the matrix

DY = A2 (C% + a whwp) , (80)

where « is a factor to be determined. The idea is to use

the projector associated to the odd eigenvalue to “im-

prove” the matrix C’“}B and get the desired result. In
order that D% be the pseudo-inverse of C“;, the r.h.s.
of the equation

C4 DG C = 27204 0% Ch 4 a(n—2)? wwp (81)

should be C"}B. To find «, we will introduce the auxiliary
matrix

Ch =Ch+4 2 vlup, (82)
which satisfies

C% wP =% wP + 4 Xt wp w®

—(n=2)Aw? 4+ (n — 1) Aw? = Aw?. (83)
Besides, for any vector ¢2 orthogonal to wP it is
CA B = CA (B =\ ¢4 . Then, CB is isotropic in the

subspace of non-null eigenvalues. H Since all the non-null

4 This is true not only for n = 4, but it has been checked for
arbitrary n through the computer algebra program Cadabra ﬂ2_1|]



cigenvalues of C*; are equal to A, then C%
the Eq. (73). Therefore

N (C+4x wtwp) = N O = CLCH O
=Ce DO+ 4N (0 = 5n+ T)whup (84)

ie.,

accomplish

204050 = 044 2 (n—3)(n—2)wwp . (85)

Substituting this result in Eq. (8I), we get that D4 is
the pseudo-inverse of C“; if o has the value

4 (n—3)
=\ 86
In n = 4 dimensions, « is equal to 2A~'. Thus the
contravariant pseudo-inverse matrix D48 = A\72(CAB 4+
a ww?) in four dimensions is
DAB _ Dabf )\l (5[a 5%l + : 1% e )
_A 2(6 6 nab+4e e[e 6f]77
—i—eg eh 0 nh, f)
+2 X732 a9 ph e e el e} . (87)
VIII. ALGEBRA OF CONSTRAINTS

The Hamiltonian formalism for TEGR is not finished
without checking that the set of constraints is first class.
For this, we have to compute the entire set of Poisson
brackets between the constraints. The pseudo-inverse
matrix DAP will enter the algebra of those Poisson brack-

ets involving the constraint G(()2). It is worth mentioning
that Eq. (Z8) can be replaced in the Lh.s of Eq. ([ to
obtain

1 ab _ a _ A
mcbe =w,=w . (88)

Therefore, matrix D in Eq. ([80) can be written entirely

in terms of the matrix C as

A3 (n - 3) b d
— . C 89

(n IR 2)3 ce af > ( )
which will be useful to compute those brackets involving
Gl

Dabef _ A72 Cabef +

The simplest brackets are those related to G((ll):

{6V (t,%), GV (Ly)} =0, (90)
{62 (t,%), GV (t,y)} =0, (91)
(69 (t,%),GM(t,y)} =0, (92)
(G (%), GV (ty)} =

(eg G el 6P §(x—y). (93)

However, the last one requires the knowledge of the
brackets between the momenta I1% and the matrix D45,
In the Appendix [A4] we summarize useful hints in order
to simplify this calculation.

The Poisson brackets between secondary constraints

fo) reproduce the algebra of constraints of the ADM
formulation of general relativity:

(6P (t,x), GP(t,y)} = (94)
GV (x) &é(x—y) + CP(y) o%6(x ),
(GP (%), G (ty)} = g7 (x) G (x) 9 6(x — y)
— g9 (y) G (y) 9X8(x —y), (95)
(G (t,x), 6P (t,y)) =GP (x) B o(x —y). (96)

We have also verified that the Poisson brackets for the
constraints G(? reproduces the Lorentz algebra:

{6V (t,x), GR(ty)} = (97)
(1ecGL) + 10 G = e G = maeGLY) ol —y).
Besides it is
(G4 (%), G (t,y)} =0, (98)

Finally the most intricate calculation is required by the
bracket

{G82) (t,X), G( (t y)} EO Nela eb]

In order to alleviate some difficult parts of it, some useful
computations are summarized in Appendix [A4]

As a result we have got n trivial primary constraints
e , together with n(n — 1)/2 primary constraints that
come from the Lorentz algebra. Besides, we have ob-

& (x—y). (99)

tained n secondary constraints G,(f) that are equivalent to
the super-Hamiltonian and super-momenta constraints of
the ADM formalism. Since we just proved that all con-
straints are first class, then the counting of degrees of
freedom goes as

#dof. = #(p,q) —#f.cc
R n(n;— 3) _ n(nz— 3) (100)

which is the number of degrees of freedom of general rel-
ativity in n dimensions.

IX. SUMMARY

The essence of a Hamiltonian constrained system lies
in the impossibility of solving all the canonical velocities
in terms of canonical momenta. This is because the mo-
menta are not independent but satisfy constraint equa-
tions, which in turn means that some dynamical vari-
ables are spurious degrees of freedom. In the case of the



teleparallel equivalent of general relativity (TEGR), such
obstruction is expressed in the Eq. (1), since C, f can-

not be inverted. C,, “/'is an object intimately linked to

the Lorentz invariant supermetric Mabwdf entering the
TEGR Lagrangian (20). In order to analyze how many
constraints are involved in the Eq. (#7), and how many
canonical velocities can be solved, we have arranged the
components of Cabef in a n? x n? symmetric matrix
Cap (the relation between the superindex A and the tan-
gent space indices is given in Eq. (58))). We have shown
that the eigenvalues of C“; follow a very simple pattern:
n(n + 1)/2 eigenvalues are null, n(n —1)/2 — 1 of them
are equal to 2¢% = ), and the remaining one is equal
to (2 — n)A. The primary constraints results from the
contraction of the Eq. (64]) with each eigenvector of null

eigenvalue; they include the n trivial constraints G((ll) (see

Eq. 24)) and the n(n—1)/2 Lorentz constraints G((llb) (see
Eq. (54)). To build the canonical Hamiltonian we must
identify the subset of canonical velocities that can be still
solved in terms of the momenta. For this, we employed
the Moore-Penrose pseudo-inverse of matrix C' , which
can be sought in the form proposed in Eq. ([80) thanks to
the simple pattern of eigenvalues exhibited by the matrix
C. The so obtained matrix D45 is the piece we need to
write the canonical Hamiltonian density H (see Eq. ([Z1])).
Those terms associated with the unsolved velocities are
absorbed into the terms added to the primary Hamil-
tonian H, (25). Besides the primary constraints G(l)
Gflb), we have also obtained n secondary constraints Gu

—the diffeomorphism constraints— that guarantee that
the primary constraints remain valid along the evolution
dictated by H, (we have examined this consistency at
the level of the Euler-Lagrange equations). The consis-
tency under the evolution of the system must be checked
with the secondary constraints too. Not surprisingly, the
canonical Hamiltonian density H is equal to Géz) except
for a boundary term. Thus, the consistency of the entire
set of constraints is guaranteed by the first class con-
straint algebra (@QOHO9). Since the constraints are first
class, they generate gauge transformations. Therefore,
there are n(n+ 3)/2 spurious variables, what reduces the
number of degrees of freedom to n(n — 3)/2. The in-
dependent gauge transformations are those displayed in

Egs. (31), @2), and (&4H).

ACKNOWLEDGMENTS

The authors thank N. Deruelle and C. Bejarano for
helpful discussions. This work was supported by Con-

sejo Nacional de Investigaciones Cientificas y Técnicas
(CONICET) and Universidad de Buenos Aires.

10

Appendix A
1. Properties of the supermetric

There are many properties of the supermetric that were
used throughout this work, and can be deducted from its
definition. Some of them are

df _ dfce __ df _ fd
Mabce - Mba “= _]\4abec - _Mabce . (Al)

We can calculate “traces” of the supermetric, which de-
pend on the dimension n. Some of them are

M, = M, = A= 28] (A2)
M, %ee =, 2 = 2(n — 2)p°l 57, (A3)
M, " = —2(n —1)(n —2)n°/ (A4)

The totally antisymmetric Kronecker delta 62:5 appears

in the antisymmetrized product

ne[cM]qehf 2(81,,6,87 + 67,0461 + 5,69.57)
=200 . (A5)
We also obtain
M9 1aiq8) = 0" 051003 + 1" 05148 + 6567,03 , (AG)
e Od]b *460 O[c d]b (A7)

Some other combinations quadratic in M appear in the
calculations, and it is useful to have them on hand

O Moy = 4(n —3)(n — 2) g n°" 5] (A8)
+8 (TL ) 260[]‘ nd]c + eOc eO[d 55]

C ef Mabc d -6 (n 3)( 2) ncd 900 (AQ)
+12(n—2)e% e’

2. Calculation of IL/OE§

For computing OL/JE(, it is important to notice that,
contrarily to electromagnetism, E§ appears in the La-
grangian not just in the spatial derivatives 0; E§ but also
as a part of e/ and E. First of all we need the quotient
Oet! JOEY, which is obtained from the duality relation:

det!
b=l Eb b EP el s) . Al
s eb”%ana +eb oy (A10)
this implies that
Oet
oo _ete) (A11)

OES

We will need also the expression 0E/JE§, which is ob-
tained from the explicit formula for the determinant

E= €abed...g EO E1 E2 E3 Eq (A12)



Then we obtain

oF oE
EY =08 E =Ee) A13
In this way,
oL 1 0 v A 0, v A v 0 A
9Eg =3 E (eqebefenes —ehegeleye — eqeliecer e}
—egeg‘ege?le} — eée‘;egefle?c) O, EC0,ES M_ 7" (A14)

In the last expression we identify the Lagrangian in the
first term, and different index combinations of the mo-
menta. We rewrite it and continue with the algebraic
manipulation

OL 1 1
_ 0 c TV v c
9T e, L — 565 o5 1Y + 3¢ OBy 11
1 d 1A 1 A d
P
—5 eg 8PE>\ Hd + 5 ea 8PE>\ Hd
= eg L+ 2ey o, EQy I (A15)
=€) L+2e) 0BG 1T, + 2 €], 0, E5 11,
|
0 0 0 0 0 2c23 —2di2 —2di3
0 —c23  di2  diz  c23 0 —do2  —dos
0 di2  —ci3  d2z  —diz 2do2  —do1 0
0 diz  d2s  —ci2 —diz 2dos 0 —don
0 ce3  —di2 —diz —c23 O do2 dos
2co3 0 —2dp2 —2dps O 0 0 0
—2d12  do2 do1 0 —do2 O co3 das
oA —2d13  dos 0 do1  —dos O da3 co2
B 0 —di2 c3 —dogz di2 —2do2 doi 0
—2d12  do2  do1 0 —do2 O co3  d23
2c13  —2dp1 0 —2dp3 2dp1 —2cp3 0 —2d13
—2d23 0 dos  do2 0 —2d23 diz  di2
0 —diz —d2z ci12 diz —2doz O do1
—2d13  dos 0 do1  —dos 0O da3 co2
—2d23 0 dos do2 0 —2dp3 dis d12
2c12 —2do1 —2do2 0 2dp1 —2co2 —2di2 0
where
0\2 0\2 0\2 0\2
co1 = (eg)” — (€1)”, o2 = (eg)” — (€3)7,
0\2 0\2 0\2 0\2
cos = (€g)” — (e3)7, 12 = (e])” + (€3)",
0\2 0\2 0\2 0\2
c13 = (e7)” + (e3), ca3 = (e3)” + (e3)", (A21)

0,0 _ 0.0 _ 0.0

do1 = egey, do2 = egey,  doz = eges,
0.0 0.0

diz = ejey, diz =ejes, daz = ege;
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The Hamiltonian density can be extracted from the first
terms, to obtain

oL c T j c TT%
9Eg =—edH + el O, EST. + 26 o B} 11, (A16)
= eq (0, (EGIT) — H) — Eg eq Ol + 2 ¢), 9, E5 11,
This result is replaced in Eq. [B0) to obtain n secondary

constraints:

ES e} OIT;, + ep (0;(EGIL,) — H) + 2¢), 8, B 1T, ~ 0.
(A17)
We note that only spatial derivatives are present, and the
canonical Hamiltonian takes part in the secondary con-
straints. We can isolate the contribution of the Hamilto-
nian by doing the contraction with E§; thus we get

G =M —0;(ESTT) ~ 0. (A18)

Besides, we perform the contraction with E}, so yielding

G = 0 BT — 0,(B{ 1Y) ~ 0. (A19)

3. Matrix C%;

We present the full
n = 4, which appears
momenta. It is

expression for the matrix C’AB in
in the definition of the canonical

0 —2dis 2c13 —2dss 0 —2di3 —2d23 2ci9
—di2 —do2 2do1 0 —dig —doz O 2do1
ci3 —do1 0 —do3 —daz 0  —do3 2do2
—d2z 0 2dos  —do2 c12 —dor —do2 O
diz doz —2do1 O diz  dos 0 —2do1
2dp2 0 —2cp3 —2d23 2dps3 0 —2do3 —2cp2
—do1  co3 0 dis 0 d2z  diz  —2di2
0 d2s  —2d13 diz  —do1  co2 di2 0
—ci13  do1 0 dos  d23 0 dos  —2do2 (A20)
—do1  co2 0 di3 0 d2s  diz  —2di2
0 0 0 0 2dos —2d13 0 —2co1
—do3  di3 0 cor  —do2 diz  cot 0
das 0  —2dog do2 —ci2 do1  do2 0
0 d2s  —2d13 diz  —do1  co2 di2 0
—doz  di3 0 co1  —doz diz  co1 0
2dp2 —2d12 —2co1 0 0 0 0 0
I
The matrices Cap and CAP are obtained by raising and

lowering indices with the corresponding 7 tensors. The
matrix D4 is obtained starting from (80).



4. Poisson brackets

Some useful fundamental Poisson brackets between the
canonical variables and their derivatives are given below,

{E@,x), Ig(t,y)} = Eefdx—y), (A22)
{e(t,x), (1, y)} = eeq d(x—y),  (A23)
{ea(t,x), Uy(ty)} = —eyeqd(x—y), (A24)
{aXEZ(t7X)7 HZ(tvy)} = (A25)

—{EL(Ex), O\(L,y)} = & 0, Ré(x—y),

{8#Efj(t,x),8AH2(t,y)} = /dz 52 aﬁé(x—z) 0Y5(y —z).

(A26)
These expressions are enough (together with patience
and a lot of calculations) to calculate those Poisson brack-
ets that do not involve G((J2). For the remaining Poisson
brackets, we provide some easy-to-derive expressions

(GP(tx), Bf(ty)} = (A27)
(e DAB(Ilp — Pp) B 6¢ + 0;E§) d(x —y),

(GP(t,x), OEL(t,y)} = (A28)
(e DAP (Ilp — Pp) Ef, 65 + 05 E§(x)) o{o(x—y).

Other combinations of brackets between canonical mo-
menta and some basic building blocks of the secondary

constraint G(()2), that recurrently appear in the calcula-

12

tions, are the following

NI = 290 e (A29)

(AT, I} = 4 m <7+1> 0 g0, (A30)

{w , HS} =2 ec w? (A31)
i 1 i 7 a

{w?, 1L} = T3m_9) el (el ep +ej, eh) M " (A32)

Finally, we give some help to calculate the brackets of
the momenta and the matrix DAZ. It is very simple to
get the brackets

{DAB 11%} = 2 &2 DAB, (A33)

However for the spatial part of the momenta IT¢, the
brackets with the matrix D do not simplify so easily.
After using all the developed tools, we get

{DAB Hi}_geO 01 )\— (CAB—l—awAwB)

2 (e eh—i-ehe 0y ppba h

e f
A~ 2,0
_7;(71_;‘)3 (e eh—i—ehe )(Maqhd B Mbqhd A)
+4ar73el P wt wh. (A34)

In Egs. (A29{A34) a factor §(x —y) is understood. As
a general advice, the raising and lowering of indices in the
supermetric Mabwdf must be carefully done, to keep the
original order of the indices and protect the symmetries
of the object.
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