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Hamiltonian formulation of teleparallel gravity
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The Hamiltonian formulation of the teleparallel equivalent of general relativity (TEGR) is de-
veloped from an ordinary second-order Lagrangian, which is written as a quadratic form of the
coefficients of anholonomy of the orthonormal frames (vielbeins). We analyze the structure of
eigenvalues of the multi-index matrix entering the (linear) relation between canonical velocities and
momenta to obtain the set of primary constraints. The canonical Hamiltonian is then built with
the Moore-Penrose pseudo-inverse of that matrix. The set of constraints, including the subsequent
secondary constraints, completes a first class algebra. This means that all of them generate gauge
transformations. The gauge freedoms are basically the diffeomorphisms, and the (local) Lorentz
transformations of the vielbein. In particular, the ADM algebra of general relativity is recovered as
a sub-algebra.

I. INTRODUCTION

The determination of the independent dynamical de-
grees of freedom is of the utmost importance in any field
theory, since it allows to exhibit the internal consistency
of the theory, and tackle the issue of the well-posedness
of the Cauchy problem. It also puts the theory into a dif-
ferent perspective, because it helps to find the minimal
number of variables specifying the state of the system,
so being vital for the quantization of the theory. Ac-
cording to the procedure due to Dirac [1], the number
of genuine degrees of freedom can be determined from
the algebra of the constraints among the canonical vari-
ables of the theory. The constraints firstly appear when
the canonical momenta are computed. These primary

constraints have to be consistent with the Hamiltonian
evolution of the system, which leads to secondary con-
straints, and so on. Finally, the set of all the constraints
is reclassified as first class and second class constraints,
depending whether their Poisson brackets are or not null
on the constraint surface in the phase space. First class
constraints generate gauge transformations; so, each of
them is related to a spurious degree of freedom. On the
other hand, second class constraints can be reorganized
as pairs of spurious conjugated variables. Thus, the num-
ber of genuine degrees of freedom can be computed as

# d.o.f. = # pairs of canonical variables

2# first class constraints

2
1

2
# second class constraints . (1)

A nice example is the Maxwell potential, described by
four dynamical variables Aµ that are governed by the
Lagrangian L[Aµ] ? Fλρ Fλρ (the field tensor Fλρ is
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Fλρ = "λAρ 2 "ρAλ). Since Fλρ is anti-symmetric, then
"0A0 is not present in the Lagrangian. Thus the canon-
ical momentum Ã0 = "L/"("0A0) identically vanishes;
it is a primary constraint. The consistency of the con-
straint Ã0 = 0 with the evolution requires the vanishing
of the Poisson bracket between Ã0 and the Hamiltonian;
this leads to the secondary constraint 'iÃ

i ? 'iF
0i = 0

(Gauss’s law). Both constraints are first class, since the
Poisson brackets between canonical momenta are iden-
tically null. Therefore, according to Eq. (1), one real-
izes that the electromagnetic field has not four degrees of
freedom Aµ at each event, but only two (electromagnetic
waves are transversal). At the level of the initial data,
the existence of constraints imply a restriction on the
spectrum of allowed initial configurations. Besides, the
absence of kinetic term for A0 in the Lagrangian implies
that the evolution of this dynamical variable, conjugate
to the first class constraint Ã0, remains completely un-
determined. The same happens to the evolution of the
longitudinal component of the potential A||, which also
remains undetermined as a consequence of the existence
of the first class constraint 'iÃ

i. Thus, A0 and A|| are
gauge freedoms. The former conclusions can also be de-
rived from a slightly modified Lagrangian. The integra-
tion by parts of one of the terms containing "iA0 leads
to a surface term, which can be eliminated, plus the term
A0 'iF

0i. In such way, the spurious degree of freedom
A0 becomes a Lagrange multiplier whose variation leads
to the Gauss’s law constraint (any other presence of A0

is captured in the canonical momenta Ãi) [2].

The canonical formulation of general relativity (GR)
relies on the widely spread formalism by Arnowitt, Deser
and Misner (ADM) [3], in which the spacetime is fo-
liated into a family of spacelike hypersurfaces that in-
duces a proper decomposition of the metric tensor gµν .
The Einstein-Hilbert Lagrangian can be integrated by
parts to realize that the temporal sector of the metric
(the lapse N and the shift vector Ni) is thrown into the
role of Lagrange multipliers associated to four first class
constraints (the super-Hamiltonian and super-momenta
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constraints). So written, the Lagrangian gives dynamics
only to the six components of the 3-dimensional metric
gij on the spacelike hypersurfaces of the foliation; but
the canonical variables (gij , Ã

ij) are still constrained by
the four first class constraints. Thus the gravitational
field contains only two genuine degrees of freedom. In
fact, apart from the undetermined evolutions of the four
Lagrange multipliers (N, Ni), there are also four gauge
freedoms among the six components of gij (gravitational
waves are transversal and trace-less). As a feature that
distinguishes GR from electromagnetism, the GR Hamil-
tonian vanishes because of the constraints. This feature
is typical of systems having a time hidden among their
canonical variables [4].

Early in the 1918, Weyl’s unsuccessful attempt of uni-
fying gravitation and electromagnetism introduced for
the first time the notion of gauge theories [5]. Einstein
himself tried ten years later the same unification idea,
but taking advantage of the sixteen components of the
tetrad field in order to include the electromagnetic field
[6]. Later he realized that the arbitrariness in the choice
of the tetrad comes from the set of local Lorentz trans-
formations that leave the metric unchanged, therefore
the extra degrees of freedom could not give account for
electromagnetism. However, he introduced the concepts
of teleparallelism that remain important until today, pre-
senting for the first time the teleparallel equivalent of gen-
eral relativity (TEGR), an equivalent formulation of gen-
eral relativity. In fact, although both theories have differ-
ent Lagrangian formulations, they are equivalent at the
level of the equations of motion. Nonetheless, they are
based on completely different Lagrangian constructions.
This is so because TEGR describes gravity as the effect
of torsion in the curvatureless Weitzenböck geometry;
the dynamical variables are not the components of the
metric gµν but those of the field of orthonormal frames
–tetrads or vierbeins– eaµ (a and µ are SO(3, 1) and coor-
dinate indices, respectively) [6, 7]. As a consequence, the
Hamiltonian formalisms of GR and TEGR are different
too. Among the articles treating the Hamiltonian for-
mulation of TEGR we specially mention Ref. [11], which
introduces a set of auxiliary variables in a first order ap-
proach that lowers the order of the Euler-Lagrange equa-
tions (cf. [8, 9, 12, 13]), and Ref. [10] that deals with an
enlarged set of variables and constraints to enforce the
vanishing of the curvature. The canonical formulation of
TEGR has been also stated in the geometric language of
differential forms [14, 15].

In this work we will put forward the Hamiltonian
formalism for TEGR in a way as close as possible to
the second order formalism of electrodynamics that was
sketched above. This work is organized as follows: in
Section II we introduce the standard TEGR dynamics,
which is governed by a Lagrangian quadratic in the tor-
sion. In Section III we show that the TEGR Lagrangian
can be reformulated as the quadratic inner product of
the anholonomy coefficients with respect to a superme-
tric that is defined in the tangent space. In Section IV

we obtain the set of primary and secondary constraints
that are equivalent to those of electrodynamics and GR
geometrodynamics. In Section V we study the gauge
transformations generated by these constraints (they will
prove to be first class). Compared with geometrodynam-
ics, TEGR has an additional gauge symmetry associ-
ated to local Lorentz transformations of frames, which
is the source of the constraints analyzed in Section VI.
In Section VII the (constrained) linear relations between
canonical momenta and velocities is inverted to build the
canonical TEGR Hamiltonian H; the procedure implies
a careful analysis of the eigenvector structure involved
in these linear relations, in order to build the respective
pseudo-inverse matrix. The entire set of n(n+ 3)/2 con-
straints (n is the spacetime dimension) is consistent with
the evolution governed by H; besides, they are first class
as proven by the algebra of constraints computed in Sec-
tion VIII. In Section IX we summarize the main steps and
the achievements of the paper. The Appendix A shows
some useful computations that are needed throughout
the work.

II. TEGR AND STANDARD LAGRANGIAN

FORMULATION

TEGR is a theory of gravity where the field of or-
thonormal frames plays the role of dynamical variable.
Let M be a manifold, {ea} a basis in the tangent space
Tp(M), and {Ea} its dual basis in the cotangent space
T 7
p (M) (i.e., if the 1-forms Ea are applied to the vectors

eb one obtains Ea(eb) = ·ab ). They can be expanded in
a coordinate basis as ea = eµa "µ and Ea = Ea

µ dxµ; so
duality means that

Ea
µ e µ

b = ·ab , eµa Ea
ν = ·µν . (2)

Here and from now on, we will use Greek letters µ, ¿, ... =
0, ..., n 2 1 for spacetime coordinate indices, and Latin
letters a, b, ..., g, h = 0, ..., n 2 1 for Lorentzian tangent
space indices. A vielbein (vierbein o tetrad in n = 4
dimensions) is a basis encoding the metric structure of
the spacetime:

g = ·ab Ea ·Eb , (3)

therefore,

Ea · Eb = g(Ea,Eb) = ·ab , (4)

which means that the vielbein is an orthonormal basis.
In component notation, the former expressions look

gµν = ·ab Ea
µ Eb

ν , ·ab = gµν eµa eνb , (5)

which implies that the relation between the metric vol-
ume and the determinant of the matrix Ea

µ is

√

|g| = det[Ea
µ]

.
= E . (6)
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Since the vielbein encodes the metric structure of the
spacetime, one can formulate a dynamical theory of the
spacetime geometry by defining a Lagrangian for the viel-
bein field. In particular, there is a Lagrangian which
leads to dynamical equations for the vielbeins that are
equivalent to Einstein equations for the metric [16]. The
so called teleparallel equivalent of general relativity is
governed by the Lagrangian density

L = E T , (7)

where T is the torsion scalar

T
.
= T ρ

µν S µν
ρ , (8)

which is made up of

T µ
νρ

.
= e µ

a ("νE
a
ρ 2 "ρE

a
ν ) , (9)

and

S µν
ρ

.
=

1

2

(

Kµν
ρ + T λµ

λ ·νρ 2 T λν
λ ·µρ

)

, (10)

where

Kµν
ρ

.
=

1

2
(T µν

ρ 2 T µν
ρ + T νµ

ρ) . (11)

In Lagrangian (7), the strength field T µ
νρ is the tor-

sion associated with the Weitzenböck connection Γµ
νρ

.
=

e µ
a "νE

a
ρ , and Kµν

ρ is the contorsion [17]. In geometric

language, torsion is the 2-form Ta .
= dEa + Ëa

b ' Eb

, where the 1-form Ëa
b is the spin connection. Weitzen-

böck connection is the choice Ë a
b = 0, because it leads to

(Ta)νρ = (dEa)νρ = "νE
a
ρ 2 "ρE

a
ν = Ea

µ T µ
νρ. Weitzen-

böck connection is metric compatible, since 'νE
a
µ =

"νE
a
µ 2 Γ λ

νµE
a
λ = 0. Besides, from Eq. (2) we also get

that 'νe
µ
a = 0. This means that the vielbein is au-

tomatically parallel-transported along any curve. Fur-
thermore, the parallel-transport of any vector does not
depend on the path (it is absolute), since Weitzenböck
connection has the remarkable feature that the curva-
ture Ra

b

.
= dËa

b + Ëa
c ' Ëc

b is identically zero. The
(Weitzenböck) covariant derivative of a vector is 'νU =
'ν(U

aea) = ea "νU
a; thus, vector U will be parallel

transported if and only if its components Ua are con-
stant.

Although TEGR Lagrangian can be understood in
terms of the Weitzenböck connection and its respective
torsion, it should be emphasized that the TEGR La-
grangian neither fixes the connection nor the vielbein; it
only determines the metric, as it is well known. Further-
more, whenever matter couples minimally to the metric,
as usual, the free particles will follow geodesics of the
(torsionless) Levi-Civita connection Γ

µ

νρ.
1 Setting aside

1 However, Levi-Civita and Weitzenböck connections are related
through the contorsion: Γ

µ
νρ = Γµ

νρ −Kµ
νρ .

this point, we use to say that TEGR is a theory where
the gravitational effects are fully encoded in the torsion.
On the contrary, GR associates gravity to curvature; it
assumes that the spacetime is endowed with the torsion-
less Levi-Civita connection, whose curvature enters the
Einstein-Hilbert Lagrangian L = E R. The reason why
TEGR is indeed equivalent to GR is traced to the fact
that their respective Lagrangian densities differ in a sur-
face term:

2 E R = E T 2 2 "ρ(E T µρ
µ ), (12)

Even so the vielbein field contains n2 components, while
the metric tensor has only n(n+ 1)/2. However, TEGR
dynamical equations are invariant under local Lorentz
transformations of the vielbein, which involve

(

n
2

)

gen-

erators. Such a gauge invariance means that
(

n
2

)

=
n(n2 1)/2 degrees of freedom cancels out, which allows
that the theories turn out to be equivalent at the level of
the equations of motion.

III. TEGR LAGRANGIAN IN TERMS OF THE

VIELBEIN FIELD

With the aim of preparing the TEGR Lagrangian for
the study of its canonical structure, we will rewrite it
completely in terms of eµa , Ea

ν and the derivatives "µE
a
ν .

This imply the removing of any presence of the metric
field, since such contributions hide a dependence on the
vielbein. We transform the scalar torsion into

T =
1

4
T µν
ρ T ρ

µν 2
1

2
T ρ

µν T µν
ρ 2 T ρ

µρ T νµ
ν . (13)

We note that all terms in T are quadratic in the anti-
symmetrized derivatives of the vielbein; writing term by
term one gets

1

4
T µν
ρ T ρ

µν =
1

4
gρα gβµ gγν Tα

βγ T ρ
µν ; (14)

then one replaces the expressions for the torsion tensor
9 and the metric in terms of the vielbein field and its
inverse 5:

1

4
T µν
ρ T ρ

µν = ·ab ·
c[d ·f ]eE "µE

a
ν "ρE

b
λ eµc eνe eρd eλf .

(15)
After this procedure has been performed in all the terms,
the TEGR Lagrangian becomes

L = E T =
1

2
E "µE

a
ν "ρE

b
λ eµc eνe eρd eλf M

cedf
ab , (16)

where we call supermetric M cedf
ab the emerging Lorentz

invariant tensor given by

M cedf
ab

.
= 2 ·ab ·

c[d ·f ]e 2 4 ·[da ·f ][c ·
e]
b + 8 ·[ca ·e][d ·

f ]
b .
(17)

The supermetric is antisymmetric in the pairs of indices
c2e and d2f , what implies that only the antisymmetric
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parts of "µE
a
ν and "λE

b
ρ take part in the Lagrangian

(16). Other properties of the supermetric are summa-
rized in the Appendix A1.

We remark that the index structure of the supermetric
is natural when we recognize in Eq. (16) the anholon-
omy coefficients f c

ab, which are defined by the commuta-
tor [ea, eb] = f c

ab ec. In fact, by using the equations (2)
the coefficients fa

bc can be rewritten as

fa
bc = 2eµb eνc ("µE

a
ν2"νE

a
µ) = 22 eµb eνc "[µE

a
ν] , (18)

which can be related to other geometrical magnitudes,
as the Weitzenböck torsion and the Lie derivative of the
vielbein:

fa
bc = Ta(ec, eb) = (Lec

Ea)(eb) . (19)

In terms of these coefficients, the Lagrangian density
looks in a very elegant form:

L =
1

8
E fa

ce f b
df M cedf

ab . (20)

A similar expression for the Lagrangian can be found in
Ref. [18], where the anholonomy coefficients are identi-
fied with a Yang-Mills-like field strength; however, that
Lagrangian still mixed tangent space and coordinate in-
dices. Instead, Lagrangian (20) does not involve coordi-

nate indices; it shows that supermetric M cedf
ab is a rele-

vant geometric object in the (co-) tangent space structure
of the spacetime. We intend to analyze the Hamiltonian
structure of TEGR by starting from Lagrangian (16, 20),
and following a canonical second-order procedure.

IV. SUPER-HAMILTONIAN AND

SUPER-MOMENTA CONSTRAINTS

We compute the canonical momenta by differentiating
the Lagrangian (16) with respect to the time derivative
of the canonical variable Ea

µ:

Πµ
a =

"L

"("0Ea
µ)

= E "ρE
b
λ e0c eµe eρd eλf M cedf

ab

= 2
1

2
E e0c eµe f b

df M cedf
ab . (21)

So, the Poisson brackets in TEGR are defined as

{A(t,x), B(t,y)}
.
=

∫

dz

(

·A(t,x)

·Ea
λ(z)

·B(t,y)

·Πλ
a(z)

2
·A(t,x)

·Πλ
a(z)

·B(t,y)

·Ea
λ(z)

)

.(22)

The brackets between fundamental canonical variables
are

{Ea
µ(t,x), Πν

b (t,y)} = ·ab ·νµ ·(x2 y) . (23)

Additional fundamental Poisson brackets, including E,
eµa , etc., are summarized in Appendix A4.

From Eq. (21) we immediately get n trivial primary
constraints

G(1)
a

.
= Π0

a c 0 , (24)

which are derived by noticing that e0c e0e is symmetric in

c 2 e but M cedf
ab is antisymmetric. Although we can-

not prove yet that they are first class (i.e. we do not
know yet whether they generate gauge transformations),
the electromagnetic analogue tells us that they mean the
Ea

0 ’s are spurious gauge dependent variables, that would
become Lagrange multipliers if an integration by parts
were performed in the action. This is in line with the
spurious character of the temporal sector of the metric
tensor we have commented in Section I.

The primary constraints must be satisfied at any time.
In other words, if the system is on the constraint surface
at the initial time, it must remain there along the evo-
lution. If this consistency requirement were not accom-
plished, then it could be enforced by resorting to new
(secondary) constraints [20]. From a Hamiltonian per-
spective, the consistency of the primary constraints is
controlled by means of the primary Hamiltonian [2]

Hp = H +

∫

dx ua(t,x) Ç(1)
a (t,x) , (25)

where H is the canonical Hamiltonian, ua(t,x) are arbi-

trary functions, and Ç
(1)
a are all the primary constraints.

The consistency will be fulfilled if the Poisson brackets

{Ç
(1)
a , Hp} are null on the constraint surface. This re-

quirement could be satisfied by properly choosing the
functions ua(t,x); if not, new (secondary) constraints
will be needed to enforce it, and so on. Actually, in
TEGR we will find that all the Poisson brackets be-
tween constraints are null on the constraint surface. This
means that primary and secondary constraints are all
first class; they generate gauge transformations. Thus
the constraints will be consistent with the evolution if
their Poisson brackets with H vanish on the constraint
surface (i.e., if H is gauge invariant, as it should be ex-
pected).

In spite of the entire set of primary constraints was
not obtained yet, the evolution of constraints (24) can
be analyzed at the level of the Euler-Lagrange evolution
equations,

"µ
"L

"("µEa
ν )

2
"L

"Ea
ν

= 0 . (26)

By splitting the first term, one gets

"0Π
ν
a + "i

"L

"("iEa
ν )

2
"L

"Ea
ν

= 0 . (27)

Therefore, if the constraints (24) must be fulfilled at any
time, we obtain n equations – those having ¿ = 0 – which
do not contain second-order temporal derivatives:

"i
"L

"("iEa
0 )

2
"L

"Ea
0

= 0 . (28)
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Like the Gauss’s law in electromagnetism these equations
do not contain dynamics, but they constrain the dynam-
ics. Since the derivatives of the vielbein enter the La-
grangian only in antisymmetric combinations, then it is

"i
"L

"("iEa
0 )

= 2 "i
"L

"("0Ea
i )

= 2 "iΠ
i
a . (29)

Thus, we have found n secondary constraints:

"iΠ
i
a +

"L

"Ea
0

= 0 . (30)

We will prove that these constraints are consistent with
the evolution; so they do not generate new constraints.
For this, we will apply the derivative "0 to the constraints
(30), and use the Eq. (27) to replace "0Π

i
a:

"0

(

"iΠ
i
a +

"L

"Ea
0

)

= 2"i"j
"L

"("jEa
i )

+ "µ
"L

"Ea
µ

= 2"i"j
"L

"("jEa
i )

+ "ν"µ
"L

"("µEa
ν )

c 0 (31)

(we also use Eq. (26) in the last step). The null result
comes from the fact that "µE

a
ν enters the Lagrangian in

antisymmetric combinations but the operators "i"j and
"ν"µ are symmetric.

So far, we have got a set of constraints which is consis-
tent with the evolution. To write them in a fully canoni-
cal way, we have to compute the derivative "L/"Ea

0 and
express it as a function of the momenta, the vielbein
and its spatial derivatives. This computation is made in
the Appendix A2, where we obtain that the canonical
Hamiltonian density H (i.e., H =

∫

dx H) takes part in
the results. These results are better understood when
projected on Ea

0 and Ea
k . Thus, we get the secondary

constraints written in canonical form:

G
(2)
0

.
= H2 "i(E

c
0 Πi

c) j 0 , (32)

G
(2)
k

.
= "kE

c
i Πi

c 2 "i(E
c
k Πi

c) j 0 (33)

(the symbol j stands for equalities that are valid on the
constraint surface). The constraints (32) and (33) are
equivalent to the super-Hamiltonian and super-momenta
constraints of the ADM formalism. While the ADM
Hamiltonian vanishes on the constraint surface, the
TEGR Hamiltonian does not. The reason can be traced
to the surface term in Eq. (12); in fact, according to
Eq. (32), H is not zero but a divergence (which became
a spatial divergence thanks to the constraints (24)).

V. GAUGE TRANSFORMATIONS

We have already anticipated –although not proven yet–
that all the constraints will be first class. So, let us con-

sider the gauge transformations generated by G
(1)
a and

G
(2)
µ . In general, the infinitesimal gauge transformation

generated by a first class constraint G is [2]

·Ea
µ(t,x) =

∫

dy ë(t,y) {Ea
µ(t,x), G(t,y)} . (34)

Any transformation of the vielbein has to be accompa-
nied by a transformation of the basis {ea}, in order to re-
spect the duality relations Ea(eb) = ·ab of Eq. (2). There-
fore

Ea(·eb) + ·Ea(eb) = 0 , (35)

or

·eνb = 2 eνa eµb ·Ea
µ . (36)

According to Eq. (34), any linear combination of primary

constraints ëb(t,x) G
(1)
b generates a transformation that

only affects the temporal component of the 1-forms Ea,

·Ea
0 (t,x) = ëa(t,x) , (37)

(or ·Ea = ëadt) which also implies 2

·eνb = 2 ëa eνa e0b . (38)

Instead, the transformations generated by G
(2)
0 , G

(2)
k only

affect the spatial components of the forms Ea (the canon-
ical Hamiltonian density H does not contain Π0

a). Then,

the infinitesimal gauge transformations generated by G
(2)
0

and any arbitrary combination ¿kG
(2)
k are respectively

·Ea
i (t,x) = ¿ Ėa

i (t,x) + Ea
0 "i¿

= "i(E
a
0 ¿) + ¿ 2 "[0E

a
i] , (39)

·Ea
i (t,x) = ¿k "kE

a
i + Ea

k "i¿
k

= "i(E
a
k ¿k) + ¿k 2 "[kE

a
i] . (40)

In these results there is a term resembling the gauge
transformation of the electromagnetic potential. How-
ever, they come together with a term related to the
Weitzenböck torsion Ta = dEa. Both terms are needed
because, differing from the electromagnetic Lagrangian,
TEGR Lagrangian depends not only on the exterior
derivative of the field Ea but on the field itself. Even
so, the whole result exhibits a clear geometric content,
which can be evidenced by means of the Lie derivative of
a p2form ³ along a vector ¿,

Lξ³ = d[³(¿)] + d³(¿) . (41)

2 Since E = ·ab...g Ea
0

Eb
1
... Eg

n−1
, where ·ab...g is the Levi-

Civita symbol, we also obtain e0h ·E = e0h ëa ·ab...g Eb
1
... Eg

n−1

= −Ea
ν ·eνh ·ab...g Eb

1
...Eg

n−1
= −E ·e0h. Therefore e0h E is

invariant under the transformation (37).
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In fact, the r.h.s. of Eqs. (39) and (40) constitute the
spatial components of LξE

a, where ¿ is the arbitrary vec-
tor field formed by the infinitesimal parameters ¿(t,x),
¿k(t,x). We notice that Eqs. (39) and (40) can be ex-
tended to the temporal component of the 1-forms Ea,
since any change of Ea

0 is a gauge transformation. There-
fore, we have obtained that TEGR is insensitive to 2n in-
dependent gauge transformations of the vielbein on the
constraint surface, which are given by Eq. (37) and

·Ea = Lξ E
a . (42)

The derivative character of transformation (42) together
with Eq. ( 35) imply that

·eb = Lξ eb = [¿ , eb] . (43)

In turn, this last transformation leads to a change of the
anholonomy coefficients:

·f c
ab = Lξ f

c
ab = ¿(f c

ab) , (44)

as can be easily verified by using the Jacobi identity to
compute ·[ea , eb] = [·ea , eb] + [ea , ·eb].

We remark that the Lie derivative of any Lagrangian
–understood as the n2 form L = L dx0 ' ... ' dxn21,
where L is the Lagrangian density– is always a boundary
term. In fact, if ³ is a n2form in Eq. (41), then its Lie
derivative Lξ³ is the exact form d[³(¿)]. But in a theory
of gravity, like TEGR, this kind of (quasi-) invariance of
the Lagrangian comes from a symmetry of its dynamical
variables generated by a proper combination of the trivial
primary constraints and the secondary ones. In fact, the
change of the TEGR Lagrangian n2form,

L =
1

8
E fa

ce f b
df M cedf

ab dx0 ' ... ' dxn21

=
1

8
fa
ce f b

df M cedf
ab E0 ' ... 'En21 , (45)

(we used that the vielbein is orthonormal to rewrite the
volume) under the gauge transformation (42) is equal to
its Lie derivative by virtue of Eqs. (42) and (44):

·L =
1

4
·fa

ce f b
df M cedf

ab E0 ' ... 'En21

+
1

8
fa
ce f b

df M cedf
ab ·E0 ' ... 'En21 + ...

= Lξ L = d[L(¿)] . (46)

VI. MORE PRIMARY CONSTRAINTS. THE

LORENTZ GAUGE GROUP

So far we have found the 2n constraints that reflect
the constraint structure of the ADM formulation of gen-
eral relativity. However, TEGR describes the n(n + 1)
components of the metric tensor through a n × n ma-
trix Ea

µ. The relation between both sets of dynamical

variables is given by the Eq. (5), which is invariant un-
der local Lorentz transformations of the vielbein. Since
we know that TEGR has dynamics only for the met-
ric, as is clear from the equivalence between TEGR and
Einstein-Hilbert Lagrangians expressed in Eq. (12), the
local Lorentz symmetry has to be a property not only of
the relation (5) but the set of dynamical equations. Then,
we should find that Lorentz transformations in the tan-
gent space constitute a gauge group in TEGR. Therefore,
we will search for more primary constraints in Eq. (21 ).

Eq. (21) is a system of n2 equations that are not lin-
early independent. In the previous Section we have al-
ready shown that they contain a set of n constraints that
trivially emerge for µ = 0. The existence of constraints
associated to the temporal coordinate index is a conse-
quence of the privileged character the temporal coordi-
nate plays in the canonical formalism. We expect that
the rest of the primary constraints are exclusively re-
lated to tangent space indices. Therefore, we will look
for constraints among the coordinate invariant combina-
tions Πµ

aE
e
µ; according to Eq. (21) they are

Πµ
a E

e
µ = E C ef

ab eλf "0E
b
λ + E "iE

b
λ e

0
c e

i
d e

λ
f M

cedf
ab ,

(47)

where C ef
ab is defined as

C ef
ab

.
= e0c e0d M cedf

ab . (48)

To find constraints (relations among the canonical vari-
ables) in Eq. (47), we should find (vielbein-depending)
coefficients vae such that vaeΠ

µ
aE

e
µ does not contain

canonical velocities. In other words, since the square
matrix eλf is not singular, it should be

vae C ef
ab = 0 . (49)

Notice that even the n trivial primary constraints G
(1)
g

.
=

Π0
g can be recovered in this way. In fact G

(1)
g requires

coefficients v a
|g| e

.
= e0e ·ag (the index between vertical bars

is a label for each independent set of coefficients), since
e0e ·ag Πµ

aE
e
µ = Π0

g. On the other hand, these coefficients

satisfy Eq. (49), because M cedf
gb is antisymmetric in c2e:

v a
|g| e C ef

ab = e0e e0c e0d M cedf
gb c 0 . (50)

We will introduce an independent set of coefficients vae
leading to the primary constraints associated with the
Lorentz group. Let be the set of coefficients vae labeled
by gh

v a
|gh| e

.
= 2 ·a[g ·h]e . (51)

Taking into account the form (17) of the supermetric, we
obtain

v a
|gh| e C ef

ab = 2 e0c e0d ·e[h M
cedf

g]b = 4 e0c e0d ·cdfhgb c 0,

(52)
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since ·cdfhgb is completely antisymmetric (see Eq. (A5)

for details of the calculation). The antisymmetric labels
gh classify n(n 2 1)/2 new constraints. By combining
Eqs. (47), (52) and ((A5)), one gets

0 c v a
|gh| e (Πµ

a Ee
µ 2 E "iE

b
λ e0c eid eλf M cedf

ab )

= 2 ·e[h Πµ

g] E
e
µ + 4 E "iE

b
λ e0[h eig eλb] . (53)

In the last line, » can be replaced with j due to the
antisymmetrization of the pair h 2 b. Besides, on the
constraint surface it is Π0

g = 0. So, we define the primary
constraints

G
(1)
gh

.
= 2 ·e[h Πi

g] E
e
i +4 E "iE

b
j e0[h eig ej

b] j 0 . (54)

In Section VIII we will prove that these n(n2 1)/2 con-
straints accomplish the Lorentz algebra. Besides, they
will be consistent with the evolution. The entire set
of constraints will prove to be first class. According to
Eq. (34), the gauge transformation of the vielbein gener-

ated by a combination ëghG
(1)
gh is

·Ea
j (t,x) =

∫

dy ëgh(t,y) {Ea
j (t,x), 2 ·e[h Π

i
g](t,y)E

e
i } ,

(55)
which can be extended to the component Ea

0 by virtue
of the gauge transformation (37), so leading to the local
Lorentz transformation

·Ea = ëgh(t,x)
(

·eh ·ag 2 ·eg ·ah
)

Ee . (56)

At this point, one could ask whether we have exhausted

the solutions to Eq. ( 49). We remark that C ef
ab can

be rephrased as a symmetric n2 × n2 matrix by using a
notation that take pairs of flat indices a, b, ... to define a
multi-index A = ()

a
e such that the Eq. (49) becomes

vA CAB = 0 (57)

For this, we use the following indexation formulas for

A = ()
a
e , B = ()

b
f

3

A = (a2 1)n+ e, B = (b 2 1)n+ f ; (58)

so, A,B, ... = 1, ..., n2. Eq. (A1) implies the symmetry of
CAB:

CAB = CBA . (59)

Eq. (57) means that there are as many linear constraints
as null eigenvalues the symmetric n2×n2 matrix CAB has.
The coefficients vA = vae of the constrained combinations
vaeΠ

µ
aE

e
µ are the components of the respective eigenvec-

tors. So far we have found n+ n(n2 1)/2 = n(n+ 1)/2
null eigenvalues. As we will see in the forthcoming sec-
tions, the other n(n2 1)/2 eigenvalues are different from
zero.

3 The formula can be inverted by taking a = [A/n], so e = A −

n[A/n]− 1, where [ ] means the integer part.

VII. TEGR CANONICAL HAMILTONIAN

We will fully exploit the multi-index notation intro-
duced at the end of the previous Section. For this, we
define a set of objects of n2 components:

ĖB .
= eλf Ėb

λ , EB
0

.
= eif "iE

b
0 ,

ΠA
.
= Πµ

a E
e
µ , PA

.
= E "iE

b
k e0c eid ekf M cedf

ab . (60)

Thus the Lagrangian density (16) reads

L =
1

2
(ΠA + PA)(Ė

A 2 EA
0 )2 U , (61)

where

U
.
= 2

1

2
E "iE

a
j "kE

b
l eic eje ekd elf M cedf

ab . (62)

Therefore, the canonical Hamiltonian density turns out
to be

H
.
= Πµ

a Ėa
µ 2 L = ΠA ĖA 2 L

=
1

2
(ΠA 2 PA) Ė

A +
1

2
(ΠA + PA) E

A
0 + U. (63)

To write H in a canonical way, the velocities ĖB must
be solved in terms of the momenta. Eq. (47) displays
the linear relation among velocities and momenta; this
equation now reads

ΠA 2 PA = E CAB (ĖB 2 EB
0 ) . (64)

In Eq. (64) ĖB cannot be straightforwardly solved be-
cause the matrix CAB is singular. Matrix CAB has
n(n + 1)/2 null eigenvalues, since there are n(n + 1)/2
primary constraints linear in the momenta. In spite of
the fact that CAB is not invertible, we can still solve
the subspace of velocities that is orthogonal to the sub-
space of null eigenvalues. In fact, by using a proper basis
for splitting the subspace of null eigenvalues, CAB would
look like

C2
AB =

(

0 0

0 C̃

)

, (65)

In such a basis we would find n(n+1)/2 constraints ΠA2
PA = 0; besides, we would trivially solve n(n 2 1)/2
relevant velocities,

ĖA 2 EA
0 = E21 D2AB (ΠB 2 PB) , (66)

where the matrix D2 is

D2 =

(

0 0

0 D̃

)

, (67)

and satisfies

D2 C2 = C2 D2 =

(

0 0
0 1

)

. (68)
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Eq. (66) declares null the n(n+1)/2 first velocities. This
causes no harm, since these velocities enter the Hamil-
tonian (63) as the coefficients of the primary constraints
ΠA2PA = 0. So, the values of the n(n+1)/2 first veloc-
ities are irrelevant, because different choices modify the
Hamiltonian by terms proportional to the constraints.
Anyway this kind of terms are reintroduced in the pri-
mary Hamiltonian (25).

Let us use the matrix N of change of basis to return
to the original basis: C2 = NCN21. Then, the previous
equation becomes

N21D2N C = C N21D2N = N21

(

0 0
0 1

)

N. (69)

The r.h.s. is not the identity, but is a symmetric matrix.
Besides, the matrix

D
.
= N21D2N (70)

satisfies that CDC = C and DCD = D. Therefore D is
the Moore-Penrose pseudo-inverse of C. We will use the
Eq. (66) in the original basis; so we must replace D2 with
D. Thus, we substitute Eq. (66) in Eq. (63) to obtain
the canonical form of the Hamiltonian density:

H =
1

2
e (ΠA 2PA)D

AB(ΠB 2PB) +ΠA EA
0 +U, (71)

where e = E21 = det(eµa). The canonical Hamiltonian is
the integral of H. We can remind the form (32) of the

constraint G
(2)
0 to write

H =

∫

dx H =

∫

dx G
(2)
0 +

∫

Ec
0 Πi

c dSi . (72)

Then, the canonical Hamiltonian is a constraint plus a
boundary term. As a consequence, the set of first class
constraints will be automatically consistent with the evo-
lution.

A. Dimension n = 3

Let us work with the matrix CA
B ,

CA
B = Ca f

eb = e0c e0d Ma g hf
b e , (73)

where Ma g hf
b e = ·ac ·de M gdhf

cb . CAB and CA
B share

the eigenvectors of null eigenvalue (see the Appendix A3
for the forms of these matrices). The non-null eigenvalues
of CA

B are

»1 = »2 = 2 [(e00)
2 2 (e01)

2 2 (e02)
2] = 2 g00

.
= » ,

»3 = 2» . (74)

The case n = 3 is very simple because the matrix CA
B

accomplishes

CA
B CB

C CC
D = »2 CA

D . (75)

This is a consequence of the fact that the non-null eigen-
values have the same absolute value. This means that
the pseudo-inverse of CA

B is DA
B = »22 CA

B. Therefore,
the matrix DAB in Eq. (71) is

DAB = »22 CAB = »22 e0g e0h Mabg h
e f . (76)

B. Dimension n > 3

In n = 4 dimensions, the matrix CA
B has six non-null

eigenvalues; they are

»1 = »2 = »3 = »4 = »5

= 2 [(e00)
2 2 (e01)

2 2 (e02)
2 2 (e03)

2] = 2 g00
.
= » ,

»6 = 22 » . (77)

Since their absolute values are not equal, the pseudo-
inverse matrix DAB cannot be inferred in a so straight-
forward way as we did in n = 3 dimensions. In fact, ma-
trix CA

B does not accomplishes the Eq. (75) when n > 3.
The eigenvector related to the odd eigenvalue is

wB = wb
f = 2

»

2
·bf + e0f ·bh e0h . (78)

In fact, in any dimension n, vector wB satisfies the eigen-
value equation

CA
B wB = e0g e0h Ma g hf

b e wb
f

= 2(n2 2)» wa
e = 2(n2 2) » wA. (79)

We will show that the pseudo-inverse of CA
B can be for-

mulated as the matrix

DA
B = »22 (CA

B + ³ wAwB) , (80)

where ³ is a factor to be determined. The idea is to use
the projector associated to the odd eigenvalue to “im-
prove” the matrix CA

B and get the desired result. In
order that DA

B be the pseudo-inverse of CA
B, the r.h.s.

of the equation

CA
C DC

D CD
B = »22CA

C CC
D CD

B+³(n22)2wAwB (81)

should be CA
B . To find ³, we will introduce the auxiliary

matrix

C̃A
B = CA

B + 4 »21 wAwB , (82)

which satisfies

C̃A
B wB = CA

B wB + 4 »21wA wB wB

= 2(n2 2)»wA + (n2 1)»wA = »wA. (83)

Besides, for any vector 3B orthogonal to wB it is
C̃A

B 3B = CA
B 3B = » 3A . Then, C̃A

B is isotropic in the
subspace of non-null eigenvalues. 4 Since all the non-null

4 This is true not only for n = 4, but it has been checked for
arbitrary n through the computer algebra program Cadabra [21].
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eigenvalues of C̃A
B are equal to », then C̃A

B accomplish
the Eq. (75). Therefore

»2 (CA
B + 4»21wAwB) = »2 C̃A

B = C̃A
C C̃C

D C̃D
B

= CA
C CC

D CD
B + 4»

(

n2 2 5n+ 7
)

wAwB , (84)

i.e.,

»22CA
CC

C
DCD

B = CA
B24 »21(n23)(n22)wAwB . (85)

Substituting this result in Eq. (81), we get that DA
B is

the pseudo-inverse of CA
B if ³ has the value

³ = »21 4 (n2 3)

(n2 2)
. (86)

In n = 4 dimensions, ³ is equal to 2»21. Thus the
contravariant pseudo-inverse matrix DAB = »22(CAB +
³ wAwB) in four dimensions is

DAB = Dab
ef = »21 (·

[a
f ·b]e +

1

2
·ab ·ef )

2»22 (e0e e0f ·ab + 4 e0g e0[e ·
[a
f ] ·

b]g

+e0g e0h ·ag ·bh ·ef )

+2 »23 ·ag ·bh e0g e0h e0e e0f . (87)

VIII. ALGEBRA OF CONSTRAINTS

The Hamiltonian formalism for TEGR is not finished
without checking that the set of constraints is first class.
For this, we have to compute the entire set of Poisson
brackets between the constraints. The pseudo-inverse
matrix DAB will enter the algebra of those Poisson brack-

ets involving the constraint G
(2)
0 . It is worth mentioning

that Eq. (78) can be replaced in the l.h.s of Eq. (79) to
obtain

1

2(n2 2)
Ca b

be = wa
e = wA. (88)

Therefore, matrix D in Eq. (80) can be written entirely
in terms of the matrix C as

Dab
ef = »22 Cab

ef +
»23(n2 3)

(n2 2)3
Ca c

ce Cb d
df , (89)

which will be useful to compute those brackets involving

G
(2)
0 .

The simplest brackets are those related to G
(1)
a :

{G(1)
a (t,x), G

(1)
b (t,y)} = 0, (90)

{G
(2)
i (t,x), G(1)

a (t,y)} = 0, (91)

{G
(1)
ab (t,x), G

(1)
c (t,y)} = 0, (92)

{G
(2)
0 (t,x), G(1)

a (t,y)} =
(

e0a G
(2)
0 + eia G

(2)
i

)

·(x2 y). (93)

However, the last one requires the knowledge of the
brackets between the momenta Π0

a and the matrix DAB.
In the Appendix A4 we summarize useful hints in order
to simplify this calculation.

The Poisson brackets between secondary constraints

G
(2)
µ reproduce the algebra of constraints of the ADM

formulation of general relativity:

{G
(2)
i (t,x), G

(2)
j (t,y)} = (94)

2G
(2)
i (x) "y

j ·(x2 y) + G
(2)
j (y) "x

i ·(x2 y) ,

{G
(2)
0 (t,x), G

(2)
0 (t,y)} = gij(x)G

(2)
i (x) "y

j ·(x2 y)

2 gij(y)G
(2)
i (y) "x

j ·(x2 y) , (95)

{G
(2)
0 (t,x), G

(2)
i (t,y)} = G

(2)
0 (x) "y

i ·(x2 y) . (96)

We have also verified that the Poisson brackets for the
constraints G

(1)
ab reproduces the Lorentz algebra:

{G(1)
ac (t,x), G

(1)
fe (t,y)} = (97)

(

·ecG
(1)
af + ·afG

(1)
ce 2 ·cfG

(1)
ae 2 ·aeG

(1)
cf

)

·(x 2 y) .

Besides it is

{G
(1)
ab (t,x), G

(2)
i (t,y)} = 0 . (98)

Finally the most intricate calculation is required by the
bracket

{G
(2)
0 (t,x), G

(1)
ab (t,y)} = Ec

0 ·c[a e
0
b] G

(2)
0 ·(x2 y) . (99)

In order to alleviate some difficult parts of it, some useful
computations are summarized in Appendix A4.

As a result we have got n trivial primary constraints

G
(1)
a , together with n(n 2 1)/2 primary constraints that

come from the Lorentz algebra. Besides, we have ob-

tained n secondary constraints G
(2)
µ that are equivalent to

the super-Hamiltonian and super-momenta constraints of
the ADM formalism. Since we just proved that all con-
straints are first class, then the counting of degrees of
freedom goes as

# d.o.f. = #(p,q)2# f.c.c.

= n2 2
n(n+ 3)

2
=

n(n2 3)

2
(100)

which is the number of degrees of freedom of general rel-
ativity in n dimensions.

IX. SUMMARY

The essence of a Hamiltonian constrained system lies
in the impossibility of solving all the canonical velocities
in terms of canonical momenta. This is because the mo-
menta are not independent but satisfy constraint equa-
tions, which in turn means that some dynamical vari-
ables are spurious degrees of freedom. In the case of the
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teleparallel equivalent of general relativity (TEGR), such

obstruction is expressed in the Eq. (47), since C ef
ab can-

not be inverted. C ef
ab is an object intimately linked to

the Lorentz invariant supermetric M cedf
ab entering the

TEGR Lagrangian (20). In order to analyze how many
constraints are involved in the Eq. (47), and how many
canonical velocities can be solved, we have arranged the

components of C ef
ab in a n2 × n2 symmetric matrix

CAB (the relation between the superindex A and the tan-
gent space indices is given in Eq. (58)). We have shown
that the eigenvalues of CA

B follow a very simple pattern:
n(n + 1)/2 eigenvalues are null, n(n 2 1)/2 2 1 of them
are equal to 2 g00

.
= », and the remaining one is equal

to (2 2 n)». The primary constraints results from the
contraction of the Eq. (64) with each eigenvector of null

eigenvalue; they include the n trivial constraints G
(1)
a (see

Eq. (24)) and the n(n21)/2 Lorentz constraints G
(1)
ab (see

Eq. (54)). To build the canonical Hamiltonian we must
identify the subset of canonical velocities that can be still
solved in terms of the momenta. For this, we employed
the Moore-Penrose pseudo-inverse of matrix C , which
can be sought in the form proposed in Eq. (80) thanks to
the simple pattern of eigenvalues exhibited by the matrix
C. The so obtained matrix DAB is the piece we need to
write the canonical Hamiltonian density H (see Eq. (71)).
Those terms associated with the unsolved velocities are
absorbed into the terms added to the primary Hamil-

tonian Hp (25). Besides the primary constraints G
(1)
a ,

G
(1)
ab , we have also obtained n secondary constraints G

(2)
µ

–the diffeomorphism constraints– that guarantee that
the primary constraints remain valid along the evolution
dictated by Hp (we have examined this consistency at
the level of the Euler-Lagrange equations). The consis-
tency under the evolution of the system must be checked
with the secondary constraints too. Not surprisingly, the

canonical Hamiltonian density H is equal to G
(2)
0 except

for a boundary term. Thus, the consistency of the entire
set of constraints is guaranteed by the first class con-
straint algebra (90-99). Since the constraints are first
class, they generate gauge transformations. Therefore,
there are n(n+3)/2 spurious variables, what reduces the
number of degrees of freedom to n(n 2 3)/2. The in-
dependent gauge transformations are those displayed in
Eqs. (37), (42), and (56).
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Appendix A

1. Properties of the supermetric

There are many properties of the supermetric that were
used throughout this work, and can be deducted from its
definition. Some of them are

M cedf
ab = M dfce

ba = 2M ecdf
ab = 2M cefd

ab . (A1)

We can calculate “traces” of the supermetric, which de-
pend on the dimension n. Some of them are

M aedf
ab = M dfae

ba = 4(n2 2) ·e[d ·
f ]
b , (A2)

M dfae
ab = M aedf

ba = 2(n2 2)·e[f·
d]
b , (A3)

M aebf
ab = 22(n2 1)(n2 2) ·ef , (A4)

The totally antisymmetric Kronecker delta ·ghfcab appears
in the antisymmetrized product

·e[cM
gehf

a]b = 2 (·h[a·
f

c]·
g
b + ·g[a·

h
c]·

f
b + ·f[a·

g

c]·
h
b )

.
= 22 ·ghfcab . (A5)

We also obtain

Mabg h
e f ·a[q·

e
p] = ·bg·f [q·

h
q] + ·bh·f [q·

g

p] + ·bf·
g

[q·
h
p] , (A6)

·e[cC
d]b
ef = 4 e0f e0[c ·d]b. (A7)

Some other combinations quadratic in M appear in the
calculations, and it is useful to have them on hand

Cac
ec M

cedf
ag = 4(n2 3)(n2 2) g00 ·c[d ·f ]g (A8)

+ 8 (n2 2) e0g e
0[f ·d]c + e0c e0[d ·f ]g

C ef
ab Mabc d

e f = 6 (n2 3)(n2 2) ·cd g00 (A9)

+ 12 (n2 2) e0c e0d .

2. Calculation of ∂L/∂Ea
0

For computing "L/"Ea
0 , it is important to notice that,

contrarily to electromagnetism, Ea
0 appears in the La-

grangian not just in the spatial derivatives "iE
a
0 but also

as a part of eµa and E. First of all we need the quotient
"eµc /"E

a
λ, which is obtained from the duality relation:

·µν = eµbE
b
ν ³ 0 =

"eµb
"Ea

λ

Eb
ν + eµa ·

λ
ν . (A10)

this implies that

"eµc
"Ea

λ

= 2eµa e
λ
c . (A11)

We will need also the expression "E/"Ea
0 , which is ob-

tained from the explicit formula for the determinant

E = ëabcd...g E
a
0 E

b
1 E

c
2 E

d
3 ...E

g
n , (A12)
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Then we obtain

Ea
λ

"E

"Ea
0

= ·0λ E ³
"E

"Ea
0

= E e0a . (A13)

In this way,

"L

"Ea
0

=
1

2
E (e0ae

µ
g e

ν
ee

ρ
he

λ
f 2 eµae

0
ge

ν
ee

ρ
he

λ
f 2 eνae

µ
g e

0
ee

ρ
he

λ
f

2eρae
µ
g e

ν
ee

0
he

λ
f 2 eλae

µ
g e

ν
ee

ρ
he

0
f) "µE

c
ν "ρE

d
λ M

gehf
cd .(A14)

In the last expression we identify the Lagrangian in the
first term, and different index combinations of the mo-
menta. We rewrite it and continue with the algebraic
manipulation

"L

"Ea
0

= e0a L2
1

2
eµa "µE

c
ν Π

ν
c +

1

2
eνa "µE

c
ν Π

µ
c

2
1

2
eρa "ρE

d
λ Π

λ
d +

1

2
eλa "ρE

d
λ Π

ρ
d

= e0a L+ 2 eνa "[µE
c
ν] Π

µ
c (A15)

= e0a L+ 2 e0a "[iE
c
0] Π

i
c + 2 eja "[iE

c
j] Π

i
c .

The Hamiltonian density can be extracted from the first
terms, to obtain

"L

"Ea
0

= 2e0aH + e0a "iE
c
0 Π

i
c + 2 eja "[iE

c
j] Π

i
c (A16)

= e0a ("i(E
c
0Π

i
c)2H)2 Ec

0 e
0
a "iΠ

i
c + 2 eja "[iE

c
j] Π

i
c .

This result is replaced in Eq. (30) to obtain n secondary
constraints:

Ec
j e

j
a "iΠ

i
c + e0a ("i(E

c
0Π

i
c)2H) + 2 eja "[iE

c
j] Π

i
c j 0 .

(A17)
We note that only spatial derivatives are present, and the
canonical Hamiltonian takes part in the secondary con-
straints. We can isolate the contribution of the Hamilto-
nian by doing the contraction with Ea

0 ; thus we get

G
(2)
0 = H2 "i(E

c
0 Π

i
c) j 0 . (A18)

Besides, we perform the contraction with Ea
k , so yielding

G
(2)
k = "kE

c
i Π

i
c 2 "i(E

c
k Π

i
c) j 0 . (A19)

3. Matrix CA
B

We present the full expression for the matrix CA
B in

n = 4, which appears in the definition of the canonical
momenta. It is

CA
B =











































































0 0 0 0 0 2c23 −2d12 −2d13 0 −2d12 2c13 −2d23 0 −2d13 −2d23 2c12

0 −c23 d12 d13 c23 0 −d02 −d03 −d12 −d02 2d01 0 −d13 −d03 0 2d01

0 d12 −c13 d23 −d12 2d02 −d01 0 c13 −d01 0 −d03 −d23 0 −d03 2d02

0 d13 d23 −c12 −d13 2d03 0 −d01 −d23 0 2d03 −d02 c12 −d01 −d02 0

0 c23 −d12 −d13 −c23 0 d02 d03 d12 d02 −2d01 0 d13 d03 0 −2d01

2c23 0 −2d02 −2d03 0 0 0 0 2d02 0 −2c03 −2d23 2d03 0 −2d23 −2c02

−2d12 d02 d01 0 −d02 0 c03 d23 −d01 c03 0 d13 0 d23 d13 −2d12

−2d13 d03 0 d01 −d03 0 d23 c02 0 d23 −2d13 d12 −d01 c02 d12 0

0 −d12 c13 −d23 d12 −2d02 d01 0 −c13 d01 0 d03 d23 0 d03 −2d02

−2d12 d02 d01 0 −d02 0 c03 d23 −d01 c02 0 d13 0 d23 d13 −2d12

2c13 −2d01 0 −2d03 2d01 −2c03 0 −2d13 0 0 0 0 2d03 −2d13 0 −2c01

−2d23 0 d03 d02 0 −2d23 d13 d12 −d03 d13 0 c01 −d02 d12 c01 0

0 −d13 −d23 c12 d13 −2d03 0 d01 d23 0 −2d03 d02 −c12 d01 d02 0

−2d13 d03 0 d01 −d03 0 d23 c02 0 d23 −2d13 d12 −d01 c02 d12 0

−2d23 0 d03 d02 0 −2d23 d13 d12 −d03 d13 0 c01 −d02 d12 c01 0

2c12 −2d01 −2d02 0 2d01 −2c02 −2d12 0 2d02 −2d12 −2c01 0 0 0 0 0











































































(A20)

where

c01 = (e00)
2 2 (e01)

2, c02 = (e00)
2 2 (e02)

2,

c03 = (e00)
2 2 (e03)

2, c12 = (e01)
2 + (e02)

2,

c13 = (e01)
2 + (e03)

2, c23 = (e02)
2 + (e03)

2,

d01 = e00e
0
1, d02 = e00e

0
2, d03 = e00e

0
3,

d12 = e01e
0
2, d13 = e01e

0
3, d23 = e02e

0
3.

(A21)

The matrices CAB and CAB are obtained by raising and
lowering indices with the corresponding · tensors. The
matrix DA

B is obtained starting from (80).
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4. Poisson brackets

Some useful fundamental Poisson brackets between the
canonical variables and their derivatives are given below,

{E(t,x), Πµ
a(t,y)} = E eµa ·(x2 y), (A22)

{e(t,x), Πµ
a(t,y)} = e eµa ·(x2 y), (A23)

{eµa(t,x), Πν
b (t,y)} = 2 eµb eνa ·(x2 y) , (A24)

{"λE
a
µ(t,x), Πν

b (t,y)} = (A25)

2{Ea
µ(t,x), "λΠ

ν
b (t,y)} = ·ab ·νµ "x

λ·(x2 y) ,

{"µE
b
ν(t,x), "λΠ

λ
c (t,y)} =

∫

dz ·bc "
x
µ·(x2z) "y

ν ·(y2z).

(A26)
These expressions are enough (together with patience
and a lot of calculations) to calculate those Poisson brack-

ets that do not involve G
(2)
0 . For the remaining Poisson

brackets, we provide some easy-to-derive expressions

{G
(2)
0 (t,x), Ec

i (t,y)} = (A27)
(

eDAB(ΠB 2 PB)E
e
i ·ca + "iE

c
0

)

·(x2 y) ,

{G
(2)
0 (t,x), "λE

c
µ(t,y)} = (A28)

(

eDAB (ΠB 2 PB) E
e
µ ·ca + "x

µE
c
0(x)

)

"y
λ·(x2 y) .

Other combinations of brackets between canonical mo-
menta and some basic building blocks of the secondary

constraint G
(2)
0 , that recurrently appear in the calcula-

tions, are the following

{»2γ , Π0
c} = 2 ³ »2γ e0c , (A29)

{»2γ , Πi
c} = 4 ³ »2(γ+1) e0c g0i , (A30)

{wA, Π0
c} = 22 e0c wA , (A31)

{wA, Πi
c} = 2

1

2(n2 2)
e0c (e

i
g e

0
h + eih e

0
g)M

a g hd
d e .(A32)

Finally, we give some help to calculate the brackets of
the momenta and the matrix DAB. It is very simple to
get the brackets

{DAB,Π0
c} = 2 e0c DAB. (A33)

However for the spatial part of the momenta Πi
a, the

brackets with the matrix D do not simplify so easily.
After using all the developed tools, we get

{DAB, Πi
c} = 8 e0c g

0i »23
(

CAB + ³wAwB
)

2»22 e0c (e
i
ge

0
h + eihe

0
g)M

abg h
e f

2
³»22 e0c
2(n2 2)

(eige
0
h + eihe

0
g) (M

a g hd
d e wB +M b g hd

d f wA)

+4³»23 e0c g
0iwA wB . (A34)

In Eqs. (A29-A34) a factor ·(x2y) is understood. As
a general advice, the raising and lowering of indices in the

supermetric M cedf
ab must be carefully done, to keep the

original order of the indices and protect the symmetries
of the object.
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